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Abstract

The advent of large language models (LLMs) has yielded promising results across various fields.
With their ability to understand, retrieve, synthesize information, and perform advanced reasoning,
LLMs have shown significant potential for facilitating and automating data management. We propose
that the extensive knowledge embedded within these models enables them to serve as pre-trained
data engineers, enhancing both the effectiveness and scope of data tasks.

In this paper, we illustrate an architectural framework for integrating LLMs into data engineering
workflows, aiming to enhance the applicability and usability of LLM-assisted data engineering
solutions. We explore key techniques and opportunities across three critical stages: (a) data
wrangling, to simplify and optimize data preparation and transformation; (b) analytical querying, to
extend querying capabilities and interfaces in data systems; and (c) table augmentation, to enhance
the original tables with additional data, improving the performance of data-centric tasks like machine
learning.

1 Introduction

Large Language Models (LLMs) have recently demonstrated remarkable progress across a variety of
tasks, including natural language processing, question answering, code generation, and information
retrieval [3, 8, 25, 57, 60, 75]. These models, trained on extensive data corpora, encompass vast amounts
of integrated knowledge and possess advanced reasoning capabilities [79-81]. Moreover, they have shown
strong cross-task generality on a wide range of natural language tasks.

Building on these impressive capabilities, the rapid development of LLMs has motivated data
researchers to reconsider traditional challenges in data management [21, 54, 72]. Data engineering, which
includes the preparation, analytical querying, and enrichment of data, demands specialized domain
expertise and is often time-consuming, lacking a one-size-fits-all solution due to the complexity of
data-related tasks [65]. For example, considering a data imputation task, imputing the categories of
items might require row-by-row interactions to understand contextual nuances, whereas imputing the
Body Mass Index (BMI) can be completed by using standardized formulas that rely on height and
weight. Similarly, to answer a user question such as “which item is the most positively reviewed” might
require semantic parsing of each row, whereas answering “what are the monthly sales for MacBook
Pro” may involve translating the question into an aggregate query to obtain the result. Pioneering
studies [3, 21, 52, 85| have illustrated that well-crafted prompts can effectively guide LLMs to achieve
state-of-the-art performance in specific data engineering tasks, such as data imputation, entity matching,
and Text2SQL. However, integrating LLMs into complex and heterogeneous data engineering workflows
remains a challenging endeavor.

First, designing a single prompt for each distinct data preparation task is suboptimal, as data
wrangling generally necessitates a multi-step process involving diverse tasks. Employing domain-specific
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solutions customized for each data set and problem may not be uniformly effective. Secondly, while LLMs
have empowered data querying with strong semantic reasoning capabilities and world knowledge [79-81],
challenges arise in designing effective interfaces for integrating LLMs into data systems to facilitate
efficient analysis. Recent efforts have focused on developing SQL-like [1, 15, 68, 86] and Pandas-like [58]
programming interfaces to improve LLM usability across diverse systems. Additionally, to assist non-
experts who may lack the ability to write code and queries, facilitating the translation of natural language
questions into executable queries |61, 77, 82] is also critical for enhancing accessibility. Lastly, to enhance
the performance of data-centric applications such as machine learning, augmenting the original tabular
data can be highly beneficial. However, challenges remain to effectively utilize LLMs for this purpose.
LLMs have the potential to enrich original datasets by retrieving relevant information [20, 33, 31] and
performing feature engineering [31, 16| to generate useful features.

In this paper, we introduce an architectural framework for integrating the powerful capabilities of
LLMs into data engineering, focusing on three key stages: data wrangling, analytical querying, and table
augmentation for machine learning. Within each stage, we review current research and demonstrate how
LLMs can facilitate and potentially expand the scope of data-related tasks.

In particular, we elaborate on three systems we have recently developed: UniDM [61], which proposes a
unified framework for data wrangling; DAIL-SQL [22], a Text2SQL solution that systematically examines
both in-context learning and supervised fine-tuning to optimize performance; and SMARTFEAT [10],
which automates feature engineering for machine learning by identifying and applying appropriate
transformations on the original table. Furthermore, we envision future directions to further extend
LLM-assisted data engineering applications, including (1) developing automated, unified systems for
efficient end-to-end data preparation, (2) enhancing querying capabilities for unstructured data and
world knowledge in data systems through flexible querying interfaces, and (3) constructing automated
solutions for machine learning data processing.

2 Integrating LLM Modules in Data Engineering

Data engineering often contains complex and labor-intensive tasks that traditionally require substantial
engineering effort. Figure 1 outlines an architectural framework for integrating LLM modules into data
engineering workflows, centered on three stages: 1) data wrangling, (2) analytical querying, and (3) table
augmentation for machine learning.

