Towards LLM-Augmented Database Systems OR
The Relational Model is dead! Long live the Relational Model!

Carsten Binnig
Technical University of Darmstadt & DFKI

Abstract

Relational databases have powered critical systems for decades. Yet, despite their promises of
a simple data model and an easy-to-use query language, relational systems impose high overheads
of using them, which are inherently rooted in the relational model. In this paper, we coin these
overheads Relational Taxes as users not only face high query tazes due to SQL’s complexity and
schema dependence, but also data taxes from the need to manually extract data into tables before
being able to query them. In this paper, we present the efforts that we have spent over the last
years to build what we call LLM-augmented databases—a new class of systems that integrates large
language models with relational principles to cut the relational taxes to enable intuitive and efficient
querying over diverse data modalities. Rather than replacing the relational model, we extend it to
cut the relational taxes as long-standing overheads while preserving its foundational strengths in
terms of performance.

1 Introduction

Relational Databases: A Success Story. Relational databases are the foundation of nearly
every modern application. As Bruce Lindsay once famously stated, "Relational databases are the
foundation of Western civilization”. This sentiment reflects the reality that critical infrastructure
across banking, government, healthcare, supply chains, e-commerce, and scientific research depends on
relational database systems. Moreover, the relational model has empowered the development of highly
sophisticated techniques for data management, including powerful query optimization strategies, efficient
query execution engines, and data access methods. These advances have enabled relational systems
to scale to massive workloads, and they even continue to thrive in the era of cloud computing. As a
community, we have made remarkable progress in advancing relational systems to handle increasing
volumes of data and complex analytical workloads with high performance and reliability.

The Promise of the Relational Model. The invention of the relational model, along with the
emergence of SQL as a standard query language, offered significant advantages over previous paradigms
such as the hierarchical and network models. Two core promises of the relational model stood out, which
promised to simplify data management in contrast to prior approaches:

1. An Easy-to-Use Data Model. The relational model organizes data into simple, tabular structures
known as relations (or tables). An important aspect of the relational model was that it decoupled
logical representation from physical storage and thus enabled users to interact with data without
needing to understand the underlying implementation. In contrast to earlier models that required
explicit navigation through linked records, the relational model thus offers a declarative way of
expressing information needs.

2. Simple and Intuitive Querying. Along with the relational model came SQL. Originally, SQL was
meant as a Structured English Query Language to enable querying of data by non-technical users.

19

Instead of specifying how to retrieve data, users state what they want in a language that is close
to natural language but with clear semantics. This was a profound shift away from imperative
query interfaces required by hierarchical or network models.

Did the Relational Model fulfill its Promise? Despite its original promises, however, in this paper
we argue that the relational model has not delivered on its original promises. Over the past 50 years, the
accumulated experience of using relational databases has revealed significant overheads inherent in the
relational model itself. These inefficiencies are deeply rooted in the design principles of the relational
paradigm. We refer to these inefficiencies as Relational Tazes. In this paper, we identify two primary
forms of relational taxes:

1. Query Tazxes of the Relational Model. Despite its declarative nature, SQL has become a complex
and verbose language. Writing non-trivial SQL queries often requires tens or even hundreds of
lines of code, making queries hard to write, read, and maintain. Furthermore, users must have
in-depth knowledge of the database schema, including table names, attribute names, and how
literals are represented in the database, which are often driven by technical aspects and not
meant to be understandable by users. For example, to query medical data, users often need
to understand technical codes like ICD-10 rather than using intuitive terms like "fever". This
disconnect significantly raises the barrier to entry and limits usability.

2. Data Taxes of the Relational Model. Real-world relational databases often feature complex
database schemas with hundreds of interrelated tables. As such, identifying the correct tables
and relationships can be a daunting task for users. Moreover, not all data originates in tabular
form. Instead images, text documents, sensor logs, and other modalities are increasingly common
as native data formats. Yet, relational systems require such non-tabular data to be manually
transformed and integrated into tables before it can be queried, resulting in substantial manual
overhead in data preparation and ingestion.

Cutting the Relational Taxes. As such, a natural question that arises is how to cut these taxes. In
fact, one might ask if relational databases are still required in the age of Al and, in particular, LLMs.
Recent advancements in LLMs, such as GPT-4, demonstrate promising capabilities in understanding
and answering natural language queries over diverse modalities, including text and images, without the
need to first extract structured information. In fact, the recent generation of LLMs can even support
complex reasoning tasks, which allows these models to answer multi-hop queries that resemble relational
joins across multi-modal data sources. However, we argue that a purely LLM-driven approach for query
answering—where the LLM acts as a black-box engine for query answering—falls short due to several
inherent drawbacks: hallucinations stemming from the generative nature of LLMs, a lack of transparency
in reasoning processes, and most importantly inefficiencies in processing even medium-sized datasets.

Our Vision: LLM-Augmented Databases. To address these limitations, we present our vision
of LLM-augmented databases—a new class of database systems that integrates large language models
(LLMs) tightly with the relational database stack to cut the relational taxes. First, instead of using SQL
as the query interface, LLM-augmented databases provide more intuitive query interfaces, including
natural language querying and SQL-inspired abstractions that alleviate the need for users to know and
understand complex schemas or precise data encodings. At the core, these query interfaces empower users
to query data using high-level semantics concepts, while the underlying system handles the translation
of the user query, as well as data discovery and binding of data to the query. Moreover, LLM-augmented
databases remove the burden of manual data extraction by allowing direct querying of other data sources,
such as images and text, that can be used as complex data types.

20

l_i’lo_t numbe; of 2. Construct (:
Multi-Modal Input User Qi Multi-Modal Output paintings depicting ' ((kR
uiTodalined i uReda Bupe Madonna and Child ———rt ~ '

Artwork for each Century o
name year ...img path LLM w reasoning
Madonna 1889 i1.png i 1. Retrieve (e.g. GPT-40)
S i i Plot number of - ' ‘
paintings depicting 5 =
e Madonna and Child for 3° Artwork) =
. each Cent z TR
1 | | Irisis 1480 i2.png
o1 e e 16T T L oL
Century Vector DB
(a) Example Scenario (b) LLM-based Question Answering

Figure 1: Multi-modal Question Answering: (a) Example scenario on an artwork dataset composed of a
table (artwork metadata), images of the artwork, and a text collection (artwork descriptions). (b) Using
LLMs for multi-modal question answering using Reasoning and Retrieval-Augmented Generation.

