Towards Al-Enabled Data-to-Insights Systems

Gerardo Vitagliano!, Jun Chen?, Peter Baile Chen!, Ferdi Kossmann!,
Eugenie Lai', Chunwei Liu', Matthew Russo!, Sivaprasad Sudhir!, Anna Zeng!,
Ziyu Zhang', Michael J. Cafarella!, Tim Kraska!, Sam Madden'
IMIT, USA, ? Independent
{gerarvit, peterbc, ferdi.kossmann, eylai, chunwei, mdrusso,
siva, annazeng, sylziyuz, michjc, kraska, madden}@csail.mit.eduy,
chjuncn@gmail.com

Abstract

Modern data systems are more and more capable and efficient at processing large volumes of
data, both unstructured and structured. However, an open challenge is to build a comprehensive
automated system for end-to-end data science, from data discovery and exploration to visualization
and statistical modeling. We introduce the notion of an "Al-enabled data-to-insights" system, and
describe an architectural framework comprised of user-agent interactions, Al-powered automation,
execution optimization, and specialized storage and infrastructure. For each of these layers in the
framework, we outline the current challenges and we outline our vision of different system components
and tools towards building an integrated data-to-insights system. Finally, we present an overview on
our benchmarking efforts and preliminary results that motivate further research to guide the design
of novel architectures to process data intensive and multimodal workloads.

1 Introduction

Data-powered Al systems have revolutionized the interaction between humans and information and
drastically accelerated scientific research, business intelligence, and data-powered analysis. Systems
based on Large Language Models (LLMs) and Foundation Models (FMs) have automated much of the
engineering of applications and data analysis pipelines. These tools can perform sophisticated processing
of large collections of structured and unstructured data, including tabular data, text, images, and video.
Until recently, data science applications relied on extensive and brittle hand-engineering and human
expertise to design, implement, deploy, and debug. As a motivating example, consider the following data
science pipeline detailed in Figure 1, inspired from real experiments performed by the scientists in [15].

In this example, a biomedical researcher is investigating “small cell lung cancer”, a particular type of
lung cancer which is characterized by a high percentage of patients relapsing after receiving treatment.
The researchers set up a clinical study to analyze the genome evolution of tumor cells in patients
before, during, and after treatment. During the course of the study, biological samples are obtained by
hospitalized patients, together with medical reports handwritten by hospital doctors; structured data
from laboratory examinations, e.g., blood sampling; imaging data from MRI scans and cell histology;
and genomics data from the biological samples.

Some of the key data-driven steps involved in the scientific research are:

1. Classify biological samples corresponding to small cell lung cancer, based on imaging and genomic
data.

47

& ﬁ Why do lung cancer patients have relapses after treatment?

Domain
Expert Clinical ,
e Classify tumor cells and Study cohort (n = 55 of 65)
/ repo \ biological samples (™ 100 — p53 missense
o o =
(N = Oq o * S 80 —i— Other TP53 '
- - N _ by gene-damaging
"\ Tabular g . b —] & 60
— Track samples lineage b 0
. during therapy g P = 0.0028
3 . > T 20
h- "| Imaging g ¥ «
S—
. | i i« imaoi e e
. . Align genomic, imaging
Patients \GenomlCJ and clinical data
Figure 1: An example data-to-insight pipeline inspired from [15]. To answer and obtain insights about

a clinical research question, biomedical researchers are required to manually integrate and process
multimodal data.

2. Track samples collected during therapy; identify their lineage and evolution in individual tumor
locations.

3. Align data obtained through different sources, including MRIs, blood samples, and clinical data to
identify interesting patterns associated with relapse probability.

Through a complex data-driven pipeline, involving both significant computation and human effort to
label and clean data, the authors of the study hypothesize that relapse probability and occurrence are
highly correlated with a specific gene mutation (Figure 1, right plot extracted from [15]). Although the
authors of [15] carried most of the steps in the pipeline through manual labor and domain expertise, we
envision that Al technology will soon enable fully automated and/or low-code workflows.

Fulfilling this vision with current technology requires a full stack of data/Al processing systems and
tools. In Figure 2, we detail three abstraction levels of such a mature data-oriented Al stack and some
of the individual components we are building towards this vision:

e Closed-Loop Human/Agent Interfaces: current Al systems are heavily focused on textual
input/outputs and single users. We envision data-driven applications that can leverage LLM
capabilities beyond purely chat-based interfaces, including tools to formally design and execute
agentic pipelines, and support a collaborative end-to-end data science process. Furthermore,
a mature data-to-insight system must feature automated Al components as first-class citizens.
For data science applications, we expect intelligent agents to be in charge of fully automating
end-to-end pipeline building as well as integrating multimodal data without the need of extensive
human labeling or transformations.

e Execution Optimization: complex systems that include LLM processing capabilities presents
novel architectural challenges. Often, their performances are hindered by processing costs and
latency, as each inference operation requires expensive memory and computation. We envision an
integrated system that includes several optimizations to execute Al workloads including dynamic
model routing and cost-based optimization of semantic operators.

e Metadata-Aware Storage and Retrieval: data-to-insight pipelines often process and generate
large amounts of data. Systems must include specialized solutions to handle infrastructural and

48

cl d-L Al-Mediated Explainable
osed-Loop Data Collaboration Pipeline Design
Human/Agent
Interfaces Automated Data Multimodal
Pipeline Builder Integration
Al-Enabled
Execution ‘ Cost-based Dynamic Model ‘ Data-to-Insights
Optimization Al Optimization Routing
Metadata-Aware Offline Data Reusable Cache
Storage and Retrieval Enrichment and Log Store

Figure 2: An overview of the components we are building towards an Al-enabled data-to-insight system.

storage challenges optimized vector storage and algorithms for retrieve-augmented generation
(RAG), components to manage cache and user interaction logs to improve pipeline efficiency and
quality over time, and interfaces to exchange data with external systems.