Data Wrangling. Real-world data are often heterogeneous, incomplete, or contain errors, rendering
them unsuitable for direct analytical or modeling tasks. Data wrangling typically encompasses tasks
such as entity matching [19], error detection [, 30], and data imputation [26], enabling the integration,
cleaning, and transformation of raw data into structured formats suited to downstream applications.
To facilitate complex data wrangling, the framework incorporates LLMs into data wrangling operators.
In these operators, LLMs are prompted with the task parameters, such as the task name, task query,
and relevant contextual inputs from the dataset. The LLMs are then applied to each row to predict the
next word for completing tasks |54, 61, 72|, or to the entire dataset to generate code |13] to process data
more efficiently.

Analytical Querying. Data engineers and analysts often query datasets to extract meaningful
insights. The framework extends the traditional definition of relational querying by incorporating
LLM capabilities, which enable querying not only of structured data but also of unstructured textual
content, documents, and world knowledge through various querying interfaces. Operators leveraging
LLMs facilitate access to extensive corpora of unstructured text [68, 86] and can even function as
knowledge storage mechanisms [7]. The framework describes multiple interfaces for utilizing LLMs in
analytical querying, including SQL interfaces |1, 5, 15, 15, 68, 70, 86], programming interfaces |1, 58],
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Figure 1: Integrating LLM-based modules into data engineering workflows: (1) facilitating data wrangling

tasks, (2) supporting complex analytical querying through multiple interfaces, and (3) augmenting
original tabular data for improved machine learning performance.

and natural language interfaces |7, 18], in which LLMs are commonly embedded as SQL extensions
or as Pandas-like data science APIs. They can also translate natural language (NL) into logical
operators [17, 19, 62, 64, 77, 82| and enable interactive, conversational NL-based interfaces |7, 18].

Table Augmentation for Machine Learning. Table augmentation can enrich original datasets
with new features or samples, thereby improving performance in data-centric tasks such as machine
learning. However, this process often relies heavily on domain expertise and demands substantial manual
effort from data scientists. Given a machine learning task, the framework leverages LLMs to support two
types of table augmentation [14]: generation-based augmentation |31, 16|, which uses LLMs to iteratively
generate semantically meaningful features for original datasets, and retrieval-based augmentation [27, 34,
which retrieves additional external data.

In the following sections, we review the detailed techniques for integrating LLM modules in each stage.
We then discuss unique opportunities to expand the scope and improve the usability of LLM-assisted
data engineering solutions.

3 Data Wrangling with LLMs

Data wrangling involves a series of data preparation steps that transform datasets into formats suitable
for analysis and modeling. To leverage LLMs in facilitating complex data preparation tasks, we first
formalize these tasks using a generalized data wrangling operator, defined as follows:

Definition 3.1 (Data Wrangling Operator) Let D be a dataset requiring data wrangling and let T
denote the task parameters. An LLM-based data wrangling operator opr,;,, is defined as a function

opry . (D, T) = Dy,

where LLM 1is the selected large language model. Given T and D, the operator constructs prompts to
instruct the LLM. The outputs generated by the LLM is then applied to D, resulting in a clean and
structured dataset D,.

Data Preparation Tasks. Data wrangling is rarely a single-step process; it usually involves multiple
individual preparation steps, each implemented by a data wrangling operator. These tasks can be
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categorized into three broad categories based on their purposes: data integration [17], data cleaning [63],
and data transformation |29, 35]. Data integration involves discovering and combining data from various
sources, which typically includes tasks such as schema matching [71], entity resolution [10, 44, 78], and
join/union discovery [20, 33, 34]. Data cleaning aims to remove or replace inaccurate data values with
more accurate ones. It typically includes tasks such as deduplication, error detection [1, 30], and data
imputation [26]. Data transformation involves restructuring and filtering data, including tasks such as
changing schema [35], and removing irregular rows or values [26]. Recent research has explored the use
of LLMs to address one or more of these tasks, showing promising results and, in some cases, achieving
state-of-the-art performance.

Prompts. LLMs have shown remarkable proficiency in text-intensive tasks. Researchers have also
demonstrated that LLMs trained to predict the next word (e.g., “Mary has a little” — “lamb”) can be
adapted to data-related tasks by providing natural language descriptions of those tasks [54]. For example,
to perform entity matching, one might ask an LLM “Are iPhone 16 Pro and iPhone 16 Pro Maz the
same?” and obtain the answer “No.”. Moreover, models such as GPT-3 [9], GPT-4 [57], and LLaMA
[75] also possess robust code-generation capabilities like human programmers.