Contributions and Outline. In this paper, we present our comprehensive vision for LLM-augmented
databases, grounded in our group’s recent work and research contributions. In Section 2, we outline the
architectural principles of how we envision LLM-augmented databases, showing how they can be built
on the foundational strengths of relational systems while avoiding the relational taxes. In this section,
we also introduce key abstractions and design patterns that enable seamless multi-modal querying,
many of which have already influenced emerging systems in this space. Sections 3—5 then present three
concrete case studies demonstrating LLM-augmented databases in action, which span different layers of
the database stack from query compilation and optimization, over query execution, to data storage in
LLM-augmented databases. Finally, in Section 6, we discuss the future challenges and opportunities of
LLM-augmented databases before we conclude in Section 6.

2 Our Vision: LLM-augmented Database Systems

As discussed before, an LLM-augmented database system enhances classical relational database systems
with LLMs to enable the combination of the following two new functionalities: (1) multi-modal input
data to cut data taxes and (2) new query interfaces (e.g., natural language or SQL-inspired abstractions)
that alleviate the need for users to know and understand complex schemas or precise data encodings.
In the sequel, we more precisely define which data and queries are in the scope of an LLM-augmented
database system as we envision in this paper. To make more clear what type of scenarios we envision to
support in our first version of LLM-augmented databases, we present a scenario that can be supported
by such system. Figure fig:example shows a user querying a multi-modal dataset of a museum that
stores both metadata (available as a table) and pictures of artworks (stored as images) exhibited in the
museum.

2.1 Why LLMs are not enough!

One could now raise the question of why modern LLMs are not enough, as multi-modal question
answering is already supported by recent LLMs such as GPT-40. To understand the downsides of
such question answering approaches, let us look at Figure 1b, which shows how a RAG-based question
answering approach can be used to answer questions over multi-modal datasets. The main idea is that
the user question is forwarded as part of the input to the LLM, together with the relevant data sources
that are retrieved from a vector database based on the user question. Based on this input prompt, the
LLM then reasons over the user’s question and data and generates its output, which is forwarded to
the user as a response. However, this LLM-based approach for query answering comes with significant
downsides:

21

User Query Multi-Modal Query Plan : Query Result

o - Logical Plan Physical Plan
Plot nu::ilbe; of LLM for Query LLM for Tool
ti ct : -
Madonmn & child for Planning o ALl Instantiation
each Century
—

Natural Language I) Count group . (&
- by Centu -
——— ;
BITIECI, GO (=) . Result of Filter
FROM Art WHERE

Name File
'Artwork shows Madonna | s
Madonna & Child'

GROUP By Century
ImageFilter

(Madonna & Child ?)

GnuPlot

E CountByCentury
GroupB

H e e
HashJoin . v
PythonUDF LLM-UDF o LLMfor Query
(Year—Century) (Madonna & Child?) - Execution

Count

UDFProject
(Year—Century)

Sloppy SQL

on Artwork on Artimages on Artwork on Artimages
SELECT COUNT (*) . H
FROM Artwork | 2 Frrrrrsessessssssssssssssssasg e iassnssnssnnsnssnsnna s nnnnnnnnnnad
JOIN ArtImages LLM for Data LLM for Data
WHERE :
LIM-UDF (art_img, S——) Grounding s Augmentation
'shows Madonna & . -
Chi]:i' GROUP By Multi-Modal DB Artimages : ArtTexts
ExtrCent (year) name art.img name art_txt External
Artwork Madonna o, Madonnalorem (7 terna
SQL with pame __yesr .. ipsum... Sources
Madonna 1889 i i
(LLM) UDFs = Irisis g Irisis Lore, (e.g., Data Lakes,
Irisis 1480 ips/ \n Parametric LLM
Knowledge)
Normal Relation Multi-modal Relations

Figure 2: Sketch of an LLM-Augmented DBMS for Multi-modal Question Answering. The idea of an
LLM-augmented DBMS is centered around a multi-modal relational data model where relations can
include complex types such as images and text. Building on this model, the system supports several
query interfaces that abstract away the exact schema, enabling users to query data using natural or
imprecise language. For execution, queries are compiled into multi-modal query plans composed of
classical and multi-modal operators, facilitating efficient query processing and optimization across diverse
data modalities. LLMs are used in several places in LLM-Augmented DBMS, including query planning
and execution, as well as data grounding and augmentation.

1. Limited Query Complerity: While question answering approaches with LLMs are able to handle
more and more complex queries, which also stems from the fact of recent developments such
as reasoning, they are still limited in various dimensions. For example, LLMs are known to be
notoriously “bad in math. As such, queries that involve arithmetic or aggregations (e.g., counting
as in our example) often fail.

2. Limited Scalability of Query Answering: In the LLM-based approach, query answering is mapped
to inference passes through the LLM parameters (which could be trillions) to generate the query
response. This notion of query answering, however, introduces high latencies and costs even for
small data sets, and aggregating over large datasets at the scale of PetaBytes that databases can
handle today easily is far from being tangible with LLMs.

3. Hallucination € Black Box Answers: Query answering using LLMs is purely generative using the
LLM as a black-box; i.e., the output (query result) is generated in a probabilistic manner based on
the input and it is not clear how the LLM came up with the answer. As such, LLMs can come up
with query answers that are not grounded in the input data at all (also known as hallucination).

2.2 A Sketch of an LLM-augmented DBMS

In the following, we sketch our vision of LLM-augmented DBMS as shown in Figure 2. The sketch we
present in this section builds on key concepts of our prior work (e.g., CAESURA, ELEET, OmniscientDB)
that pioneered ideas in this field. Many of these ideas have also been proposed in parallel by other

22

systems such as ThalamusDB, Palimpzest, Lotus, and Galois that rely on similar notions. We refer to
the parallel ideas and put them in context.

Data Model & Query Interfaces. At the core, as a data model an LLM-augmented DBMS uses
multi-modal relations for storing and processing data, while multi-modal data is represented as complex
data types (image, text) for columns of a table. For example, as shown in Figure 2 (bottom), the images
are stored in the art_img column of the Art Images table. Using the concept of relations as a core
data model allows an LLM-augmented DBMS to build and extend on the efficient techniques for query
execution (e.g., hash joins) and query plans for optimization over multi-modal relations, as we discuss
below.

