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Abstract

Data discovery is the task of identifying and retrieving documents that satisfy an information
need—a need that may support decision-making, scientific inquiry, or operational insight. While
the problem has existed since data began to be recorded, its complexity has grown with the scale
and diversity of data, particularly tabular data in databases, spreadsheets, and cloud stores. Unlike
well-defined tasks in data management, data discovery is ambiguous and socio-technical in nature,
requiring both algorithmic and human-centered solutions. In this perspective, we conceptualize
data discovery as distinct from but related to data search, introduce a reference architecture
that separates identification from retrieval, and situate recent developments—including LLMs and
retrieval-augmented generation—within this framework. We argue that solving data discovery
demands embracing its socio-technical character and outline an emerging research direction, data
ecology, that addresses this broader challenge.

1 Introduction

Data discovery is the process of identifying and retrieving documents that satisfy a specific information
need. An information need refers to any data that supports a task—for example, a paragraph that
answers a question, a row in a spreadsheet that informs a decision, or a feature that improves a predictor’s
performance beyond a given threshold. The task of identifying involves articulating the information
need in a way that makes it possible to find relevant data. The task of retrieval involves gathering
documents that fulfill this need. Defined broadly, the data discovery problem has existed since humans
first began representing knowledge in the form of documents. Library science—concerned with how to
organize and retrieve documents based on information needs—emerged after the printing press made
books widely available. Later, database and information systems developed rapidly as organizations
accumulated large document collections in the postwar era. Information retrieval and web search arose
in response to the explosion of online (web) documents. Today, prompt engineering serves as a heuristic
for retrieving relevant outputs from large language models (LLMs), given an information need expressed
as a prompt. In this way, data discovery has evolved in step with both the scale of the problem and the
technologies available to address it.

Data discovery is a critical problem in the context of tabular data. A significant portion of high-value
data1 is stored in tabular formats across databases, spreadsheets, and cloud storage systems. Data
discovery for tabular data has been explored by the data management community and, more recently,

1We use high-value data informally to refer to documents that directly relate to an organization’s operations, including
those that contribute to value creation such as revenue, user engagement, and similar metrics.
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by the machine learning community. It is also closely connected to fields like information retrieval and
human-computer interaction (HCI), reflecting the diverse challenges involved in tackling this complex
problem. Data discovery over tabular data has numerous applications. It supports scientific advancement
by identifying documents that either validate a hypothesis or help formulate new ones (hypothesis-driven
discovery). It also assists organizations in data-intensive tasks such as decision-making, product and
service development, and more.

Some problems in data management resist precise definitions and are inherently ambiguous. This
class includes tasks such as data cleaning, data wrangling, and data integration; data discovery belongs to
this group too. When SQL is viewed as a language for retrieving documents that satisfy an information
need—as specified by a query—the results are typically unambiguous, thanks to the closed-world
assumption that enables clear and well-scoped data processing. However, once we acknowledge that
relevant documents may span multiple databases and repositories—as is often the case in practice—the
problem becomes more difficult to define and, consequently, more challenging to solve.

In this perspective article, we conceptualize the problem of data discovery, situating it in relation to
data search and related tasks, and explain how it contributes to unlocking value from data (Section 2).
We then present a landscape of solutions for data discovery over tabular data (Section 3), structured
around a reference architecture that highlights the distinction between identification and retrieval. This
architecture also serves as a framework to introduce key contributions from our group. Building on
this foundation, we examine the emerging role of large language models (LLMs) and the evolving
architectures for retrieval-augmented generation (RAG) and agentic systems in shaping the future of
data discovery (Section 4). This discussion sets the stage for one of the paper’s central claims: data
discovery is fundamentally a socio-technical challenge. As such, no purely technical solution—not even
those based on LLMs—can fully address it. Instead, we advocate for socio-technical approaches and
introduce an emerging line of research, data ecology, that explores this broader framing (Section 5). We
conclude with a discussion of the current state of the problem and outline what is needed to advance
future solutions.

2 Conceptualizing Data Discovery

In this section, we introduce a set of definitions to support the discussions that follow (Section 2.1) and
examine the role of data discovery in enabling value extraction from data (Section 2.2).

