
Customizing Operator Implementations for SQL Processing via Large
Language Models

Immanuel Trummer
Cornell University

itrummer@cornell.edu

Abstract

Recent advances in generative AI enable code synthesis at unprecedented levels of accuracy. In
the context of data management, this opens up exciting opportunities to automatically customize
core components of database management systems with the help of large language models such as
OpenAI’s GPT model series. This paper describes the vision of GenesisDB, a framework powered by
large language models, that uses code synthesis to customize relational operators according to user
specifications. The paper describes the first, simple prototype of GenesisDB that generates operator
implementations in the Python programming language. The first experimental results demonstrate
that the prototype is able to generate implementations for most relational operators, required for
running standard benchmarks such as TPC-H. At the same time, the experiments reveal a multitude
of research challenges that need to be solved to make this approach practical.

1 Introduction

Database management systems typically use a code base that evolves slowly over time, supported by
large teams of software developers. End users may still influence system behavior via tuning knobs.
However, the scope of such modifications is limited and insufficient for the examples outlined next.

Example 1: A user, trying to formulate a complex SQL query, would like to add custom SQL debugging
support. For instance, this may take the form of customized output, including input/output samples,
printed after each operation in the query plan.

Example 2: A developer wants to integrate SQL processing into a Python application that uses
specialized in-memory data structures. To avoid conversion overheads and external dependencies, the
developer would like to generate custom implementations of relational operators that are tailored to
existing data structures.

Example 3: A database vendor would like to explore different types of progress updates while data is
being processed. This can take the form, e.g., of a progress bar or of notifications detailing the amount
of data processed at certain time intervals. The vendor would like to test various different variants in a
user study before fully implementing the most popular version.

Example 4: The teacher of an introductory database class would like to create a specialized processing
engine that generates educative content on used operators while processing. This output could take the
form of operator descriptions, links to associated SQL tutorials or book chapters, or information on the
complexity of each operator as it is processing.

45



Existing systems are typically unable to support all of the aforementioned specializations via
parameter settings. Hence, supporting the example scenarios requires code changes of existing systems
or implementing a new system from scratch. Such changes are beyond the capabilities of lay users
without significant expertise in coding and databases. Even for experienced developers, some of the
aforementioned changes may represent significant endeavors that consume large amounts of time.

This paper proposes the use of generative AI to customize core components of database management
systems, thereby reducing or, in the best case, even eliminating customization overheads for developers
and end users. As a proof of concept, it also reports on the first experimental results of a prototype
system, GenesisDB, that uses generative AI to synthesize relational operator implementations.

The enabling technology of GenesisDB are large language models, based on the Transformer ar-
chitecture. This architecture, together with pre-training approaches that leverage large amounts of
unlabeled samples, has recently led to fundamental advances in the domain of natural and formal
language processing. The newest generation of such models is often used without task-specific training,
merely by specifying generation tasks as part of the input text (the so-called “prompt”) while optionally
providing a few solution samples. This is the approach taken by GenesisDB: it employs OpenAI’s GPT
models to synthesize custom code implementing relational operators.

GenesisDB comes with a set of prompt templates that describe the desired behavior of standard
operators, as well as input and output formats. These prompt templates contain placeholders that can
be substituted by user instructions (in natural language), thereby enabling customization. GenesisDB
uses GPT to synthesize code for each operator. Then, it validates implementations by a sequence
of more and more complex tests. Such tests include SQL queries, processed using newly generated
operator implementations as well as a reference system (currently Postgres) to verify result consistency.
Failed test cases initiate an automated debugging approach. Here, GenesisDB analyzes dependencies
between operators and test cases as well as a probabilistic model to identify likely faulty operators.
Next, GenesisDB tries to re-synthesize code for those operators, varying the prompt structure as well as
generation settings to obtain a variety of alternative implementations to test. Specifically, GenesisDB
may use code generated previously for other operators which passes a large number of test cases (and is
therefore likely to be correct) as samples directly in prompts. This increases the chance to generate
better code for other operators.

