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Abstract

Existing data lakes struggle to effectively analyze heterogeneous data – like unstructured, semi-
structured, and structured data – because of difficulties in heterogeneous data linking, semantic
understanding, and execution pipeline orchestration. In this paper we highlight challenges for
supporting data analytics on data lakes, and present a system iDataLake to address these challenges,
which takes natural language query as input, orchestrates a pipeline for the query and outputs the
results for the query. We first define semantic operators to support heterogeneous data analytics on
data lakes. Then we introduce our data embedding method for the alignment of multi-modal data
and introduce how to efficiently discover those data relevant to the query from the data lake. Next,
we introduce the pipeline orchestration method, which converts input natural language queries into
executable pipelines built from predefined semantic operators. By executing the pipeline over the
discovered data, the data analytics queries can be efficiently answered with high accuracy and low
cost.

1 Introduction

Data lakes are increasingly becoming the storage paradigm for managing large volumes of heterogeneous
data, including structured, semi-structured, and unstructured data. Structured data, such as relational
tables, is well-suited to traditional analytics methods like SQL. However, semi-structured data (e.g.,
JSON, XML) and unstructured data (e.g., text documents) present significant challenges because of
their inherent complexity (e.g., nested structure or or complete lack of structure) and the absence
of predefined schemas. Despite these challenges, performing analytics on such diverse datasets offers
tremendous value, enabling organizations to derive deeper insights and make data-driven decisions across
various domains and data formats.

Example 6: Consider a query: “Identify the top-5 directors whose movies in the 1980s received the
highest ratio of positive reviews." This query is highly relevant for film study. However, answering this
query poses significant challenges due to the fragmented nature of the required data. For instance,
structured information, such as production years, is typically stored in structured tables, while review
content resides in unstructured text documents. Additionally, resolving the query necessitates multi-step
reasoning, including data integration, sentiment analysis, and ranking, which further complicates the
process.

While SQL is effective for querying structured data, it cannot directly handle semi-structured and
unstructured data, which lack the well-defined schemas required for SQL. Furthermore, SQLs cannot
express semantic predicates, which limits the ability to process data in a way that reflects its inherent
meaning. Although some approaches often attempt to extract structured information from unstructured
data, such as transforming textual content into tables with the help of machine learning models [1, 2],
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this extraction process inevitably leads to data loss and may compromise the accuracy and depth of the
analysis. Therefore, traditional methods fall short in handling the diverse nature of data lakes, even
when unstructured data is converted into a structured format.

Recent advances in large language models (LLMs) have shown a great opportunity in addressing
these challenges. LLMs possess advanced semantic understanding capabilities, enabling them to handle
unstructured data (e.g., text) more effectively than traditional methods [3, 5–8]. Their ability to process
and generate meaningful representations of natural language data makes them a powerful tool for
performing analytics over semi-structured and unstructured datasets [9, 10]. However, integrating LLMs
into data analytics workflows for data lakes remains an open research problem, as it faces the following
challenges.
C1. Heterogeneous Data Modeling and Linking. Data analytical queries often involve diverse
subsets of correlated data. Accurately identifying and linking the relevant data for an input query is
crucial for both the accuracy and efficiency of the analytics process. Inaccurate data linking can lead to
incorrect results and significant delays. Developing effective methods to semantically model and link
heterogeneous data types effectively is essential for accurate and efficient data analytics.
C2. Semantic Data Processing. Semantic understanding is essential for processing semi-structured
and unstructured data, as it allows the system to interpret the inherent meaning of the data rather
than relying on rigid schemas and exact textual matching. Effectively leveraging the advanced semantic
capabilities of LLMs to process and analyze these data types (e.g., semantic filtering, semantic grouping)
is a critical challenge.
C3. Automatic Pipeline Orchestration. It is crucial to generate an execution plan for an analytical
query on data lakes. However, orchestrating an efficient and accurate query execution pipeline in a
multi-modal data lake is complex. Unlike traditional databases with deterministic query plans based on
relational algebra and predefined data schemas, data lakes require flexible and adaptive approaches to
handle diverse data types. Automating the generation and orchestration of such pipelines to ensure
efficiency and accuracy remains a key challenge.
C4. Efficient Pipeline Execution. Executing pipelines in a multi-modal data lake involves balancing
accuracy and efficiency. Enumerating all potential execution pipelines may yield high accuracy but
incur significant computational costs. Conversely, executing a single pipeline can improve efficiency
but may reduce accuracy, since semantic operator execution over heterogeneous data may fail or meet
unforeseen errors. Designing an adaptive plan selection process that balances both accuracy and efficiency
dynamically during execution is a challenging but essential task.