2.1 Basic Definitions

Data and Documents. We draw a clear distinction between data and documents [6]. Data refers to
an abstract representation of some aspect or condition of reality, while a document is a representation of
data. The same data may be represented in different documents. For instance, consider the concept of
“room temperature”: the data corresponds to the measured value itself, whereas a document might be a
handwritten note recording the temperature, a value in a CSV file, or a row in a database table.

Documents exist in many forms. This heterogeneity is a core challenge of data integration and by
extension data discovery.

Definition 2.1 (Information Need) The data necessary to address a task.

We refer to it as an information need rather than a data need because the ideal data is not always
directly accessible; instead, we often rely on data that indirectly reveals information about the target.
For example, if the goal is to predict whether a loan application should be approved, the ideal data
would be whether the customer will default. However, that data may not be directly available. Instead,
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we might have access to related data—such as credit history or financial status—that provides indirect
evidence about the likelihood of default. In such cases, an analyst may articulate their information need
as the set of attributes (data) that relate to a customer’s probability of default.

A key aspect of information needs is that they are articulated by an agent—human or bot—as part
of pursuing a task. For example, the scenario illustrated in Figure 1 depicts multiple agents within an
organization, each facing a data discovery problem. The information need expressed by the decision
maker (bubble 1) may be high-level—for instance, “we need to project sales for this new product for
next quarter.” This initial request triggers several subtasks, such as reporting on past sales, assembling
features for a predictive model, and ultimately compiling these derived data products into a report to
support decision-making. The key point is that, when expressed by humans, information needs are
typically formulated so that the next person in the workflow can interpret and act on them. Regardless
of how an information need is expressed, the central challenge of data discovery is to identify which
documents satisfy it.

Definition 2.2 (Data Discovery) The problem of identifying and retrieving documents that satisfy
an information need.

Figure 1: Simplified diagram of an organization
where multiple stakeholders with information needs
(indicated by the red numbered circles) interact with
data systems and among themselves to solve a data
task

In data discovery, the solution is a document.
In some cases, this document already exists, and
the task is simply to locate and retrieve it. This
is typical of web search, information retrieval, or
dataset search, where the goal is to identify exist-
ing webpages, documents, or tables. In other cases,
however, the document does not exist in a ready-
made form and must be constructed—through
integration or fusion—as part of the discovery pro-
cess. For example, multiple documents may need
to be combined and transformed to produce a
new document that satisfies the user’s information
need. Similarly, large language models (LLMs)
combined with search can synthesize a document
from information scattered across multiple sources,
as seen in systems like Google’s Deep Dive Search,
Perplexity.ai, and ChatGPT with retrieval.
Identify and Retrieve. Two key terms in the
definition of data discovery are identify and retrieve. Retrieving refers to the mechanistic process of
delivering a document to the user so they can proceed with their task. Identifying, by contrast, involves
determining which document satisfies an information need—that is, which document represents data that
matches the articulated need. Identifying and retrieving are related to the separation between cognitive-
viewpoint and document-based view of the “anomalous states of knowledge” theory of information
retrieval [3]. Successfully solving this process entails several challenges:
1. it requires a precise and unambiguous articulation of the information need, which in turn depends on

the user’s understanding of the task they are trying to accomplish;
2. the information need must be expressed in a form that the discovery system can use to match against

available data—for example, by explaining a request to a librarian, entering keywords into a search
engine, or writing a natural language query to an LLM;

3. the discovery system must be capable of interpreting the information need and searching across large
volumes of data to find relevant matches.
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We distinguish between content and context information needs [2]. Content information needs can be
addressed by examining the contents of documents themselves. However, identifying a relevant document
is not always possible through content alone. Context information needs require metadata about the
document—such as who created it, how it has been processed, and other provenance—related attributes.

A critical piece of metadata in data discovery is a document’s provenance. Provenance is essential for
verifying the origin of a document and the chain of agents who created or modified it. In a world flooded
with data—much of it of questionable quality—provenance becomes increasingly valuable, often serving
as the primary means of distinguishing reliable information from noise. We emphasize provenance
because, in manual discovery processes, it is typically maintained informally by the people involved, who
can explain how a document was produced if asked. As discovery processes become more automated,
however, preserving provenance requires deliberate effort to capture the tribal knowledge that resides
in the minds of those humans. A central goal of data discovery is to encode this implicit knowledge into
documents so they can be used more effectively to satisfy information needs—a topic we expand on
later in the paper.