At run time, GenesisDB uses traditional query planning to translate queries into sequences of
operator invocations. This process does not involve code synthesis by models and is therefore fast and
robust. GenesisDB translates query plans into code that references custom operator implementations.
While their implementation is dynamically synthesized, their input/output signature is known a-priori.
More precisely, for each operator, the name of the function implementing it as well as the names of its
parameters are known a-priori. On the other side, the type of each input parameter can be influenced by
user commands. Despite of that, as GenesisDB uses a dynamically typed language for query execution,
the code referencing custom operators does not require customization. Hence, GenesisDB synthesizes
code only before run time. At run time, it uses a static component generating query-specific code that
invokes previously synthesized operator implementations. Note that generated operator implementations
can also be used outside of GenesisDB, e.g. in the context of an existing application storing data in
specialized data structures.

GenesisDB is currently an early prototype and is restricted to generating operator code in the Python
programming language. Despite its early stages, the experiments show that the current version already
synthesizes correct operator implementations for a majority of relational operators. While the data
processing performance is currently not competitive, the proof-of-concept results show that the resulting
implementations can process even queries of elevated complexity of the TPC-H benchmark. In summary,
the original scientific contributions in this paper are the following:

46



• The paper introduces the vision of using generative AI to synthesize customizable code for core
components of database management systems.

• The paper describes an early prototype of GenesisDB, a code synthesis framework using OpenAI’s
GPT models, that follows this approach.

• The paper presents first experimental results, revealing the general feasibility of the approach
while also pointing out limitations.

• The paper discusses next steps and future research challenges, based on observations with the
current prototype.

The remainder of this paper is organized as follows. Section 2 provides background information and
discusses prior, related work. Section 3 describes an early prototype of GenesisDB that is used for the
experiments in the following section. Section 4 reports on proof-of-concept experiments, performed with
the current prototype. Finally, Section 5 discusses next steps and research challenges that need to be
solved to make the approach practical.

2 Background and Prior Work

The last few years have seen transformative advances in the domain of language processing, including
natural as well as formal languages (while less relevant for this publication, recent Transformer models [13]
can also be used for data of other modalities than text, such as images). These advances are due to novel
neural network architectures, in particular the Transformer model [22, 24], as well as to the successful
application of transfer learning methods in training. Transformer models, among other advantages,
facilitate the creation of large models with hundreds of billions of trainable parameters. When trained
on generic tasks (e.g., predicting the next token) on sufficiently large amounts of unlabeled training data,
such models require little to no specialization to solve new tasks [2]. Transformer models can be used
for code synthesis [4, 12], a feature exploited by GenesisDB. Trained on large amounts of code from
repositories such as GitHub, such models complete prompts, i.e. short text documents containing partial
code or natural language instructions, into fully specified code in general-purpose programming languages.
In certain settings, their performance is nowadays comparable to the one of human developers [8].

These developments motivate the vision of database components, synthesized via language models.
GenesisDB is a prototype implementing this approach. GenesisDB is based on OpenAI’s GPT models [12].
Similar models power GitHub’s CoPilot [5], an auto-completion tool offered on the GitHub platform.
Unlike CoPilot, GenesisDB is however specialized to generating code for relational operators that, when
combined, form a complete SQL processing engine. GenesisDB features prompt templates, specialized
for generating relational operators, as well as strategies needed to create a complex system from parts
generated in different code synthesis steps. The size of a typical engine, generated by GenesisDB, exceeds
the code size typically generated in a single model invocation. GenesisDB relates most to CodexDB [20],
a system synthesizing code for processing SQL queries that additionally implements natural language
instructions. While CodexDB synthesizes code for processing one specific SQL query, GenesisDB aims
at generating a system that can process all queries without run time code synthesis.

GenesisDB also relates to other recent applications of language models and, more broadly, machine
learning in the context of database management systems. These include, for instance, prior work on
natural language query interfaces [6, 10, 19, 23, 25], as well as approaches for entity matching [9], data
wrangling [11, 16], database auto-tuning [18, 21], and data integration [3]. Several recent publications use
language models or, generally, machine learning to implement relational operators directly [3, 7, 15, 17],

47



Table 1: Operators synthesized by GenesisDB.

