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Abstract

A hybrid cloud is a composition of two or more distinct cloud infrastructures (private, community, or
public) that remain unique entities, but are bound together by standardized or proprietary technol-
ogy that enables data and application portability [1]. The emergence of the hybrid cloud paradigm
has allowed end-users to seamlessly integrate their in-house computing resources with public cloud
services and construct potent, secure and economical data processing solutions. An end-user may
be required to consider a variety of factors, which include several hybrid cloud deployment models
and numerous application design criteria, during the development of their hybrid cloud solutions.
Although a multitude of applications could be developed through a combination of the aforemen-
tioned deployment models and design criteria, the common denominator among these applications
is that they partition an application’s workload over a hybrid cloud. Currently, there does not exist a
framework that can model this workload partitioning problem such that all the previously mentioned
factors are considered. Therefore, in this paper we present our vision for the formalization of the
workload partitioning problem such that an end-user’s requirements of performance, data security
and monetary costs are satisfied. Furthermore, to demonstrate the flexibility of our formalization,
we show how existing systems such as [2] [3] can be derived from our general workload partitioning
framework through an instantiation of the appropriate criteria.

1 Introduction
The emergence of cloud computing has created a paradigm shift within the IT industry by providing users
with access to high quality software services (SaaS), robust application development platforms (PaaS) and so-
phisticated computing infrastructures (IaaS). Furthermore, the utilization of a pay-as-you-use pricing model
for usage of cloud services is a particularly inviting feature for users, since it allows them to significantly
lower their initial investment cost towards acquiring a cloud infrastructure. A hybrid cloud is a particular
cloud deployment model that is composed of two or more distinct cloud infrastructures (private, community,
or public) that remain autonomous entities, but are interleaved through standardized or proprietary technol-
ogy that enables data and application portability [1]. A growing number of organizations have turned to
such a hybrid cloud model [4] [5], which allows them to seamlessly integrate their private cloud infras-
tructures with public cloud service providers. A hybrid cloud model enables users to process organization-
critical tasks on their private infrastructure while allowing repetitive, computationally intensive tasks to
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be outsourced to a public cloud. Moreover, adopting a hybrid cloud model increases throughput, reduces
operational costs and provides a high level of data security.

There are several flavors of hybrid cloud deployment models that are available to a user. One of the
choices is the Outsourcing model, in which users outsource all tasks to public cloud service providers.
Additionally, a user’s private cloud infrastructures are mainly used to perform post-processing operations
such as filtering incorrect results or decrypting encrypted results. Some features of the Outsourcing model
include ease of application development and deployment, reduction in financial expenditure and guaran-
teed levels of performance through the use of Service Level Agreements (SLA’s). A second choice is the
Cloudbursting model, in which users primarily use an in-house cloud infrastructure for deploying appli-
cations and use public cloud services to mitigate sudden bursts of activity associated with an application.
A Cloudbursting model provides users with several advantages such as adaptability to changing computa-
tional capacity requirements and cost savings through efficient use of public cloud resources. A third choice
is the Hybrid model, in which users could host applications that operate over sensitive information on a
private infrastructure while outsourcing less critical applications to a public cloud service provider. Such a
deployment model offers a higher level of throughput, an enhanced data security and an overall reduction in
financial costs. Given the various choices we have just described, a user needs to make a mindful selection
of a particular deployment model based on their application requirements.

In addition to the deployment models presented above, a user also needs to consider a variety of criteria
for designing a hybrid cloud application. The single most important criterion is Performance, since any
design solution must strictly adhere to a user’s performance requirements. The performance of a hybrid
cloud application depends on several criteria such as the data model used to capture information and the
data representations used to store data on a public cloud. The second important criterion that merits a user’s
consideration is Data Disclosure Risk, since a hybrid cloud application outsources tasks, and implicitly
data, to a public cloud, thereby creating a potential risk if the data is leaked. The data disclosure risk is
dependent on factors such as the representation used to store data on a public cloud and whether a selected
representation discloses information during data processing. The third important criterion that deserves
a user’s attention is Resource Allocation Cost, since an application’s usage of cloud services leads to
expenses that must be covered by an organizational budget. The resource allocation cost is contingent
on the cloud vendor and type of services being commissioned. The last essential touchstone that a user
should consider is Private Cloud Load, since for certain deployment models, namely Outsourcing and
Cloudbursting, a user would necessarily want to limit the amount of processing that is performed on a
private cloud. In practice, the load generated on a private cloud primarily depends on the model used to
capture and process data. Given the multitude of design criteria we described, a user is required to make
selections in a way that effectively addresses their performance, security and financial requirements.

