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Abstract

In a recent interview, Whitfield Diffie argued that “the whole point of cloud computing is economy”
and while it is possible in principle for “computation to be done on encrypted data, [...] current
techniques would more than undo the economy gained by the outsourcing and show little sign of
becoming practical”. Here we explore whether this is truly the case and quantify just how expensive
it is to secure computing in untrusted, potentially curious clouds.

We start by looking at the economics of computing in general and clouds in particular. Specif-
ically, we derive the end-to-end cost of a CPU cycle in various environments and show that its
cost lies between 0.5 picocents in efficient clouds and nearly 27 picocents for small enterprises (1
picocent = $1× 10−14), values validated against current cloud pricing.

We then explore the cost of common cryptography primitives as well as the viability of their
deployment for cloud security purposes. We conclude that Diffie was correct. Securing outsourced
data and computation against untrusted clouds is indeed costlier than the associated savings, with
outsourcing mechanisms up to several orders of magnitudes costlier than their non-outsourced lo-
cally run alternatives.

1 Introduction
Commoditized outsourced computing has finally arrived, mainly due to the emergence of fast and cheap
networking and efficient large scale computing. Amazon, Google, Microsoft and Oracle are just a few of
the providers starting to offer increasingly complex storage and computation outsourcing. CPU cycles have
become consumer merchandise.

In [10] we explored the end-to-end cost of a CPU cycle in various environments and show that its cost
lies between 0.45 picocents in efficient clouds and 27 picocents for small business deployment scenarios (1
picocent = $1 × 10−14). In terms of pure CPU cycle costs, current clouds present seemingly cost-effective
propositions for personal and small enterprise clients.

Nevertheless, cloud clients are concerned with the privacy of their data and computation – this is often
the primary adoption obstacle, especially for medium and large corporations, who often fall under strict
regulatory compliance requirements. To address this, existing secure outsourcing research addressed several
issues including guaranteeing integrity, confidentiality and privacy of outsourced data to secure querying on
outsourced encrypted database. Such assurances will likely require strong cryptography as part of elaborate
intra- and client-cloud protocols. Yet, strong crypto is expensive. Thus, it is important to ask: how much
cryptography can we afford in the cloud while maintaining the cost benefits of outsourcing?
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Some believe the answer is simply none. For example, in a recent interview [48] Whitfield Diffie argued
that “current techniques would more than undo the economy [of] outsourcing and show little sign of
becoming practical.”

Here we set out to find out whether this holds and if so, by what margins. One way to look at this is in
terms of CPU cycles. For each desired un-secured client CPU cycle, how many additional cloud cycles can
we spend on cryptography, before its outsourcing becomes too expensive? We end up gaining the insight
that today’s secure data outsourcing primitives are often orders of magnitude more expensive than local
execution, mainly due to the fact that we do not know how to process complex functions on encrypted data
efficiently enough. And outsourcing simple operations – such as existing research in querying encrypted
data, keyword searches, selections, projections, and simple aggregates – is simply not profitable. Thus,
while traditional security mechanisms allow the elegant handling of inter-client and outside adversaries,
today it is still too costly to secure against cloud insiders with cryptography.

2 Cost Models
Parameters H S M L
CPU utilization 5-8% 10-12% 15-20% 40-56%
server:admin ratio N.A. 100-140 140-200 800-1000
Space (sqft/month) N.A. $0.5 $0.5 $0.25
PUE N.A. 2-2.5 1.6-2 1.2-1.5

Figure 1: Sample key parameters.

To reach the granularity of computing
cycles, in [10] we explore the cost of
running computing at different levels.
We chose environments of increasing
size: home, small enterprises, mid-size
and large size data centers. The bound-
aries between these setups are often dy-

namic and the main reason we’re using them is to help differentiate a set of key parameters (Figure 1).