2.2 The Role of Data Discovery in the Data Value Chain

To understand the value of data discovery solutions, it is useful to situate them within the broader
process of deriving value from data. Data has instrumental value—that is, it generates value when used
to perform a specific task. However, data is not accessed directly; it is accessed through documents.
The utility of a document for a given task depends both on the value of the data it represents and the
cost of using that document [6]. We conceptualize the process of deriving value from data as a sequence
of the following steps:
1. Formulate the information need associated with the task.
2. Discover a document that satisfies the information need. This document may already exist within the

organization or may need to be assembled from multiple existing documents.
3. Analyze and process the document to produce a solution to the data task.

Data discovery plays a central role in the second step of the process, and—as we will argue later—it
must also support the first step by helping agents articulate their information needs. The cost of
data discovery reflects the time, effort, and resources required to identify documents that satisfy an
information need. Because this cost is nonzero, it reduces the overall utility of the data. Therefore, the
purpose of data discovery solutions is to minimize these costs, thereby increasing the utility that can be
derived from data.

Most data management technologies function as instruments for reducing costs, and data discovery
fits this role too. But data discovery is more than a cost reduction technique.
Beyond Cost Reduction. In the conceptual model outlined above, the first step is to formulate an
information need arising from a data task. However, selecting which data task to pursue—among many
possibilities—is itself a critical decision that shapes the value derived from data. Data discovery can play
a generative role in this process by helping to surface new questions (as in hypothesis-driven discovery)
that lead to the formulation of new tasks. At its best, data discovery does more than reduce costs: it
can help define entirely new use cases, opening up fresh avenues for value creation.
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3 Landscape of Data Discovery Solutions for Tabular Data

We present an overview of solutions for tabular data discovery. Our goal is not to provide a comprehensive
survey of the literature2, as such a review would exceed the scope of this paper. Instead, we focus on
highlighting key ideas proposed in this area and clarifying how they relate to one another. This technical
foundation will serve as the scaffolding for our central argument in the next section: that data discovery
is a socio-technical problem.

The literature on data discovery can be categorized based on the emphasis and objectives of each
contribution. Some work focuses on identification interfaces, while others emphasize retrieval mechanisms.
A substantial portion of the research centers on foundational building blocks—techniques designed
to support navigation through large repositories of tables. In Section 3.1, we introduce a reference
architecture that we have recently used to illustrate how the challenges of tabular data discovery are
interconnected. We then provide an overview of our group’s work in this area and relate it to other
relevant efforts to contextualize our main contributions (Section 3.2).

3.1 Applying Separation of Concerns to Data Discovery

A reference architecture embodies a separation of concerns strategy, which breaks down complex
engineering problems into more narrowly defined, and thus more manageable, subproblems. Such
architectures describe a set of components and their interactions, reflecting our current understanding
of the problem space. In prior technical work, we have presented detailed reference architectures [16].
Here, we focus on highlighting the separation of concerns among three key components to help structure
this brief overview.

First, an identification module that processes users’ questions (Section 3.1.1). Second, a retrieval
engine that accesses relevant documents (Section 3.1.2). Third, a discovery engine that orchestrates a
strategy involving:
1. applying identification techniques to derive search criteria;
2. combining these criteria into a plan that leverages available indices; and
3. answering the question—often with user involvement.

We conclude the section with a set of examples that illustrate how these three components work in
practice (Section 3.1.3).

3.1.1 Identification Interfaces

Data discovery solutions must offer a means for agents to express their information needs. For tabular
data, identification interfaces include:
Keyword Search. Soon after keyword search became the standard interface for expressing information
needs on the web, it was adapted to relational database management systems through early prototypes
that had significant academic impact in the years that followed.
Query-by-Example (QBE). QBE interfaces were originally proposed as an alternative to SQL for
querying relational databases [28]. The same idea—where agents provide examples of the desired
output—has since been adapted for use in data discovery systems.
Task-Oriented. Instead of explicitly articulating the information need induced by a task, agents
provide a direct specification of the task itself. When an evaluation function for the task is available, it
can be supplied to the system, which then assumes responsibility for discovering data that satisfies the

2See, for example, [23] for surveys that summarize techniques used in discovery systems
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task requirements. This approach was formalized for tabular data in Metam [13], with an earlier version
for supervised machine learning tasks introduced in ARDA [4] and later applied in Kibana [20].
Personalization. When agent demand is high, systems can capture signals about what agents request
and how satisfied they are with the results. These signals can then be used to build personalized models
that better align with individual information needs. In web search, Google pioneered this approach,
which has since become standard practice. In the context of tabular data discovery, certain data catalogs
that capture behavior—the “B” in the ABCs of metadata [18]—lay the groundwork for more sophisticated
personalization strategies.