As query interfaces, we envision that LLM-augmented DBMSs support various alternatives. Similar
to the LLM-based approach, we believe that natural language queries are one important option as they
allow users to query data without knowing the exact representation of data in the database. However,
understanding natural language queries and mapping them into an executable format comes with its
own challenges, as natural language queries can be ambiguous or incomplete. As such, we envision that
users can also use alternative query interfaces. One interesting direction that we are currently working
on is a variant of SQL (which we call Sloppy SQL) that allows users to formulate “imprecise” SQL
queries without knowing the exact data representation. For example, Figure 2 (left) shows a Sloppy SQL
statement where tables and attribute names are used in the query that have no direct correspondence
in the schema. Similarly, a natural-language predicate is used for filtering, which does not specify an
attribute at all. For such queries, the task of the LLM-augmented DBMSs is to ground the query into
the actual representation of the database, which is part of the query translation as we discuss next.
Finally, users who know the schema can also use precise SQL extended with LLM UDFs. This direction
is also what current database vendors integrate into their products. While that way, users can precisely
formulate queries, it also demands that the user know the schema in detail (i.e., it comes with high
query taxes).

Query Execution using Multi-Modal Plans. For execution, an LLM-augmented DBMS translates
user queries into what we call a multi-modal query plan — an idea we have pioneered in our work around
CAESURA. A multi-modal query plan resembles a query processing pipeline — containing processing
steps (i.e., operators) that can deal with multi-modal relations as input (i.e., tables that can but must
not contain image and text columns).

As shown in Figure 2 (center), such a multi-modal query plan contains classical operators (light
green) that operate on columns without images and text, as well as multi-modal operators (dark green),
which are applied to image and text columns. For instance, the multi-modal query plan in the example
contains a classical operator (UDFProject) that scans over the Artwork table and uses a classical
UDF to compute the century column from the year attribute according to the user query. Moreover,
the plan also contains a multi-modal operator for selecting individual images from an image collection
(see art_img column of ArtImages table). In particular, in the example, the multi-modal operator
(ImageFilter) is used to filter out pictures that depict Madonna & Child.

An important property of a multi-modal plan is that the output of every operator is yet another
multi-modal relation that can be processed by upstream operators. In our case, we apply joins and
aggregates known from classical databases to compute the aggregate result (i.e., count by century).
Moreover, the final result is then rendered again by a multi-modal operator that creates a visualization
from the query result, which is, in fact, again a multi-modal relation with one row that contains the
visualization of the aggregate result as a bar chart.

23

2.3 Benefits of using Multi-Modal Plans

Using the notion of query plans to answer multi-modal queries comes with many benefits that alleviate
the limitations of a pure LLM-based approach discussed before.

1. Ezxecution outside LLM (if possible): First, different from a pure LLM-based approach, we do not
map the full query execution into an inference pass of an LLM, but we use efficient and scalable
algorithms such as hash-joins and hash-aggregates for query answering when possible and only
rely on LLMs when needed (e.g., to realize an image filter using an LLM-UDF).

2. Plan Optimizations: Second, an even more important benefit is that using plans for query
execution allows us to optimize such plans by extending well-known approaches known from
relational databases to multi-modal relations. For example, one important technique in classical
databases is join ordering to decide on which order to filter and join data sources, which might
even have a higher impact on multi-modal relations if we can thus reduce the number of calls to
an LLM (which are typically highly expensive).

3. Separating Logical & Physical Operations: An idea we have pioneered in CAESURA before others
used this separation is the use of logical and physical plans for multi-modal query answering,
which is a well-known technique in classical databases to select an algorithm for executing a
logical operator (e.g., using a hash-join to execute a classical join). In multi-modal databases, this
separation also allows us to reason about which algorithm to use. For example, an image or a text
filter can be realized using an expensive LLM-UDF but also more lightweight (smaller) models
(e.g., BLIB or our own ELEET model) that are faster but potentially less accurate.

4. Plans are FExplanations: A major issue of a pure LLM-based approach for query answering, as
shown in Figure 1b, is that it is a black-box, which is, in particular, problematic if the result is a
hallucination; i.e., it is not clear how the LLM generated its output. When using plans for query
answering as shown in Figure 2 (center) instead, this is different as the user can inspect the plan
and reason about whether the steps of the plan operations in fact answer the user query. Moreover,
users can inspect intermediate results and thus find out which operation (e.g., an image filter)
produced a potentially wrong answer.

2.4 Where LLMs can be used in an LLM-augmented DBMS?

In the following, we outline how LLMs can enable the core functionalities of an LLM-augmented DBMS
in various components of the system.

LLM for Query Planning. To answer queries over multi-modal relations, the system first translates
user input into an executable multi-modal query plan. For natural language queries, this involves
decomposing the query into a sequence of high-level reasoning steps that map to a fixed set of supported
operators (i.e., tools). Our CAESURA system pioneered a robust approach that incrementally constructs
and executes such plans, tolerating ambiguity and partial understanding. For Sloppy SQL, where users
issue vague or underspecified SQL-like queries, the LLM is used to identify and resolve references to
tables and attributes based on semantic similarity, context, and schema hints.

LLM for Data Grounding. A critical step in query translation is data grounding, where the LLM
determines which data sources and columns are relevant to a given query. This is especially important
for complex data types such as images and text, which may not have clear structural indicators. We
provide the LLM with representative samples from the data to support this decision-making process
during query planning. This capability enables the system to intelligently select appropriate tables
and columns even in the absence of explicit schema references, an idea explored in our earlier work on

CAESURA.

24

LLM for Tool Instantiation. Once a plan is generated, the individual operators within a multi-modal
query plan need to be instantiated with specific parameters, which is done in the transition from logical
to physical plan. This includes generating prompts for LLM UDFs (e.g., determining whether an image
depicts "Madonna and Child"), constructing Python code for classical UDFs (e.g., converting a year
to a century), or configuring visualization tools (e.g., specifying Gnuplot parameters for a bar chart).
LLMs are used in this step to synthesize these components based on the query intent and available
data, enabling dynamic and context-aware operator instantiation. These ideas are a key part of the
CAESURA framework.