2.1 Levels
Home Users (H). We include this scenario as a baseline for a simple home setup containing several com-
puters. This could correspond to individuals with spare time to maintain a small set of computers, or a small
home-based enterprise without staffing costs.
Small Enterprises (S). We consider here any scenario involving an infrastructure of up to 1000 servers
run in-house in a commercial enterprise. The cost structure will start to feature most of the usual suspects,
including commercial energy and network pricing, cooling, space leases, staffing etc. Small enterprises can
not afford custom hardware, efficient power-distribution, and cooling or dedicated buildings among others.
More importantly, in addition to power distribution inefficiencies, due to their nature, small enterprises
cannot be run at high utilization as they would be usually under the incidence of business cycles and its
associated peak loads.
Mid-size Enterprises (M). We consider here setups of up to 10,000 servers, run by a corporation, often
in its own dedicated data center(s). Mid-size enterprises might have some clout and access to better service
deals for network service as well as more efficient cooling and power distribution. They are not fully global,
yet could feature several centers across one or two time zones, allowing increased independence from local
load cycles as well as the ability to handle daily peaks better by shifting loads across timezones. All the
above results ultimately in increased utilization (20-25% est.) and overall efficiency.
Large Enterprises/Clouds (L). Clouds and large enterprises run over 10,000 servers, cross multiple time-
zones, often literally at a global level, with large data centers distributed across all continents and often in
tens to hundreds of countries. For example Google has built a 30-acre site in Dalles, Oregon, next to a hydro-
electric dam providing cheap power. The site is composed of 34,000 square feet buildings [26]. Especially
in cloud setups, high speed networks allow global-wide distribution and integration of load from thousands
of individual points of load. This in turn flattens the 24-hour overall load curve and allows for efficient peak
handling and comparably high utilization factors (50-60% est. [22]). Cloud providers run the most efficient
infrastructures, and often are at the forefront of innovation. In one notorious instance, Google for example
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asked Intel for chips tolerating more heat, to allow for a few degrees increase in data center operating tem-
peratures - which in turn increases cooling efficiency by whole percentage points [36]. Moreover, clouds
have access to bulk-pricing for network service from large ISPs, often one order of magnitude cheaper than
mid-size enterprises.

2.2 Factors
We now consider the cost factors that come into play across all of the above levels. These can be divided
into a set of inter-dependent vectors, including: hardware (servers, networking gear), building (floor space
leasing), energy (running hardware and cooling), service (administration, staffing, software maintenance),
and network service. Other breakdown layouts of these factors are possible.
Server Hardware. Hardware costs include servers, racks, power equipment, network equipment, cooling
equipment etc. We will discuss network equipment later.

We note that these costs drop with time, likely even by the time this goes to print. For example, while
many of the current documented mid-size deployments use single or multi-CPU System-X blade servers at
around $1-2000 each [25], large data centers deploy custom setups at about $3000 for 4 CPUs, near-future
developments could yield important changes. 1 We will be conservative and empirically assume home PC
prices of around $750/CPU, small and mid-size enterprise costs of around $1000/CPU (for 2 CPU blades)
and cloud-level costs of no more than $500/CPU.
Energy. Energy in data centers does not only include power, computing and networking hardware but the
entire support infrastructure, including cooling, physical security, and overall facilities. A simple rough way
to infer power costs is by estimating the Power Usage Efficiency (PUE) of the data center. The PUE is a
metric defined by the GreenGrid Consortium to evaluate the energy efficiency of a data center [20] (PUE =
Total Power Usage / IT Equipment Power Usage).

We will assume 1.2-1.5 PUE for large enterprises, 1.6-2 PUE for mid-size enterprises and 2-2.5 for small
enterprises [38]. Costs of electricity are relatively uniform and documented [2].
Service. Evaluating the staffing requirements for data centers is an extremely complex endeavor as it
involves a number of components such as software development and management, hardware repair, mainte-
nance of cooling, building, network and power services.