Therefore, within data wrangling operators, the LLM is guided by prompts derived from task param-
eters, such as the task name, task query, and contextual inputs extracted from the data. These prompts
can be structured in various forms to perform row-wise executions using the ability of LLMs in performing
next-word prediction. For example, for a data imputation task, the prompt can be formatted such as a
question (e.g., “What is the timezone of Copenhagen?”), a cloze (e.g., “Copenhagen is in
the _ timezone.”), or a completion (e.g., “The timezone of Copenhagen is...”). Fur-
thermore, prompts can also be designed to synthesize code for domain-specific solutions |13, 52, 55], such
as “write a Python regular expression to extract dates in the format ‘YYYY-MM-DD’.” The operator
then incorporates a parser to extract outputs from LLMs and may apply additional transformations to
the original datasets, thereby producing the output data.

3.1 Unifying LLM-based Data Wrangling

While the integration of LLMs into data wrangling has demonstrated exceptional performance in various
data preparation tasks [14, 54, 72, 81], these approaches often rely on specifically tailored prompt
designs for each task, which limits their usability as end-to-end platforms that encompass multiple data
preparation steps.

In this subsection, we explore the generality of data preparation tasks based on Definition 3.1.
We propose that disparate data preparation tasks could be unified, applying a general procedure to
solve different tasks. To this end, we introduce a unified system, UniDM [G1]|, which generalizes data
preparation tasks into three main steps as shown in Figure 2. The core objective of UniDM is to unify
diverse data tasks by developing a general mechanism that transforms task parameters T', and contextual
inputs derive from D into a prompt understandable by LLMs to complete the task.

The first step, context retrieval, extracts the relevant context from the dataset D necessary for
solving the task. Prior approaches often require users to manually specify the context |6, 54] or rely
on attribute similarity to identify useful records [2, 51]. However, these methods can be less effective
when dealing with a diverse range of complex data preparation tasks. In contrast, UniDM introduces
an automated retrieval process that leverages LLMs through two specialized prompt templates. These
templates guide LLMs to determine the relevant attributes and rows in D required for completing the
task T'. For example, consider a data imputation task shown in Figure 2, where the goal is to impute
the timezone for Copenhagen. In this case, the first prompt identifies the “country” attribute as
essential for inferring the timezone and the second prompt selects a subset of relevant records to guide
this task (e.g., via few-shot prompting). One such record might be: “city: Alicante, country:
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Figure 2: An overview of the UniDM framework.

Spain, timezone: Central European Time”.

The second step, context data parsing, transforms the retrieved context from a tabular format into a
textual representation, enabling LLMs to better capture the semantics. Unlike conventional methods that
serialize input rows into a simple text string |54, 72|, UniDM employs a prompt template to instruct LLMs
to create a semantically rich text representation of the context. For example, the tabular record “city:
Alicante, country: Spain, timezone: Central European Time” is transformed into:
“Alicante is a city in Spain and is in the Central European timezone.”.

The final step is target prompt construction, where UniDM synthesizes the task parameters T, in-
cluding the task name, task query, and the contextual inputs of dataset D obtained from the previous two
steps, into a final prompt for the LLMs to generate results. The construction of this final prompt is also re-
lied on LLMs. For the data imputation task, the final prompt could take the form of a cloze-style prompt:
This task involves imputing the missing value...; The context is: Alicante is
a city in Spain and is in the Central European timezone ...; Copenhagen is a
city in Den- mark and is in the __ timezone.” This prompt is then used to generate
the final result for the data preparation task.

By abstracting these steps, UniDM unifies disparate data preparation tasks, offering a systematic
approach to leverage LLMs effectively and generalizing across multiple task types. In a similar vein,
another recent framework, CHORUS [38], presents a unified approach for synthesizing data discovery
and exploration tasks. Unlike UniDM’s three-step procedure, CHORUS decomposes prompts into six
fixed components and employs specialized templates and context retrieval methods to automatically
construct the final prompt. It has shown highly effective performance for data discovery tasks such as
table-class detection, column-type annotation, and join-column prediction.

3.2 LLM-as-a-Compiler for Data Wrangling

While UniDM offers a unified framework for automating data wrangling effectively, a limitation lies in
its reliance on row-wise execution, which can become inefficient and costly for large datasets due to
the need for LLM invocations on each record. To overcome this limitation, more recent work, SEED
[13], proposes an improved approach by introducing an optimizer that automatically selects from four
LLM-assisted modules: CodeGen, which generates code; CacheReuse, which reuses previous LLM query
results; ModelGen, which distills an LLM into a smaller machine learning model; and LLM, which
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directly generates answers. By combining these modules, SEED automatically produces a hybrid data
wrangling solution that achieves performance comparable to row-wise execution while dramatically
reducing the number of LLM calls.