In the remainder of this paper, we outline some of the research opportunities and concrete steps we
are undertaking to build such an Al-enabled data-to-insight stack and address the challenges of current
data-oriented Al systems. In Section 2, we discuss our vision for the architecture of data-to-insight
systems and detail the features that we deem fundamental to implement in such systems. In Section 3, we
describe the human/agent interface layer for pipeline design, including a specialized user-agent interface,
an automated system for explainable pipeline building, and the challenges multimodal integration. In
Section 4, we highlight the challenges of optimizing the execution of complex LLM-powered pipelines,
and outline a proposal for a cost-based optimizer and a model serving system. In Section 5, we introduce
metadata-aware storage and retrieval to empower reasoning in data-to-insights systems, including a
join-aware retrieval framework, an offline data enrichment framework, and a reusable cache and log store
component. In Section 6, we discuss the challenges of benchmarking data-to-insight systems and present
a novel benchmark with initial experiments that motivate the need for further development. Finally, we
conclude the paper with an outlook on the open challenges in Section 7.

2 Data-to-Insights Systems

The production and consumption of data-driven insights is often a collaborative process involving
multiple human roles and a diverse technology stack. Contributors, e.g., data engineers, have the
technical expertise to build data-to-insight pipelines; authors, e.g., data analysts, use these pipelines to
produce data artifacts; and consumers, e.g., business stakeholders, have the domain expertise to make
decisions based on the insights derived from the artifacts. All parties possess specialized knowledge
but require collaboration to leverage the unique expertise of all actors involved. Without seamless
collaboration, changes to software pipelines, data artifacts, or insights can lead to costly coordination
and time-consuming feedback loops. Our vision for mature Al-assisted data-to-insight systems includes
specialized components to address these socio-technical challenges, including assisted development
systems, user-agent interfaces, and specialized storage and retrieval components.

Contributors conventionally assemble data pipelines using diverse tools: integrated and interactive
programming environments, i.e., Jupyter notebooks or IDEs, GUIl-assisted tools, i.e., spreadsheets or
dashboard builders, and ad-hoc scripts in a variety of languages, i.e., bash or SQL. While each step in
the pipeline may be individually inspected and debugged, the overall end-to-end data flow cannot be
easily revised or optimized holistically.

49

Existing code generation agents |2, 4| that leverage LLMs or automated systems can save contributors
time and enable quicker design and development. However, when the generated code does not work
as intended out-of-the-box, users who don’t understand the code struggle to debug its subtle issues
or provide high-level feedback to coding agents [23, 33, 38]. This highlights the need for intermediate
computational results and human-in-the-loop feedback in a tight development loop to debug artifacts
produced by automatically generated pipelines. Consequently, the productivity wins offered by traditional
coding assistant agents do not necessarily entail quicker insights, particularly for complex data pipelines
where contributors, authors, and consumers have to collaborate to discover new data insights. To address
these inefficiencies, we envision a system that supports Al-mediated collaboration across the life cycle
of data artifacts. We aim to make the production of data artifacts substantially cheaper and faster by
dramatically reducing the coordination overhead between human and Al agent actors involved, thus
improving the productivity of each participant. Rather than eliminating human collaboration, we aim
to augment it through intelligent tooling and tighter feedback loops.

A full-fledged system that realizes this vision should include a few crucial features:

Closed-loop human /agent interfaces: The system should cover the end-to-end life cycle of data
artifacts. The system should include an Al agent that constantly reads and revises the data artifact to
detect missing, inconsistent, or obsolete information. When possible, it will take action to fix the artifact,
such as updating a pipeline, searching a data lake for a piece of missing information, or answering a
collaborator’s question directly without bothering the responsible author. In other cases, it should warn
end users about potential problems. Such a “closed loop” will allow feedback from the consumer of a
data artifact to be communicated upstream to the author, and thereby exploited by both humans and
AT programming tools. As a result, domain expert consumers can give direct artifact feedback and in
many cases see a refined artifact before the author does any work at all. Further, this closed loop can
facilitate the connection between the author and contributors of a data artifact, as the contributor might
add query results or crucial facts that become part of the overall data artifact.

Execution Optimization: Considering the costs and latency associated to the execution of Al
operators, a mature system needs a dedicated and optimized execution layer. Within this layer, calls to
LLMs and FMs are considered physical operators, and optimization proceeds through the exploration of
many equivalent plans to meet a user-defined mix of cost, latency, and quality. Example optimizations
include (i) leveraging a spectrum of models with different cost-accuracy tradeoffs, (ii) partitioning,
caching, or summarizing inputs to reduce the effect of context-length costs, or (iii) batching requests
on the fly to ride out bursty demands. Because the quality of LLM outputs is stochastic and hard
to predict, a key challenge of execution optimization is estimating the cost/quality curves online and
identifying a Pareto frontier of physical operators.

Metadata-aware storage and retrieval: The social process of creating data artifacts produces a
large amount of data that is currently not leveraged in conventional data systems. Unlike most of today’s
data pipelines, lineage of data artifacts must be explicitly stored and retrieved, allowing versioning,
iterative refinement, and reuse. The system should leverage these precious metadata as part of the
artifact production process. Examples include information about customer state, the responsibilities
of individual contributors, the connection string for particular databases, and verbal claims made by
collaborating institutions.

In the remainder of the paper, we detail some of the prototype components of this architecture that
we are actively developing towards a full-fledged Al-enabled data-to-insights system.

50

Javascript Code Editor

US Presidents and Their Age at Inauguration

Run Code
"
bel), /7 Labels for w
), 14 Height of
Labels for better

Figure 3: An early prototype of the Sunroom system, with a chat box (2) on the left hand side, and
three code and output panels on the right hand side illustrating the pipeline: (B) runs a SPARQL query
on a knowledge graph and returns a table; (C) cleans and prepares the data in Javascript, returning
a modified table; and (D) uses a Javascript plotting library to visualize a bar chart. The highlighted
content in the code and output panels represent recent code changes by the agent and output annotations
left by the user, illustrating how the system enables human-agent feedback loops both on code and data
artifacts.