Analytical approaches are challenged by the sparsity of available relevant supporting data sets.
We deployed a set of commonly accepted rule of thumb values that have been empirically developed

and validate well [23]: the server to administrator ratio varies from 2:1 up to experimental 2500:1 values
due to different degrees of automation and data management. In deployment, small to mid-size data centers
feature a ratio of 100-140:1 whereas cloud level centers can go up to 1000:1 [19, 22].
Network Hardware. To allow for analysis of network intensive protocols, we chose to separate network
transport service costs from the other factors of impact in the bottom line for CPU cycle. Specifically, while
the internal network infrastructure costs will be factored in the data center costs, network service will not.
We will estimate separately the cost of transferring a bit reliably to/from the data center intermediated by
outside ISPs’ networks. Internal network infrastructure costs can be estimated by evaluating the number of
required switches and routers. The design of scalable large economy network topology with high inter-node
bandwidth for data centers is an ever ongoing research problem [39]. We base our results on some of the
latest state of the art research, deploying fat tree interconnect structures. Fat trees have been shown to offer
significantly lower overall hardware costs with good overall connectivity factors.
Floor Space. Floor space costs vary wildly, by location and use. While small to mid-size enterprises usually
have data centers near their location (thus sometimes incurring office-level pricing), large companies such
as Google and Microsoft tend to build data centers on owned land, in less populated place where the per sqft
price can be brought down much lower, often amortized to zero over time.

1In one documented instance, e.g., Amazon is working with Rackable Systems to deliver an under $700 AMD-based 6 CPU
board dubbed CEMS (Cooperative Expendable Micro-Slice Servers) V3.
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CycleCost =
Server + Energy + Service+Network + Floor

Total Cycles

=
λs ·Ns/τs + (wp · µ+ wi · (1− µ)) · PUE · λe +

Ns
α

· λp + λw ·Nw/τw + λf · (wp·µ+wi·(1−µ))·PUE

β

µ · ν ·Ns

(1)

We also note that floor surface is directly related to power consumption and cooling with designs sup-
porting anywhere from 40 to 250 watt/sqft [17]. Thus, the overall power requirements (driven by CPUs)
impact directly the required space.

2.3 The Costs
We start by evaluating the amortized dollar cost of a CPU cycle in equation (1). See notations in Figure 2
and various setups’ parameters in Figure 1.

Symbol Definition
Ns, Nw number of servers,switches
α administrator : server ratio
β watt per sq ft
λs, λw server,switch price
λp, λf personnel,floor cost/sec
λe electricity price/(watt·sec)
µ CPU utilization
ν CPU frequency
τs, τw servers,switches lifespan (5 y.)
wp, wi server power at peak,idle

Figure 2: Notations for (1).

“CPU cycles” are architecture-specific, yet we chose them to
evade higher level, semantic-dependent units such as application-
specific ‘transactions”. When reasoning about general computing it
is not clear what types of higher-level transactions are appropriate to
consider as ‘units”. After all, the dollar cost of serving an HTTP
‘transaction” is only marginally relevant in evaluating the end-to-end
costs of cloud-hosting arbitrary applications, across different infras-
tructures and languages. And, we will show that CPU cycles validate
well as a consistent unit – probably in no small part due to the recent
(almost) universality of x86 platforms across all environments, in ef-
fect reducing the impact of architecture specificity.

Provider Picocents
Amazon EC2 0.93 - 2.36
Google AppEngine up to 2.31
Microsoft Azure up to 1.96

Figure 3: Current pricings.

 0

 5

 10

 15

 20

 25

 30

 35

 40

10(H) 50(S) 500(S) 5K(M)100K(L)

C
PU

 c
yc

le
 c

os
t (

pi
co

ce
nt

)