3.1.2 Retrieval Strategies: Indices

It is useful to conceptualize the solution to the identification problem as producing a concrete search
criterion. A retrieval strategy then takes this search criterion—such as a keyword, question, range, or
spatial polygon—and uses an index to return matching documents. We define an index broadly as any
data structure that facilitates the efficient location of documents that match a given search criterion.
Table Representation. Indices used in data discovery represent tables in ways that facilitate matching
them against search criteria—and in doing so, they induce specific representations of the tables themselves.
Several types of indices are commonly used. Full-text search indices represent each column of a table
as a sparse vector within a vector space model. Vector indices use embedding models to encode entire
tables or their components as dense vectors [1, 9, 24]. The design space for such vector representations
is large and rapidly evolving, particularly with the emergence of retrieval-augmented generation (RAG)
systems for tabular data, as we discuss later. Another approach is to represent data using graphs, which
is common in knowledge bases that encode relationships between terms in the data.3

Data catalogs, or “databases of metadata,” are widely used in industry. When discovery questions
can be answered using metadata alone, these systems are effective in identifying relevant tables. Many
data catalogs also incorporate behavioral signals derived from user interactions—corresponding to the
“B” in the ABCs of metadata [18]—which further enhance their ability to support discovery.

The indices described above are compatible and often complementary. Many data discovery systems
combine multiple indexing strategies to expand their ability to answer diverse queries. For example,
modern data catalogs increasingly incorporate vector-based and graph-based techniques alongside
traditional metadata indexing.
Building Blocks. When discovery questions require combining multiple documents, simple retrieval of
individual tables is insufficient. To support more complex queries, a range of techniques—referred to here
as building blocks—can be integrated with the indexing methods described above. Notable examples
include indices that facilitate table joins, unions, and augmentations (conceptually, a combination of
joining and unioning). Additionally, other building blocks enrich the metadata available to discovery
systems by annotating columns and tables or by generating descriptive summaries.4

3.1.3 Examples

We present a representative, though not exhaustive, set of systems to illustrate the identification, retrieval,
and discovery engine components discussed above.
Discover [19]. Discover accepts keywords as input—serving as its identification strategy—and returns
a combination of tables from a given relational schema that contain those keywords (retrieval). The

3This is a vast design space, and a comprehensive treatment of knowledge bases for data discovery is beyond the scope
of this paper.

4This task is referred in the literature as semantic annotation.
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discovery engine constructs a compact answer by identifying a Steiner tree of join operations connecting
the relevant tables.
Infogather [26]. Infogather takes an input table and returns an augmented version of it—adding rows
or columns sourced from a collection of other tables. Its primary technical contribution is a retrieval
index specifically designed to support such augmentation operations. The discovery engine implements
algorithms to search this index and produce the final result.
Goods [17]. Goods takes keywords as input and returns relevant tables based on those keywords
(identification). Its retrieval index encodes both the content of tables and rich metadata, including
references from code (e.g., ETL and transformation pipelines) and user annotations. The discovery
engine uses traditional information retrieval techniques to rank the results.
Aurum [7]. Aurum accepts programs written in a domain-specific language (DSL) that allows users to
describe their information needs (identification). It uses a graph-based index to determine which subset
of documents satisfies the DSL query. The discovery engine orchestrates the execution and combination
of results as specified by the program.
LlamaIndex [22]. When equipped with the table reader plugin, LlamaIndex creates a vector repre-
sentation for each row in the input tables (retrieval) and uses a vectorized form of a natural language
question (identification) to find relevant tables. The discovery engine matches these vectors against the
table representations and uses a large language model (LLM) to further refine the results.