3 Human/Agent Interfaces for Pipeline Design

In this section, we describe the main components we envision in a closed-loop framework for automated
pipeline design and deployment. We introduce Sunroom, a prototype user interface for integrated
pipeline design and debug; we describe the design space for automated, agentic pipeline design; and we
outline the challenges and opportunities of multimodal data within data-to-insight systems.

Sunroom is a data pipeline builder that combines a comprehensive chat experience with a shared,
live dataflow execution environment. Irrespective of the user being a data engineer, analyst, or consumer,
our system can streamline iterative data artifact development with the assistance of an Al expediter.
Sunroom incorporates several essential components:

e A user interface that enables the user to engage with the agent, pipeline source code, and data
artifacts

e An agent interface to facilitate interactions with a coding oracle

e A workflow repository with source code and configuration files

e An execution result data store

e A task orchestrator with associated execution workers
In traditional data orchestration systems, the user has full, direct control to coordinate pipeline execution,
but there is little room for an agent to assist the user in determining their data orchestration tasks;
the source code and data repositories are available only for the benefit of the orchestrator, workers,
and broader execution environment. Conversely, in AI-IDE systems, an automated coding agent takes

the place of the user in having full, direct control; the user is only able to instruct the agent to make
code changes, but the lack of intermediate result visibility hampers their ability to evaluate pipeline

o1

correctness (as in these domains, correctness is determined more by the transformations applied on
the data and consequential data output than the specific program behavior). Sunroom addresses these
challenges by providing both the user and agent with full visibility into the source code, execution
results, and orchestration of workflow tasks, allowing both humans and Al agents to provide feedback
and input to any stage of the processing and output workflow. This is a notable departure from the
code-generation features of existing workflow engines that employ LLM-driven features |1, 3, 11|, as
LLM-driven code changes are scoped to one pipeline step at a time and are not data-aware unless the
user manually adds the context into the conversation (at time of publication).

While the five aforementioned components are essential for a Sunroom-like system, the primary
challenge lies in representing the environment such that both humans and agents are able to digest critical
information and take action in near real-time. For example, when working at scale or in production,
debugging ETL pipeline issues would be served well by an application like Sunroom, but tables too large
to fit in memory are also too large to fit in context for RAG queries; however, giving value-level feedback
for agentic revision can be a challenge when tables are conventionally compressed. In larger-scale
scenarios, approaches to execution optimization as in Section 4 stand to play a major role in realizing
this type of application.

We envision the evolution of human-agent interfaces to support more sophisticated and adaptive
execution behavior: as these systems accumulate historical execution data through continuous interaction,
an automated orchestrator could dynamically prompt users for appropriate feedback or run longer
sequences of the pipeline in full autonomy.

3.1 Explainable Pipeline Design

LLMs have demonstrated impressive capabilities to automate code generation, structured data querying,
and semantic understanding |11, 32, 15]. While they can assist with coding and some semantic reasoning,
they often lack deep contextual awareness of a given project’s nuances. Moreover, data workflows are
often iterative and non-deterministic, requiring constant adaptation based on intermediate results and
human intuition. To address this gap between LLM capabilities and the needs of real-world data science
we explore an agentic approach—one where LLM agents do not simply assist in isolated tasks but also
help with orchestrating and optimizing entire workflows, intelligently coordinating different agents to
construct, execute, and refine data pipelines dynamically.

In Al-assisted pipeline design, the fundamental "black box" nature of LLMs makes errors unpre-
dictable and inconsistent, even across similar inputs. Hence, trust, explainability, and transparency
of automatically produced pipelines remains a significant barrier, as users struggle to determine when
model outputs can be accepted without verification. These challenges necessitate thoughtfully designed
human-agent interfaces that:

e Support to build customized data processing pipelines through an intuitive, visual, drag-drop
interface.

e Enable human feedback both at an individual operator level as well as at the broader pipeline level.
The feedback should be stored and leveraged to improve the quality of subsequent executions of
the pipelines.

e Annotate the output for individual steps of pipelines with confidence metrics to address accuracy
concerns and provide greater insights into automatically generated results.

e Label operators with complexity and security requirements, for which users can provide test-cases
which are automatically run during the execution of the pipeline.

52

We envision an agentic framework that fulfills the above features and enables data scientists to
author pipelines at a higher-level of abstraction than before. An orchestrator agent will be in charge of
understanding natural language directives, designing a pipeline of steps to reach the desired output, and
finally invoking specialized agents to implement the pipeline steps. At the core of this agentic approach,
we identify the following fundamental features:

Agent Primitives: A successful automated data-to-insight pipeline is predicated on a set of verified
and trustworthy specialized agents. To design such agents, it is necessary to define the set of primitive
operations that must be implemented by each individual operator. One of the challenges is that different
pipelines on diverse datasets and domain may have unique features, e.g., geographical data may require
spatial reasoning while biomedical genomics data may require sequence alignment.

Pipeline Orchestration: We define orchestration as the challenge of determining which agents
to execute next at a given moment in time. Orchestration can be implemented statically (e.g. with
pre-defined trigger rules for each agent) or in a more dynamic fashion (e.g. with a coordinator determining
which agents to execute next). Effective orchestration must have three attributes: context management,
to ensure that the correct agents are invoked when necessary; responsiveness and adaption to changes in
the workload input(s) as well as its intermediate state; resilient execution handling, to be able to recover
and correct run-time failure.

Self-Adaptation to Downstream Feedback: A real world data-to-insight workflow typically
has an exploratory nature, with subsequent iterations of pipeline design and implementation depending
intermediate outputs and insights obtained from available data. Therefore, a truly automated system
must include a closed-loop framework, automating the feedback process. One of the challenges of building
pipelines that can self-adjust to downstream outputs, is the diversity of formats for the data artifacts
produced. For example, outputs of pipelines may be qualitative in nature (e.g., textual reports, or visual
artifacts); quantitative data (e.g., a set of measures); or even statistical models (e.g., a regression model).
Hence, to automatically parse useful downstream information, it is necessary to define a comprehensive
and well-designed space of feedback signals.