Number of servers

5

27

14

2
<0.5

Figure 4: CPU cycle costs

The results are depicted in Figure 4, costs ranging from 0.45 pic-
ocents/cycle in very large cloud settings all the way to (S), the costli-
est environment, where a cycle costs up to 27 picocents (1 US pico-
cent = $1 × 10−14). We validate our results by exploring the pric-
ing of the main cloud providers (Figure 3). The prices lie surpris-
ingly close to each other and to our estimates, ranging from 0.93 to
2.36 picocents/cycle. The difference in cost is due to the fact that
these points include not only CPUs but also intra-cloud networking,
instance-specific disk storage and cloud providers’ profit.
Storage Cost. Simply storing bits on disks has become truly cheap.
Increased hardware reliability (with mean time between failures rated
routinely above a million hours even for consumer markets) and
economies of scale resulted in extreme drops in the costs of disks.
In [10], we showed that in terms of amortized acquisition costs,
the best price/hardware/MTBF ratio from our sample set is at 26.06
picocents/bit/year. The dominant factor is energy, 60-350 pico-
cents/bit/year, at 60-90% of the total cost. The lowest total cost from
our sample set is at about 100 picocents/bit/year.

Network Service Published network service cost numbers place network service costs for large data centers
at around $13/ Mbps/ mo and for mid-size setups at $95/Mbps/mo [22] for guaranteed bandwidth. Home
user and small enterprise pricing benefits from economies of scale, e.g., Optimum Online provides 15/5
Mbps internet connection for small business starting at $44.9/ mo [43]. Yet we note that the quoted band-
width is not guaranteedand refers only to the hop connecting the client to the provider. Figure 5 summarizes
network service cost in the four environments. When inferring the per-bit transmission costs we considered
the uplink/downlink costs were independently priced at the same total price quoted for the entire connection.
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AES-128 AES-192 AES-256
S 1.42E+03 1.48E+03 1.52E+03
L 2.37E+01 2.47E+01 2.53E+01

Figure 6: AES-128, AES-192, AES-256 costs (per byte)
on 64-byte input.

1024 bit 2048 bit
Encrypt Decrypt Encrypt Decrypt

S 3.74E+06 1.03E+08 8.99E+06 6.44E+08
L 6.24E+04 1.72E+06 1.50E+05 1.07E+07

Figure 7: Cost of RSA encryption/decryption on 59-byte
messages. (picocents)

1024 bit 2048 bit
Sign Verify Sign Verify

S 5.73E+07 6.94E+07 1.89E+08 2.30E+08
L 9.55E+05 1.16E+06 3.15E+06 3.84E+06

Figure 8: DSA on 59-byte messages. The 1024-bit DSA uses 148-byte secret key and 128-byte public key.
The 2048-bit DSA uses 276-byte secret key and 256-byte public key.

In other words, we assumed the provider would charge the same amount for only the uplink connection.

H, S M L
monthly $44.90 $95 $13
bandwidth (d/u) 15/5 Mbps per 1Mbps per 1Mbps
dedicated No Yes Yes
picocent/bit 115/345 3665 500

Figure 5: Summarized network service costs [10].

The end-to-end cost of network
transfer includes the cost on both com-
municating parties and the CPU over-
heads of transferring a bit from one ap-
plication layer to another. Moreover, for
reliable networking (e.g., TCP/IP) we
need to also factor in the additional traf-
fic and spent CPU cycles (e.g., SYN,

SYN/ACK, ACK, for connection establishment, ACKs for sent data, window management, routing, packet
parsing, re-transmissions). In the S → L scenario, it costs more than 900 picocents to transfer one bit
reliably.

3 Cryptography
So far we know that a CPU cycle will set us back 0.45-27 picocents, transferring a bit costs at least 900
picocents, and storing it costs under 100 picocents/year. We now explore the costs of basic crypto and
modular arithmetic. All values are in picocents. Note that CPU cycles needed in cryptographic operations
often vary with optimization algorithms and types of hardware used (e.g., specialized secure CPUs and
crypto accelerators with hardware RSA engines [1] are cheaper per cycle than general-purpose CPUs).
Symmetric Key Crypto. We first evaluate the per-bit costs of AES-128, AES-192, AES-256 and illustrate
in Figure 6. The evaluation is based on results from the ECRYPT Benchmarking of Cryptographic Systems
(eBACS) [6].
RSA. Using modular exponentiation, RSA public key encryption takes O(k2), private key decryption
O(k3), and key generation O(k4) steps, where k is the number of bits in the modulus [28]. Numerous
algorithms aim to improve the speed of RSA, mainly by reducing the time to do modular multiplications. In
Figure 7, we illustrate the costs of RSA encryption/decryption using benchmark results from [6].
PK Signatures. We illustrate costs of DSA, and ECDSA signatures based on NIST elliptic curves [6] in
Figures 8, 9.
Cryptographic Hashes We also show per byte cost of MD5 and SHA1 with varied input sizes.