3.2 My Group’s Work

The diagram in Figure 2 presents our group’s technical contributions to the area of data discovery and
serves as a reference throughout this section to summarize key lessons learned. Before introducing the
diagram, I offer a brief summary of the vision that has guided my work in this area from the outset.

Aurum
[ICDE’18]

Ver
[ICDE’23]

Metam
[ICDE’23]

Solo
[SIGMOD’24]

Nexus
[SIGMOD’24]

Termite
[SIGMOD’19]

ARDA
[SIGMOD’20]

Saibot
[VLDB’23]

Leva
[SIGMOD’22]

Pneuma
[SIGMOD’25]

Seeping
[ICDE’18]

Xtructure
[ICDE’18]

Lazo
[ICDE’19]

Figure 2: Portfolio of data discovery work

Vision. There are countless compelling problems in data
discovery. Working on any of them presents opportunities
to contribute solutions that others can build upon, grad-
ually advancing toward more complete systems. However,
my philosophy has been that this piecemeal approach risks
getting stuck in a kind of local optima—focusing on techni-
cally interesting subproblems that, while valuable, may not
significantly advance the broader goal: helping people find
the data they need.

Over the past few years, I have prioritized an end-to-end
approach to data discovery. This strategy comes with both
drawbacks and advantages. One drawback is that building
full prototypes takes considerable effort. Often, the resulting
systems are not immediately deployable or impactful outside
the lab—bridging that gap requires even more work. The
longer development cycles also mean feedback loops can be slower.

The benefit, however, is substantial: pursuing end-to-end solutions reveals where the real bottlenecks
lie. I use the term bottleneck informally to refer to two things i) technically interesting problems for
which we lack good solutions, and ii) engineering challenges that differ in kind from those tackled by
existing systems. Through this approach, I believe we have developed a strong sense of both.
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3.2.1 Overview of the Group’s Data Discovery Work

Our group’s work is summarized in the diagram shown in Figure 2. Each node represents a technical
paper, and edges indicate that one work builds upon another. While no summary can fully capture the
richness and detail of these contributions, the diagram helps surface the main themes. We highlight
those themes next, organized according to the reference architecture introduced earlier.
A Spectrum of Identification Techniques. When users have a clear idea of what they want, they
can articulate their query using a domain-specific language (DSL) with systems like Aurum [7] or
specify a utility function with Metam [13], the latter having introduced the concept of goal-driven data
discovery. In situations where users cannot precisely define their information needs, alternative methods
are available. For example, Aurum supports keyword search; Termite [9] offers vector search over tables
and columns; and Ver [16] enables users to specify the desired table via a QBE-style interface. Finally,
in systems such as Solo [25] and Pneuma [2], users express their information needs through natural
language questions.
Table Representation. Supporting the identification strategies described above are a variety of table
representation methods developed across our work. Seeping Semantics [10] was one of the first efforts to
use distributed representations (embeddings) to capture the semantics of data in the context of data
discovery. Termite extends this approach by embedding all values in a document, and Leva [27] advances
the line further by exploring more effective techniques for computing embeddings at the table, column,
row, and cell levels. Many of the insights from these efforts are incorporated into Solo and, more recently,
Pneuma [2].

Complementing these vector-based approaches, systems such as Aurum [7], Nexus [14, 15], Xtruc-
ture [21], Metam [13], and Ver [5, 16] rely on sets of profiles to represent the underlying documents,
offering a structured alternative to embedding-based representations.
Indices. Table representations are indexed using a variety of structures, depending on the system.
Graph-based indices are used in Aurum, Ver, Metam, and ARDA [4]; vector databases are employed
by Leva, Solo, and Pneuma; Lazo [11] uses hash-based indices; and Xtructure [21] relies on regular
expression (regex) indices.
Broad Applications. Aurum, Seeping, and Ver support general-purpose discovery queries and offer the
broadest interfaces among our systems, accommodating a wide range of information needs. In contrast,
ARDA [4], Saibot [20], and Metam [13] focus on data augmentation. While ARDA and Saibot are
tailored to supervised machine learning tasks, Metam generalizes this approach to any task for which a
user can define a utility function.