Group Operators

Tests CheckColumnType, CheckTableType
I/O LoadTable, StoreTable
Basic GetColumn, GetValue, CreateTable,

GetNull, IsNull, IsEmpty, SetColumn,
AddColumn, FillIntColumn, FillFloat-
Column, FillBoolColumn, FillStringCol-
umn, NrRows, Map, ToInt, ToFloat, To-
Bool, ToString, Substring, Limit

Arithmetic Addition, Subtraction, Multiplication,
Division, Floor

Boolean LessThan, GreaterThan, LessOrEqual,
GreaterOrEqual, Equal, NotEqual,
Case, And, Or, Not, Filter

Aggregates Sum, Min, Max, Avg, Count, Sum-
Grouped, MinGrouped, MaxGrouped,
AvgGrouped

Complex Sort, InnerJoin, LeftOuterJoin,
RightOuterJoin, CartesianProduct

leading to approximate processing. Instead, GenesisDB uses machine learning before run time to
synthesize code for processing.

3 Prototype Overview

Figure 1 shows an overview of the GenesisDB prototype. Section 3.1 discusses query processing.
Section 3.2 describes how GenesisDB synthesizes its core engine using generative AI.

3.1 Query Processing

The Processing sub-system (left side in Figure 1) processes SQL queries and returns results to users.
GenesisDB is an analytical SQL processing engine and supports all queries of the TPC-H benchmark
(but no transactions). As discussed in more detail later, it uses relational operators for processing that
are synthesized according to user instructions. A GenesisDB database is represented as a directory,
containing a file with SQL commands creating the corresponding schema, as well as one .csv file for
each table in the database (containing the data). The current prototype is restricted to processing data
stored in .csv files. Expanding the scope to other data formats, likely enabling more efficient processing,
is part of the future work plans.

The database catalog contains information on the database schema and file locations, extracted from
the database directory. It is used to inform the query parser as well as the query planner. Currently,
GenesisDB uses a simple, rule-base query planner, implemented by the Apache Calcite library [1]. The
planner generates a logical query plan, determining the sequence of operations without selecting between
operator implementations. Using cost-based optimization is challenging as the implementation (and,
therefore, cost function) of operators changes dynamically. Learned cost models requiring a few samples

48



Figure 1: Overview of GenesisDB system.

Table 2: GenesisDB accepts natural language instructions or code snippets for the following SQL engine
properties.

Property Semantics

Prefix Common prompt prefix (e.g., imports)
Table How to represent relations
Column How to represent columns
Null How to represent the SQL NULL value
Boolean How to represent Boolean values
Integer How to represent integer values
Float How to represent float values
String How to represent string values
Suffix Common prompt suffix (e.g., behavior)

may help in the future.
The SQL processor translates logical query plans into a sequence of steps, using a set of 54 operators,

shown in Table 1. These operators are more fine-grained than the ones typically used in database
engines (e.g., introducing separate operators for aggregation with and without grouping as well as for
different join types). The goal of using relatively specialized operators is to make operator synthesis
easier, reducing the number of cases that need to be handled per function. GenesisDB generates code
for processing queries, combining synthesized code implementing operators with code invoking the latter
to execute the query plan. In the current prototype, all code is formulated in Python (Version 3.8).
Generating code in lower-level languages such as C is planned for future versions.

3.2 Operator Synthesis

The distinguishing feature of GenesisDB, compared to prior systems, is that it synthesizes operator
implementations using generative AI. This opens up possibilities to customize generated components
according to user instructions. In principle, such instructions may change the in-memory representation
of tables, columns, or fields, as well as inject custom behavior during processing. For instance, this
may include generating output that is useful for debugging or training, executing custom performance
or data analysis, or writing checkpoints according to user instructions. GenesisDB generates code via

49



def not_equal(column_1, column_2):
""" True where column_1 <> column_2.

1. Return [Null] for rows where one input row is [Null].
2. Return true iff first row <> second row otherwise.
3. Ensure that the output is [Column].

