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Abstract

The exponential growth of data across diverse sources—from the web and scientific repositories to
enterprise systems—has amplified the need for effective data discovery and integration methods. While
data integration has been extensively studied for decades, traditional approaches face limitations
in generalization and scalability, often requiring a time-consuming and error-prone process that
demands manual effort. Dataset discovery, though a more recent research direction, encounters
similar challenges. A fundamental issue across both domains is semantic heterogeneity and ambiguity,
as existing methods frequently struggle to understand the underlying meaning of data, limiting their
effectiveness across diverse applications.

Large Language Models (LLMs) have emerged as a promising solution to enhance both data
integration and discovery tasks. These models encode vast amounts of knowledge from extensive
training data, enabling them to contextualize datasets—both their schema and contents—within
real-world semantics. Notably, LLMs have demonstrated remarkable generalization capabilities,
successfully performing various data tasks even without task-specific fine-tuning. This paper examines
how LLMs are being applied across various integration and discovery tasks, synthesizing recent
developments in this rapidly evolving field. We identify key limitations in current methods and
suggest potential directions for future research, offering insights into both the potential and challenges
of LLM-driven solutions.

1 Introduction

The increasing availability of datasets presents unprecedented opportunities for innovation across
government, industry, and scientific research. By integrating data from multiple sources, it is possible to
address complex and important questions that would otherwise be difficult or impossible to answer. For
example, integrating genomic, transcriptomic, proteomic, and clinical data from multiple studies allows
scientists to carry out pan-cancer analyses and identify common patterns, shared molecular mechanisms,
and unique characteristics across cancer types [74]. Similarly, in climate science, combining satellite
imagery with ground sensor data improves the accuracy of climate models and predictions [140]. Data
integration unlocks new insights, driving advancements across many domains.

Despite efforts to make data FAIR–findable, accessible, interoperable and reusable [133]–discovering
and integrating datasets remains a significant challenge [12, 49, 62, 96]. While datasets published on the
Web are easily accessible, finding specific datasets can be difficult. They are often spread across different
repositories that typically rely on simple keyword-based search interfaces, which are insufficient for users
to express important information needs [10, 62, 105]. This challenge is further compounded by data
heterogeneity: different datasets may use varying terminology for the same attribute or, conversely, the
same term for distinct concepts. Such heterogeneity hinders the accuracy and recall of discovery queries,
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creating barriers to interoperability and re-usability and making it difficult to combine data from diverse
sources [27].
Dataset Discovery and Integration. Dataset discovery involves systematically identifying and
retrieving relevant datasets from data repositories or data lakes [8, 10, 36, 38, 42, 109]. Datasets can be
discovered through text-based search, where information needs are expressed in keyword-based queries
that are matched against metadata and contents [124, 126, 151], as well as dataset-oriented queries, where
users provide a query table and search for relevant, related datasets [3, 25, 29, 30, 43, 51, 60, 90, 105, 160].
These search paradigms largely rely on schema similarity or content-based relevance, but incomplete
metadata and semantic heterogeneity remain key challenges.

Data integration refers to the process of combining data from disparate sources into a unified,
coherent dataset [27]. It encompasses several key tasks such as schema matching [102], which identifies
semantically similar schema elements (e.g., attributes) across datasets, and entity resolution [19], which
determines when different records refer to the same real-world entity. Data integration has been a
long-standing research area, with a rich body of literature addressing its challenges [69]. Related
concepts have emerged in specific domains. For instance, data harmonization is a common concept in
digital healthcare [88] and social sciences [33] that refers to the process of combining datasets with the
explicit goal of maximizing dataset compatibility and comparability [16]. Ultimately, data integration
aims to create datasets with standardized formats and structures that enable meaningful comparisons
and analysis while addressing challenges such as semantic heterogeneity, data quality, and structural
differences across sources. Despite many advances in the area, data integration remains a time-consuming
and error-prone task.

Dataset discovery and data integration share several fundamental challenges related to understanding
tabular datasets, their schemas and attributes. For instance, to integrate two datasets, one must identify
correspondences between attributes across the datasets. Similarly, in dataset-oriented discovery, these
correspondences must be determined to enable effective retrieval of related datasets, e.g., that can be
joined or concatenated with a query dataset [38, 42, 105].
LLMs for Data Discovery and Integration. State-of-the-art methods for both dataset discovery
and integration struggle with semantic heterogeneity and ambiguity, as they often fail to understand
the semantics of the underlying data, limiting their effectiveness. Recent advances in language models,
particularly Large Language Models (LLMs), offer promising opportunities to address these challenges [44].
LLMs encode vast amounts of knowledge from extensive training data, allowing them to contextualize
datasets—both their schema and contents—within real-world semantics. Moreover, these models
have demonstrated the ability to generalize beyond their training data and perform data integration
tasks [45, 59, 89] without task-specific fine-tuning. Unsurprisingly, the data management community
has shown growing interest in leveraging LLMs for these tasks. In this paper, we survey recent advances,
challenges, and opportunities in applying LLMs to dataset discovery and integration.
Contributions. While previous surveys and studies have examined the role of language models in
data management [150, 155], they have largely focused on smaller models like BERT or overlooked the
specific challenges of using LLMs for dataset discovery. In contrast, this paper explores the emerging
role of LLMs, such as GPT and LLaMA, which primarily operate through prompt-based mechanisms,
and how these models are reshaping dataset discovery and integration practices. We begin with an
overview of language models in Section 2. We then review established techniques for dataset discovery
and integration and examine how LLMs have been used to address key challenges in Sections 3 and 4.
Finally, in Section 5, we discuss the limitations of existing LLM-based approaches, particularly challenges
related to scalability and consistency, and outline potential research directions in both dataset discovery
and integration, including opportunities to leverage their synergy to improve each of these tasks.
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2 Large Language Models (LLMs): An Overview