Beginning with Leva, and continuing with Solo and Pneuma, we introduced RAG-like architectures
that accept natural language questions and return relevant tables (i.e., table search). However, these
systems do not support on-the-fly table assembly. Finally, Nexus targets hypothesis generation, where
the hypothesis space is defined in terms of correlations among variables.

3.2.2 Tenets and Lessons Learned

Reflecting during and after the work described above has led to a number of insights that may be
valuable to others working in this area.
Tenet 1: The North Star Is Satisfying Information Needs Directly. The overarching goal
remains constant: help users find data that advances their work. This principle has guided many
disciplines, though the techniques evolve. As systems improve, user expectations rise—pushing the
target forward. This is a healthy dynamic, as long as we continue to learn how people want to access
and use information, and we engineer systems that serve those real-world needs.
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Tenet 2: Separate Identification from Retrieval. Clearly distinguishing between identification
(understanding what data is needed) and retrieval (locating and delivering documents representing that
data) is essential. This separation, rooted in software engineering principles like separation of concerns,
helps both system design and research progress. Variants of this distinction have long existed in fields
such as library science and information retrieval, albeit under different terminology. Adopting this lens
helps bring conceptual clarity and makes it easier to incorporate insights from adjacent disciplines.
Tenet 3: Engineer for Evolving Signals. Data discovery does not have exact solutions; it resembles
information retrieval more than deterministic SQL processing. As a result, systems must be engineered
to flexibly incorporate new signals—reference datasets, human input, LLM prompts, knowledge graphs,
and more. A guiding principle: avoid discarding documents early. Instead, cast a wide net, rank based
on available signals, and update the ranking as new signals emerge. Always expose the basis for ranking
to the user, and let them decide how to weigh or filter results.
Tenet 4: Favor End-to-End Solutions. As discussed earlier, pursuing end-to-end systems—rather
than isolated point solutions—yields deeper insight into what actually limits progress. While point
solutions are valuable (and abundant in the literature), end-to-end approaches reveal both technical
and practical bottlenecks, and thus offer a clearer path toward usable systems. These efforts are more
demanding, but ultimately more impactful.
Tenet 5: Be Cautious with Benchmarks. When benchmarks accurately reflect real-world problems,
they are invaluable—they support reproducibility, enable progress tracking, and foster community
alignment. But when a benchmark simplifies or misrepresents a problem, it can be misleading. In
such cases, it encourages over-optimization on artificial targets, diverting attention from what actually
matters in practice. Reproducibility is important, but not at the cost of chasing the wrong goals.

4 How do LLMs Change the Game?

Addressing data discovery requires solving both the identification and retrieval problems. Each involves
a range of technical challenges—some of which remain especially difficult and unresolved.
• Multiple Document Formats. Understanding a table often requires access to contextual information—

metadata that describes or qualifies the table’s content—which is frequently not stored in tabular form.
Much of this context resides in heterogeneous formats, including spreadsheets, PDFs, code, and other
unstructured or semi-structured documents. If, as argued in Tenet 2 (Engineer for Evolving Signals),
effective discovery depends on leveraging all available signals, then robust support for manipulating
multiple document formats—or multimodal data—is essential.

• Semantic Ambiguity. Even with robust support for multiple document formats, resolving semantic
ambiguity remains a core challenge. It requires determining which signals to prioritize in order to
disambiguate meaning in specific contexts. Semantic ambiguity is pervasive in data discovery—from
interpreting the unit of a value in a cell, to selecting an appropriate join key, to inferring a user’s intent.
These ambiguities often lack a single correct resolution, making adaptive, context-aware reasoning
essential.

• Scalability. The value of data discovery increases as the volume of data grows—especially when
manual exploration becomes impractical. At the same time, the imperative to incorporate new signals
(as discussed in Tenet 2) continuously expands the set of documents under consideration. Processing
large volumes of data—often requiring complex computations—poses significant scalability challenges,
both in terms of system performance and engineering effort.
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4.1 The Promise of LLMs

Large Language Models (LLMs) play a central role in many current research efforts. When conceptualized
as vast repositories of documents equipped with natural language interfaces—and as systems capable
of adapting their responses to specific information needs—they offer a compelling solution to the
identification problem in data discovery. This makes LLMs a particularly interesting artifact to consider
in the broader landscape of data discovery systems.