Args:
column_1: [Column].
column_2: [Column].

Returns:
[Column] containing Boolean values.

"""

Figure 2: Prompt template for generating NotEqual operator. The template contains placeholders
(marked in color) that can be customized by users.

prompting [14], i.e. by submitting small text documents describing the generation task to generative
models. Users influence the generation process by providing substitutes for placeholders in prompt
templates or custom text that is added as a prefix or suffix to default prompts. Table 2 shows an
overview of all the prompt components that can be influenced by users. An example of a prompt
template containing placeholders from Table 2 follows.

Example 5: Figure 2 shows an example prompt template, used to generate the “NotEqual” operator.
Prompt parts marked up in color represent snippets that can be customized by users.

Algorithm 1 shows high-level pseudo-code for the synthesis process. Given user instructions, a
list of operators to synthesize, a set of test cases to validate synthesized operators, and, optionally,
default implementations for each operator, it returns a custom engine (i.e., operator implementations)
that follows the input instructions. The full list of operators, as well as their semantics and function
signatures, remain fixed (to enable the query processor to use them appropriately to realize query plans).
If desired, synthesis may only focus on a subset of operators (while using default implementations for
others). To validate generated implementations, the current prototype uses a set of 172 test cases by
default (users can easily add new test cases that are automatically used during synthesis). Test cases are
either realized as SQL queries (then, GenesisDB compares query results generated by custom operators
to the ones generated by a reference system) or as small code samples referencing operators (here,
GenesisDB ensures that all assertions hold).

GenesisDB first sorts operators using a simple heuristic (based on the length of the associated
prompt), prioritizing operators that are potentially easier to synthesize. As discussed more in the
following sections, operator order matters as it influences, for instance, the order in which tests are
performed. Also, code synthesized for operators that are ordered earlier may be used as a sample
when synthesizing operators that appear later. After sorting, GenesisDB synthesizes the first version
of the engine by generating one implementation for each required operator (E.code[o] denotes the
implementation of operator o).

Next, GenesisDB validates generated code via test cases and tries to fix problems via re-synthesis.
This process continues until the generated engines passes all test cases or until a user-defined timeout
is reached. Testing via Function RunTests stops at the first failed test case. The result of testing is
a summary, reporting passed and failed tests. GenesisDB uses that summary to identify likely faulty

50



Algorithm 1 Generating SQL execution engines based on natural language instructions.
1: // Returns SQL processing engine using code synthesized
2: // according to natural language user instructions U or default
3: // implementations D to implement operator list O, validated
4: // via test cases T .
5: function Genesis(U,O, T,D)
6: // Choose order in which operators will be validated
7: O ←SortOperators(O)
8: // Synthesize initial code for each operator
9: E ←Engine.Init

10: for o ∈ O do
11: c←Synthesize(U,E,O, o)
12: E.code[o]← c
13: end for
14: // Run tests and re-synthesize faulty operators
15: while Not all tests pass and no timeout do
16: // Validate synthesized engine
17: r ←RunTests(O,E, T )
18: // Find operators likely to have bugs
19: F ←FaultyOperators(r)
20: // Try replacing faulty operators
21: E ←FixOperators(U,O,D,E, F, r.tests)
22: end while
23: return E
24: end function

operators, and then tries to fix them. Fixing an operator involves re-synthesizing its code, possibly with
a different prompt and different synthesis settings. If this approach fails to resolve previous problems,
using a limited number of tries, GenesisDB uses default operator implementations instead. Those
default operators should use the same data representation as the desired target engine (in order to be
compatible). They may however not implement any custom behavior, requested by the user. Therefore,
GenesisDB tries to minimize the number of default operators used. If default operators are not specified,
GenesisDB ultimately notifies the user, hinting at operators that likely need replacement. After providing
the corresponding code, the synthesis process can be restarted.

4 Proof-of-Concept Experiments

The goal of the experiments is to test whether the prototype is able to synthesize operator implementations
that can process complex SQL queries.