LLM for Query Execution. During query execution, LLMs are used to evaluate user-defined
functions on multi-modal content. For instance, an LLM UDF may be used to filter image columns
based on whether they depict a particular scene, extract semantic information from text, or define join
conditions over similar images or between related images and texts. Such operations go beyond traditional
relational processing and require careful optimization of LLM invocation to maintain performance. To
this end, we developed ELEET, a technique for efficient execution using smaller, specialized LLMs
tailored for multi-modal query workloads, as discussed in more detail in Section 4.

LLM for Data Augmentation. Traditional databases operate under a closed-world assumption—they
can only answer questions using stored data. To overcome this limitation, LLMs enable open-world
querying by augmenting existing data with external sources. For example, when a user query involves
information not present in the database (e.g., background details about Pablo Picasso), the LLM can
retrieve and integrate relevant facts from external corpora, such as data lakes, or use the parametric
knowledge of LLMs as a data source as demonstrated in our OmniscientDB system [1].

2.5 The Landscape of LLM-augmented Data Systems

Integrating non-tabular data into relational workflows is a key challenge that different systems approach
[2-5]. In this paper, we present a holistic vision of an LLM-augmented Data Systems that provides a
holistic view of how we think such a system should look in the future, which combines several of our
seminal results which we explain in Sections 3 to 5. First, with CAESURA [6], we have pioneered the
idea of using multi-modal query plans that were created from a natural language query. By contrast,
Palimpzest [3] and DocETL [5] handle unstructured data through similar ideas using also pipelines that
are very close to what we called multi-modal plans in CAESURA, however, they suggest alternative
query interfaces: Palimpzest lets users write declarative queries over document collections, and DocETL
provides a YAML-based pipeline language for complex document-processing tasks. These pipeline
systems complement the SQL-centric approaches above. Moreover, ELEET enables fast and efficient
multi-modal operators (e.g., for implementing filter operations on text documents) using a targeted
small language model to extract structured fields from text, achieving up to 575x speedups over LLM
baselines [7]. In contrast, ThalamusDB similarly allows SQL queries to directly reference visual and
audio content, using a pool of zero-shot classifiers and an approximate query optimizer to minimize label
requests for predicates [2]. LOTUS also targets integration of unstructured content via its semantic
operators over tables of text [1|. Finally, OmniscientDB implicitly uses an LLM to augment relational
tables via simple SQL commands [1|. Again, other similar work has been suggested. The most relevant
work for this is Galois, a system for querying pre-trained LLMs with SQL [3]. This approach exploits
the automatic generation of a logical query plan from a SQL script that serves as a structured chain of
thought, guiding the LLM in processing complex queries effectively.

25

Query: Plot the number of Multi-Phase Prompting Prompt: @__ .
paintings depicting Madonna ‘ You are CAESURA .. ‘ =
and Child for each century! Discovery ‘Planmng Phase: Loglcal ‘Mapplng Phase: Physical Observahon New o I(‘S:mg?"",a‘agg
ild depicted?
— Ehase; Plan madonna_depicted has been o

metadata.csv Relevant: Extract the century Python & added. Example values: ['yes',
from the metadata G Torh VisualQA @
i metadata.year no', 'no’l
name, year, ..., img_path e 2.y = VlsuaIQAE! v
Madonna, 1889, ..., i1.png peinfinos mags Emsd i r;‘/laqonnda.and Execute: Select only paintings madonna
lic are Srcecly depicting Madonna and Child R
{|> the paintings depicted

Child Seiection: Observation

inti yes
Select only paintings l @ OpenAl (
depicting Madonna and 7 ‘Jm no
one-| by one

p.madonna_depicted = "yes"

T~ Selection
Interleaved execution

Figure 3: Query Planning in CAESURA. CAESURA transforms the query into a multi-modal query-plan
using a series of prompts using an LLM. In the Discovery Phase, the LLM is prompted to identify data
items relevant for the query, such as relevant columns and datasets. In the Planning Phase, the LLM is
prompted to construct a sequence of steps to satisfy the user request (Logical Plan). The final Mapping
Phase is interleaved with Ezecution: a physical operator is chosen for each of the logical steps and
executed incrementally. That allows the LLM to take the output of previous executions into account
when choosing the physical operator and operator arguments (e.g., filter conditions as depicted in the
figure) to enhance plan correctness.

3 CAESURA - LLMs for Query Planning

In essence, as discussed before, in CAESURA we orient ourselves on the phases of traditional query
planning and first generate a logical plan, which is afterwards translated to a physical plan. In the
following, we summarize the query planning process and the use of LLMs for the planning as shown in .

3.1 Phases of Query Planning

Splitting the process of query planning into several phases allows us to tailor the prompts for query
planning to the specific decisions of each phase. See Figure 3 for an overview of the three phases, which
we elaborate in more detail in the following. In a nutshell, we first identify the relevant data sources,
then in the planning phase we let the LLM generate the logical plan, and finally, in the mapping phase
we let the LLM select the operators to obtain a physical plan.

Discovery Phase. In the first phase, we decide which data sources (e.g., in a data lake) provide
relevant information for the current query. We only briefly describe this phase, because the focus of
this paper is on query planning. In essence, CAESURA first narrows down the relevant tables, image
collections, etc., using dense retrieval (similar to Symphony |9]). Afterwards, for tabular data sources,
we prompt the LLM to decide which columns of the retrieved data are relevant to the user query.

Planning Phase. In the planning phase, which is at the core of CAESURA, the LLM is prompted to
come up with a logical query plan that contains a natural language description of all steps necessary
to satisfy the user’s request. The prompt consists of several parts: (1) a description of the data, (2)
the capabilities of CAESURA, (3) an output format description, and (4) finally, the user query and an
instruction telling the model to come up with a plan. Notice how the multi-modal data is presented
to the LLM: it is modeled as a special two-columned table where one column has the special datatype
IMAGE. The capabilities of CAESURA describe the logical actions that CAESURA can take with the
help of the available operators, as can be seen in the example. Using this prompt, the LLM generates a
stepwise (textual) plan that describes the logical plan in the output format specified in the input prompt.
The generated stepwise plan is then parsed by CAESURA into a logical plan.

Mapping (Tool Instantiation) and Interleaved Execution. In the last phase, each previously
determined logical step is mapped to a physical operator (and its input arguments) using a prompt

26

similar to the one in Figure 3 (right). The prompt for this phase contains a short summary of the
operators and what they can be used for. Moreover, we do not decide on all the physical operators for
all logical steps at once. Instead, we incrementally decide for each step and then execute it directly.