3.2 Multimodal Integration

Foundational models can embed text, images, and other modalities in a shared vector space |34, 40].
As natural-language queries may also be encoded as vectors, multimodal question answering can be
achieved using the Retrieval Augmented Generation (RAG) paradigm [27], by fetching the most similar
documents to the query and having LLMs generate an answer grounded on evidence. However, this
paradigm has several shortcomings for large and multimodal data inputs:

Offline preprocessing: As embedding models have usually limited contexts for input data,
documents must be chunked (in sentences, lower resolution images, etc.) and/or possibly transpiled
(i.e., non-textual inputs are described as text) at indexing time, before the question-answering stage.
Query-agnostic chunking often degrades retrieval for complex reasoning, and query-aware chunking for
multimodal data is still little studied.

Query-agnostic similarity: Vector search may returns data semantically similar to the query, but
not necessarily the most fitting for the output of the query itself. Consider a multimodal query seeking
for the brand of a dress in a photo, for instance, may yield images with similar poses instead of ones
highlighting the garment. To overcome this gap, methods such as query rewriting [7], decomposition [39],
or enriching structured data with graphs [18] are necessary.

Inter-modality gap: Verbalizing data in non-text modalities into a textual description is a popular
approach for multimodal data processing. However, some aspects of multimodal data are difficult to
capture with only transformer models and natural languages. For example, if two portraits have similar
lighting designs, image models are better suited to reason about the connection than textual descriptions.

53

Towards this end, we propose multimodal embedding ensembles, a method of representing multimodal
data entries with sets of embeddings from all applicable models. Multi-vector search primitives can
subsequently help with the retrieval.

We have seen the unique features of human/agent interfaces for pipeline design. Implementing and
using a full-fledged Al-enabled system is associated with extensive computation using large models.
The next section details our vision on optimizing the execution of LLM-based operators to provide the
scalability and efficiency required for complex data-to-insights pipelines.

4 Execution Optimization

The use of LLM-powered systems to automate the design of data pipelines and provide semantic
capabilities to data operators [29, 31, 13, 18] often comes with scalability and cost concerns. In this
section, we outline the challenges of executing large workloads of LLM-powered operators at the scale
required for data-intensive processing pipelines such as data-to-insight pipelines. First, we will describe
Abacus, our proposed framework to optimize the quality, cost, and latency of data pipelines using LLM
operators. Then, we introduce Ken, a component to provide data-to-insight systems with fine-grained
control over model serving, to expose more cost-accuracy-latency trade-offs while boosting inference
throughput.
The execution cost of LLM-powered operators is dominated by three primary bottlenecks:

e Cost/accuracy granularity: A single “best” model exposes only one latency—quality operating
point. A data system instead requires a continuum of trade-offs to provide cheaper or more effective
executions.

e Context length: LLM computation scales quadratically with the number of input tokens. Large
data inputs often exceed the context window current hardware can process efficiently [30)].

e Burstiness: The volume of data processed in Al workloads is non-stationary but characterized by
interactive spikes that may constrain model performances.

A mature data-to-insight system that leverages extensive Al-based operators must include an
optimization layer to guarantee scalable and affordable execution for data pipelines. Inspired by
relational operators |19], recent systems [22, 29, 10, 18] proposed declarative frameworks for semantic,
LLM-based operators. The core design of these frameworks is to identify of logical and physical operators
that implement a specific Al-based program (a sequence of semantic operations), and then to explore
the space of equivalent implementations of such program as to optimize a given user requirement. The
challenges of semantic optimization lie within the nature of LLM systems: due to their non-deterministic
behavior and high processing cost, the execution of a plan may lead to varying degrees of output quality,
economic cost, and latency. The Pareto-frontier of possible implementations is hard to explore because,
unlike relational operators—semantic operator quality is uncertain, and we lack principled methods to
quickly and cheaply estimate physical operators’ performance.

4.1 Cost-based Al optimization

We propose Abacus [36], a general-purpose, extensible optimizer that can optimize the execution of
LLM programs with respect to output quality, dollar cost, or latency. Abacus can optimize either
along individual dimensions, e.g., having the best quality irrespective of the execution costs, or perform
constrained optimization with respect to constraints on different dimensions of system performance, e.g.
having the best possible output quality subject to an upper bound on cost.

54

The core intuition of Abacus is inspired by the Cascades query optimizer [17]: we implement rule-
based transformations to define a space of physical plans. Each operator defined in a program can be
executed with a set of equivalent physical implementations: for example, using LLM tools to perform
a semantic filter out data records can be implemented using different models, or different prompting
strategies. To address the aforementioned challenge of predicting the performances and cost of different
physical implementations, Abacus models the problem of finding useful operators as an infinite-armed
bandit problem [5, 6]. Given a sample execution budget (e.g., a fixed amount of LLM calls), Abacus
samples the performance of equivalent physical implementations on a subset of the data inputs and
builds a Pareto frontier of implementations. To accelerate the search process and increase the quality of
the estimates, Abacus can leverage prior beliefs about operator performance, e.g., if larger models are
known to be more expensive, it will avoid repeated samples to estimate their costs. Finally, in order
to support constrained optimization objectives, we extend the traditional Cascades algorithm to keep
track of the Pareto frontier of physical plans. For more details about the optimization and estimation
processes of Abacus, we refer readers to [36], where we also provide experimental evidence that these
algorithmic contributions help Abacus obtain consistent Pareto-optimal pipeline executions.

4.2 Dynamic Model Routing

A dedicated execution optimization layer for data-to-insight pipelines should not only entail declarative
optimization: an orthogonal problem lies in the availability and provisioning of a broad and diverse set
of model configurations to choose from. Without diverse model alternatives for serving LLM requests,
the space of available physical optimizations is restricted.

