
Multilingual Semantic Matching with OrdPath
in Relational Systems

A Kumaran Peter Carlin
Microsoft Corporation

{kumarana,peterca}@microsoft.com

Abstract

The volume of information in natural languages in electronic format is increasing exponentially. The
demographics of users of information management systems are becoming increasingly multilingual. To-
gether these trends create a requirement for information management systems to support processing of
information in multiple natural languages seamlessly. Database systems, the backbones of information
management, should support this requirement effectively and efficiently. Earlier research in this area
had proposed multilingual operators [7, 8] for relational database systems, and discussed their imple-
mentation using existing database features.

In this paper, we specifically focus on the SemEQUAL operator [8], implementing a multilingual
semantic matching predicate using WordNet [12]. We explore the implementation of SemEQUAL using
OrdPath [10], a positional representation for nodes of a hierarchy that is used successfully for support-
ing XML documents in relational systems. We propose the use of OrdPath to represent position within the
Wordnet hierarchy, leveraging its ability to compute transitive closures efficiently. We show theoretically
that an implementation using OrdPath will outperform those implementations proposed previously. Our
initial experimental results confirm this analysis, and show that the OrdPath implementation performs
significantly better. Further, since our technique is not specifically rooted to linguistic hierarchies, the
same approach may benefit other applications that utilize alternative hierarchical ontologies.

1 Introduction

The volume of information in natural languages in electronic format is increasing exponentially [9] and the
demographics of users of information management systems are becoming increasingly multilingual [2, 11]. To-
gether these trends create a requirement for information management systems to support processing of informa-
tion in multiple natural languages seamlessly. Database systems, the backbones of information management,
should support this requirement effectively and efficiently. The minimal requirement is that the underlying
database engines (typically relational), provide similar functionality and efficiency for multilingual data as that
associated with processing unilingual data, for which they are well-known. Earlier research in this area had pro-
posed multilingual functions [7, 8] for relational database systems, and discussed ways of implementing them
using existing features provided by the database systems. We specifically focus on the SemEQUAL function,

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

as defined in [8], implementing a boolean predicate SemEQUAL(word1,word2), which is true if word1, or any
of its synonyms, when translated into the language of word2, are in the semantic transitive closure of word2 or
its synonyms. In order to implement this operator, the WordNet [12] ontological hierarchy is used, along with
the semantic relationships between its component multilingual word forms.

In this paper, we explore the implementation of SemEQUAL using OrdPath [10], a representation of posi-
tion in a hierarchy that is used successfully for supporting XML documents in relational systems. We propose
the use of OrdPath to represent position within the Wordnet hierarchy, leveraging its ability to compute tran-
sitive closures efficiently. We show theoretically that an implementation using OrdPath will outperform those
implementations proposed previously. Our initial experimental results confirm this analysis, and show that the
OrdPath implementation performs significantly better. Further, since our technique is not specifically rooted
to linguistic hierarchies, the same approach may benefit other applications that utilize alternative hierarchical
ontologies.

1.1 Organization of the Paper

The paper is organized as follows: Section 2 outlines the semantic matching problem and provides a brief
overview of WordNet lexical resources and OrdPath. Section 3 outlines the implementation approaches con-
sidered. Sections 4 and 5 theoretically and experimentally compare the various approaches and Section 6
concludes the paper, outlining our future research directions.

2 Multilingual Semantic Matching Problem

In this section, we state the problem of multilingual semantic matching of word-forms in different languages.
We then provide a brief introduction to the resources used: a standard linguistic resource – the WordNet [12, 4],
an ontological operator as defined in [8], and OrdPath, a hierarchy-numbering scheme [10]. Finally we outline
simplifications to the problem for purposes of analysis and implementation.

2.1 Problem Definition

Consider a hypothetical multilingual portal, Books.com, with a sample product catalog [10] as shown in Fig-
ure 1, where the Category attribute stores the classification of the book in the original language of publication.