4 Data Analytics with LLMs

Traditional relational queries enable users to perform scalable and accurate analyses on structured data
through formal querying languages. However, much of the information that data users want to query
[50] resides not only in structured datasets, but also in various types of unstructured sources such as
text, documents, and even in the vast world knowledge encoded within LLLMs. Moreover, traditional
systems often assume users have the technical expertise to write complex queries, which can be a barrier
for non-expert users. For example, a restaurant owner may want to analyze customer reviews (e.g.,
identifying the most positively reviewed dishes in Japanese restaurants in New York City) but may lack
the skills to write complex queries or code.

LLMs have demonstrated the ability to understand, extract, and answer questions using unstructured
data and world knowledge through methods such as retrieval-augmented generation (RAG) [10]. Recent
research |7] has demonstrated the promising potential of integrating LLM capabilities into data systems
to combine strong semantic reasoning and LLM knowledge with the efficient computational query
execution capabilities of traditional relational data systems.

In this section, we provide an expanded definition of analytical querying that extends the relational
querying definition @ : (Ds,q) — R, where q represents a query in the formal query language, and D,
is the structured dataset, and R is the query result. The LLM-powered analytical querying definition
includes support for unstructured data, integrates knowledge from LLMs, and accommodates diverse
interfaces, as follows:

Definition 4.1 (Analytical Querying) Let D, denote the structured dataset, D, denote the unstruc-
tured text data that may be leveraged for question answering, and Diiu denote the world knowledge
encoded within a large language model LLM . Given a user question q*, an LLM-powered analytical
querying is expressed as

Qv s (Ds, Dy, Dy q+) — 1,

where the output T represents the insights derived from the query result.

In Definition 4.1, the LLM-powered analytical querying not only enables analysis of structured data D,
but also enables the extraction and processing of information from unstructured text data D, to answer the
question. It also facilitates querying access and exploits the LLM knowledge through D;;;,. In addition,
the querying interface is not restricted to formal query languages; instead, the user question q* supports
various formats according to the data system and user requirements, including SQL queries |1, 15, 68, 80],
data science code snippets |1, 58], and natural language inputs |7, 47, 48, 62, 64, 77, 82]. It may also
incorporate a conversational agent to translate query results into more easily interpretable insights in
natural language [7, 18].

To support this extended analytical querying, recent research efforts have focused on enhancing or
developing next-generation data systems [19] that leverage the capabilities of LLMs. In the following
subsections, we will explore the specific mechanisms through which these systems achieve the goal:

e Building declarative querying interfaces. These interfaces enable users to ask questions based
on their needs rather than focusing on the technical execution details [19]. They can express their
queries in a more intuitive and user-friendly manner, which the systems then translate into the
necessary operations.
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e Translating natural language questions into queries. These systems may leverage semantic
parsers driven by LLMs to convert user questions expressed in natural language into executable
queries 48], which bridges the gap between user intent and system execution.

¢ Expending the set of logical operators and enabling optimizations. These systems
offer an enriched set of logical operators that augment traditional relational operations |58]. By
incorporating LLM-powered semantic data processing and information extraction capabilities,
these operators work with traditional relational operators to facilitate optimization and effective
query planning.

4.1 Interfaces for Analytical Querying

In real-world analytical querying applications, there are various design considerations when integrating
LLMs into data analytics systems. State-of-the-art research primarily focuses on three types of user
interfaces: SQL interface, programming interface and natural language interface.

SQL Interface. To incorporate user questions into executable operations within database man-
agement systems (DBMS), modern DBMS vendors have explored integrating LLMs as extensions of
SQL user-defined functions (UDFs). For example, systems like BigQuery [70], Databricks [15], and
Redshift [5] uses AI modules to perform information extraction based on the prompted user question.
However, these LLM UDFs typically support only row-by-row execution, making them inefficient and
prohibitively expensive for large datasets.

To address the challenge of querying both structured and unstructured data, several systems have
proposed transforming unstructured data and LLM knowledge into a structured format compatible with
SQL. For example, ZenDB [15] automatically extracts semantic hierarcal structure from text documents
allowing users to impose a schema on their documents and query the document with SQL interface.
Evaporate [1] generates structured views of data from input documents by employing efficient entity
extraction techniques on semi-structured data. GALIOS [68] enables users to query large language
models via an SQL interface, executing some parts of the query plan with prompt-based interactions to
retrieve data from the LLM. Similarly, HQDL [36] extends SQL beyond the data at hand, using LLMs
to answer questions that require additional context.