In response to these challenges, we propose iDataLake, a novel LLM-powered analytics system
designed to handle data analytics queries over multi-modal data lakes. iDataLake addresses the
aforementioned challenges with the following contributions:

(1) Unified Embedding-Based Data Linking (for C1): We introduce a unified embedding
approach to efficiently link heterogeneous data types within a multi-modal data lake. We embed different
types of data into a shared semantic embedding space and align embeddings of relevant data through
a contrastive learning method. This alignment ensures that semantically relevant data is accurately
identified and retrieved even in heterogeneous formats, thus improving both the accuracy and efficiency
of query responses.

(2) Semantic Operators for Data Analytics (for C2): We present a set of semantic operators
tailored for data analytics over multi-modal data lakes. These operators are designed to perform
statistical and semantic analysis across structured, semi-structured, and unstructured data, enabling
iDataLake to handle a wide range of complex queries that traditional systems struggle with.

(3) Pipeline Orchestration Algorithm (for C3): We propose an iterative two-stage algorithm
for automatic pipeline orchestration. It iteratively selects an appropriate operator to reduce the query
and gradually form the execution pipeline. In each step, it filters out irrelevant operators using a
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Figure 1: Framework of iDataLake.

low-cost approach and focuses on selecting from the remaining operators and organizing the relevant
operators based on the query and available data. This ensures efficient and accurate query processing in
a heterogeneous data environment.

(4) Dynamic Pipeline Adjustment (for C4): Our system incorporates dynamic pipeline ad-
justment during query execution, allowing it to adapt to intermediate results. This flexibility enables
iDataLake to optimize performance by skipping unnecessary computations and adjusting to unforeseen
intermediate results, ensuring both efficiency and robustness.

In general, iDataLake represents a significant step forward in enabling high-accuracy, practical data
analytics on data lakes. Unlike previous approaches that rely on lossy data extraction or are limited by
SQL’s rigid schema, iDataLake employs the semantic understanding capability of LLMs effectively to
provide a more holistic and efficient solution.

2 LLM-Powered Analytics System on Data Lakes

We first introduce the system architecture of iDataLake (Figure 1), and then present the components in
iDataLake.

2.1 iDataLake Architecture and Workflow

As illustrated in Figure 1, iDataLake is designed to process data lakes containing structured (e.g.,
relational tables), semi-structured (e.g., JSON, XML), and unstructured data (e.g., text documents).
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Table 1: Summary of Semantic Operators

Operator Category Description
OrderBy Transformation Sort data according to specified criteria.
Compare Transformation Compare two input values and return the one that meets the criteria.
Refine Transformation Adjust text for clarity or precision, aiding subsequent processing.
Translate Transformation Convert text between languages using LLM or external tools.
Transform Transformation Convert data from one format to another, e.g., table to text.
Validate Transformation Verify the accuracy of generated information through external sources.
Scan Retrieve Load data files and enumerate their elements.
Filter Retrieve Remove irrelevant data based on specified criteria.
Augment Retrieve Fetch relevant data from external sources to enhance LLM responses.
Extract Extraction Extract relevant information from documents/tuples, similar to projection.
Conceptualize Extraction Identify key concepts to simplify complex queries.
Generate Generation Produce coherent text based on input, often for final responses.
Explain Generation Provide explanations or justifications for decisions.
GroupBy Partition Organize data into groups for computing summary statistics.
Cluster Partition Cluster similar data together.
Classify Partition Categorize or label entities using LLM or external ML models.
Link Link Identify and link related data, such as tables and documents in the data lake.
SetOP Aggregation Perform set operations, e.g., Union, Intersection, Complement.
Integrate Aggregation Combine information from multiple sources into a cohesive response.
Aggregate Aggregation Compute aggregation results, such as sum or average, from data.
Summarize Aggregation Condense text into shorter summaries for improved context consumption.

During offline pre-processing, iDataLake constructs an index tailored to the characteristics of the
data, capturing inherent correlations across various data modalities. To enable efficient data linking and
retrieval, iDataLake employs a unified embedding approach. Data of different types is transformed into
a shared semantic embedding space, aligning heterogeneous data for seamless integration. Then using
community detection algorithms, iDataLake discovers hierarchical clustering relationships within the
data, partitioning the data into domain-specific clusters. This design ensures that relevant data can
be located efficiently for any given query. Moreover, a vector index is built on top of embeddings to
support efficient embedding retrieval. To address the out of distributions (OOD) issues among different
data types, we also build OOD vector index to facilitate cross-modal retrieval.