In this paper, we begin by identifying the most notable criteria, which were briefly outlined earlier, that
drive the design of an effective hybrid cloud solution. In addition, we also tabulate the applicability of these
criteria to various cloud deployment models, which were introduced earlier. An observation to be made at
this point is that, although a user is required to consider a variety of factors, such as several hybrid cloud
deployment models as well as numerous application design criteria, the common denominator among any
applications that are developed using the aforementioned factors is that they partition an application’s work-
load over a hybrid cloud. In this paper, we formalize this workload partitioning problem as a mechanism
for maximizing a workload’s performance and we subsequently develop a framework for distributing an ap-
plication’s workload over a hybrid cloud such that an end-user’s requirements with respect to performance,
data disclosure risk, resource allocation cost and private cloud load are satisfied. We then describe how
existing systems such as [2] [3] can be derived from the general workload partitioning framework through
an instantiation of the appropriate parameters.

Our primary technical contributions are listed below:
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• We identify the most significant criteria that drive the design of an effective hybrid cloud solution. In
addition, we demonstrate the applicability of these criteria to various cloud deployment models.

• We formalize the workload partitioning problem as a mechanism for maximizing workload perfor-
mance. Our formalization allows us to plug in various models for metrics that have the greatest
impact towards the effectiveness of a hybrid cloud deployment model. In addition, our formalization
allows an end-user to experiment with different levels of restrictions for public cloud usage, until they
achieve the right mix of performance, security and financial costs.

• We demonstrate the flexibility of our formalization by showing how existing systems such as Sedic
[2] as well as the work given in [3], henceforth referred to as Hybrid-I, can be derived from the general
workload partitioning framework through an instantiation of the appropriate design criteria.

The rest of the paper is organized as follows: In Section 2 we present several key design criteria that
we believe are essential towards the development of an effective hybrid cloud solution. Then, Section 3
presents a general formalization of the workload partitioning problem that is applicable to any hybrid cloud
deployment model using the design criteria outlined in Section 2. After that, Section 4 describes how
existing systems can be derived from the general workload partitioning framework based on a specification
of concrete values for the appropriate design criteria. Finally, we describe our conclusions and future work
in Section 5.

2 Design Criteria for Hybrid Cloud Models
In this section, we present a brief overview of the design criteria that provide the greatest contribution
towards an effective hybrid cloud solution. Furthermore, Table 2 shows how these criteria are applicable to
hybrid cloud models (viz. Outsourcing, Cloudbursting and Hybrid) as well as a Private-only cloud.

Performance: This criterion is the single most important one for the adoption of hybrid clouds, since a
user would be willing to consider a cloud approach only if it meets their evolving performance requirements.
In the context of hybrid clouds, there are several, mutually conflicting metrics that could be used to measure
performance. These include, query response time and network throughput, among others. The performance
of a hybrid cloud model is in turn dependent on several factors such as data model, sensitivity model, etc.

Data Disclosure Risk: This factor estimates the risk of disclosing sensitive data to a public cloud service
provider, albeit in an appropriately encrypted form [6]. The risk is contingent on the the sensitivity and
security models defined by a user. Furthermore, the risk could be measured using a simple metric such as
the number of sensitive cells exposed to a public cloud [3] or a more complex analytical [7] or entropy-based
[8] technique.

Resource Allocation Cost: This criterion measures the financial cost (in terms of $) engendered by the
incorporation of some type of public cloud services into hybrid cloud models. The cost can be classified into
the following two broad categories: (i) On-premise: This category measures the cost incurred in acquiring
and maintaining a private cloud. (ii) Cloud: This category can be further sub-divided as follows: (a) Elastic:
A user is charged only for the services they use (pay-as-you-use). (ii) Subscription: A user is charged a
decided fee on a regular basis (fixed). The financial cost of an end-user’s hybrid cloud model implementation
is dependent on several factors such as the data model/query language, storage representation, etc.