First, they readily provide approaches to tackle the first two problems above:
Querying Multimodal Data. Internally, LLMs represent all input, regardless of its original format,
as vectors. These vector representations can be accessed and manipulated through natural language,
effectively turning language into a Rosetta Stone-like interface for querying multimodal data. This makes
LLMs a promising tool for addressing the challenge of working across heterogeneous document formats.
Addressing Semantic Ambiguity. LLMs encode knowledge from vast collections of documents and
can be leveraged to resolve many forms of semantic ambiguity. While individual instances, such as
interpreting a value’s unit or understanding user intent, are often trivial for humans, the variety and
unpredictability of such cases make it difficult to formalize a comprehensive set of rules. LLMs offer a
compelling alternative: they can empirically address this long tail of ambiguities through contextual
inference, without requiring explicit rule specification.

Second, LLMs can be leveraged both to help users articulate their information needs and to interpret
those needs in ways that guide the system toward meaningful answers.

4.2 Challenges Ahead

Despite the promise, LLMs also introduce challenges: i) how to incorporate external data; ii) scalability.
Incorporating External Data. There are three broad approaches to incorporating external data,
such as the document collections over which discovery queries are run, into LLM-based systems. First,
external data can be incorporated during the training process, embedding the information directly into
the model’s parameters. Second, it can be provided as part of the input context at inference time. Third,
external data can be accessed dynamically using a Retrieval-Augmented Generation (RAG) architecture,
in which relevant documents are retrieved and passed to the model alongside the user’s query.

Incorporating data during the training process, even through fine-tuning, is costly and raises concerns
about data leakage, which may conflict with organizational priorities around privacy, compliance, and
intellectual property. In contrast, in-context learning, RAG architectures, and self-play environments,
where agents interact dynamically with data, offer more flexible and privacy-preserving alternatives.
While these approaches have primarily been developed for unstructured data, our group and others are
now extending them to tabular data with promising results, which we summarize next.

RAG and agentic architectures combine traditional systems for solving the retrieval problem with an
LLM that receives both the question and partial retrieval results to generate an answer. This is where
LLMs offer a distinct advantage: they help address the identification problem by interpreting the user’s
intent and connecting it to relevant data.

Despite promising early results, it remains too soon to determine the right RAG architecture for
data discovery. However, we expect that the growing interest in this space will soon lead to practical
and usable solutions—particularly if the scalability challenge, which we explain next, is addressed.
Scalability Challenge. While data discovery already faced scalability challenges before the advent of
LLMs, those challenges are amplified by the use of LLMs and RAG architectures [25]. The primary
source of this increased burden is the reliance on vector representations, which are both computationally
expensive to generate—requiring resource-intensive model inference—and large in size, often spanning
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hundreds or thousands of dimensions. This makes it difficult not only to index data efficiently, but also
to keep vector representations incrementally updated as the underlying data evolves. Despite these
challenges, the substantial research activity and industry investment in this area suggest that practical
solutions are likely to emerge.

Overall, LLMs represent an exciting and promising direction for data discovery. Given the substantial
research and industry resources dedicated to overcoming their limitations, it is reasonable to expect
significant progress in the coming years. However, the precise architectures and scalability mechanisms
that will ultimately enable robust, real-world data discovery systems remain uncertain, highlighting the
richness and complexity of the research landscape. Even once these technical challenges are addressed,
the question of how fully they will resolve the broader data discovery problem remains open. In the next
section, we offer some perspectives on what may still be missing.

5 Data Discovery is a Socio-Technical Problem

We believe that LLM-augmented data discovery architectures will, in the near future, meaningfully
assist humans in identifying and retrieving documents that satisfy their information needs [8]. Yet, these
systems will not fully resolve the data discovery problem. The stronger claim we make in this section is
that no technical solution alone—regardless of how advanced—can fully solve data discovery.

The reason is subtle. For a technical solution to effectively help a user, two conditions must be met:
the necessary information needs to be stored as documents, and the discovery tool they use must be
able to locate those documents.

Up to now, data discovery research has mainly dealt with the second problem: finding and retrieving
documents that satisfy a user’s information need, often taking for granted that the necessary data is
already in document format. We anticipate that near-future systems, like RAG and agentic systems,
will begin to tackle this assumption. But the main takeaway from this section is that solving the
first condition—getting the data represented as documents—is a tougher nut to crack without fully
recognizing that data discovery is a socio-technical issue.