3.2 Experimental Results: Planning Quality

In our experiments reported in [(], we were primarily interested in whether CAESURA is able to
construct correct query plans. Below, we report the most interesting findings from these experiments.

Datasets and Workloads. Since there does not yet exist a benchmark for the scenarios we envision
for CAESURA, we constructed two multi-modal datasets. (1) The artwork dataset (with tables and
images) resembles the example from Figures 1. The dataset contains a table about painting metadata as
well as an image collection containing images of the artworks. We use Wikidata to construct both the
metadata table and the image corpus: for the metadata table, we extract title, inception, movement,
etc., for all Wikidata entities that are instances of ’painting’. (2) The second dataset is the rotowire
dataset (with tables and text) [10], which consists of textual game reports of basketball games, containing
important statistics (e.g., the number of scored points) of players and teams that participated in each
game.

Our Results. For this experiment,
we are interested in the query planning

abilities of LLMs. Hence, we skip the
data discovery step and assume perfect Artwork overall 79.2% 70.8% 100% 100%
Rotowire overall 50.0% 41.7% 87.5% 75.0%
Single modality 79.2% 75.0% 100% @ 92.7%

e e e S Multiple modalities 50.0% 37.5% 87.5% 83.3%
quality ol the planning — how olten All 646% 562% 93.8% 87.5%

CAESURA created a correct plan — are
shown in Table 1. The queries used in - Typle 1: CAESURA Planning Quality. The table shows the
this experiment are clustered along SeV= fraction of correctly translated plans for the different datasets,
eral aspects. Importantly, these queries 1,,dalities, and output formats. We show the percentage of

were not used for tuning the prompts correctly generated logical plans, as well as physical plans.
during the development. We see that

CAESURA using GPT-4 is better than ChatGPT-3.5 and is even able to correctly translate 87.5% of
queries despite never being fine-tuned on the queries. The approach works especially well on the artwork
dataset, where CAESURA is able to translate all queries to correct query plans. However, we also see
that there is still room for improvement. In particular, on the Rotowire dataset, which consists of more
tables and contains texts instead of images, fewer queries are translated correctly.

Models ChatGPT-3.5 GPT-4
Plan type logical physical logical physical

retrieval (to not measure retrieval per-
formance). The results that show the

4 ELEET - LLMs for Query Execution

In this section, we introduce ELEET, a query execution engine designed to support so-called multi-modal
operators (MMOps), which operate over structured tables and text collections. While general-purpose
LLMs such as GPT-4 offer the potential to perform such operations, their high computational cost
makes them impractical for query execution. Instead, ELEET centers around a compact and efficient
language model — the ELEET model — specifically trained to execute operations like joins and filters
over multi-modal input. ELEET achieves this by combining pointer-based extraction with targeted
pre-training and fine-tuning strategies, enabling fast and accurate execution of relational-style queries
directly over text.

27

@ Model Preparation @ Query Processing @ Input @ Joint Latent Space @ Output

Multi- Table Input
‘ ELEET-Model (pre-trained) ‘ . modal (left join operand): [embed in joint latent space match embeddings
: MMJoin -
a auery plan with ELEET| Bob | 1.80m | ... Table Cell Embeddings:
uery) .
. to_reports diagnoses i '_ ! Encoder Latent Attr. Embeddings: Decod. v
= iagnosis : 5
Labeled Alice has been diagnosed with a name| path (Iatent.table). @ diagnosis v
Extractions: | sore throat. We prescribe Aspirin. path |diagnosis . —
H Bob | Bob.txt Bob xt 5 Text Input Text Token Embeddings: decision
& Fine-tuning p— i S (right join operand): o a per token
name height Bob has been @ sore name diagnosis
ELEET-Model (for medical domain) ‘ : Bob.txt]| | | diagnoses with a @ throat Result Table > Bob |sore throat
‘ 1 Bob 11.80m| ... sore throat...

Figure 5: Overview of ELEET. In an offline phase, the ELEET-model can be fine-tuned for unseen
domains (). Fine-tuning the ELEET model for an unseen domain is a one-time effort and requires a
small sample of a few labeled texts. (2) For query execution, ELEET uses multi-modal query plans
that contain traditional (white) and multi-modal database operators (purple). To compute the result of
a multi-modal operation such as a join over texts, the ELEET-model is used (see (@) to (c)): During
the execution of a multi-modal operation, the ELEET model first computes embeddings of the query
attributes, texts, and table input (a), using its encoder (b). Afterwards, the ELEET-model matches text
token embeddings to query attribute embeddings to extract the output table from the text using its
extractive decoder (c), which decides which tokens qualify for a given query attribute.

4.1 The ELEET Model

A Simple Example. Figure 4 illustrates the us-

SELECT patients.age, examinations.diagnosis

age of ELEET in a practical scenario. Consider a FROM patients JOIN examinations
LX)
medical database that stores structured patient at- patients X |examinations =| result
. . . . name | age gender ath di i
tributes alongside textual diagnostic reports. If all Al oe 8 a Alice was 290 (Clgnosk
ice | 42 f alice.txt diagnosed 42 fever
data were tabular, querying correlations (e.g., be- Bob | 23 | m | bobixt with fev 23| cough

tween age and diagnosis) would be straightforward Aot

using standard SQL. However, when crucial infor-
mation like diagnoses is embedded in unstructured
text, extracting it for analysis becomes a labor-
intensive task involving custom NLP pipelines.
ELEET eliminates this barrier: it enables query-
ing over the text by treating it as a latent table.
Instead of manually coding extract-transform-load (ETL) routines, users can issue queries that include
text attributes as if they were columns in a regular table, and ELEET retrieves the necessary information
from the text during query execution.

Figure 4: ELEET Example. A query that executes
a multi-modal join between a patient table and ex-
amination reports. ELEET analyzes the texts and
extracts values for the diagnosis from each examina-
tion report.

The Model. At the heart of ELEET is a compact model with only 140M parameters, trained specifically
for extractive query operations over multi-modal data. Given a structured tuple, a textual document,
and a latent attribute (e.g., diagnosis), the model identifies relevant spans in the text that match the
semantics of the operator. Unlike autoregressive LLMs, ELEET avoids decoding token-by-token; instead,
it uses pointer-based supervision to select answer spans in a single forward pass.