Consider the example of having two models available for a given task, a tiny and a large model
variant. The former may be too inaccurate, while the latter may incur unnecessary cost, limiting the
optimizer ability to make effective trade-offs. Hence, the efficiency of these trade-offs also depends on
how effectively the underlying system can serve these models. We argue that alongside declarative
optimization, a dynamic and highly configurable model serving environment is essential to fully unlock
Al-enabled data-to-insight systems.

For a given hardware provisioning, we can add points to the latency-accuracy trade-off curve by
adopting model cascades [19] as an effective mechanism to trade off lower computational cost (e.g.,
FLOPs) for lower accuracy. In a cascade, inputs are first processed by a lightweight, inexpensive model
that produces both a prediction and a confidence score. If the confidence exceeds a predefined threshold,
the prediction is accepted; otherwise, the input is escalated to a more powerful model for reprocessing.
Intuitively, this allows model cascades to process “easy” samples with cheap models and “hard” samples
with expensive models. Through their tunable certainty thresholds, cascades expose a high-resolution
trade-off between output quality and computational cost (e.g., FLOPs). Furthermore, cascades can
significantly save computation at little quality degradation (Figure 4). However, using cascades to serve
online requests on GPUs introduces two key challenges that can limit their effectiveness, or even make
them degrade the system’s performance:

Additional data transfer: Computing a model’s output requires the GPU to repeatedly transfer
weights and inputs to its arithmetic units. This often dominates the time taken to perform the arithmetic
itself. Model serving systems mitigate this by batching multiple samples together and predicting their
output in the same forward pass, amortizing the weight-transfer. Higher batch sizes incur more arithmetic
and for large batch sizes, the arithmetic eventually dominates the time of the data transfer. For example,
Figure 4 shows Llama-70B’s runtime remains flat up to a batch size of 128, indicating memory transfer
is the bottleneck; it then increases as the arithmetic becomes the bottleneck. Therefore, cascades only
boost end-to-end throughput with large batch sizes, when their computational savings exceed the extra
queuing delay.

95

854 7 . [4 Té?l‘w‘ —e— Llama-70B
/ ase = 1201 Llama cascade
- w0
X844 ¥ Medium @
= I S 100
Y Small T
€ 83 ’ e g 801
S | mini 5
2 82" O 601
e BERT cascades o /
a1 {8 Tiny BERT models z 401 P
0.0 05 1.0 10! 102
FLOPs / sample 1ell Batch size

Figure 4: Left: Pareto frontier of FLOPs vs. accuracy for fine-tuned BERT classifiers on Sentiment-
140 [16]. Right: Runtimes of Llama-70B and a cascade incurring 84% of its FLOPs.

Higher memory footprint: Model cascades require multiple models to reside in GPU memory.
Often, their combined weights cannot fit on a single GPU. In such cases, individual models cannot be
replicated as frequently as when served alone. For generative LLMs, throughput further depends on the
amount of free GPU memory, which limits the number of concurrent requests, and therefore the batch
size of a forward pass. The GPU must be able to run enough requests concurrently to reach batch sizes
where cascades could help in the first place.

To address these shortcomings, we propose Ken, a dedicated model serving system that (i) exposes a
high-resolution trade-off space between cost, accuracy, and latency, and (ii) enables more efficient ML
inference. In our experiments, we characterize its behavior and demonstrate that Ken achieves a 1.7x -
3.3.x reduction in p95 latency over strong baselines [24].

We have described the challenges associated to the cost of data-intensive pipelines using LLM-powered
operators, and some of the optimizations for their execution that can be leveraged by Al-enabled data-to-
insight systems through specialized components. In the next section, we will introduce the opportunities
of metadata-aware storage and retrieval to further enhance the output quality of Al operators.

5 Metadata-Aware Storage and Retrieval

When processing data with LLM and Al-powered tools, research showed the importance of domain-
specific, external data and metadata to achieve high quality outputs [21, 30, 37]. Hence, a mature
Al-enabled system requires strong retrieval capabilities to handle a broad spectrum of tasks with sufficient
accuracy. In this section, we propose three metadata-aware strategies for data storage and retrieval
that can serve as specialized components within a full-fledged data-to-insight system: (1) input data
alignment for join-aware retrieval, (2) offline data enrichment for annotating data collections, and (3)
log-augmented generation for reusing previous computations and reasoning traces.

5.1 Join-aware Retrieval

The current paradigms for retrieval, RAG and CAG, typically operates in an iterative, online, and
isolated fashion assuming that the relevant data for a given LLM operation is readily available and
are primarily concerned with its retrieval. However, information is often found scattered across data
sources, therefore naive document retrieval can lead to incomplete answers due to missing connections
between data sources. For instance, as shown in Figure 5, to answer the question “What is the highest
eligible free rate for K-12 students in the schools in the most populous county in California?”, the model
might retrieve data on schools and eligible free rate, and separately a list of California counties and

o6

Alignment-Oriented LLM-based Approach
® (ARM)

List of School Districts in California

— Alignment
v e 3

California Counties by Population (2024)
x o g "

Information | Structure Self-verification
and aggregation

What is the highest 1
eligible free rateffor K-12-------{» @<~ > © .| [] multiple

students in the schools in)| || atignment > | @@®O O, V
the|most populous county-------+ >@«-:> ® «’ drafts
0) in California?

Text/@%abaws Gold Reasoning Process
: (0

Figure 5: Overview of ARM, our alignment-based retrieval method for join-aware retrieval.

their population. However, in the most general case there is no guarantee that the retrieved data has
explicit join keys (e.g., if school locations are cities, not counties) which would result in poor or empty
results for the main question.