4.1 Experimental Setup

All experiments are executed on a t2.2xlarge EC2 instance, featuring eight virtual CPUs, 32 GB of main
memory, and 500 GB of EBS storage. The instance is running Ubuntu and GenesisDB uses Python 3.8
to execute queries. Postgres 10.22 is used to generate reference results for all test cases. All test queries
are executed on a TPC-H database with a low scaling factor of 0.01 to speed up test evaluation. The
following experiments use GPT-3 Codex for code synthesis. This model is relatively small, compared

51



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10−1

100

101

102

103

hS*@> Zm2`v

h
BK

2
Ub

V

SQbi;`2b, SE AM/2t2b SQb;`2b, SEY6E AM/2t2b
aZGBi2 :2M2bBb.", bBKTH2

:2M2bBb.", �``Qr

Figure 3: Performance on TPC-H queries with scaling factor 1. The red line marks the timeout of 10
minutes.

to recently released models, but has been specialized for code generation. GenesisDB retries operator
synthesis five times in case of errors. It uses 172 test cases for validation, including all TPC-H queries,
executed on a TPC-H database with a scaling factor of 0.01.

Tables 3 and 4 show values used to substitute placeholders in prompt templates in two separate
experiments. The first experiment synthesizes a system that exploits standard Python classes for
representing data in main memory. The second experiment generates an engine that relies on PyArrow
to represent and process data. To increase the chances of successful generation, each prompt template
was prefixed by the implementation of a simple operator (incrementing the values in a column by one)
that follows the requested style (i.e., in the first experiment, the increment operator uses Python lists
as input, in the second experiment it operates on Pyarrow data structures). Whenever GenesisDB is
unable to synthesize an operator after at most five tries, a corresponding operator implementation is
added manually. The ratio of successfully generated operators is one of the evaluation metrics discussed
in the next subsection.

4.2 Experimental Results

Using Python data structure, GenesisDB is able to synthesize correct operator implementations in 89%
of cases. On the other hand, GenesisDB was only able to generate correct implementations for 48% of
operators when customizing synthesis for PyArrow data structures. Generating operators and running
tests took about four hours for the first experiment and about three hours for the second experiment.

Figure 3 shows performance results for TPC-H queries, comparing GenesisDB (in arrow configuration
and with simple Python lists as in-memory data representation) to Postgres 10.22 with primary key or
primary and foreign key indexes and SQLite 3.36. Clearly, traditional database management systems
achieve optimal performance. On the other hand, there are a few queries where the PyArrow implemen-
tation performs better than some of the traditional systems. Overall, while performance improvements
are a primary goal of future work, the results show that the prototype can synthesize operator imple-

52



Table 3: Settings used to synthesize a simple SQL engine.

Property Value

Prefix import functools
import operator
import streamlit as st
import time

Table a list of rows where each row is a list
Column a list
Null None
Boolean bool
Integer int
Float float
String str

Table 4: Settings to synthesize SQL engine using Pyarrow.

Property Value

Prefix import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.csv as csv

Table a pyarrow Table
Column a pyarrow Array
Null None
Boolean pa.bool_()
Integer pa.int64()
Float pa.float64()
String pa.string()

mentations enabling processing of complex SQL queries. More importantly, the results provide evidence
that customization has a significant impact on the properties of the generated implementations, notably
run time.

5 Future Work

The proof-of-concept experiments demonstrate that language models can synthesize code for a majority
of relational operators. At the same time, they provide the first evidence for the possibility of customizing
the generated operator implementations, leading to significantly different behavior in the generated
systems. While these first results are promising, they also reveal important limitations that need to be
addressed in future work.

First, the performance results demonstrate the limitations of using Python for implementing relational
operators. The choice of the Python programming language for those first experiments is motivated
by several factors. First of all, Python is advertised as one of the languages in which GPT models
are most proficient in (due to a large amount of corresponding training data in the corpora used for
pre-training). At the same time, high-level programming languages such as Python enable relatively
concise pieces of code that implement standard operators. Generating shorter pieces of code is oftentimes

53



easier for language models, compared to generating the more verbose operator implementations that
are typical for traditional database management systems. However, as revealed in the experiments, the
performance penalty of using Python is enormous, motivating future research that aims at generating
code for relational operators in lower-level languages such as C.