Table 1: Sample Books.com Catalog

Author Author FN Title Price Category Language

Durant Will History of Civilization $ 149.95 History English
Descartes Renè Les Méditations Metaphysiques €49,00 Philosophie French
Franklin Benjamin Ein Amerikanischer Autobiography €19,95 Autobiography German
Gilderhus Mark History & Historians $ 19.95 Historiography English
Nero Bicci Il Coronation del Virgin €99,00 Arti Fini Italian
Nehru Jawaharlal Letters to My Daughter £15.00 Journal English
Σαρρη κατερυα ΠαχυδαστσΠαυo €12,00 Moυσκη Greek
Lebrun François L’Histoire De La France €75,00 Histoire French
Franklin Benjamin Un Américain Autobiographie €19,95 Autobiographie French

In today’s database systems, a query with a selection condition of (Category = ‘History’), would return only
those books that have Category as History in English, although the catalog also contains history books in
French, Greek and German. A multilingual user may be better served, however, if all the history books in all

2

languages (or in a specified set of languages) are returned. A query using the SemEQUAL function of [8] as
given below,

SELECT Author,Title,Category FROM Books
WHERE Category SemEQUAL ‘History’
InLanguages {English, French}

and a result set, as given in Table 2, would therefore be desirable.

Table 2: Multilingual Semantic Selection

Author Title Category

Durant History of Civilization History
Lebrun L’Histoire De La France Histoire
Franklin Un Américain Autobiographie Autobiographie
Gilderhus History & Historians Historiography

It should be noted that the SemEQUAL function shown here is generalized to return not just the tuples that
are equivalent in meaning, but also with respect to specializations, as in the last two tuples that are reported
in the output. Historiography (the science of history making) and Autobiography are specialized
branches of History. To determine semantic equivalence of word-forms across languages and to characterize
the SemEQUAL functionality, we take recourse to WordNet [12], a standard linguistic resource that is available
in multiple languages and, very importantly from our perspective, features interlingual semantic linkages.

2.2 A Brief Introduction to WordNet

In this section, we provide a brief introduction to WordNet [12, 4]. WordNet arranges the concepts of a language
using psycho-linguistic principles, using word-forms as a canonical representation.

2.2.1 Word Form and Word Sense

A word may be thought of as a lexicalized concept; simply, it is the written form of a mental concept that may
be an object, action, description, relationship, etc. Formally, it is referred to as a Word-form. The concept that it
stands for is referred to as Word-sense, or in WordNet parlance, Synset. The defining philosophy in the design
of WordNet is that a synset is sufficient to identify a concept for the user. For example, the word-form bird
corresponds to several different synsets, two of which are {a vertebrate animal that can typically fly} and {an
aircraft}; each of these two synsets is denoted differently with subscripts in Figure 1. Two words are said to be
synonymous, or semantically the same, if they have the same synset and hence map to the same mental concept.
The synsets are divided into five distinct categories and we explore below only the Nouns category. WordNet
contains a lexical matrix that converts a word form (lexicographic representation) to a word sense (the semantic
atom of the language, namely, the Synset).

2.2.2 Noun Taxonomical Hierarchy

WordNet organizes all relationships between the concepts of a language as a semantic network between synsets.
In particular, the nouns in English WordNet are grouped under approximately twenty-five distinct Semantic
Primes [4], covering distinct conceptual domains, such as Animal, Artifact, etc. Under each of the semantic
primes, the nouns are organized in a taxonomic hierarchy, as shown in Figure 1, with Hyponyms links signifying
the is-a relationships (shown in solid arrows). Efforts similar to the English WordNet are underway [4] in

3

several languages, including Indian, Chinese and European languages. A common feature among such efforts is
that they all strive for a taxonomic hierarchy in a respective language that has synsets that may be mapped to a
set of English synsets. Further, inter-linking of semantically equivalent synsets between WordNets of different
languages are being designed in some languages. Figure 1 shows a simplified interlinked hierarchy (shown as
dotted arrows) in English and German.