During pre-training, ELEET learns to extract latent attributes from weakly structured documents.
This training procedure enables generalization to diverse linguistic styles and schemas. At inference time,
ELEET can perform operations such as filtering, joining, and projection by extracting values conditioned
on structured context. Importantly, the model is adaptable: only a handful of labeled examples are
needed to fine-tune ELEET for high-accuracy performance on previously unseen domains.

A Sketch of a Multi-Modal Join Figure 2 depicts a multi-modal join using the ELEET-Model.
The join in Figure 2 needs to extract the diagnosis for each patient tuple coming from the first join

28

rotowire trex aviation corona

PN RPNV I\

Density
of
Mean F1

I 10 . ° oo . :n’O‘»“ ;:" o omeise e’ V ® ELEET

5 » . LEs iy

o 100 % o o 00 o o e L Y R R iad } ® Text-To-Table)

£ 20 40 o000 3.8, ® / LLaMA-2 7B (ic)

g 1000 O O i ® LLaMA-2 7B (ft)

=] - - -

& 10000 ﬁ ® gpt-3.5-turbo-0125
/ gpt-4-0613

0 025 05 075 1 0 025 05 075 1 0 025 05 075 1 0 025 05 075 1 Deg?ity

Mean F1 Mean F1 Mean F1 Mean F1 Runtime

Figure 6: Performance and Accuracy comparison of ELEET with GPT-4 (175B), LLaMA-2 (7B), and T5
(11B) on multi-modal query execution tasks across different datasets. The plot shows F1 score (y-axis)
versus query execution time (x-axis), where lower values of time and higher values of F1 score indicate
better performance.

of the patients and to_ reports table (i.e., each patient can have multiple reports). For executing this
query, we feed the attributes into the ELEET-model to extract from text (i.e., diagnosis; called latent
attribute) together with the patient data from the first join and the text documents to be joined into
the ELEET-model. For example, for joining the patient tuple of Bob with his patient report in Figure
2 (@), ELEET feeds the patient tuple (containing name, height, ...), the latent attribute diagnosis,
and the patient report of Bob into the ELEET-model. For extracting the diagnosis, the encoder of
our ELEET-model maps all inputs into a joint latent space (b). Afterwards, the decoder identifies
spans of texts in the report that qualify as diagnosis, such as the text span sore throat in Figure 2 (¢).
Finally, the result row {name — Bob, diagnosis — sore throat} with the extracted values from the text
is materialized.

In this section, we present the results of our experimental evaluation, which justifies the design of
ELEET. We constructed a challenging benchmark containing 70 multi-modal query plans over four data
sets that we used in the original evaluation in [7]. We show that ELEET is more efficient and accurate
than existing baselines, including fine-tuned LLM for executing multi-modal queries.

4.2 Experimental Results: Query Performance and Accuracy.

To show how ELEET compares to using state-of-the-art LLMs as operators, we conducted a set of
experiments in the original publication [7]. Below, we report the most interesting findings from these
experiments.

Dataset and Benchmark. To validate ELEET’s effectiveness, we conducted an extensive experimental
study on a new benchmark comprising 70 queries across four diverse multi-modal databases: sports
(Rotowire), Wikipedia-derived data (T-REx), aviation incident reports, and COVID-19 status updates.
These databases include a mix of numeric, categorical, and textual attributes, and span domains that
differ in style, granularity, and data cleanliness.

The benchmark queries test a range of operators—joins, selections, unions, scans, and aggrega-
tions—all requiring the integration of structured tables with free-text collections. Each query plan
includes between one and three MMOps, simulating real-world analytic tasks.

Our Results. Our results demonstrate that ELEET consistently achieves high F1 scores across all
datasets while maintaining sub-second latency per query. Notably, it outperforms much larger models
such as LLaMA-2 (7B) and GPT-4 (175B) in both speed and accuracy on extractive tasks. This efficiency
stems from ELEET’s lightweight design, optimized decoder, and task-specific training. While LLaMA-2
and GPT-4 require few-shot prompting or costly autoregressive decoding, ELEET’s architecture allows
direct span extraction in a single pass.

29

Figure 6 presents a performance comparison of ELEET with GPT-4 (175B), LLaMA-2 (7B), and
T5 (11B) on the multi-modal query execution tasks. The plot shows a trade-off between F1 score and
execution time for each model across the benchmark datasets. ELEET consistently achieves higher F1
scores than the other models, while also maintaining significantly lower query execution time. This
highlights ELEET’s efficiency in handling complex multi-modal queries without sacrificing accuracy.

5 OmniscientDB - LLM for Database Augmentation

Traditionally, databases are required to explicitly capture all relevant facts in order to be queried by the
user. However, this so-called closed-world assumption significantly limits the ways in which a database
can be used. For example, think of a database that stores information about movies. While a breakdown
of the revenue by actor might be a query a user wants to issue, the actor information might not be
stored in the database. Today, the only way to make additional information available for querying is to
explicitly integrate additional data sources into the database, which requires extensive manual efforts.

Idea and Simple Example. With Omni-

scientDB [1], we presented our vision of an open- SELECT movies. revenue, actors.actor FROM movies JOIN actors
world DBMS that can automatically augment ex- [| !

isting databases with world knowledge for the ex- — ;ﬁ:fsreve"ueﬁ s | | |_rosui
ecution of SQL queries. To do so, OmniscientDB Avatar| SciFi | STt / C G Zacz
can not only generate additional tables on-the- e L T tabsen storedin) 3274 S::W
fly but also complete existing tables with user- Tables storedinDB . QPT-3/PalM/.— | billon

/

requested rows or columns. To enable this, Omni-
scientDB makes use of the world knowledge that Figure 7: OmniscientDB Example. A SQL Query
is implicitly stored in LLMs such as GPT-4 etc. that joins a movies table stored in the database with
To illustrate the benefits of OmniscientDB by an actors virtual table derived from an LLM (e.g.,
an example, imagine a data scientist trying to an- GPT-4). The join operation allows augmenting the
alyze the revenues of recent movies, as mentioned mouvies table with actor information using a simple
before. For the questions of the data scientist, SQL query.
important information like the starring actors or directors, however, is not contained in the dataset,
despite their potentially large impact on the movies’ revenues. While traditionally, such information
would need to be explicitly integrated first, with OmniscientDB, the data scientist could simply use the
knowledge stored in the LLM for augmentation. For instance, OmniscientDB automatically generates
the missing information about the actors starring in the movies, allowing a more extensive analysis.