Programming Interface. Another approach to integrating LLMs into analytical querying is
through programmatic interfaces provided by data science platforms, such as packages in Python, which
enable developers to construct flexible data analysis pipelines. For example, Palimpzest [1]| allows users
to declaratively query text and images using an API, similar to querying tables in a relational database.
The LOTUS system [58] provides a Pandas-like interface enriched with semantic operators, such as
semantic filtering, ranking, and aggregation. This enables developers to make use of both traditional
relational functionalities and advanced LLM-driven semantic reasoning capabilities in data analytics.

Natural Language Interface. Recent advancements have demonstrated that LLMs can translate
natural language questions into executable relational queries with high accuracy [17, 62, 64, 77, 82].
Research has also explored developing interactive or conversational agents that provide end-to-end
query support for non-expert users. For example, SUQL [18] builds a conversational interface to answer
questions over semi-structured data by executing queries derived from user utterances that correspond
to specific query intentions. Similarly, TAG |7] proposes a general-purpose query model that translates
natural language inputs into queries and generates answers in natural language based on the query results.
Although natural language interfaces greatly improve usability for non-expert users, they inherently
carry ambiguities [11]. Therefore, we believe that data systems should not rely solely on natural language
as the querying interface. An ideal design would map natural language inputs to expressive SQL-like
or programming languages, ensuring accurate and efficient execution within the data system. Systems
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such as SUQL and TAG exemplify this approach by first interpreting and generating SQL queries from
natural language questions, then executing these queries and presenting the results in natural language.

4.2 Text2SQL Semantic Parser

A critical challenge in bridging user intentions to executable database queries lies in accurately translating
natural language questions into executable queries. While Text2SQL has long been a focus in both
natural language processing and database research, LLMs have recently emerged as a transformative
paradigm for this task [17, 62, 77].

In this subsection, we present DAIL-SQL [22] which provides an integrated tool for improving
LLM-based Text2SQL solutions. It systematically explores two key directions: prompt engineering for
in-context learning on closed-source LLMs and supervised fine-tuning (SF'T) on open-source LLMs.

Prompt Engineering. Effective prompt design is crucial to promote accurate SQL generation from
LLMs [9]. DAIL-SQL examines both question representation and example selection to optimize prompt
design.

e Question representation: This involves representing user questions and database information in
the most informative format (e.g., natural text, code-like schemas). We extensively evaluate five
widely adopted approaches [12, 47, 53, 56, 73]. We find that certain representations yield higher
execution accuracy than others. In particular, using the OpenAl demonstration prompts [56] or
the code representation [53| that includes comprehensive schema details tends to perform better.
DAIL-SQL adopts the code representation and finds that including supplementary details, such as
foreign key information and implication rules like the “with no explanation” implication, also helps
improve execution accuracy.

e Ezample selection and organization: The in-context learning ability of LLMs [18] is also helpful
in improving Text2SQL performance with carefully selected examples. DAIL-SQL demonstrates
that few-shot prompting is most effective when examples are similar to the user’s query. To
identify effective examples, DAIL-SQL masks domain-specific terms in both the natural language
questions and the pre-generated SQL for the user query and candidate examples. It then ranks the
candidates based on question and query similarity. Experimental results indicate that selecting
examples based on both question and SQL similarity consistently outperforms random selection.
Furthermore, while including full example details may yield optimal performance, we find that for
powerful LLMs like GPT-4, retaining only the question-SQL mapping is an efficient and effective
approach.

Supervised Fine-Tuning (SFT). Beyond prompting, DAIL-SQL explores fine-tuning open-source
LLMs (e.g., LLaMA variants [67, 7376, 87]) to improve Text2SQL performance. Empirical results
show that supervised fine-tuning is essential to achieve competitive accuracy. With carefully curated
training data (e.g., from historical Text2SQL workloads), DAIL-SQL shows that fine-tuned open-source
models exhibit strong potential for Text2SQL tasks. Unlike in-context learning with closed-source LLMs,
fine-tuned open-source LLMs do not learn from contextual examples, e.g., queries in the current data
analytical pipeline, but we can always applying in-context learning on fine-tuned LLMs to incorporate
the learned experience and characteristics of the workload in an online data analytical pipeline.

To evaluate the performance of Text2SQL techniques, a variety of benchmarks have been proposed,
such as Spider [83] and Bird [42], along with metrics like execution accuracy and query efficiency.
DAIL-SQL demonstrates that both prompt engineering and supervised fine-tuning can significantly
enhance Text2SQL’s execution accuracy, providing valuable insights for data systems aiming to translate
natural language questions into precise and reliable SQL queries. More recently, XiYan-SQL [23], a
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state-of-the-art Text2SQL system, further improved the benchmark performance by integrating schema
linking techniques to retrieve only relevant columns for a given natural language question, designing
a more efficient schema representation, and implementing an ensemble strategy for LLM in candidate
generation and selection.