For online analytics, iDataLake introduces a suite of semantic operators specifically designed for
multi-modal data processing. When a query is received, iDataLake first utilizes the data linking index
to identify relevant data within the data lake. The pipeline orchestration component then constructs an
execution plan by iteratively selecting and applying appropriate semantic operators. The execution plan
is executed by the query execution engine, which dynamically adjusts the pipeline based on intermediate
results to maintain robustness and efficiency. Once the entire pipeline is executed, iDataLake generates
the final result and returns it to the user. By following logically reasonable pipelines constructed over
query-relevant data, iDataLake ensures high accuracy in its results.

2.2 Semantic Operators

Traditional relational operators are insufficient for unstructured data analytics, as they lack semantic
processing capabilities and require data to adhere to strict schemas. To address this limitation, we
introduce a set of semantic operators that serve as the fundamental building blocks for performing
analytics over multi-modal data lakes. These operators are designed to handle diverse data types,
bridge the gap between heterogeneous data sources, and enable joint query execution based on semantic
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understanding rather than relying on predefined schemas.

2.2.1 Logical Operators

The logical operators in iDataLake are categorized into seven types, each designed to address a specific
aspect of the analytics process. Table 1 summarizes these operators.
Data Transformation Operators. These operators transform data to generate intermediate rep-
resentations or perform computations. Both input and output are typically lists of data. Examples
include:
OrderBy : Sort input data based on specified criteria and return the ordered results.
Transform: Convert data from one format to another, such as transforming a table into a text paragraph
describing its content.
Data Retrieval Operators. These operators retrieve relevant data from external sources. The input
is typically a query or criteria, and the output is typically a list of data. Examples include:
Filter : Remove irrelevant data from specified data based on user-specific criteria and output the result.
Augment : Fetch additional data relevant to the query from external sources to enhance LLM responses.
Data Extraction Operators. These operators extract relevant information from certain data sources.
The input is generally a list of data and the output is also a list. Examples include:
Extract : Extract specific information from documents or tuples, similar to the projection operator in
relational algebra.
Conceptualize: Identify key concepts from input query, e.g., converting a description to its corresponding
term, to simplify complex queries and improve understanding.
Data Generation Operators. These operators generate target content based on given requirements
and input information. The input is generally text paragraphs, and the output is the target text result.
Examples include:
Generate: Produce coherent text based on input, often used for final responses.
Explain: Provide explanations or justifications for decisions. The explanations of different reasoning
paths are generally integrated to generate the final answer.
Data Partition Operators. These operators partition data into meaningful subsets for further analysis.
The input is generally a list of data, and the output is a list of data lists. Examples include:
GroupBy : Organize data into groups for computing summary statistics or comparing information across
groups.
Cluster : Cluster data together based on similarity metrics using clustering algorithms or LLM identifica-
tion.
Data Linking Operators. These operators identify and link related data across different sources. The
input is typically a set of data elements, and the output is a linked structure. An example is:
Link : Identify and link related data, such as tables and documents in a data lake, supporting different
granularities (e.g., table level, tuple level, paragraph level, and document level).
Data Aggregation and Integration Operators. These operators integrate information from multiple
sources or compute aggregate insights. The input is typically a list of data, and the output is a single
value or cohesive response. Examples include:
Aggregate: Compute statistical aggregation results, such as sum or average, from data.
Summarize: Condense text into shorter summaries to reduce context consumption for LLMs.

2.2.2 Physical Operators

Each logical operator has multiple physical implementations tailored to different data types, corresponding
to different physical operators. Based on the involvement of LLMs in the analytics process, physical
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Figure 2: Example physical operators for the Extract operator.

operators are classified into two categories:
LLM-Based Physical Operators: These implementations leverage LLMs for tasks requiring

semantic understanding by formulating appropriate prompts. For example, as shown in Figure 2(a), the
Extract operator can utilize an LLM to identify and extract text snippets by providing prompts that
specify the extraction target, such as information related to sports.

Pre-Programmed Physical Operators: These implementations rely on pre-defined logic to
process data, similar to the physical operators in relational databases. For example, as shown in the
Extract operator can extract information using keyword matching or regular expressions to extract
information that follows certain patterns.