Bird(2)

Mammal Machanical

MouseHuman Flying

Bird

Fauna Artifact

(1)

Man Woman

Mechanishe

Maus

Vogel

Kunstprodukt

Menschlich Flugzeug

Männlicher Weiblicher

Tier

VorrichtungDevice

Machine

Aircraft /

Saugetier

En
g

lis
h

N
o

un
 H

ie
ra

rc
hy

G
e

g
e

nsta
nd

sw
o

rtc
H

ie
ra

rc
hie

D
e

utsc
he

Figure 1: Sample Interlinked WordNet Noun Hierarchy

2.3 Implementing SemEQUAL using WordNet

WordNet enables mapping word forms to synsets in other languages and comparing them. Denoting an inter-
linked taxonomic hierarchy of the multilingual strings by HML, the SemEQUAL operator is formally defined
[8] as follows:

Definition: Given two multilingual noun strings wi and wj , and the interlinked multilingual taxonomical hier-
archy HML, (wiSemEQUALwj) ⇐⇒ (wi ∩ THML(wj) �= φ), where THML(x) computes the transitive
closure of x inHML.

The basic skeleton of the algorithm to semantically match a pair of multilingual strings is outlined in Figure 2.
Here, the SemEQUAL function takes two multilingual strings w1 and w2 as input. It returns true if the string
w2 is a member of the transitive closure of w1 in the multilingual taxonomic hierarchy HML. Note that the w2

could be the values from the column Category in the Catalog table, and w1 could be the user specified category,
say History.

SemEQUAL (w1, w2)
Input: Multilingual Strings w1, w2, Taxonomic Hierarchy HML (as a resource)
Output: true or false
1. T CQ← TransitiveClosure(w2,HML);
2. if ({w1} ∩ T CQ) return true else return false;

Figure 2: The SemEQUAL Operator Algorithm
SemEQUAL as defined in Figure 2 may be implemented with the following 3 steps:

1. All synonyms of word1 in the language of word2, yielding a set of words,W1.

2. Find the semantic transitive closure of word2 in the taxonomic hierarchy, HML, yieldingW2.

3. Output true ifW1 ∩W2 �= φ.

4

Though WordNet hierarchies are directed acyclic graphs, we simplified them into trees, by duplicating all shared
nodes and their descendants, with multiple parents. Since the number of such shared nodes is not high[3], the
additional storage overhead is not significant.

2.4 A Brief Introduction to Ordpath

OrdPath is a tree numbering schema designed for storage and query of XML data [10]. It is one of a number of
novel tree numbering schemes devised in recent years [6]. Ordpaths are formed by concatenating bitstrings, each
bitstring representing the position of that Ordpath at one level of the tree. Each bitstring is Huffman encoded
so small values (and thus tree nodes with small fanout) take less space than large values. For example, using
integers to represent the bitstring for each level and delimiting them by periods, an OrdPath 1.5.3 represents
the 3rd child of the 5th child of the root node. An interested reader is referred to [10], for details on Ordpath.
Ordpath encoding of hierarchies has the following three key properties:

1. Encoding of position in the hierarchy If a and b are two OrdPaths, and the binary comparison a < b
is true, then a precedes b in a depth-first traversal in the tree represented by the OrdPaths. This prop-
erty allows us to test easily whether one OrdPath is in the transitive closure of another: namely, if
a = prefix(b), then b exists in the closure of a. This can be easily encapsulated in a function Is-
Descendant(path1,path2) which is true if path2 is in the closure of path1. IsDescendant(path1,path2)
can be expressed as the conjunctive predicate (path2 >= path1 and path2 < DescendantLimit(path1)),
where DescendantLimit(path1) is the largest possible value a descendant of path1 can have. Descen-
dantLimit(path1) can be computed easily.

2. Small size Each level of each node in the hierarchy is represented by a variable-length bit string. This
results in OrdPaths being quite compact. For instance, WordNet has about 75, 000 nodes, with a maximum
depth of 19, a maximum fanout of 398, an average depth of 9.2 and an average fanout of 1. The average
Ordpath value representing a node in such a tree will take 30 bits.

3. Support insert and delete OrdPaths numbering allow additions and deletions of nodes in the hierarchy,
while maintaining the other properties. While we do not anticipate frequent updates to the noun hierarchy,
this property allows any domain-specific local updates to the hierarchy to be done efficiently.

3 Implementation Approaches Considered

In this section, we discuss alternative approaches for implementing SemEQUAL in relational database systems.
Some of these approaches have been tried in the research literature [8], but are presented here for comparison
with the proposed method. Specifically, the following four ways of implementing SemEqual are analyzed. They
primarily differ in the representation of the WordNet hierarchy in the relational system, and how the transitive
closure is computed.