We propose ARM, standing for Alignment-Oriented Method [10, 11], to enables an efficient and
comprehensive retrieval for queries for which information is found in separate documents. First, we
decompose complex queries in easier sub-questions, and we aligning both the main question and its
decomposed sub-questions with existing data objects (e.g., the tables or documents in a data collection).
Specifically, ARM retrieves not only based on the semantic similarity of data objects to the query, but
also based on the compatibility between objects themselves. Using the similarity and compatibility scores,
we generate multiple alignment drafts that account for both informational and structural alignment, and
ultimately select only the objects from these drafts that the model is most confident in. We evaluated
ARM on three complex retrieval tasks involving both passages and tables (OTT-QA [13], Bird 28], and
2WikiMultiHop [20]), and found that it substantially outperforms traditional RAG systems—with or
without query decomposition—as well as ReAct-style agent-based frameworks [51].

5.2 Offline Data Enrichment

Existing sparse (e.g., BM25) or dense (e.g., vector embeddings) retrieval methods often rely on complex,
costly online computations to boost retrieval performance. Specifically, these methods typically begin by
retrieving a broad set of data objects (such as documents or tables) from a collection that are potentially
relevant to the query. They then utilize more powerful LLMs to assess the relevance between the query
and the retrieved objects online, re-ranking the results to return only a small subset of the most relevant
items. However, this retrieve-and-rerank process happens online for each query anew, which incurs
high cost and latency. Moreover, they are inherently limited by the performance of the sparse or dense
retrievers.

To overcome these shortcomings, we propose ENRICHINDEX |[9], a retrieval approach which uses LLM
offline to build semantically-enriched retrieval indices, by performing a single pass over all data objects
in the retrieval corpus once during ingestion time. The semantically-enriched indices can enhance the
effectiveness of current sparse and dense retrieval methods and, in turn, complement retrieve-then-rerank
retrieval pipelines. We evaluated ENRICHINDEX on five complex retrieval tasks, involving passages and
tables (Spider2 |26], Beaver [8], Fiben [12], Bright [14], and NQ [25]), and found that it outperforms
strong online LLM-based retrieval systems with higher recall and significantly fewer tokens, greatly
reducing the online latency and cost.

5.3 Reusable Cache and Log Store

Current LLMs and LLM-based agentic frameworks [51] handle user tasks in isolation, without remem-
bering prior interactions. This lack of memory hinders their ability to reuse past reasoning, resulting in

o7

repetitive thought processes and an inability to reflect on previous tasks. For instance, when solving
a task T' composed of three sub-tasks 177 — 175 — T3, an LLM decomposes it and addresses each step
sequentially. Later, when presented with task 7", which consists of 7] — T, — T3, the LLM repeats the
process from scratch, unaware that the reasoning for sub-tasks 75 — 73 has already been performed and
could be reused. We propose log-augmented generation |12], LAG, a framework that directly reuses prior
computation and reasoning from past logs at inference time. As part of the framework, we represent
logs using KV values corresponding to a subset of tokens in past reasoning traces to represent the full
reasoning context—reducing size while enabling context-dependent interpretation. We evaluated LAG
on four knowledge- and reasoning-intensive datasets (Musique [17], 2WikiMultiHop [20], GPQA [35],
and MMLU-Pro [50]), and found that our method significantly outperforms standard agentic systems
without log usage and existing reflection and KV caching techniques, achieving superior effectiveness
and efficiency.

Together with human/agent interfaces and execution optimization, we envision that metadata-aware
storage and retrieval, as implemented by the aforementioned components, is a fundamental feature for
Al-enabled data-to-insight systems. Before concluding our paper, the next section introduces our efforts
to benchmark existing Al systems on their capabilities of solving complex data-to-insight tasks.

6 Benchmarking Data-to-Insight Systems

As argued throughout the paper, a mature Al-enabled system to automate data-to-insights should support
users across whole data pipelines, from data discovery, wrangling and cleaning, to data visualization
and statistical modeling. Current research has evaluated LLMs mostly on unit tasks, e.g., text-to-SQL,
code generation, or question answering. Therefore, an integrated system is hard to assess holistically.
We argue for the need of a robust benchmark to guide further progress in automated data-to-insight
pipelines.

An ideal benchmark should have the following features:

Scale and heterogeneity: Real data science pipelines may involve tens to thousands of files with
varying formats, e.g., CSVs, PDFs, JSON logs, or web tables. Synthetic or toy datasets are not fit to
reproduce the messiness of real data files; hence they must include real-world data sources.

Task complexity: Benchmark questions must correspond to complex and realistic goals. To solve a
realistic data science benchmark, a system under test should demonstrate pipeline design, implementation,
and debugging capabilities. Moreover, a benchmark should be comprised of real-world datasets, large,
potentially domain-specific and in a raw, unclean format.

Comprehensive evaluation: Considering the complexity of end-to-end pipelines, evaluation must
be sufficiently fine-grained to provide insightful analysis into the failure modes of systems. Ideally, a
benchmark should assess the end-to-end correctness of results, a correct design of the pipelines, and a
correct implementation of the individual pipeline steps - to ensure that the produced pipelines can be
consistently applied over potentially different data inputs (e.g., newer versions of the data).

Reproducibility and openness: Tasks should draw from public data sources, ship with reference
solutions, and avoid dependencies on proprietary APIs so that any researcher can evaluate systems using
the benchmark.

Following these principles, we introduce KRAMABENCH, the first suite that tests complete, automated
data-science pipelines over real data lakes. The benchmark includes 104 tasks covering 1 700 raw files
drawn from 24 sources in six domains; each task is a natural-language objective that demands several
sub-tasks to be completed, e.g., data discovery, data wrangling, and statistical analysis. The benchmark
scores (i) fully automated runs, (ii) pipeline design quality, and (iii) correctness of individual sub-tasks,
exposing where systems break down.

58

Table 1: Evaluation results for the 106 data science pipelines of KRAMABENCH on 6 baseline LLM
systems.