Private Cloud Load: This touchstone estimates the load on a private cloud generated as a result of
processing some part of a user’s workload. This criterion is particularly appropriate in the context of the
Outsourcing and Cloudbursting deployment models, where the goal of a user is to avoid processing any data
or processing a small amount of data on a private cloud. The load on a private cloud could be measured
using a variety of metrics such as workload response time, total number of I/O operations performed when
a workload is processed, etc.

Observations: There are several observations to be made from the criteria we have listed above.
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Table 2: Design Criteria and their Applicability to Cloud Models

Design Criteria Private-only Outsourcing Cloudbursting Hybrid

Performance X X X X

Data Disclosure Risk × X X X

Resource Allocation Cost On-premise Cloud Both Both

Private Cloud Load × X X X

• The different criteria are tightly coupled with one another, thus requiring a methodical selection pro-
cess to successfully accomplish an end-user’s requirements.

• The main distinguishing characteristic between the Outsourcing model vs. the Cloudbursting and
Hybrid models is the Data Disclosure Risk. In the Outsourcing model, the disclosure risk is higher
than the Cloudbursting and Hybrid models, since the entire dataset and workload are outsourced to a
public cloud1. On the other hand, the disclosure risk in the Cloudbursting and Hybrid models can be
configured as an adjustable parameter, thus causing the overall risk in these models to be lower than
the Outsourcing model.

• Although the Cloudbursting and Hybrid models appear to overlap in terms of the criteria described
above, there are two important differences between them: (i) In the Cloudbursting model, private
cloud data is always replicated on a public cloud. The level of replication, viz, partial or full, is
dependent on an end-user’s choice. However, in the Hybrid model, an end-user decides whether data
replication is performed. (ii) In the Cloudbursting model, computations are pushed to a public cloud
only when the generated load begins to exhaust private cloud resources. In the Hybrid model, a user’s
preference dictates whether private cloud load is used as a criterion for distributing a workload.

3 Workload Partitioning Problem
In this section, we formalize the workload partitioning problem, WPP , for a hybrid cloud setting, using the
design criteria we outlined in Section 2. The goal of WPP is to distribute a workload W , and implicitly
a dataset R, over a hybrid cloud deployment model such that the overall performance of W is maximized.
Additionally, the problem specification is bounded by the following constraints: (i) Data Disclosure Risk:
The risk an end-user is willing to accept due to disclosure of sensitive data stored on a public cloud. (ii)
Public Cloud Resource Allocation Cost: A user-defined upper bound on monetary costs, which limits the
amount of public cloud services that could be leased for processing data. (iii) Private Cloud Load: The
permissible capacity to which private cloud resources could be commissioned for processing data.

WPP Definition: Given a dataset R and workload W , WPP can be modeled as an optimization
problem whose goal is to find a subset Wpub ⊆ W of the workload, and implicitly a subset Rpub ⊆ R of the
dataset such that the overall performance of W is maximized.

maximize Performance(W,Wpub)

subject to (1) Risk(Rpub, Rep) ≤ DISC_CONST

(2) Pricing(Rpub,Wpub) ≤ PRA_CONST

(3) Load(W −Wpub) ≤ LOAD_CONST

1Public cloud services such as Amazon S3 allow users to store data in an encrypted format at no additional monetary costs [9].
This facility ensures that data is protected when it is unused, however, the data is in cleartext form when it is brought into memory
during processing, and hence is susceptible to memory attacks at this time [10].

49



where DISC_CONST , PRA_CONST and LOAD_CONST denote the maximum admissible data
disclosure risk, public cloud resource allocation cost and private cloud load as specified by an end-user. The
general formalization of WPP given above extracts and presents the essential components of the workload
partitioning problem in the context of various hybrid cloud deployment models. Furthermore, such a general
framework allows us to construct several practical hybrid clouds by instantiating each of the criteria specified
in Section 2 with different values. Additionally, a general specification enables us to systematically analyze
the interdependence between the design criteria and thus assist users in making informed choices for the
various criteria.