Virtual Tables. OmniscientDB leverages the knowledge implicitly stored in the parameters of LLMs
for augmentation and makes it available for querying via SQL using so-called virtual tables. Virtual
tables can be treated by users just like traditional tables. However, they are not explicitly stored in the
database but instead act as a proxy for the knowledge stored in LLMs. For instance, in the example
above, the user is able to join the movies table with the virtual actors table to generate additional
information about actors, as shown in Figure 7. The information about actors is materialized on-the-fly
during the execution of the query by prompting the LLM. Furthermore, in addition to virtual tables, we
envision that OmniscientDB also allows adding virtual columns to existing tables. For example, the
movie table might miss a column for the production year, which could also be extracted from a LLM.

Challenges and Vision. A key challenge of OmniscientDB is that the knowledge that OmniscientDB
is able to make available is obviously bound by the parametric knowledge in LLMs. However, LLMs
have been extended by retrieval mechanisms to retrieve external knowledge [11-13] and are even able
to perform web searches |14] or interact with APIs [15]. Hence, our vision is to exploit these rapid

30

advancements and make the abilities and knowledge of modern LLMs available for users to easily
augment their datasets with OmniscientDB.

Going forward, we envision OmniscientDB to become a true open-world database, allowing for
arbitrarily complex database operations. This not only includes joins and unions with virtual tables,
to generate missing columns or rows, but also other operations. For instance, existing incomplete
tables could be marked as semi-virtual, meaning that some tuples or values are stored explicitly, but
additional missing tuples can be generated on the fly if needed. Furthermore, we want virtual tables to
be updatable, in case the knowledge in the LLM is outdated, or support that the database itself suggests
information that could be used for augmentation.

6 Research Roadmap

We have seen that using today’s state-of-the-art LLMs is an interesting direction to enable a new
generation of database systems to cut query and data taxes by LLM-augmented database systems for
multi-modal question answering as outlined in Section 2. However, there are still an abundance of
interesting open challenges to be solved, as well as many opportunities that have not yet been widely
researched. Below, we discuss some of the major challenges and opportunities we deem interesting for
the community.

6.1 Challenges & Opportunities

Challenge: Query Optimization & Execution. A major future challenge is designing effective
optimization strategies for query execution in multi-modal database systems, where queries span
structured data, text, and images. Traditional cost- and rule-based optimization techniques fall short in
this setting, especially when queries involve operators over collections of images or text documents —
and require substantial rethinking: (1) A central challenge is cardinality estimation for multi-modal
data. Unlike structured data, estimating result sizes for queries over images or text requires novel
techniques (e.g., filter out all images which show Madonna & Child as shown in Figure la). One
promising direction is the use of embedding-based histograms, which cluster similar content to enable
approximate count estimates. Such estimates are essential for choosing efficient join orders in multi-modal
query plans. (2) Another key challenge is physical operator selection when incorporating LLMs into
query plans. Operators applied to unstructured data (e.g., filtering images or text) can vary widely
in both cost and accuracy depending on the implementation strategy. Query optimizers must learn
to choose between lightweight rule-based methods, traditional operators, and high-cost, high-accuracy
LLM inference—balancing computational efficiency with the accuracy demands of the query. (3) Finally,
adaptive query optimization must be revisited and extended to accommodate the unpredictable behavior
of LLMs and the nature of multi-modal data. This involves building systems that can adjust execution
strategies on the fly based on the observed performance and accuracy. Reinforcement learning presents
a promising avenue here.

Although some initial work exists in these areas, many open questions remain. Addressing them is critical
to building robust, efficient multi-modal database systems capable of handling real-world workloads.

Challenge: Towards Community-Standard Benchmarks. A key challenge for the field is the lack
of standardized benchmarks to evaluate and compare multi-modal database systems. While individual
areas where LLMs are used in databases, such as Text-to-SQL, benefit from well-established community
benchmarks like SPIDER and BIRD, no equivalent benchmarks exist for LLM-augmented databases to
realize multi-modal database systems as envisioned in this paper. Instead, current evaluations rely on
small, system-specific benchmarks that typically reflect narrow use cases tailored to the strengths of

31

individual systems. A first pressing question is: what constitutes a meaningful and comprehensive set
of use cases that can assess the capabilities of multi-modal databases and guide future development?
Addressing this will require selecting diverse application domains and building on existing datasets
to design challenging scenarios that thoroughly test multi-modal functionality. Equally important is
the development of a set of accepted evaluation metrics. These should go beyond accuracy and query
runtime and include aspects such as scalability under high-volume multi-modal workloads, and other
aspects, such as missing data, which require systems to understand when a query can not be answered.
Understanding such aspects will be critical for advancing the field. Finally, benchmark suites must
also assess system robustness, including performance under out-of-distribution inputs and degraded or
incomplete data. Such tests are essential for evaluating the reliability and real-world applicability of
multi-modal database systems.

Opportunity: Beyond SQL with Semantic Operations. Various query interfaces have been
proposed for multi-modal database systems, including natural language queries, SQL-like queries with
semantic predicates (e.g., filters or joins based on natural language), and SQL extended with LLM-based
UDFs. While diverse in form, these interfaces typically follow a common pattern: they translate into
SQL-style query plans extended with multi-modal operators that operate on unstructured data such
as images or text. However, by using LLMs for query planning—as we propose in this paper—query
interfaces can support far more expressive, goal-driven interactions. Consider, for example, a crime-
incident database used by investigators to identify a suspect based on multiple sources: textual witness
reports, police image data, and structured records such as registered weapons. The user’s high-level query
might be as simple as: Find the suspect involved in the crime on Jan. 15, 2018 in SQL City. Solving
such a query requires a sequence of interdependent steps: analyzing intermediate results (e.g., matching
details from witness reports), reasoning across modalities, and potentially backtracking if a search path
proves unproductive. This raises the question: can a database system assist users in navigating such
multi-turn, exploratory queries instead of requiring them to manually issue and manage each step?
To address this, we explore the potential for goal-driven query interfaces, where the system plans and
executes a sequence of multi-modal queries to solve a user-defined problem, asking for clarification only
when necessary (e.g., when the available data is insufficient). Interestingly, the sequences of generated
queries can directly act as an explanation of how the problem was solved.