However, Text2SQL research has primarily focused on relational queries over structured data, which
covers only a fraction of the questions posed by real-world users |7]. The incorporation of LLMs into data
systems brings significant opportunities to leverage world knowledge and semantic reasoning, thereby
extending relational queries through a broader set of logical operators, as we will describe next.

4.3 Logical Operators

Executing analytical queries relies on a set of logical operators and their corresponding physical execution
to complete the tasks. Integrating LLMs into data analytics does not mean overwriting traditional
relational operators. SQL and data science operators remain essential for supporting scalable and
efficient queries over structured data. The objective of developing LLM-powered logical operators is to
augment these existing operators with Al-based transformations.

Recent research has primarily focused on extending SQL operators because they can be seamlessly
integrated with database management systems and have the potential to leverage existing query engines
and optimizing compilers. For example, SUQL [18] augments SQL with free-text primitives (SUMMARY
and ANSWER) powered by LLMs. These primitives enable the system to provide row-by-row summaries
and answer user questions on unstructured text data, while automatic optimizations are considered to
reduce the number of LLM calls to improve efficiency. HQDL [30] treats an LLM as a virtual table
that can be queried for information unavailable in structured data, and TAG |7] integrates LLM-based
retrieval capabilities into table querying. In contrast, LOTUS [58] expands Pandas’ operator set with
semantic operators (e.g., sem_map, sem_Jjoin, and sem_filter), facilitating both logical query plan
optimization and operator execution optimization. We see significant potential for developing additional
operators. A key design criterion is to ensure these operators are expressive and comprehensive while
enabling execution optimizations. For instance, strategies such as model selection or prompt engineering
can optimize LLM performance, while using code generation instead of row-wise execution can improve
efficiency.

Another crucial aspect is planning the query execution to provide answers to user questions. For
instance, when a user poses a question in natural language, it’s vital to generate a query execution
plan that may involve extracting unstructured information or utilizing LLM knowledge. Traditional
Text2SQL approaches, as discussed, are insufficient for generating queries and utilizing the optimizers in
DBMS for the expanded set of operators. Utilizing the reasoning capabilities of LLMs to decompose
questions into executable operations and enable optimization of query execution plans is important.
Current methods often require users to specify updated schemas |15] or explicitly define the query plan
[1, 58], and incorporate rule-based optimization techniques like operator reordering, predicate pushdown,
and lazy evaluation to improve performance.

5 Table Augmentation for Machine Learning with LLMs

Machine learning (ML) is a pivotal data-centric application that plays a critical role in numerous
decision-making processes |16, 39, 66]. It derives sophisticated patterns from historical data to produce
predictive outcomes. However, real-world data are often unsuitable for direct ML training due to limited
data entries and potentially insufficient features [14]. Acquiring more high-quality tabular data with
well-suited features is essential for improving ML performance. However, this process often relies heavily
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on domain expertise, demanding considerable human effort [59] and remaining a persistent challenge in
both database and data science research [11].

Numerous approaches have been proposed to automate the ML data processing pipeline [38], yet
they often depend on machine learning or deep learning recommendations, which require substantial
data collection of training, or employ rule-based systems, thereby limiting their applicability. Recent
advancements in LLMs present significant opportunities to enhance tabular data augmentation process.
Existing work broadly falls into two categories: generation-based approaches, which generate new data
based on the original table, and retrieval-based approaches, which identify and extract relevant data
from external sources. Building on the general definition of table augmentation tasks [14], we formally
define the LLM-assisted table augmentation task for ML as follows:

Definition 5.1 (Table Augmentation for Machine Learning) Let T4 be the original table with
feature set A, and P be the data pool available for augmentation. Consider a downstream machine
learning model fg, where @ represents the model parameters. The objective of the table augmentation task
is to transform T4 into an augmented table ’TAnew to enhance the performance of fg. Formally, the table
augmentation task is defined as an augmentation function assisted with an large language model LLM :

7"/
augyy  (Ta, P, fo) = Ta,..s St E(f, ) < E(ng)’

T4 . . .
where E(fg—““) and E(fg™"") represent the empirical errors of the machine learning model trained on Ty
and T}, respectively.

5.1 Generation-based Table Augmentation

An effective approach to improving tabular datasets is feature engineering, which involves augmenting
existing features to create more relevant inputs for machine learning models. This process often leads to
substantial performance enhancements [33].