5.1 Data Discovery as a Socio-Technical Problem

The ultimate success of technical solutions hinges on the extent to which necessary data is captured in
accessible documents. Often, much of the vital context needed to interpret, transform, and leverage these
documents resides solely with data employees. Although these employees occasionally document datasets
and processes, thereby generating valuable resources for technical systems, much of this knowledge
remains undocumented. This is frequently due to the high cost of documentation, a lack of incentives
(as it’s often not considered part of their core responsibilities), or simply because the information is too
recent to have been recorded.

To achieve data discovery in such scenarios, it’s crucial to fully acknowledge the social component.
This involves extracting the necessary data from the minds of data employees so that it can be converted
into documents and then utilized by technical solutions. However, a number of reasons make this
challenging:
• While we’ve characterized the identification process as something a single user undertakes, it’s often

the case that the "user" actually represents a team of individuals who must collectively decide what
information is most important.

• Although human cognition is crucial to the identification process, our understanding of how these
cognitive functions operate is currently insufficient to influence them beneficially.
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Simply put, we need to make an effort to pinpoint what information users (or teams) actually need,
and a separate effort to get the necessary documents from data employees who often store that data in
their minds. Data discovery can’t be solved without successfully connecting this supply of information
with the demand. This realization was central to an article we wrote a few years back, where we
introduced data markets as a solution for data discovery within organizations [12]. Since then, we’ve
been building on these concepts through our research agenda, Data Ecology.

5.2 Data Ecology

Data ecology examines how documents are created and shared within data ecosystems, which are made
up of different agents working to complete data-related tasks. This field proposes that by identifying all
existing dataflows (the transfers of documents between agents), we can determine several things: which
positive dataflows are already present and should be maintained; which beneficial dataflows are missing
and should be encouraged; which negative dataflows exist and should be stopped; and which harmful
dataflows don’t yet exist and should be prevented from ever forming.

To achieve this control over dataflows, data ecology introduces tools for developing and evaluating
interventions. These interventions are changes to the ecosystem designed to produce the desired dataflow
effects. They can be technical (like the data escrow system we developed to manage data release and
prevent leakage), but also economic (suchives as incentives), legal, and social (like establishing norms).

Understanding data discovery as a socio-technical issue and an organization as a data ecosystem to
be analyzed via the dataflows that occur changes the game. A designer’s objective then is to implement
interventions that establish productive dataflows. This means encouraging data employees to document
their tribal knowledge and helping data users articulate their information needs. Only when these pieces
are in place can future data discovery systems effectively bridge the gap between data supply and
demand.

The core idea is to foster an internal data ecosystem where data experts contribute their knowledge
as documents to assist those who need to consume that data. In our previous paper, we explored
mechanisms to encourage these dataflows within organizations, including gamification strategies like
bonuses and monetization. We believe such internal data markets hold significant promise for addressing
information needs at various levels, as previously illustrated in Figure 1. However, the design possibilities
for these ecosystems are vast, and this remains an open problem. Our research efforts in recent years
have primarily focused on developing the foundational concepts of Data Ecology.

6 Conclusions

Solving data discovery will significantly enhance data utility by lowering the costs associated with
identifying and retrieving relevant documents, thereby accelerating progress in both science and industry.
Historically, data discovery has been hampered by persistent challenges like semantic ambiguity and
scalability, which are inherently difficult to overcome. However, with the rapid commoditization of
large language models (LLMs) and our growing understanding of how to effectively integrate them
with architectures like RAG, we now have access to a technology that could dramatically speed up our
progress in data discovery. We are optimistic that the technical hurdles of data discovery will be largely
resolved in the near future.

At the same time, we recognize that data discovery is fundamentally a socio-technical problem.
Even if we had a perfect technical solution, we’d still face hurdles: helping users clearly define their
information needs and convincing data providers to document the valuable knowledge they hold in their
heads. To bridge this gap between data supply and demand, our Data Ecology research agenda has been
exploring various data ecosystems, including internal data markets. While the technical challenges are
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still significant, we believe that highlighting the socio-technical dimension of this problem can greatly
enhance the effectiveness of future solutions.
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