Models
Evaluation setting GPT-03 GPT-40 Claude-3.5 Llama3-3Instruct DeepSeek-R1 Qwen2-5Coder
End-to-end automation 9.64% 1.62% 7.45% 1.19% 3.14% 3.72%
Pipeline Design 40.60% 30.83% 31.06% 26.74% 18.94% 27.35%
Pipeline Implementation 12.95% 9.27% 10.65% 8.28% 12.08% 7.52%

We manually curated all individual tasks and sub-tasks starting from real-world data science pipelines,
and for each task provides a manually verified reference solution. The benchmark artifacts could be
found at http:\\www.github.com\\mitdbg\KramaBench.

Table 1 presents some of the results of six different LLM systems on the 106 data science pipelines
in the KRAMABENCH benchmark. As it can be noted, none of the six baseline LLMs can solve even
10% of the benchmark fully automatically. The best performing baselines are GPT-03 with 9.64%, and
Claude-3.5 with 7.45%. These results underscore how brittle current agents are once they must discover
data, write code, run it, and return a correct answer without human help. When it comes to pipeline
design, systems have a higher score, showing that the models can sketch reasonable pipeline blueprints
far more often than they can implement and execute them. Our experiments show that, even when
the system is given reference sub-tasks, the success rate of pipeline implementation hovers around 10%
across different models. In our analysis, we identified that models struggle to implement sub-tasks with
correct parameters, that are data-input specific (e.g., using the right wrangling logic).

7 Conclusions

In this paper, we outlined our vision for Al-enabled data-to-insight systems. Automating data science
end-to-end is a challenging yet rewarding research direction to pursue. Realizing this vision, however,
demands integrated systems that span a full stack of components. We outlined some of the active
areas of research across this stack: interactive and collaborative human-agent systems, automated Al
data processing, optimized execution of Al operators, and specialized storage for agentic and reasoning
workflows. We described a new benchmark to provide the first holistic lens on this challenge, and
the results are sobering: even the most capable foundation models today solve fewer than one-tenth
of end-to-end pipelines, stumble on large data volumes, and reveal sharp drop-offs between planning,
implementation, and execution. These findings show that significant gaps remain before trustworthy,
scalable “data-to-insight” automation is achieved.

We believe that the database community has both the data system expertise as well as all technical
building blocks necessary to make rapid progress towards Al-enabled data-to-insights systems, and we
are eager to collaborate with researchers and practitioners who share this goal.

Acknowledgements

We are grateful for the support from the DARPA ASKEM Award HR00112220042, the ARPA-H
Biomedical Data Fabric project, NSF DBI 2327954, a grant from Liberty Mutual, and the Amazon
Research Award. Additionally, our work has been supported by contributions from Amazon, Google,
and Intel as part of the MIT Data Systems and Al Lab (DSAIL) at MIT, along with NSF IIS 1900933.
This research was sponsored by the United States Air Force Research Laboratory and the Department
of the Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the

99

authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Department of the Air Force or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

References

[1] Ascend.io, 2015.

[2] Github copilot, 2021.
[3] Activepieces, 2022.
[4] Cursor, 2023.

[5] R. Agrawal. The continuum-armed bandit problem. SIAM Journal on Control and Optimization,
33(6):1926-1951, 1995.

[6] J.-Y. Audibert and R. Munos. Algorithms for infinitely many-armed bandits. pages 1729-1736, 01
2008.

[7] C.-M. Chan, C. Xu, R. Yuan, H. Luo, W. Xue, Y. Guo, and J. Fu. Rg-rag: Learning to refine
queries for retrieval augmented generation. arXiv preprint arXiv:2404.00610, 2024.

[8] P. B. Chen, F. Wenz, Y. Zhang, D. Yang, J. Choi, N. Tatbul, M. Cafarella, C. Demiralp, and
M. Stonebraker. Beaver: an enterprise benchmark for text-to-sql. arXiv preprint arXiv:2409.02038,
2024.

[9] P. B. Chen, T. Wolfson, M. Cafarella, and D. Roth. Enrichindex: Using llms to enrich retrieval
indices offline. arXiv preprint arXiv:2504.03598, 2025.

[10] P. B. Chen, Y. Zhang, M. Cafarella, and D. Roth. Can we retrieve everything all at once? arm: An
alignment-oriented llm-based retrieval method. arXwv preprint arXiv:2501.18559, 2025.

[11] P. B. Chen, Y. Zhang, and D. Roth. Is table retrieval a solved problem? exploring join-aware
multi-table retrieval. arXiv preprint arXiv:2404.09889, 2024.

[12] P. B. Chen, Y. Zhang, D. Roth, S. Madden, J. Andreas, and M. Cafarella. Log-augmented generation:
Scaling test-time reasoning with reusable computation. arXiv preprint arXiv:2505.14398, 2025.

[13] W. Chen, M.-W. Chang, E. Schlinger, W. Wang, and W. W. Cohen. Open question answering over
tables and text. arXiv preprint arXiv:2010.10439, 2020.

[14] M. Fan, J. Fan, N. Tang, L. Cao, G. Li, and X. Du. Autoprep: Natural language question-aware
data preparation with a multi-agent framework, 2025.

[15] J. George, L. Maas, N. Abedpour, M. Cartolano, L. Kaiser, R. N. Fischer, A. H. Scheel, J.-P. Weber,
M. Hellmich, G. Bosco, et al. Evolutionary trajectories of small cell lung cancer under therapy.
Nature, 627(8005):880-889, 2024.

[16] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision.
CS224N Project Report 1(2009), Stanford University, 2009.

60

[17]

[18]

[19]

[20]

[21]

22]

23]
[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

G. Graefe. The cascades framework for query optimization. IEEE Data(base) Engineering Bulletin,
18:19-29, 1995.

H. Han, Y. Wang, H. Shomer, K. Guo, J. Ding, Y. Lei, M. Halappanavar, R. A. Rossi, S. Mukher-
jee, X. Tang, et al. Retrieval-augmented generation with graphs (graphrag). arXiv preprint
arXiw:2501.00309, 2024.

J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a Database System. Now
Publishers Inc., Hanover, MA, USA, 2007.