The general formalization of WPP includes a high-level mathematical definition of various metrics,
namely performance, data disclosure risk, public cloud resource allocation cost and private cloud load,
which collectively assist us in measuring the effectiveness of a hybrid cloud deployment model. This high-
level definition needs to be further refined for a particular hybrid cloud variant based on the values specified
for the various design criteria outlined earlier. Therefore, in the subsequent section, we present specific
instantiations of the applicable metrics, as defined by Sedic and Hybrid-I.

4 Sample Variants of WPP for the Hybrid Cloud Deployment Model
In this section, we demonstrate the flexibility of our formalization by showing how existing systems such
as Sedic [2] and Hybrid-I [3] can be derived from the general workload partitioning framework through a
specification of concrete values for the appropriate design criteria we identified earlier.

Sedic: An inherent drawback to existing cloud computing frameworks, such as MapReduce, is their
inability to automatically partition a computational task such that computations over sensitive data are per-
formed on an organization’s private cloud, while the remaining data is processed on a public cloud. The
goal of Sedic is to address this drawback by enhancing the MapReduce framework with special features that
allow it to partition and schedule a task over a hybrid cloud according to the security levels of the data used
by the task.

The workload partitioning problem definition for Sedic [2] can be constructed by using the values given
in Table 3 for the various design criteria. Note that, Sedic also uses the following specifications: (i) Data
Model: Key-Value. (ii) Data Partitioning Model: None. (iii) Data Replication Model: Full replication of
non-sensitive data to public cloud. (iv) Sensitivity Model: Sensitivity is defined at data-level using a labeling
tool. (v) Security Model for Public Clouds: All sensitive data is sanitized to 0. (vi) Workload Model: A
single MapReduce job.

Table 3: Design Criteria Specification for Sedic

Design Criteria Specification

Performance Overall Task Execution Time

Data Disclosure Risk 0, viz., no sensitive data is exposed

Resource Allocation Cost None

Private Cloud Load Not considered

WPP Definition for Sedic: Since Sedic supports single MapReduce jobs, W can be modeled as a
workload of tasks T , where a task is either a Map or Reduce task. Then, WPP can be defined as follows
for Sedic: Given a dataset R and a task workload T , a variant of WPP for Sedic can be modeled as an
optimization problem whose goal is to find subsets Tpub ⊆ T and Rpub ⊆ R such that the overall execution
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time of T is minimized.

minimize Performance(T, Tpub)

subject to (1) Risk(Rpub, Rep) ≤ DISC_CONST

where, as before, DISC_CONST denotes the maximum permissible data disclosure risk, which is 0 for
Sedic, since no sensitive information can be leaked to a public cloud. In addition, the following observations
can be made from the WPP definition of Sedic based on the specifications given above: (i) A data item
Ri ∈ R denotes either a Key or Value, since Sedic uses the Key-Value data model, no partitioning and a full
data replication model. (ii) The set Rep consists of two representations, namely “plaintext” and “0”, since
Sedic sanitizes all sensitive data stored on a public cloud to 0.

We now provide specific instantiations of performance and data disclosure risk that suitably capture
aspects of the metrics that are relevant to the problem domain modeled by Sedic.

Performance: As stated earlier, Sedic uses the overall task execution time of workload T , denoted as
ORunT (T, Tpub), as an indicator of performance. Consequently, the objective function of WPP aims to
minimize the overall execution time of a given task workload T . The execution time of tasks in T over a
hybrid cloud, given that tasks in Tpub are executed on a public cloud can be represented as follows:

Performance(T, Tpub) = ORunT (T, Tpub) = max


∑

t∈Tpub

runTpub(t)∑
t∈T−Tpub

runTpriv(t)

Note that Tpub ⊆ T , otherwise it is undefined. Additionally, runTx(t) denotes the estimated running
time of task t ∈ T at site x where x is either a public (x = pub) or private (x = priv) cloud. In practice, a
methodology such as that given in [11] can be used to estimate the running time of a task t as follows:

runTx(t) =

 totalMapT ime =

 cReadPhaseT ime+ cMapPhaseT ime+ cWritePhaseT ime, if pNumReducers = 0
cReadPhaseT ime+ cMapPhaseT ime+ cCollectPhaseT ime+
cSpillPhaseT ime+ cMergePhaseT ime, if pNumReducers > 0

totalReduceT ime = cShufflePhaseT ime+ cMergePhaseT ime+ cReducePhaseT ime+ cWritePhaseT ime

where the semantics associated with the different variables used above are given in Table 4. An interested
reader can refer to the technical report given in [11] for additional details.