Generating code in lower-level programming languages leads to new research challenges. First of
all, whereas the current implementation aims to generate entire operator implementations in case of
suspected errors, this may become inefficient in the case of larger operator implementations. Instead, it
seems prudent to restrict re-synthesis efforts to parts of operator implementations that are likely to be
incorrect. Here, language models can help to identify code parts, based on an analysis of error messages
or inconsistent results, that likely require re-generation. Second, whereas the current implementation
merely provides a description of desired operator behavior to the language model, future implementations
could provide more information, facilitating the synthesis task. For instance, it might be possible to
provide language models with a simple operator implementation as part of the prompt input, thereby
facilitating the task of generating more sophisticated versions. Also, instead of generating operators from
scratch, it may be easier to “morph” an operator implementation in multiple steps, running automated
tests after each transformation step.

A complementary avenue to improve the performance of the generated implementations is to bias
synthesis, based on automated performance tests. For instance, given user-defined performance goals,
the system could regenerate operators whenever performance goals are not met. Of course, doing so
introduces additional constraints that may make it harder to generate operator implementations that
pass all correctness and performance tests.

Another source of future research challenges lies in increasing the success ratio of code synthesis.
As shown in the experiments, the current prototype is not able to generate correct code in all cases.
As a first step, a study evaluating the cost-quality tradeoff achieved by different OpenAI models (e.g.,
the recently released OpenAI o1 model) or models of other providers is interesting. Another possibility
for future improvements is to replace generic language models by versions that are specialized for the
task of generating relational operators. For instance, many of OpenAI’s GPT model variants enable
users to apply fine-tuning, meaning to re-train models on a corpora that is more representative of the
specific tasks they are targeted at. In the specific scenario investigated in this paper, relevant training
data could incorporate code from (open-source) database management systems. As the set of relational
operators is fairly standardized across different database management systems, fine-tuning on existing
code likely provides valuable information to the language model for operator synthesis. At the same
time, this could enable GenesisDB to integrate advanced techniques that have been proven to improve
performance for relational data processing, thereby benefitting performance as well.

Finally, future research could focus on improving the interaction between the user and the system.
Language models cannot currently provide guarantees on generating accurate code. Therefore, coding
assistants are typically considered tools for human-in-the-loop software development, rather than purely
automated tools. As shown in the experiments, GenesisDB requires help to synthesize complete sets of
operators as well. While some of the aforementioned approaches may push the boundaries in terms of
the success ratio in code synthesis, it still seems likely that GenesisDB requires guidance from users to
deal with complex scenarios. However, the time of users is precious which motivates research on how to
get the most valuable insights from users with limited time investments from their side. For instance,
users with an IT developer background could provide sample code that is requested by the language
model. Here, the goal would be to carefully select which samples to request, maximizing the benefit
for code synthesis. Alternatively, users without an IT background could still be helpful in verifying
whether or not generated engine implementations satisfy the features requested via customization. Again,
minimizing the number of questions addressed to users will make the system more practical.

54



6 Conclusion

This paper introduces the vision of highly customizable database management systems. Given recent
developments in the domain of generative AI, it becomes possible to generate core components of database
execution engines via generative AI. This opens up new possibilities for customization, according to user
specifications.

This paper described the first prototype of GenesisDB, a code synthesis framework powered by
language models that implements this approach. First experimental results show that GenesisDB is able
to generate correct code for a majority of operator implementations. On the other hand, the current
prototype is only able to generate correct code for a subset of operators and the performance of the
generated code is not yet satisfactory. This opens up various opportunities for future research.

Acknowledgement

This project is supported by NSF CAREER grant IIS-2239326 (“Mining Hints from Text Documents to
Guide Automated Database Performance Tuning”).

References

[1] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire. Apache calcite: A
foundational framework for optimized query processing over heterogeneous data sources. In
SIGMOD, pages 221–230, 2018.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, pages 1877–1901, 2020.