We introduce SMARTFEAT [16], a system that leverages LLMs to automate the feature engineering
pipeline. Compared with traditional rule-based automated feature engineering tools, SMARTFEAT
leverages the reasoning capabilities of LLMs to search for meaningful and interpretable features. Fur-
thermore, instead of generating new feature values through row-by-row LLM executions, which could be
computationally expensive, SMARTFEAT identifies promising features upfront and then synthesizes the
transformation code to compute these features efficiently at scale. SMARTFEAT operates through an
iterative search process, progressively refining and expanding the feature set. As shown in Figure 3, the
system consists of two main components:
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Table 1: Comparison of average AUC values (1) for different ML models: SMARTFEAT vs. baseline
methods.

Methods Diabetes Heart Bank Adult Housing West Nile Virus Tennis
Initial AUC 82.20 67.38 91.46 76.81 86.72 78.96 77.93
SMARTFEAT 86.76 (4+4.3%) 172.15 (4+7.0%) 91.47 (=) 87.00 (4+13.3%) 92.19 (+6.3%) 82.12 (4+4.0%) 87.39 (+9.5%)
CAAFE - 69.67 (+3.4%) 91.73 (40.3%) 83.10 (+8.2%) 92.15 (46.3%) 80.11 (+1.8%) 88.50 (+13.6%)
Featuretools 82.24 (=) 66.78 (-0.9%) 91.04 (-0.5%) 73.85 (-3.9%) 79.47 (-8.1%) 73.12 (-7.4%) 81.29 (+4.3%)
AutoFeat 75.24 (-8.4%) 64.92 (-3.7%) - - 77.63 (-10.5%) 70.90 (-10.2%) 71.73 (-8.0%)

e Operator selector (I): This component takes as input (a) dataset feature descriptions, (b) the
prediction task (e.g., classification), and (c¢) the downstream machine learning model. It applies
operator-guided feature generation using various operator prompt templates, such as unary, binary,
group-by—aggregate, and extractor operators. The operator selector interacts with the LLM to
determine suitable operators to apply and outputs the name of the new feature, the relevant
columns for computing the new feature, and a descriptive explanation of the feature.

e Function generator (2): Based on the outputs of the operator selector, this component generates
an executable transformation function. The function is applied to the original dataset to compute
the values of the new feature, and the augmented dataset and feature descriptions are updated for
further iterations. Including detailed feature descriptions during this process is highly beneficial in
guiding function generation. When no suitable function can be derived (e.g., extracting the capital
city for each country), SMARTFEAT resorts to row-level LLM generation to obtain feature values,
leveraging the common knowledge and reasoning abilities of LLMs.

In each iteration, the operator selector first chooses a semantically meaningful operator, and then
the function generator obtains the transformation to compute feature values. For example, as shown
in Figure 4, given the ML prediction task, model selection, and feature description, the operator
selector chooses a unary operator to bucketize the Age column. It generates a new feature name
(Bucketized_age), a description (e.g., “Bucketization of Age attribute”), and identifies
the relevant column(s). The function generator then translates this information into executable code,
applies the transformation to the dataset, and adds the resulting feature to the feature set.

The feature generation process begins by exploring potential unary operators on the original features.
Using a prompt template, the operator selector iterates over each original feature, prompting LLMs
to propose potentially beneficial unary operations (e.g., bucketization or scaling). Once an operator is
selected, the function generator retrieves the corresponding transformation function and applies it to the
dataset. Building on the original and unary features, SMARTFEAT prompts LLMs to suggest binary
and group-by-aggregate operators that may further enhance the data set. Finally, the process considers
extractors that can operate on multiple inputs to generate additional features.

In addition to SMARTFEAT, another feature engineering tool, CAAFE [31], also uses LLMs to
produce Python code for feature engineering. Unlike SMARTFEAT, which utilizes a pre-defined operator-
guided search for new features, CAAFE employs chain-of-thought instructions [79] to guide a series of
intermediate steps to generate new features.

Lastly, we compare the performance of SMARTFEAT and CAAFE against traditional automated
feature engineering tools based on expansion-selection methods |[37]: Featuretools [36], which exhaustively
generates features using predefined operators and applies feature selection, and AutoFEAT [32], which
constructs a large set of nonlinear features followed by a search algorithm to select an effective subset.
Using these tools, we processed seven datasets from Kaggle, performed classification, and evaluated the
Area Under the ROC Curve (AUC) as the primary performance metric across four ML classification
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models: linear regression, GaussianNB, random forest, and extra tree. The average AUC of the four
models is presented in Table 1.

The results show that the LLM-based approaches significantly outperform traditional methods.
SMARTFEAT enhances the original AUC score by up to 13.3% on the Adult dataset, while CAAFE
improves by 8.2%. We observe that CAAFE recommends a smaller set of features, and the operator-
guided search in SMARTFEAT generates a more comprehensive feature set. The new features generated
by Featuretools and AutoFEAT are agnostic to the dataset context and prediction task, and thus exhibit
comparatively lower performance. However, this evaluation is limited to publicly available datasets,
which LLMs might have encountered during training, potentially leading to overly optimistic results.
Evaluating the performance of LLM-assisted feature engineering on private datasets remains a topic for
future exploration.