Parent-child In this representation, the hierarchy relationships are represented as Parent-Child relations. Hence,
each row in the table represents a link in the hierarchy. For a given node n, there may be npc rows in the
hierarchy table, each representing a child relationship with n as the parent.

Pre-computed All the transitive ancestor-descendent relationships associated with a node are represented as a
set of rows explicitly. Hence, every node n will have a set of nad relationships, with each row representing
one ancestor-descendent relationship between n and a node in its transitive closure.

Inlined pre-computed All the ancestor-descendent relationships associated with a node are represented as one
row in the inlined table (assuming that the number of descendents for the node n does not exceed a

5

specified large limit). The inlined descendents are stored in a variable array, associated with the root of
the transitive closure.

WordPath The position of a node in the hierarchy is represented by an OrdPath. This representation stores the
WordNet hierarchy implicitly.

3.1 Schema Representation for Analysis

In this paper, for the analysis and comparison of different transitive closure computing methodologies, we use
a standard Information Retrieval (IR) scenario, where a collection of documents is searched for occurrences of
a user-specified specific search term. While a standard search considers an inverted index (or equivalently a
standard B+ index structure), SemEQUAL searches the specified search term, and also all elements in its tran-
sitive closure with respect to WordNet noun hierarchy. In addition, by appropriate use of multilingual WordNet
hierarchies, a query term may be searched across languages, as outlined in [8]. Note that the analysis outlined in
this paper applies to other scenarios as well; for instance, SemEQUAL may be used as a join condition between
two document collections. However, for clarity of explanation, we restrict our discussion to the simple scenario
of searching in a single document collection.

We define the following four tables in this scenario, as explained in detail below. The primary key of a table
is indicated with underlining of the appropriate key columns, and the order in which they are defined.

• Words(Language int, Word string, WordId int) This table maps words to integers, providing a reference
key to be used in other tables, thus reducing storage space. WordId is unique across all languages. A
secondary index on WordId enables translating from WordId back to string representation efficiently.

• Corpus(WordId int, DocumentIdList binary) This table represents the document collection (referred
to as corpus) being searched. Corpus is stored as an inverted index; with a WordId as the primary key,
accompanied by a compact list of documents that it occurs in. Here we assume that the list of DocIds is
represented as a list of deltas from one docid to the next, as described in [1].

• Synset(SourceLanguage int, SourceWordId int, TargetLanguage int, TargetWordId int) This table
stores the set of synonyms of a word, irrespective of the languages, thereby extending the traditional
definition of synsets in WordNet, to include the interlingual links between synsets in the languages. This
table contains all inter- and intra-language synonyms of words, where intra-language synonyms have the
same source and target languages, and inter-language synonyms have different ones.

• TcWordNet(WordId int, ClosureId int) This view stores the transitive closure of all of WordNet. Each
row of this table contains a WordId and one node its closure, represented by ClosureId. This is a view
because the storage of the transitive closure varies between the approaches.

3.2 Common Query

We use a common IR query of searching a corpus for a given word, for our analysis. The common search query
will use SemEQUAL, thus including multilingual semantic search based on the taxonomic hierarchy defined by
the interlinked WordNets. It has been shown in [8] that the complexity of SemEQUAL(w1, w2) is linearly pro-
portional to the number of languages used in the hierarchy. It is reasonable to assume that the set of languages
in which the documents in the Corpus table occur is known, or the languages of interest are specified by the
user. Therefore, we add a third argument to SemEQUAL, namely SearchLanguageList, that specifies the list of
languages in which to consider semantic matches in. Such an assumption greatly reduces the effort to generate
the transitive closure of the query terms in all languages. The query examined is thus:

6

Select C.DocumentIdList from Corpus C
where SemEqual(C.WordId, @SearchWord, @SearchLanguageList)

The parameter @SearchWord indicates the search term and @SearchLanguageList provides the list of
languages in which to look for semantic matches. This query has an algebraic, non-cost-based, rewrite against
the above schema, to:

Select C.DocumentIdList from Words W where W.Word=@SearchWord
Inner join Synset S

where S.SourceLanguage = W.Language
and S.SourceWordId = W.WordId
and TargetLanguage IN @SearchLanguageList

Inner join TcWordNet T where S.TargetWordId = T.WordId
Inner join Corpus C where C.WordId = T.ClosureId

The generated query is used in subsequent analysis, to compare the efficiency of each of the proposed methods
to compute the transitive closure.