Data Disclosure Risk: Sedic uses a data labeling tool to mark sensitive subsets, Ri, of a dataset R.
Furthermore, Sedic sanitizes any marked out sensitive data, which needs to be stored on a public cloud,
to 0. A combination of these two factors ensures that no sensitive data is exposed to a public cloud, viz.
Risk(Rpub, Rep) = 0. Moreover, no sensitive information is leaked from a public cloud, since all sensitive
values are sanitized to the same value, viz. 0. Finally, since no sensitive data is exposed to a public cloud,
Sedic ensures that the data disclosure risk constraint, namely DISC_CONST , which has a value of 0 for
Sedic, is not violated.

Hybrid-I: A common characteristic across all hybrid cloud applications is that they partition the ap-
plication’s computational workload, and implicitly the data, over a hybrid cloud. However, a user has a
multitude of computation partitioning choices based on their desired application requirements. Moreover, it
is infeasible to construct applications over each of the possible computation partitioning choices. The goal
of Hybrid-I is to formalize the computation partitioning problem over hybrid clouds such that an end-user’s
desired requirements are achieved. Additionally, Hybrid-I provides a dynamic programming solution to the
computation partitioning problem, when the underlying workload consists of Hive queries and the dataset is
assumed to be relational.

The workload partitioning problem definition for Hybrid-I can be constructed through an instantiation
of the various design criteria using the values given in Table 5. Note that, Hybrid-I also uses the following
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Table 4: Semantics of Variables used in the estimation of the running time of a task t

Variable Semantics

cReadPhaseT ime The time to perform the Read phase in a Map task

cMapPhaseT ime The time to perform the Map phase in a Map task

cCollectPhaseT ime The time to perform the Collect phase in a Map task

cSpillPhaseT ime The time to perform the Spill phase in a Map task

cMergePhaseT ime The time to perform the Merge phase in a Map/Reduce task

cShufflePhaseT ime The time to perform the Shuffle phase in a Reduce task

cReducePhaseT ime The time to perform the Reduce phase in a Reduce task

cWritePhaseT ime The time to perform the Write phase in a Map/Reduce task

totalMapT ime The overall time to perform a Map task

totalReduceT ime The overall time to perform a Reduce task

specifications: (i) Data Model: Relational. (ii) Data Partitioning Model: Vertical. (iii) Data Replication
Model: Partial replication of data to public cloud. (iv) Sensitivity Model: Attribute-level. (v) Security
Model for Public Clouds: Bucketization [12]. (vi) Workload Model: Hive2 queries in batch form.

Table 5: Design Criteria Specification for Hybrid-I

Design Criteria Specification

Performance Overall Query Execution Time

Data Disclosure Risk No. of sensitive tuples exposed to Public cloud

Resource Allocation Cost Cloud - Elastic

Private Cloud Load Not considered

WPP Definition for Hybrid-I: Since Hybrid-I uses Hive queries in batch form, the workload W can be
modeled as a set of Hive queries Q. Then, the WPP definition for Hybrid-I can be given as follows: Given
a dataset R and a query workload Q, a variant of WPP for Hybrid-I can be modeled as an optimization
problem whose goal is to find subsets Qpub ⊆ Q and Rpub ⊆ R such that the overall execution time of Q is
minimized.

minimize Performance(Q,Qpub)

subject to (1) Risk(Rpub, Rep) ≤ DISC_CONST

(2) Pricing(Rpub, Qpub) ≤ PRA_CONST

where, as before, DISC_CONST and PRA_CONST denote the maximum permissible data disclosure
risk and public cloud resource allocation cost. In addition, the following observations can be made from
the WPP definition of Hybrid-I based on the specifications given above: (i) A data item Ri ∈ R denotes
an attribute of a relation of R, since Hybrid-I uses the relational data model, a vertical data partitioning
model and a partial data replication model. (ii) Rep consists of two representations, namely “plaintext”
and “bucketization”, since Hybrid-I uses a column-level sensitivity model along with bucketization as the
security model for public clouds.