4 Secure Outsourcing
Thus armed with an understanding of computation, storage, network and crypto costs, we now ask whether
securing cloud computing against insiders is a viable endeavor.
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ECDSA-163 ECDSA-409
KG/SGN Verify KG/SGN Verify

S 1.36E+08 2.65E+08 9.60E+08 1.91E+09
L 2.27E+06 4.41E+06 1.60E+07 3.19E+07

ECDSA-571
KG/SGN Verify

S 2.09E+09 4.18E+09
L 3.48E+07 6.96E+07

Figure 9: Costs of ECDSA signatures on 59-byte messages (curve over a field of size 2163, 2409, 2571

respectively). (picocents)

MD5 SHA1
4096 64 4096 64

S 1.52E+02 3.75E+02 2.14E+02 6.44E+02
L 2.53E+00 6.25E+00 3.56E+00 1.07E+01

Figure 10: Per-byte cost of MD5 and SHA1 (with 64-byte and 4096-byte input).

We start by exploring what security means in this context. Naturally, the traditional usual suspects
need to be handled in any outsourcing environment: (mutual) authentication, logic certification, inter-client
isolation , network security as well as general physical security. Yet, all of these issues are addressed
extensively in existing infrastructures and are not the subject of this work.

Similarly, for conciseness, within this scope, we will isolate the analysis from the additional costs of
software patching, peak provisioning for reliability, network defenses etc.

4.1 Trust
We are concerned cloud clients being often reluctant to place sensitive data and logic onto remote servers
without guarantees of compliance to their security policies [15, 29]. This is especially important in view of
recent sub-poenas and other security incidents involving cloud-hosted data [11, 12, 35]. The viability of the
cloud computing paradigm thus hinges directly on the issue of clients’ trust and of major concern are cloud
insiders. Yet how “trusted” are today’s clouds from this perspective? We identify a set of scenarios.
Trusted clouds. In a trusted cloud, in the absence of unpredictable failures, clients are served correctly, in
accordance to an agreed upon service contract and the cloud provider’s policies. No insiders act maliciously.
Untrusted clouds. For untrusted clouds, we distinguish several cases depending on the types of illicit
incentives existing for the cloud and the client policies with which these will directly conflict. We call a cloud
data-curious if insiders thereof have incentives to violate confidentiality policies (mainly) for (sensitive)
client data. Similarly, in an access-curious cloud, insiders will aim to infer client access patterns to data
or reverse-engineer and understand outsourced computation logic. A malicious cloud will focus mainly on
(data and computation) integrity policies and alter data or perform incorrect computation.

Reasonable cloud insiders are likely to factor in the potential illicit gains (the incentives to violate the
policy), the penalty for getting caught, as well as the probability of detection. Thus for most practical
scenarios, insiders will engage in such behavior only if they can get away undetected with high probability,
e.g., when no (cryptographic?) safeguards are in place to enable the detection.

4.2 Secure Outsourcing
Yet, millions of users embrace free web apps in an untrusted provider model. This shows that today’s
(mostly personal) cloud clients are willing to trade their privacy for (free) service. This is not necessar-
ily a bad thing, especially at this critical-mass building stage, yet raises questions of clouds’ viability for
commercial, regulatory-compliant deployment, involving sensitive data and logic. And, from a bottom-line
cost-perspective, is it worth even trying? This is what we aim to understand here.
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In the following we will assess whether clouds are economically tenable if their users do not trust
them and therefore must employ cryptography and other mechanisms to protect their data. A number
of experimental systems and research efforts address the problem of outsourcing data to untrusted service
providers, including issues ranging from searching in remote encrypted data to guaranteeing integrity and
confidentiality to querying of outsourced data. In favor of cloud computing, we will set our analysis in the
most favorable S → L scenario, which yields most CPU cycle savings.