3.3 Detailed Overview of Approaches

3.3.1 Parent-Child: WordNet(WordId int, ParentWordId int)

In this approach WordNet is stored as a row per parent-child relationship. The transitive closure is computed via
a standard SQL:1999 recursive query. Table 3 shows a sample portion of the table.

Table 3: Parent-Child Hierarchy Table

WordId ParentWordId

Mammal Animal
Aquatic Mammal Animal
Dog Mammal
Tiger Mammal
Dolphin Aquatic Mammal

3.3.2 Pre-Computed Closure (PreComputed): WordNetPC (WordId int, ClosureWordId int)

In this approach WordNet is stored with the pre-computed transitive closure in the hierarchy. Each element in a
word’s transitive closure requires one row. Table 4 shows a sample portion of the table.

Table 4: Pre-Computed Closure

WordId ClosureWordId

Animal Mammal
Animal Aquatic Mammal
Animal Dog
Animal Tiger
Animal Dolphin

7

3.3.3 Inlined Pre-Computed Closure (Inlined): WordNetIL (WordId int,ClosureIdList array(int))

Assuming an efficient implementation of variable arrays is available in the database system, the duplication of
WordId in the pre-computed closure can be eliminated. Alternatively, in database systems that support prefix
compression on keys, this methodology may be viewed as the pre-computed closure with prefix compression on
WordId. Either way, ordering the closure list on WordId maximizes the efficiency of subsequent processing, in
particular searching the closure for a particular word. Table 5 shows a sample portion of the table.

Table 5: Inlined Closure

WordId ClosureIdList

Animal {Mammal, Aquatic Mammal, Dog, Tiger, Dolphin, . . . }
Mammal {Dog, Tiger, . . . }
Aquatic Mammal {Dolphin, . . . }

With variable array the in-lined table is unrolled to compute the transitive closure, as follows:
Create view TcWordNet as

Select * from WordNetIL W cross apply unnest(W.ClosureIdList)

3.3.4 WordPath

Under this approach, the position of a word in the WordNet hierarchy is encoded by an OrdPath, called a
WordPath subsequently in this paper. The WordId used in other approaches is replaced by WordPath. This does
not cause an increase in storage size. The key advantage is the elimination of any table representing the WordNet
hierarchy. This is possible because the only operation the WordNet table is used for is to enable determining,
for any pair of words, whether the first is in the transitive closure of the second. The information necessary
to determine this is encoded in the WordPath itself. Another advantage is that with the Corpus table having a
primary key of WordPath, all words in the transitive closure of a given word are co-located. Assuming a type
path that encapsulates OrdPath functionality, the resulting schema is as follows:

• Words (Language int, Word string, WordPath path)

• Corpus (WordPath path, DocumentIdList binary)

• Synset (SourceLanguage int, SourceWordPath path, TargetLanguage int, TargetWordPath path)

Using the above schema, the standard IR query is rewritten as:

Select C.DocumentIdList from Words W where W.Word=@SearchWord
Inner join Synset S

on S.SourceLanguage=W.Language
and S.SourceWordPath=W.WordPath
and TargetLanguage IN @SearchLanguageList

Inner join Corpus C on IsDescendant(C.WordPath, S.TargetWordPath)

Comparing this to the query in Section 3.2, the WordPath query eliminates the join with TcWordNet. In addi-
tion, the final join between Synset and Corpus is on the IsDescendant(column,path2) predicate; as outlined in
Section 2.4 this is a conjunctive predicate and the join condition becomes a range seek.

8

4 Theoretical Analysis

In this section, we present a theoretical analysis of the performance of the WordPath approach in comparison to
the other approaches outlined in Section 3. Specifically, we compare key parameters affecting relational query
performance: the storage size, logical IO, and CPU usage.

4.1 Definitions and Assumptions

First, we define the following symbols and terms that are used in subsequent analysis:

• W - Number of words in WordNet noun hierarchy. For English WordNet, this is 75,000, and it is assumed
to be of similar order in other WordNets [4].