Opportunity: Open-World Databases A compelling opportunity for LLM-augmented databases
lies in enabling open-world databases—systems capable of answering queries that go beyond the facts
explicitly stored in the database. Our initial work on OmniscientDB takes a step in this direction by
leveraging the parametric knowledge of LLMs to augment tables with additional rows and columns at
query time. However, this is only a starting point. A more ambitious goal is to enrich databases not only
with internal model knowledge but also with external data sources, such as those found in data lakes.
For example, consider the query: “How many pictures show Madonna and Child and are by Leonardo da
Vinci?—where the artist information is not present in the existing database (as shown in Figure la). To
answer such queries, relevant external data (e.g., a CSV containing artwork metadata) must be retrieved
and seamlessly integrated with the current schema. LLMs can assist by interpreting retrieved datasets,
reasoning about their relevance, and proposing integration strategies, such as joining external and
internal tables. When mismatches arise (e.g., differing artwork titles or formats), semantic joins—based
on natural language predicates and embedding similarity—can help align the data sources effectively.
Finally, we envision a future in which these retrieval and integration operations are embedded directly
into the query planning process. A database system could dynamically perform multiple retrievals
to incrementally augment its data and even backtrack or revise earlier augmentations if they fail to
contribute to answering the query.

32

6.2 Potential Limitations

One might assume that a key limitation of our vision is the requirement for users to preprocess and load
data into structured, multi-modal relations before querying. This could be seen as a significant barrier
to adoption, particularly in real-world scenarios where data often resides in raw, unstructured form
across diverse sources in data lakes. However, as discussed in our vision, this is not a hard requirement.
Users could also begin with minimal or even no structured data and incrementally augment their data
by retrieving relevant content from data lakes at query time. In this mode, the system constructs
multi-modal relations on-the-fly, guided by the user’s query intent. In the most extreme version of this
vision, no schema is defined upfront—instead, the schema is synthesized dynamically as part of the
query answering process.

This schema-on-demand approach is a direction we have not yet explored in our work, but it
represents a highly promising avenue for future research. It would enable querying data lakes directly
without prior data curation or integration—essentially inverting the traditional data engineering pipeline.
In such a setting, data retrieval must be tightly coupled with on-the-fly data cleaning and integration.
For example, aligning join keys, resolving type mismatches, or eliminating duplicates may all need
to be performed as part of query execution. This is particularly critical for multi-modal data, where
inconsistencies and redundancies are common, and where traditional schema-based assumptions about
cleanliness and integration no longer hold. As such, developing mechanisms for adaptive, query-driven
data cleaning and integration becomes a central research challenge in realizing this more flexible and
powerful model of multi-modal data interaction.

7 The Relational Model is Dead! Long Live the Relational Model!

In this paper, we have argued that relational databases impose substantial overhead on users, both in
terms of expressing queries and preparing data—particularly in the context of complex, multi-modal
information needs. Despite these limitations, we do not advocate for abandoning the relational model
altogether. Instead, we propose to retain the relational model as an internal abstraction for future
data systems, leveraging its proven strengths in query optimization, physical execution, and scalability.
However, we argue that it should no longer serve as the primary interface exposed to users. To bridge this
gap, we envision data systems that extend the relational model with support for complex data types and
provide more intuitive query interfaces—ranging from natural language to schema-agnostic structured
languages. Central to this vision is the integration of large language models (LLMs), which enable
semantic query interpretation, data discovery, and access to heterogeneous and non-tabular data sources.
We refer to such systems as LLM-augmented databases: systems that preserve the robustness and
efficiency of relational engines internally while offering a more accessible and expressive user experience
externally. In doing so, we reconcile the internal utility of the relational model with the evolving demands
of modern data-centric applications.

Acknowledgements

First and foremost, I would like to thank all my PhD students and Postdocs who are working on the
topics and directions mentioned in this paper, as well as my collaborators. Moreover, I would like to
thank also sponsors who support this work, such as the LOEWE program in Hesse (Reference III 5 -
519/05.00.003-(0005)), the DFG project MAgiQ) BI 2011/3-1, hessian.AI at TU Darmstadt, as well as
DFKI Darmstadt.

33

References

1]

2]
3]
4]

15]
[6]

7]

8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

V. Kakar et al., “Omniscientdb: Augmenting relational queries with world knowledge,” in
AIDM@SIGMOD, 2023.

S. Cheng et al., “Thalamusdb: Querying multimodal data with language,” in VLDB, 2024.

B. Ding et al., “Palimpzest: Declarative llm query optimization,” in SIGMOD, 2024.

N. Yaghmazadeh et al., “Lotus: Declarative semantic queries over text tables,” in VLDB, 2024.
M. Zhou et al., “Docetl: Declarative document processing with llms,” in CIDR, 2024.

T. Rekatsinas, Z. Zhang et al., “Caesura: Query planning with language models for multi-modal
databases,” in CIDR, 2024.

S. Simeonidou, T. Kraska et al., “Eleet: Efficient learned execution for entity-centric text tables,”
VLDB, 2025, to appear.

M. Saeed et al., “Querying large language models with SQL,” in EDBT, 2024.

N. Tang, C. Yang, Z. Zhang, Y. Luo, J. Fan, L. Cao, S. Madden, and A. Y. Halevy, “Symphony:
Towards trustworthy question answering and verification using RAG over multimodal data lakes,”
IEEFE Data Eng. Bull., vol. 48, no. 4, pp. 135-146, 2024.

S. Wiseman, S. M. Shieber, and A. M. Rush, “Challenges in Data-to-Document Generation,”
arXiv:1707.08052 [cs], Jul. 2017.

K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “REALM: retrieval-augmented language
model pre-training,” CoRR, vol. abs/2002.08909, 2020.

K. Lee, M. Chang, and K. Toutanova, “Latent retrieval for weakly supervised open domain question
answering,” in Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Association for
Computational Linguistics, 2019, pp. 6086—6096.

P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler, M. Lewis,
W. Yih, T. Rocktéschel, S. Riedel, and D. Kiela, “Retrieval-augmented generation for knowledge-
intensive NLP tasks,” in Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,
W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. Button, M. Knight, B. Chess, and
J. Schulman, “Webgpt: Browser-assisted question-answering with human feedback,” CoRR, vol.
abs/2112.09332, 2021.

T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda,
and T. Scialom, “Toolformer: Language models can teach themselves to use tools,” CoRR, vol.
abs/2302.04761, 2023.

34