4.2.1 The Case for Basic Outsourcing

Before we tackle cloud security, let us look at the simplest computation outsourcing scenario (where clients
outsource data to the cloud, expect the cloud to process it, and send the results back). In existing work [10],
we show that, to make (basic, unsecured) outsourcing cost effective, the cost savings (mainly from cheaper
CPU cycles) need to outweigh the cloud’s distance from clients. In S → L, outsourced tasks should perform
at least 1,000 CPU cycles per every 32 bit data, otherwise it is not worth outsourcing them.

4.2.2 Encrypted Data Storage with Integrity

With an understanding of the basic boundary condition defining the viability of outsourcing we now turn our
attention to one of the most basic outsourcing scenarios in which a single data client places data remotely
for simple storage purposes. In the S → L scenario, the amortized cost of storing a bit reliably either locally
or remotely is under 9 picocents/month (including power). Network transfer however, is of at least 900
picocents per accessed bit, a cost that is not amortized and two orders of magnitude higher.

From a technological cost-centric point of view it is simply not effective to store data remotely: out-
sourced storage costs can be upwards of 2+ orders of magnitude higher than local storage for the
S → L scenario even in the absence of security assurances.

Cost of Security. Yet, outsourced storage providers exist and thrive. This is likely due to factors outside
of our scope, such as the convenience of being able to have access to the data from everywhere or collab-
orative application scenarios in which multiple data users share single data stores (multi-client settings).
Notwithstanding the reason, since consumers have decided it is worth paying for outsourced storage, the
next question we ask is, how much more would security cost in this context? We first survey some of the
existing work.

Several existing systems encrypt data before storing it on potentially data-curious servers [7, 9, 37]. File
systems such as I3FS [27], GFS [18], and Checksummed NCryptfs [46] perform online real-time integrity
verification.

It can be seen that two main assurances are of concern here: integrity and confidentiality. The cheapest
integrity constructs deployed in most of the above revolve around the use of hash-based MACs. As discussed
above, SHA-1 based keyed MAC constructs with 4096-byte blocks would cost around 4 picocent/byte on
the server and 200 picocents/byte on the client side, leading to a total cost of about 25 picocents/bit. This
is at least 4 times lower than the cost of storing the bit for a year and at least one order of magnitude lower
than the costs incurred by transferring the same bit (at 900+ picocents/bit). Thus, for outsourced storage,
integrity assurance overheads are negligible.

For publicly verifiable constructs, crypto-hash chains can help amortize their costs over multiple blocks.
In the extreme case, a single signature could authenticate an entire file system, at the expense of increased
I/O overheads for verification. Usually, a chain only includes a set of blocks.

For an average of twenty 4096 byte blocks2 secured by a single hash-chain signed using 1024-bit RSA,
would yield an amortized cost approximately 1M picocents per 4096-byte block (30+ picocents/bit) for
client read verification and 180+ picocents/bit for write/signatures. This is up to 8 times more expensive
than the MAC based case.

2Douceur et al. [16], show that file sizes can be modeled using a log-normal distribution. E.g., for µe = 8.46, σe = 2.4 and
20,000 files, the median file size would be 4KB, mean 80KB, along with a small number of files with sizes exceeding 1GB [3, 16].
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4.2.3 Searches on Encrypted Data

Confidentiality alone can be achieved by encrypting the outsourced content before outsourcing to potentially
access-curious servers. Once encrypted however, it cannot be easily processed by servers.