In order to select the appropriate physical operator for each logical operator in the plan, iDataLake
maintains detailed text descriptions for each physical operator, including its purpose, input parameters,
and expected outputs. If such descriptions are unavailable, iDataLake invokes the LLM to generate
them with few-shot examples of existing operators automatically. With this information, the overall
pipeline can be constructed accurately by LLMs based on actual needs.

To support user-defined functions (UDFs), we invoke LLMs to generate codes for UDFs.

2.2.3 Adding Other Operators

In practical applications, existing operators may not satisfy specific analytical requirements. iDataLake
supports the seamless addition of new operators to address such needs. Only the following information
is required to add a physical operator: (1) The programmed implementation of the physical operator for
execution. (2) A detailed text description of the operator, including its purpose, input parameters, and
outputs.

If these descriptions are incomplete, iDataLake can call the LLM to generate them. By defining
these elements, iDataLake ensures that the newly added operators integrate seamlessly into the analytics
framework.

2.3 Embedding and Linking

As introduced in Section 1, a key challenge for data analytics over data lakes is to efficiently identify
the data that needs processing, as processing the complete data lake, extensively large in volume, is
impractical. The effectiveness of identifying relevant data is critical since all subsequent operations
are performed on this subset. Therefore, the identification process must achieve both high recall and
high precision. High recall with low precision retains excessive irrelevant data, leading to inefficiencies.
Conversely, high precision with low recall excludes relevant data, rendering correct results unattainable
due to incomplete information.
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Figure 3: Example of embedding alignment between tables and text.

To address this, we propose a bi-encoder-based method that transforms diverse data types into a
unified embedding space, where the similarity between embedding vectors serves as a metric to identify
relevant data across modalities. However, training separate embedding models for different data types
inevitably leads to misaligned embeddings. For example, embeddings for text and table data, although of
the same dimension, are inherently unaligned. Achieving semantic alignment between these embeddings
is a recognized challenge [11]. To the best of our knowledge, we are the first to semantically align
embeddings for table data and text data.

Existing methods extend text embedding models to structured table data by serializing table rows
into natural language (NL) sentences using formatting rules such as [Feature1] is [Value1], [Feature2] is
[Value2], ... or [Feature1]: [Value1], [Feature2]: [Value2], ..., where [Feature] denotes the column name
and [Value] denotes the cell value. Figure 3 illustrates this approach. However, directly computing
embeddings for table rows from their serialized NL expressions is inaccurate, as the serialized format
differs significantly from standard NL expressions, leading to embedding similarities that fail to reliably
identify relevant data.

Embedding Alignment Between Different Types of Data. To overcome this limitation, we
introduce a fine-tuning process that aligns text embeddings with embeddings derived from serialized
table data. We collect a corpus of tables paired with ground-truth relevant text paragraphs from diverse
sources. During fine-tuning, we employ a contrastive learning framework: table rows paired with their
ground-truth text paragraphs are treated as positive examples, while table rows paired with unrelated
text paragraphs serve as negative examples. Using these training pairs, we compute the Multiple
Negatives Ranking Loss [12], which minimizes embedding distances for positive pairs and maximizes
embedding distances for negative pairs.

The fine-tuning process proceeds iteratively, adjusting the embedding space to bridge the semantic
gap between table and text data. Upon convergence, embeddings achieve meaningful alignment, enabling
similarity measures in the unified space to accurately identify relevant data across data types. This
alignment ensures both high recall and high precision in retrieval tasks, significantly enhancing system
performance.

Data Linking. The vast size of data lakes results in an enormous number of data embeddings,
posing significant challenges for efficiently locating relevant data. To address this, we observe that
relevant data often forms natural clusters. Specifically, subsets of data relevant to one query are likely to
be relevant or irrelevant to other queries together, as they often represent related entities. Leveraging this
insight, we propose a preprocessing approach that identifies and organizes these clustering relationships
within the data lake. This process divides the data into distinct blocks, where related data locate in the
same block and the relevant blocks are linked.