X. Ho, A.-K. D. Nguyen, S. Sugawara, and A. Aizawa. Constructing a multi-hop qa dataset for
comprehensive evaluation of reasoning steps. arXiv preprint arXiw:2011.01060, 2020.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin, et al.
A survey on hallucination in large language models: Principles, taxonomy, challenges, and open
questions. ACM Transactions on Information Systems, 43(2):1-55, 2025.

S. Jo and I. Trummer. ThalamusDB: Approximate Query Processing on Multi-Modal Data.
Proceedings of the ACM on Management of Data, 2(3):1-26, May 2024.

A. Karpathy, February 2025.

F. Kossmann, Z. Wu, A. Turk, N. Tatbul, L. Cao, and S. Madden. Cascadeserve: Unlocking model
cascades for inference serving. arXiv preprint arXiv:2406.14424, 2024.

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, 1. Polo-
sukhin, J. Devlin, K. Lee, et al. Natural questions: a benchmark for question answering research.
Transactions of the Association for Computational Linguistics, 7:453-466, 2019.

F. Lei, J. Chen, Y. Ye, R. Cao, D. Shin, H. Su, Z. Suo, H. Gao, W. Hu, P. Yin, et al. Spider
2.0: Evaluating language models on real-world enterprise text-to-sql workflows. arXiv preprint
arXiw:2411.07763, 2024.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler, M. Lewis, W.-t. Yih,
T. Rocktéschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances
in neural information processing systems (NeurIPS), 33:9459-9474, 2020.

J. Li, B. Hui, G. Qu, J. Yang, B. Li, B. Li, B. Wang, B. Qin, R. Geng, N. Huo, et al. Can llm
already serve as a database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems, 36:42330-42357, 2023.

C. Liu, M. Russo, M. Cafarella, L.. Cao, P. B. Chen, Z. Chen, M. Franklin, T. Kraska, S. Madden,
R. Shahout, et al. Palimpzest: Optimizing ai-powered analytics with declarative query processing.
CIDR, 2025.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in the
middle: How language models use long contexts. Transactions of the Association for Computational
Linguistics (TACL), 12, 2024.

L. Patel, S. Jha, M. Pan, H. Gupta, P. Asawa, C. Guestrin, and M. Zaharia. Semantic operators: A
declarative model for rich, ai-based data processing, 2025.

R. Peeters, A. Steiner, and C. Bizer. Entity matching using large language models, 2024.

61

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

M. Potthast, M. Hagen, and B. Stein. The dilemma of the direct answer. SIGIR Forum, 54(1), Feb.
2021.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning (ICML), pages 8748-8763, 2021.

D. Rein, B. L. Hou, A. C. Stickland, J. Petty, R. Y. Pang, J. Dirani, J. Michael, and S. R. Bowman.
Gpqga: A graduate-level google-proof q&a benchmark. In First Conference on Language Modeling,
2024.

M. Russo, S. Sudhir, G. Vitagliano, C. Liu, T. Kraska, S. Madden, and M. Cafarella. Abacus: A
cost-based optimizer for semantic operator systems, 2025.

J. Saad-Falcon, O. Khattab, C. Potts, and M. Zaharia. ARES: An automated evaluation framework
for retrieval-augmented generation systems. In K. Duh, H. Gomez, and S. Bethard, editors, Proceed-
ings of the North American Chapter of the Association for Computational Linguistics (NAACL),
pages 338-354, Mexico City, Mexico, June 2024. Association for Computational Linguistics.

A. Sarkar, A. D. Gordon, C. Negreanu, C. Poelitz, S. S. Ragavan, and B. Zorn. What is it like to
program with artificial intelligence?, 2022.

P. Sarthi, S. Abdullah, A. Tuli, S. Khanna, A. Goldie, and C. D. Manning. Raptor: Recur-
sive abstractive processing for tree-organized retrieval. In International Conference on Learning
Representations (ICLR), 2024.

D. Satriani, E. Veltri, D. Santoro, S. Rosato, S. Varriale, and P. Papotti. Logical and physical
optimizations for sql query execution over large language models. SIGMOD ’25, New York, NY,
USA, 2025. Association for Computing Machinery.

S. Schelter and S. Grafberger. Messy code makes managing ml pipelines difficult? just let llms
rewrite the code!, 2024.

J. Sen, C. Lei, A. Quamar, F. Ozcan, V. Efthymiou, A. Dalmia, G. Stager, A. Mittal, D. Saha,
and K. Sankaranarayanan. Athena-+ natural language querying for complex nested sql queries.
Proceedings of the VLDB Endowment, 13(12):2747-2759, 2020.

S. Shankar, T. Chambers, T. Shah, A. G. Parameswaran, and E. Wu. Docetl: Agentic query
rewriting and evaluation for complex document processing, 2024.

H. Su, H. Yen, M. Xia, W. Shi, N. Muennighoff, H.-y. Wang, H. Liu, Q. Shi, Z. S. Siegel, M. Tang,
et al. Bright: A realistic and challenging benchmark for reasoning-intensive retrieval. arXiv preprint
arXiv:2407.12883, 2024.

Y. Sui, M. Zhou, M. Zhou, S. Han, and D. Zhang. Table meets llm: Can large language models
understand structured table data? a benchmark and empirical study. In Proceedings of the 17th
ACM International Conference on Web Search and Data Mining, WSDM 24, page 645654, New
York, NY, USA, 2024. Association for Computing Machinery.

G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai,
A. Hauth, K. Millican, et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2812.11805, 2023.

62

[47]

48]

[49]

[50]

[51]

H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Musique: Multihop questions via
single-hop question composition. Transactions of the Association for Computational Linguistics,
10:539-554, 2022.

M. Urban and C. Binnig. Demonstrating caesura: Language models as multi-modal query planners.
In Companion of the 2024 International Conference on Management of Data, pages 472-475, 2024.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, volume 1, pages I-1, 2001.

Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang, et al.
Mmlu-pro: A more robust and challenging multi-task language understanding benchmark. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. In International Conference on Learning Representations (ICLR),
2023.

63