• A - Average number of words in the transitive closure for a given word. For the noun hierarchy of English
WordNet, this is 9.2.

• S - Average number of synsets for a given word. For English WordNet, s is 1.23, and it is expected to be
similar in other WordNets [4].

• M - Average number of corpus documents with a given WordId.

• L - Number of languages for which WordNets are stored and used for processing. Currently, approxi-
mately 30 WordNets exist at various stages of completion. [5]

• l - Number of languages involved in a SemEQUAL query. Here assumed to be 3, the average number of
languages a user may be interested in (per query).

• C - Average length of a word. For English Wordnet this is 11 characters.

• PageSize - Number of bytes per database page. This number varies from 4K to 64K in various commer-
cial DBMS systems. We assumed 8K for our analysis.

Next, the following simplifying assumptions are made, to make the analysis easier. The first two assumptions
affect all approaches proportionately, and hence will not affect the comparisons. The last two assumptions affect
WordPath negatively compared to the other approaches, and hence the results provide a lower bound on the
relative benefit of WordPath.

• Non-leaf B-tree page costs are assumed to be 0. In most schemas the non-leaf tree pages are a small
percentage of the database size. Navigation of these pages usually takes a small percentage of the IO and
CPU for a given query.

• Per-row overhead costs are assumed to be 0. In most database systems the per-row storage overheads
are relatively low, typically, 1-2 bytes per row.

• It is assumed that all IO - Sequential and Random IO - has the same cost. Clearly, for logical IO
this is true, while for physical IO, this assumption is not. However, sequential IO is only possible in the
WordPath case or when the storage required for the DocIds for a given word exceed a page - in other
words, for extremely large Corpus sizes.

• The average Wordpath size is assumed to be 4 bytes, the same as that for WordId. Note that the actual
average WordPath size for WordNet is less than this.

Given the above definitions, M, the number of documents with a given word, determines the scope of a
scenario. In the following table, we present some scenarios to indicate approximately the scope of the databases
involved. We consider in our analysis document collections up to that corresponding to M = 100, 000.

9

Table 6: Values of M and associated scenarios

M Scenario Notes

10 Company Product Catalog 105 products, 10 words/title
100 Large County Library 106 book titles, 10 words/title

1,000 U.S. Library of Congress 107 book titles
10,000 PubMed abstract index 107 abstracts, 1000 words/abstract

100,000 PubMed article index 107 article texts, 10000 words/article

4.2 Storage Size Comparison

Based on the tables described in Sections 3.1 and 3.3, the total storage size of each table, is as shown in Table 7.

Table 7: Table Storage Sizes

Table Size Other Structures

Words (8 + C) ∗W ∗ 2 2 indices
Synsets 16 ∗W ∗ S ∗ l

WordNet, Parent-Child 8 ∗W

WordNet, Pre-computed 8 ∗ A ∗W

WordNet, Inlined (4 ∗ A + 4) ∗W

Corpus W ∗M

Using the above formulae, the total schema storage size for each of the approaches, and for different scenarios,
are computed and shown in Table 8.

Table 8: Storage Sizes (MB)

M ParentChild PreComputed Inlined WordPath

10 45.4 54.1 49.7 44.8
100 51.8 60.5 56.2 51.2

1, 000 116.2 124.9 120.5 115.6
10, 000 759.9 768.6 764.3 759.3

100, 000 7, 197.2 7, 205.9 7, 201.6 7, 196.6

The corpus size eventually becomes the most dominant factor. Since in all approaches the corpus table has
the same number rows (though not in the same order in each approach), the storage size for all approaches
eventually converges. For smaller collections, the Parent-Child and WordPath approaches have approximately
equal storage, and have a slight advantage, space-wise.

4.3 Logical IO

For cold queries, defined as those that are run when pages needed for answering the queries are not in-memory,
all unique logical IOs become physical IOs and dominate response time. For warm queries, logical IO is still,
in general, the leading factor in response time of a query. However, how much logical IO an approach takes
depends on the query plan followed. In all scenarios considered here, the best plan is to first lookup relevant
synsets, compute their respective closures and then lookup each closure member in the corpus. In the WordPath

10

approach, the best plan is to compute the synsets and lookup each synset in the corpus. Table 4.3 outlines for-
mulas for the IO required at each stage for every approach.