To achieve this, we employ the Louvain community detection algorithm [13], which identifies
hierarchical clustering relationships in the data. The algorithm starts by constructing a graph where
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Figure 4: An example pipeline orchestration process, detailing the selection of the Table Filter operator.

nodes represent data items and edges represent embedding similarities. It iteratively optimizes modularity
to detect communities, i.e., subsets of data points with high pair-wise similarities, producing a hierarchy
of clusters. These clusters are then used to organize the data into blocks, with each block representing
semantically similar data. When a query is issued, we first identify the relevant blocks and then
locate specific data within each block. This hierarchical clustering approach reduces the data needing
consideration, enhancing both retrieval efficiency and query accuracy.

2.4 Pipeline Orchestration

Orchestrating an accurate pipeline for query execution over multi-modal data lakes presents unique
challenges due to the heterogeneity of data types and the absence of unified data schemas. Unlike
traditional query execution in relational databases, which operates over structured data with predefined
schemas and deterministic query plans, multi-modal data lakes require a flexible and adaptive pipeline
orchestration mechanism capable of handling diverse data modalities and complex analytics tasks. In this
section, we introduce the pipeline orchestration method employed in iDataLake, which iteratively selects
and applies appropriate operators to reduce the query until it is fully solved. This method combines the
semantic understanding capability of LLMs with a cost-efficient, two-stage operator matching strategy
that minimizes LLM invocations to reduce cost and improve efficiency.
Overview of the Orchestration Process. The orchestration process in iDataLake follows an
iterative workflow aimed at progressively reducing the query. Each iteration involves three key steps:
(1) identifying suitable physical operators that can solve part of the query (coarse-grained matching);
(2) validating the applicability and availability of the matched operators (fine-grained re-ranking), and
(3) applying a feasible operator to simplify the query, solving part of the query logically. This process
repeats until the query is fully resolved, which is verified by the LLM. We next introduce each step in
detail.
Operator Matching. Efficiently matching a query with suitable physical operators is critical for
effective pipeline orchestration. A naive approach of directly prompting an LLM with descriptions of all
operators is infeasible due to constraints such as limited LLM context length and inaccurate selection
among numerous options [4]. To address these issues, iDataLake employs a two-stage operator matching
method:
Coarse-Grained Matching. This stage quickly eliminates irrelevant operators using low-cost checks. The
key idea is that operators are likely to be applicable only if their use cases align with the query. However,
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the specific values in the NL expressions are not helpful for the matching and can even mislead the
matching. Therefore, to facilitate matching, both the query and operator use cases are transformed
into “logical representations" by replacing concrete values with semantic placeholders such as [Entity]
and [Condition]. The transformation is performed by instructing LLMs to conduct semantic parsing
with few-shot examples. After computing these logical representations, the relevance between query
and operators can be measured by the similarity of their semantic embedding vectors. For instance, the
query “Select the documents that are related to swimming" corresponds to the logical representation of
“Select the documents that [Condition]", which has high semantic embedding similarity with the logical
representation of a use case for the Filter operator “Select the documents that satisfy [Condition]" and
thereby the matching can be conducted correctly.

Logical representations of operator use cases and their semantic embeddings can be precomputed.
The logical representation of the query can be computed online. These embeddings enable efficient
similarity-based comparisons, filtering out irrelevant operators accurately without involving the LLM.

After coarse-grained filtering, the remaining operators are further evaluated using the LLM. In this
stage, the LLM verifies the applicability of each operator through prompts and few-shot examples. For
applicable operators, the LLM determines the required inputs and checks their availability in the current
context. This step relies an intermediate variable list maintained throughout the orchestration process,
ensuring accurate and context-aware operator selection.
Fine-Grained Re-ranking. After coarse-grained filtering, the remaining operators are further evaluated
using the LLM. In this stage, the LLM is instructed to verify the applicability of each operator through
prompts and few-shot examples. For applicable operators, the LLM determines the required inputs and
checks their availability in the current context. Specifically, an intermediate variable list is maintained
throughout the whole orchestration process. The list is initialized with the whole data lake. During
the orchestration, intermediate results are generated after the application of each operator. For each
intermediate data, the LLM is instructed to generate a short text description of it. The generated
text descriptions will then be added to the prompt to guide the LLM to select the appropriate inputs.
Meanwhile, based on the dependency relationship between the inputs and outputs of the operators in
the pipeline, the dependency between operators can also be determined. For each operator, only the
dependency relationships with the operators whose outputs are prerequisites are necessary. In this way,
a directed acyclic graph, i.e., a DAG-format pipeline can be constructed that can obtain much higher
efficiency than sequential pipelines.
Query Reduction. Once an applicable operator is selected, it is applied to simplify the query. To
ensure accurate query reduction, the LLM is instructed to conduct this reduction. This involves resolving
part of the query logically. A concrete example of this process is illustrated in Figure 4.
Iterative Query Decomposition. The process iterates in a DFS manner until the query is fully
reduced to a solved form. Each iteration involves selecting an appropriate operator, validating its
applicability, and applying it to reduce the query. The resulting plan is represented as a directed
acyclic graph (DAG), where nodes correspond to the selected physical operators, and edges represent
dependencies between them. Notably, this orchestration method can generate multiple candidate
pipelines by exploring multiple paths in the DFS process.