5.2 Retrieval-based Table Augmentation

When generating additional information directly from the original table is insufficient, an alternative
approach to data augmentation involves performing dataset searches and utilizing external text to enrich
the data [14].

LLMs have demonstrated promising potential in identifying joinable [34] and unionable [20, 33]
structured data, facilitating data discovery of related tables to broaden available information. Additionally,
unstructured sources such as Wikipedia can be harnessed by performing entity linking [69] and extracting
relevant content. For instance, FeSTE [27] combines web search with fine-tuned BERT model to
supplement data with Wikipedia-derived information, demonstrating the potential of LLMs for retrieval-
based augmentation.

6 Concluding Remarks

In this paper, we explored three essential stages of the data engineering workflow: data wrangling,
analytical querying, and table augmentation for machine learning, which often require significant effort
from data engineers. Traditional automated approaches, which rely on rule-based algorithms or machine
learning models, can struggle with complex scenarios or demand significant human involvement for
training dataset collection. Recently, large language models (LLMs) have shown growing promise in
automating these tasks due to their extensive training data corpora and cross-task generality. LLMs
hold potential to function as pretrained data engineers, facilitating the automation of data engineering
workflows, optimizing performance, and expanding the scope of data tasks.

For data wrangling, we formally defined an LLM-based data wrangling operator, which uses task
parameters and dataset context to construct prompts that guide LLMs in performing data preparation
tasks. We introduced a unified system, UniDM, for LLM-based data wrangling, which automates prompt
construction to handle different tasks in the multi-step wrangling process. However, a limitation of
UniDM as we discussed is its reliance on row-level execution, which can be inefficient and costly for large
datasets. To this end, we encourage ongoing efforts to explore approaches to utilize LLMs more efficiently
for data wrangling. Looking ahead, we envision end-to-end data preparation platforms powered by LLMs,
where users provide raw data, and necessary operators and optimizations are determined automatically
to minimize costs and improve the wrangling quality.

For analytical querying, we are able to extend traditional relational queries by leveraging LLMs’
capabilities to query unstructured data and LLM’s knowledge via various interfaces (e.g., natural
languages). To better interpret users’ questions, we presented a Text2SQL framework, DAIL-SQL,
which incorporates techniques including prompt engineering and supervised fine-tuning to improve
the execution accuracy of translated SQL queries. We also discussed the importance of developing
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LLM-powered logical operators to expand the analytical capabilities of databases. We anticipate that
future data systems will integrate these operators to harness LLMs’ knowledge and reasoning ability.
These systems should also support query planning and optimization, and offer both natural-language
interfaces and declarative programming interfaces for analytical queries.

To support data processing for machine learning, we demonstrated that tabular data augmentation
through generation- or retrieval-based approaches can boost downstream prediction performance. We
introduced an automated feature engineering tool, SMARTFEAT, which employs operator-guided search
to enable LLMs to generate meaningful and interpretable new features. We also discussed retrieval-based
approaches using LLMs for searching and leveraging external text to enrich datasets. In the future, we
can utilize LLMs to autonomously plan and execute table augmentation pipelines for generating more
meaningful features and accessing additional data, while this may require careful pre- and post-processing
to ensure efficiency and reliability.

There are several additional topics we touched upon that are worth further discussion. For example, in
this paper, to optimize the performance of LLMs, we discussed approaches based on prompt engineering
and supervised fine-tuning, which are also used to explore different avenues: Table-GPT [13] proposes
fine-tuning LLMs with real tables to improve their ability to process two-dimensional data structures,
while Jellyfish [84] explores instruction tuning to enhance LLMs as universal data processing solutions
that better adhere to human instructions. In addition, reinforcement fine-tuning [28] has shown potential,
particularly for reasoning-intensive models such as OpenAl’s ol-mini, enabling stronger generalization
and reducing reliance on large-scale labeled data. More recently, Deepseek-R1 [21], an open-source LLM
based on reinforcement learning, has demonstrated strong reasoning capabilities without relying on
supervised data. Collectively, these advancements in post-training techniques show significant potential
to boost the performance of LLM-assisted data analytical tasks and open up new possibilities for
addressing complex data engineering challenges. Moreover, current evaluations are predominantly based
on public data sets, which can lead to overly optimistic results if LLMs have seen these datasets during
training. Evaluating LLMs on private data lakes and unseen tasks is essential for assessing their generality
and robustness.
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