Approach GetId Get Synsets Get Closures Corpus Lookup

ParentChild 1 16 ∗ SL/PageSize ASl + �4 ∗ASl/PageSize� ASl ∗ �M/PageSize�
PreComputed 1 16 ∗ SL/PageSize Sl ∗ �8A/PS� ASl ∗ �M/PageSize�
Inlined 1 16 ∗ SL/PageSize Sl ∗ �(4A + 4)/PS� ASl ∗ �M/PageSize�
WordPath 1 16 ∗ SL/PageSize 0 Sl ∗ �AM/PageSize�

Below, we present a detailed examination of each of the stages presented in Table 4.3:

• GetId: In all alternatives, this is a single IO to translate from string to WordId or WordPath, as appropriate
in an approach.

• Get Synsets: In all alternatives, this is a lookup of the query language and word Id/Path, followed by a
scan of the synsets in each relevant target language. We assume that the l/L ratio (languages of interest
to the query vs total languages represented in the system) can vary and all L languages are fixed and
co-located. Further, it is assumed that the l languages are distributed such that all pages for a given path
are touched. Note that since S=̃1 and L < 30, this is usually a single IO.

• Get Closures: Basic Parent-Child Assuming no co-location due to lack of correlation between WordId
and position in the hierarchy, each word in the transitive closure will be a separate logical IO. There are
S ∗ l closures to compute and A words in the average closure, resulting in A ∗ S ∗ l co-located rows, each
4 bytes long. In addition, there is IO associated with temporary storage of intermediate/final closures.

• Get Closures: Pre-Computed These are all co-located for a given synset, but not across synsets or
languages. Each closure takes 8 ∗A bytes of space.

• Get Closures: Inlined The analysis is same as that of Pre-Computed approach, other than each closure
takes 4A + 4 bytes of space.

• Get Closures: WordPath No closure computation is required.

• Corpus Lookup: (Basic, PreComputed and Inlined) With no co-location, each of the A ∗ S ∗ l closure
elements can be assumed to require separate IO. Each of these lookups requires M/PageSize IOs.

• Corpus Lookup: WordPath Synsets and languages are not necessarily co-located, but the A elements of
each of these closures are. Hence, each closure takes A ∗M/PageSize bytes of space.

Using the above formulae, Table 9 shows the total logical IOs required by each approach for different sce-
narios, and for different implementation methodologies.

Table 9: Logical IO for each Approach in each Scenario

M ParentChild PreComputed Inlined WordPath

10 27 15 15 4
100 27 15 15 4

1, 000 27 15 15 5
10, 000 38 26 26 20

100, 000 159 151 151 143

It may be observed that the WordPath approach shows a significant IO advantage in most of the modeled sce-
narios for the given set of parameters and assuming frequency of words in the corpus follows a continuous
distribution.

11

4.4 CPU Complexity

Beyond logical IO, CPU complexity is most strongly tied to rows processed and relational operators selected in
the execution tree. In Table 10, we compare these factors for each approach.

Table 10: Rows Processed and Relational Operators for each Approach

Approach Rows Processed(formula) Rows Processed(number) Operators

ParentChild 1 + 2 ∗ Sl + 2 ∗ ASl 73 3 + A

PreComputed 1 + 2 ∗ Sl + 2 ∗ ASl 73 4
Inlined 1 + 2 ∗ Sl + 2 ∗ ASl 73 4
WordPath 1 + Sl + ASl 39 3

We note that the WordPath approach processes only about 50% of the rows, compared with that of other
approaches. This is because rows processed is dominated by the A∗S ∗l term, for which WordPath has a leading
coefficient of 1 while the others have a 2. We also note that rows processed is independent of Corpus size. Other
than Parent-Child which requires several scans of the hierarchy table, the differences in plan complexity are not
significant among the other approaches.

5 Experimental Results

We implemented the ParentChild, PreComputed and WordPath approaches as outlined in this paper in SQL
Server 2005 using the noun hierarchy of Wordnet Version 1.5. Two simplifications were made to ease imple-
mentation: First, the ordpath type in SQL Server is under development, so a static depth-first numbering scheme
was used as a substitute. Second, it was assumed that S=1 rather than 1.23. Neither simplification is expected to
affect results significantly. Tables 11 and 12 show the results for small corpus sizes M=10 and M=100. In both,
search terms were picked so that transitive closure size was equal to the Wordnet average of 9.