One of the first processing primitives that has been explored allows clients to search directly in remote
encrypted data [4, 5, 13]. In these efforts, clients either linearly process the data using symmetric key encryp-
tion mechanisms, or, more often, outsource additional secure (meta)data mostly of size linear in the order
of the original data set. This meta-data aids the server in searching through the encrypted data set while
revealing as little as possible.

But is remote searching worth it vs. local storage? We concluded above that simply using a cloud as a
remote file server is extremely non-profitable, up to several orders of magnitude. Could the searching appli-
cation possibly make a difference? This would hold if either (i) the task of searching would be extremely
CPU intensive allowing the cloud savings to kick in and offset the large losses due to network transfer, or
(ii) the search is extremely selective and its results are a very small subset of the outsourced data set – thus
amortizing the initial transfer cost over multiple searches.

We note that existing work does not support any complex search predicates outside of simple keyword
matching search. Thus the only hope there is that the search-related CPU load (e.g., string comparison) will
be enough cheaper in the cloud to offset the initial and result transfer costs.

Keyword searching can be done in asymptotically constant time, given enough storage or logarithmic
if B-trees are used. While the client could maintain indexes and only deploy the cloud as a file server, we
already discovered that this is not going to be profitable. Thus if we are to have any chance to benefit here,
the index structures need to also be stored on the server.

In this case, the search cost includes the CPU cycle costs in reading the B-tree and performing binary
searches within B-tree nodes. As an example, consider 32 bit search keys (e.g., as they can be read in one
cycle from RAM), and a 1 TB database. 1-3 CPU cycles are needed to initiate the disk DMA per reading, and
each comparison in the binary search requires another 1-3 cycles (for executing a comparison conditional
jump operation). A B-tree with 16KB nodes will have approximately a 1000 fanout and a height of 4-5, so
performing a search on this B-tree index requires about 100-300 CPU cycles. Thus in this simple remote
search, S → L outsourcing would result in CPU-related savings of around 2,500-8,000 picocents per access.
Transferring 32 bits from S → L costs upwards of 900 picocents. Outsourced searching becomes thus more
expensive for any results upwards of 36 bytes per query.

4.2.4 Insights into Secure Query Processing

By now we start to suspect that similar insights hold also for outsourced query processing. This is because
we now know that (i) the tasks to be outsourced should be CPU-intensive enough to offset the network over-
head – in other words, outsourcing peanut counting will never be profitable, and (ii) existing confidentiality
(e.g., homomorphisms) and integrity (e.g., hash trees, aggregated signatures, hash chains) mechanisms can
“secure” only very simple basic arithmetic (addition, multiplication) or data retrieval (selection, projection)
which would cost under a few of cycles per word if done in an unsecured manner. In other words, we do not
know yet how to secure anything more complex than peanut counting. And outsourcing of peanut counting
is counter productive in the first place. Ergo our suspicion.

We start by surveying existing mechanisms. Hacigumus et al. [21] propose a method to execute SQL
queries over partly obfuscated outsourced data to protect data confidentiality against a data-curious server.
The main functionality relies on (i) partly obfuscating the outsourced data by dividing it into a set of parti-
tions, (ii) query rewriting of original queries into querying referencing partitions instead of individual tuples,
and (iii) client-side pruning of (necessarily coarse grained) results. The information leaked to the server is
balancing a trade-off between client-side and server-side processing, as a function of the data segment size.
[24] explores optimal bucket sizes for certain range queries.
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Ge et al. [47] discuss executing aggregation queries with confidentiality on an untrusted server. Unfor-
tunately, due to the use of extremely expensive homomorphisms this scheme leads to large processing times
for any reasonably security parameter settings (e.g., for 1024 bit fields, 12+ days per query are required).