2http://hive.apache.org/
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Again, we provide specifications of performance, data disclosure risk and resource allocation cost that
aptly capture aspects of the metrics that are relevant to the problem domain modeled by Hybrid-I.

Performance: As stated earlier, Hybrid-I uses the overall query execution time of workload Q, denoted
as ORunT (Q,Qpub), as an indicator of performance. Consequently, the objective function of WPP aims
to minimize the overall execution time of a given query workload Q. The execution time of queries in Q
over a hybrid cloud, given that queries in Qpub are executed on a public cloud can be represented as follows:

Performance(Q,Qpub) = ORunT (Q,Qpub) = max


∑

q∈Qpub

freq(q)× runTpub(q)∑
q∈Q−Qpub

freq(q)× runTpriv(q)

Note that Qpub ⊆ Q, otherwise it is undefined. Additionally, freq(q) denotes the access frequency of
query q ∈ Q and runTx(q) denotes the estimated running time of query q ∈ Q at site x where x is either a
public (x = pub) or private (x = priv) cloud. In practice, Hybrid-I uses the I/O size of the query execution
plan selected for processing q at site x as a replacement for the execution time. The running time of a query
q can be estimated based on the selected query plan T for site x (x is a public or private cloud) as follows:

runTx(q) = runTx(T ) =

∑
∀ operator ρ∈T

inpSize(ρ) + outSize(ρ)

wx
,

where inpSize(ρ) and outSize(ρ) denote the estimated input and output sizes of an operator ρ ∈ T . Ad-
ditionally, weight wx denotes the number of I/O operations that can be performed per unit time at site x.
Note that inpSize(ρ) and outSize(ρ) can be computed using statistics accumulated over dataset R for an
operator ρ.

Data Disclosure Risk: In Hybrid-I, the risk associated with storing the public side partition of data,
namely Rpub, using the representations given in Rep, namely plaintext and bucketization, is estimated as
follows:

Risk(Rpub, Rep) =
∑

Ri∈Rpub,s∈Rep

sens(Ri, s),

where sens(Ri, s) is the number of sensitive values contained in a data item Ri ∈ Rpub, which are stored
under the representation, s ∈ Rep, on a public cloud. Finally, the formalization of WPP places a user
defined upper bound, DISC_CONST , on the amount of sensitive data that can be disclosed to a public
cloud.

Resource Allocation Cost: Hybrid-I estimates the financial cost of utilizing public cloud services as
follows:

Pricing(Rpub, Qpub) = store(Rpub) +
∑

q∈Qpub

freq(q)× proc(q),

where store(Rpub) represents the monetary cost of storing a subset Rpub ⊆ R on a public cloud, freq(q)
denotes the access frequency of query q ∈ Q, and proc(q) denotes the monetary cost associated with
processing query q on a public cloud. Finally, the formalization of WPP incorporates a user defined
parameter, PRA_CONST , which acts as an upper bound on the maximum allowable monetary cost that
can be expended on storing and processing data on a public cloud.

5 Conclusions and Future Work
A hybrid cloud is well suited for users who want to balance the efficiency achieved through the distribution
of computational workloads with the risk of exposing sensitive information, the monetary costs associated
with acquiring public cloud services and the load generated on a private cloud as a result of processing
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some part of a workload. In this paper, we identified the criteria that have the greatest impact on the design
of an effective hybrid cloud solution and we tabulated the applicability of these criteria to various hybrid
cloud deployment models. Then, we formalized the workload partitioning problem as a mechanism for
maximizing workload performance using the identified criteria. Finally, we described how existing systems
could be derived from the general workload partitioning problem formalization by an instantiation of the
appropriate design criteria.

As a part of our future work, we plan to expand on the design criteria we identified in this paper by
including factors such as the processing capabilities of a public cloud, which also greatly affect the perfor-
mance of a hybrid cloud application.
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