By combining coarse-grained filtering with embedding-based similarity and fine-grained LLM-driven
operator selection, iDataLake achieves both high efficiency and accuracy in operator matching. This
iterative reduction process enables iDataLake to systematically simplify complex queries over multi-
modal data lakes while leveraging LLMs only when inevitable. When the query is completely solved by
this iterative process, iDataLake constructs an efficient plan to solve complex queries effectively.
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2.5 Pipeline Execution

Unlike traditional databases, where execution plans are deterministic to guarantee correct results,
iDataLake needs to be able to adapt dynamically to handle the inherent unpredictability of both
unstructured data and complex queries. This section describes how iDataLake executes interactively,
adjusting its pipeline in response to intermediate results and unforeseen conditions. As illustrated in
Figure 1, iDataLake can decide to continue execution, adjust the pipeline, replan, or re-identify relevant
data based on the state of intermediate results.
Determining Operator Inputs. Similar to the orchestration phase (Section 2.4), identifying the
correct inputs for each operator is critical during execution. In the orchestration phase, the relationships
between operators’ inputs and outputs are established. During execution, iDataLake determines operator
inputs according to these identified relationships. Additionally, after each intermediate execution step,
the LLM generates a brief textual description of the results. If an input determined during orchestration
is unavailable or unsuitable during execution, iDataLake dynamically re-evaluates the input selection by
repeating the orchestration process. This re-evaluation uses the generated descriptions of intermediate
results as part of the prompt to guide the LLM in selecting appropriate inputs for the operator.
Parallel Topological Execution. To maximize execution efficiency, iDataLake follows a bottom-up,
parallelized execution strategy based on the pipeline’s topological order. Operators are executed in
parallel once their prerequisites are met, continuing until all operators have been executed and the final
result is produced. After each operator executes, iDataLake verifies whether its intermediate result
aligns with expectations. Discrepancies can occur due to issues in the initially discovered relevant data
or the incorrectness of the orchestrated pipeline. Therefore, if discrepancies are found, iDataLake first
re-examines the relevant data identification steps, querying the LLM to rewrite the original query in
an alternative form and using the rewritten query to re-identify relevant data. If the re-identified data
closely matches the initial results, the system triggers a dynamic adjustment to the pipeline, as described
next.
Pipeline Adjustment During Execution. When an operator fails to produce the expected result,
iDataLake dynamically adjusts the execution plan without restarting the entire planning and execution
process. Early stopping conditions, identified by the LLMs, can prune unnecessary operations, enhancing
the execution efficiency.
Incremental Execution. As discussed in Section 2.4, multiple candidate plans are generated during the
planning phase. Although only one plan is executed, many of these plans share a common sequence of
initial operators due to their generation by a depth-first search (DFS) strategy. When an operator fails,
iDataLake selects the plan with the longest matching sequence of initial operators and resumes execution
from the last successful operator. This prevents the need to regenerate the entire plan. However, if there
is minimal overlap between plans or no matching plans, iDataLake initiates replanning.
Replanning for Adjustment. If no plan shares a sufficient initial sequence, iDataLake replans from the
point of failure. This is faster than starting from scratch (replanning for the initial query), as the current
query has already been partially simplified by the earlier execution. If no suitable pipeline can be found,
iDataLake backtracks to the last successful operator, repeating this process until it reaches the root
(i.e., backtracks to the initial query).
Pruning Based on Insights from Data Analysis. Analyzing unstructured data can uncover relationships
such as equivalencies or exclusivities between entities or conditions that were not initially identified
during the planning phase. These insights enable the optimization of query execution by eliminating
redundant operations. For instance, if two conditions are found to be equivalent, applying both filters
becomes unnecessary, and one can be skipped to improve efficiency. Conversely, if conditions are
mutually exclusive, the query can be simplified or terminated early, avoiding unnecessary data processing.
Consider the query: List the mathematicians who have won the Fields Medal at the age of 50 or older. By
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analyzing the Fields Medal’s eligibility criteria, it becomes evident that the conditions "won the Fields
Medal" and "at the age of 50 or older" are mutually exclusive, as the award is restricted to individuals
under 40. This insight allows the query execution to be halted immediately, saving computational
resources by avoiding processing large datasets for a result that is guaranteed to be empty.