Other researchers have explored the issue of correctness in settings with potentially malicious servers.
In a publisher-subscriber model, Devanbu et al. deployed Merkle trees to authenticate data published at
a third party’s site [14], and then explored a general model for authenticating data structures [32, 33]. In
[40, 41] as well as in [31], mechanisms for efficient integrity and origin authentication for selection predicate
query results are introduced. Different signature schemes (DSA, RSA, Merkle trees [34] and BGLS [8]) are
explored as potential alternatives for data authentication primitives. In [30, 45] verification objects VO
are deployed to authenticate data retrieval in “edge computing” In [42, 44] Merkle tree and cryptographic
hashing constructs are deployed to authenticate range query results.

To summarize, existing secure outsourced query mechanisms deploy (i) partitioning-based schemes and
symmetric key encryption for (“statistical” only) confidentiality, (ii) homomorphisms for oblivious aggre-
gation (SUM, COUNT) queries (simply too slow to be practical), (iii) hash trees/chains and (iv) signature
chaining and aggregation to ensure correctness of selection/range queries and projection operators. SUM,
COUNT, and projection usually behave linearly in the database size. Selection and range queries may be
performed in constant time, logarithmic time or linear time depending on the queried attribute (e.g., whether
it is a primary key) and the type of index used.

For illustration purposes, w.l.o.g., consider a scenario most favorable to outsourcing, i.e., assuming the
operations behave linearly and are extremely selective, only incurring two 32-bit data transfers between the
client and the cloud (one for the instruction and one for the result). Informally, to offset the network cost
of 900 × 32 × 2 = 57, 600 picocents, only traversing a database of size at least 105 will generate enough
CPU cycle cost savings. Thus it seems that with very selective queries (returning very little data) over large
enough databases, outsourcing can break even.

Cost of Security. In the absence of security constructs, we were able to build a scenario for which outsourc-
ing is viable. But what about a general scenario? What are the overheads of security there? It is important to
understand whether the cost savings will be enough to offset them. While detailing individual secure query
protocols is out of scope here, it is possible to reason generally and gain an insight into the associated order
of magnitudes.

Existing integrity mechanisms deploy hash trees, hash chains and signatures to secure simple selection,
projection or range queries. Security overheads would then include at least the (client-side) hash tree proof
re-construction (O(log n) crypto-hashes) and subsequent signature verification of the tree’s root. The hash
tree proofs are often used to authenticate range boundaries. The returned element set is then authenticated
often through either a hash chain (in the case of range joins, at least 30 picocents per byte) or aggregated
signature constructs (e.g., roughly 60,000 picocents each, for selects or projections). This involves either
modular arithmetic or crypto-hashing of the order of the result data set. For illustration purposes, we will
again favor the case for outsourcing, and assume only crypto-hashing and a linear operation are applied.

Consider a database that has n = 109 tuples of 64 bits each. In that case (binary) hash tree nodes need
to be at least 240 bits (80 + 160 bits = 2 pointers + hash value) long. If we assume 3 CPU cycles are needed
per data item, the boundary condition results in selectivity s ≤ 0.00037 before outsourcing starts to make
economical sense. In a more typical scenario of s = 0.001 (queries are returning 0.1% of the tuples), a
per-query loss of over 0.3 US cents will be incurred.

The above holds only for the S → L scenario in which hash trees are deployed. In the case of sig-
nature aggregation [41, 42], the break-even selectivity would be even lower due to the higher computation
overheads.
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5 To Conclude
In this paper we explored whether cryptography can be deployed to secure cloud computing against insiders.
We estimated common cryptography costs ( AES, MD5, SHA-1, RSA, DSA, and ECDSA) and finally
explored outsourcing of data and computation to untrusted clouds. We showed that deploying the cloud as a
simple remote encrypted file system is extremely unfeasible if considering only core technology costs. We
also concluded that existing secure outsourced data query mechanisms are mostly cost-unfeasible because
today’s cryptography simply lacks the expressive power to efficiently support outsourcing to untrusted
clouds. Hope is not lost however. We found borderline cases where outsourcing of simple range queries can
break even when compared with local execution. These scenarios involve large amounts of outsourced data
(e.g., 109 tuples) and extremely selective queries which return only an infinitesimal fraction of the original
data (e.g., 0.00037%).
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