Table 11: Performance Comparison (M=10)

Approach CPU time Logical IO Physical IO Elapsed time(cold)

Parent-Child 107413 2442 16 291050
Pre-Computed 1764 26 11 140625
WordPath 1209 8 7 88320

Table 12: Performance Comparison (M=100)

Approach CPU time Logical IO Physical IO Elapsed time(cold)

Parent-Child 108643 2451 19 331926
Pre-Computed 2088 35 14 189983
WordPath 1397 10 8 139406

The above figures indicate that the actual performance is in line with that expected from the theoretical anal-
ysis, confirming our claim that OrdPath methodology significantly outperforms earlier implementation method-
ologies. OrdPath’s efficient encoding scheme eliminates the need for explicit computation of transitive closures,
and thus exhibits superior performance for SemEQUAL query. We are currently experimenting with larger
database sizes (M values up to 100,000) and with a variety of hierarchies. We hope to report a full study in due
course.

12

6 Conclusion & Future Directions

In this paper, we explored the implementation of a multilingual semantic matching function, SemEQUAL, us-
ing OrdPath [10] to represent position in the WordNet [12] hierarchy. OrdPath enables efficient determination
of membership in transitive closures, a key step in implementing SemEQUAL. We analyzed theoretically the
performance of existing implementations, and with proposed OrdPath methodology, and showed that our im-
plementation would incur significantly less IO and CPU costs, resulting in more efficient processing of SemE-
QUAL. We implemented the various approaches in SQL Server, and the performance figures for small database
sizes confirm that the performance of OrdPath is in line with that predicted by our analysis, and significantly
better than the exisitng implementations. We are currently undertaking a through study of OrdPath for different
sizes of hierarchies, query types and database sizes, and we hope to report the results in due course. Further,
since our technique is not specifically rooted to linguistic hierarchies, the same approach may benefit other
applications that utilize alternative hierarchical ontologies.

References

[1] Brewer, E. Combining Systems and Databases: A Search Engine Retrospective. Readings in Database
Systems: Fourth Edition. Joseph M. Hellerstein and Michael Stonebreaker (eds., MIT Press, Cambridge,
MA. 2005). http://www.cs.berkeley.edu/ brewer/papers/SearchDB.pdf.

[2] The Computer Scope Ltd. http://www.NUA.ie/Surveys.

[3] Devitt A. and Vogel, C. The Topology of WordNet: Some Metrics. Proceedings of the Second Global
WordNet Conference, 2004. http://www.fi.muni.cz/gwc2004/proc/119.pdf.

[4] Fellbaum, C. and Miller, G. A. WordNet: An electronic lexical database (language, speech and communi-
cation). MIT Press, Cambridge, MA, 1998.

[5] Global WordNets in the World. http://www.globalwordnet.org/gwa/wordnet table.htm.

[6] Koch, C., Processing queries on tree-structured data efficiently. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, Chicago, IL. http://www-
dbs.cs.uni-sb.de/ koch/download/pods2006.pdf.

[7] Kumaran, A. and Haritsa, J. R. LexEQUAL: Multilexical Matching Operator in SQL. Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, 2004.
http://portal.acm.org/citation.cfm?id=1007715.

[8] Kumaran, A. and Haritsa, J. R. SemEQUAL: Multilingual Semantic Matching in Relational Systems. Pro-
ceedings of the 10th International Conference on Database Systems for Advanced Applications, 2005.
http://www.springerlink.com/index/YKKAWFYBB22CGBPF.pdf.

[9] Lyman, P. and Varian, H. R. How Much Information. http://www.sims.berkeley.edu/research/projects/how-
much-info/.

[10] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G. and Westbury, N. ORDPATHs: insert-friendly XML
node labels. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2004.
http://portal.acm.org/citation.cfm?id=1007686#references.

[11] The WebFountain Project. http://www.almaden.ibm.com/WebFountain.

[12] The WordNet. http://www.cogsci.princeton.edu/w̃n.

13