3 Challenges and Opportunities

Scalability and Efficiency. A major challenge in implementing LLM-powered analytics on a large
data lake is the inherent high cost and low computation efficiency of LLMs. Multi-modal data lakes
consist of structured, semi-structured and unstructured data, which require distinct processing pipelines.
Efficiently querying such vast datasets with LLMs necessitates reducing invocation costs without
sacrificing performance. Scaling LLMs to handle such vast quantities of heterogeneous data, demands
careful optimization of both the model’s computation and the overall query pipeline architecture. For
example, ordering the operators in the pipeline based on cardinality estimation [14, 15] is crucial for
efficiency. Research into more efficient LLM architectures, such as fine-tuning models for domain-specific
tasks or incorporating hybrid models with different sizes for tasks of different complexity [17], could
mitigate the scalability issue. Additionally, caching intermediate results in a distributed system or
identifying and indexing critical data components, such as coresets [18, 19] could improve the system’s
efficiency in handling large datasets.
Interpretability and Transparency. LLMs are often criticized for their “black box" nature, making
it difficult to understand how they generate results or why they make particular decisions. This lack
of transparency poses challenges for users who need to trust and interpret the outcomes of their data
analytics queries. In the context of multi-modal data lakes, where complex relationships between
structured and unstructured data must be identified and analyzed, ensuring that the system’s reasoning
is interpretable becomes even more critical. Approaches to improving the interpretability of LLMs,
such as attention mechanisms and counterfactual reasoning, can enhance the transparency of the
system. By providing insights into the specific data features or relationships that influence the model’s
decision-making, these methods could increase user confidence in the results. Moreover, incorporating
explainability into the pipeline design could facilitate the adoption of LLM-powered analytics in sensitive
or regulated industries.
Evaluation and Benchmarking. The evaluation of LLM-driven analytics over multi-modal data
lakes remains an open challenge, particularly in comparing the effectiveness of different methodologies.
Metrics for traditional data analytics, such as precision, recall, or F1 score, may not adequately capture
the nuances of integrating structured and unstructured data sources. Furthermore, due to the large-scale
and dynamic nature of the data lake, it is difficult to develop comprehensive benchmarks that can
consistently evaluate the model’s performance across different types of queries and use cases. Developing
new benchmarking methodologies tailored for multi-modal data lake analytics would be an essential step
forward. These benchmarks could focus on both the accuracy of the results and the system’s ability to
integrate and analyze heterogeneous data sources. Additionally, creating standardized test datasets for
data lake environments could encourage further research and provide a basis for consistently comparing
different models and systems.
Model Adaptation to Domain-Specific Needs. LLMs are typically trained on a wide array of
general-domain data, which may not always capture the specific nuances of particular industries or use
cases, such as legal, healthcare, or finance. As a result, LLMs may not fully comprehend domain-specific
terms, contexts, or relationships without further domain-specific fine-tuning. For example, the data
linking may become inaccurate for personal domain data, even after the alignment finetuning. Domain
adaptation of LLMs is a promising avenue for improving system performance in specialized applications.
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By leveraging transfer learning or few-shot learning techniques, LLMs can be fine-tuned to perform better
on industry-specific tasks. Furthermore, the system can be augmented with domain-specific knowledge
bases or ontologies, which can enhance the model’s understanding of complex, industry-relevant concepts.

4 Conclusion

In this paper, we present iDataLake, a novel LLM-powered analytics system designed to address
the challenges of data analytics in multi-modal data lakes. By integrating large language models
with advanced semantic operators, embedding-based data linking, and dynamic pipeline orchestration,
iDataLake provides a unified framework for querying and analyzing diverse data types, including
structured, semi-structured, and unstructured data. iDataLake introduces several key innovations
including semantic operators tailored to the unique requirements of multi-modal analytics, unified
embedding-based data linking for aligning heterogeneous data types in a common semantic space,
dynamic pipeline adjustment to adapt to evolving query execution requirements and interactive and
incremental plan execution to ensure robust and efficient query handling.
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