[3] Z. Chen, J. Fan, S. Madden, and N. Tang. Symphony: Towards Natural Language Query Answering
over Multi-modal Data Lakes. In CIDR, pages 1–7, 2023.

[4] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay,
N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin,
M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski,
X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat,
A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz,
O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. PaLM:
Scaling Language Modeling with Pathways. CoRR, abs/2204.0:1–87, 2022.

[5] G. D. Howard. GitHub Copilot: Copyright, Fair Use, Creativity, Transformativity, and Algorithms
*. pages 1–13, 2021.

[6] G. Karagiannis, M. Saeed, P. Papotti, and I. Trummer. Scrutinizer: A Mixed-Initiative Approach
to Large-Scale, Data-Driven Claim Verification. PVLDB, 13(12):2508–2521, 2020.

[7] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo, G. Leclerc, S. Madden, H. Mao,
and V. Nathan. SageDB: A learned database system. In CIDR, pages 1–10, 2019.

55



[8] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, and R. Leblond. Competition-Level Code
Generation with AlphaCode. DeepMind Technical Report, pages 1–73, 2022.

[9] Y. Li, J. Li, Y. Suhara, A. Doan, and W. C. Tan. Deep entity matching with pre-trained language
models. Proceedings of the VLDB Endowment, 14(1):50–60, 2020.

[10] Y. Luo, N. Tang, G. Li, C. Chai, W. Li, and X. Qin. Synthesizing Natural Language to Visualization
(NL2VIS) Benchmarks from NL2SQL Benchmarks. In SIGMOD, pages 1235–1247, 2021.

[11] A. Narayan, I. Chami, L. Orr, and C. Ré. Can Foundation Models Wrangle Your Data? PVLDB,
16(4):738–746, 2022.

[12] OpenAI. https://openai.com/blog/openai-codex/, 2021.

[13] OpenAI. GPT-4 Omni Release, 2024.

[14] T. L. Scao and A. M. Rush. How Many Data Points is a Prompt Worth? In NAACL, pages
2627–2636, 2021.

[15] S. Suri, I. Ilyas, C. Re, and T. Rekatsinas. Ember: No-Code Context Enrichment via similarity-based
keyless joins. PVLDB, 15(3):699–712, 2021.

[16] N. Tang, J. Fan, F. Li, J. Tu, X. Du, G. Li, S. Madden, and M. Ouzzani. Rpt: Relational
pre-trained transformer is almost all you need towards democratizing data preparation. PVLDB,
14(8):1254–1261, 2021.

[17] J. Thorne, M. Yazdani, M. Saeidi, F. Silvestri, S. Riedel, and A. Halevy. From natural language
processing to neural databases. Proceedings of the VLDB Endowment, 14(6):1033–1039, 2021.

[18] I. Trummer. The Case for NLP-Enhanced Database Tuning: Towards Tuning Tools that “Read the
Manual”. PVLDB, 14(7):1159–1165, 2021.

[19] I. Trummer. BABOONS: Black-box optimization of data summaries in natural language. PVLDB,
15(11):2980 – 2993, 2022.

[20] I. Trummer. CodexDB: Synthesizing Code for Query Processing from Natural Language Instructions
using GPT-3 Codex. PVLDB, 15(11):2921 – 2928, 2022.

[21] I. Trummer. DB-BERT: a Database Tuning Tool that “Reads the Manual”. In SIGMOD, pages
190–203, 2022.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is All You Need. In Advances in Neural Information Processing Systems, pages 5999–6009,
2017.

[23] N. Weir, A. Crotty, A. Galakatos, A. Ilkhechi, S. Ramaswamy, R. Bhushan, U. Cetintemel, P. Utama,
N. Geisler, B. Hättasch, S. Eger, and C. Binnig. DBPal: Weak Supervision for Learning a Natural
Language Interface to Databases. pages 1–4, 2019.

[24] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush. Transformers: State-of-the-Art Natural Language
Processing. In EMNLP, pages 38–45, 2020.

[25] V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating Structured Queries from Natural
Language using Reinforcement Learning. CoRR, abs/1709.0(1):1–12, 2017.

56