A Language Model (LM) is trained to model the likelihood of future (autoregressive) or missing (masked
or denoising) tokens in a sequence, conditional on all previous tokens in that sequence (the input, often
called the context) [111]. These tokens are presumed to be drawn from some fixed vocabulary, typically
consisting of common subwords and characters in particular languages. In this work, for simplicity’s
sake, we refer to all discriminative language models whose final output is an embedding as Pretrained
Language Models (PLMs), and all generative language models whose final output is a string as Large
Language Models (LLMs). In fact, LLMs lack a formal definition, as the threshold for what qualifies as
large is subjective, and has evolved over time. The phrase was not, for instance, employed by [26] when
they introduced their 400 Mn parameter language model, although the phrase “large pre-trained model"
is. The authors in [5] use the phrase several times in reference to GPT-3, a 175 Bn parameter language
model, and are likely responsible for the term’s popularization.

One notable and often discussed property of LLMs that distinguishes them from PLMs is their
ability to learn to solve novel problems “in-context" – either through few-shot learning, where they
are provided examples with or without instructions, or zero-shot learning, where only instructions are
provided [5, 101]. It has been observed that such abilities, which extend well beyond traditional language
modeling to encompass, in principle, any task which can be expressed in language, tend to emerge as
data and parameter count scale up [22, 104].

The current standard practice with LLMs is to train them in two stages. In the pretraining stage, raw
strings are curated and filtered from a range of sources, tokenized, and served for training. This stage,
which generally accounts for over 90% of training compute, is where the model learns world knowledge
and internal algorithms it will rely on, such as copying [92]. In the post-training stage, the LLM learns
to follow instructions and adopt human preferences [22, 94, 130]. It is fine-tuned on a variety of tasks
presented as instructions [120], and typically aligned with human preferences using some form of human
preference feedback [94]. Post-training has been observed to work better with larger models [22, 130],
which in turn has increased the emphasis on scale. Another, more recent area of intensive research has
been the scaling of test-time compute, exemplified by OpenAI’s O1 and O3 models [157]. Prompting
strategies such as chain-of-thought (CoT), which encourage the model to generate more tokens before
answering, give the autoregressive model more “time to think” and can improve performance on complex
arithmetic, commonsense, and symbolic reasoning tasks [131].

As LLMs can be applied to any task which can be expressed in natural language, attempting to use
them to solve long-standing problems in processing tabular data is both logical and appealing. Recent
approaches have used LLMs for data cleaning and integration [71, 89, 118, 138, 146], data profiling
[45, 52], transforming tables [53, 91], reasoning and question answering over tables [142, 156], and more.
However, using LLMs for table related tasks entails several challenges [28, 57, 82, 117]. Naive serialization
of large tables as context rapidly explodes the number of tokens per query, increasing the cost and
decreasing the efficacy of autoregressive models [73, 86]. Test-time scaling methods exacerbate this
challenge, as they rely on the availability of long context, which they consume with their internal chains
of thought [157]. Although many methods for subsampling long contexts for tabular data have been
proposed, some of which we will discuss later, they tend to vary in efficacy depending on the particulars
of the task and the data. The inherent heterogeneity of tabular data poses another kind of challenge:
a table can contain anything, ranging from dense numerical attributes to sparse or high-cardinality
categorical features, to natural language strings and embeddings [41]. Last but not least, metadata
for tables in the wild (e.g., from open-data repositories) is often incomplete; the most reliable source
are column headers, but even this can be absent in web-scraped tables [7]. This fact makes it more
challenging to deploy solutions which rely on table metadata.

In the following sections, we discuss recent work on using LLMs on tabular data, specifically data

5



discovery and integration tasks, and highlight limitations and open research challenges.

3 Large Language Models for Dataset Discovery

As more tabular datasets become available from academic institutions, private companies, and govern-
ments, there is greater opportunity for innovation and advancements across technology, society, and the
economy [37]. However, dataset collections, made available in open repositories or closed data lakes,
often contain a large number of datasets with varying sizes and complexity, making manual exploration
and retrieval practically infeasible. As a result, there has been growing interest in the data management
community to develop discovery systems that enable users to efficiently explore and retrieve datasets
from large collections.

Query-driven dataset (table) discovery systems address this challenge by allowing users to query
for relevant tables from a data lake. These systems support different types of queries, including (1)
keyword-based queries (e.g., users specify keywords such as “new york ”); (2) natural language queries
(e.g., users can ask, “What is the expected wait time of taxi cabs in NYC? ”); and (3) query tables (e.g.,
users have a table about NYC Taxis and would like to find other related datasets). Methods that support
query tables consider different notions of table relatedness. For instance, some systems find tables that
can join with a query table on shared attributes [43, 159, 160], while others find tables that can union
with a query table to extend it with additional tuples [25, 60, 90]. Additionally, some methods support
task-specific table discovery, such as finding tables that are joinable and correlated with the query table
to augment it with additional features to improve the performance of machine learning models [105].

In this section, we provide an overview of approaches to table discovery, and survey recent approaches
that leverage LLMs for different discovery tasks. Table 1 summarizes LLM-based approaches for dataset
discovery.

3.1 Table Search

Table search (or table retrieval) is a data discovery method similar to traditional web search– it aims to
find tables that satisfy the information needs described in a textual query. Text-based table retrieval
systems initially focused on matching keywords in user queries against the dataset metadata [4, 23, 115]
or the content of tables [151], similar to conventional search engines. However, as language models
evolved and became more sophisticated, the task advanced to address more complex challenges, such
as identifying tables that can answer questions posed in natural language [124, 126]. Regardless of
the content of the queries, these methods usually aim to generate a ranked list of tables, denoted as
(T1, ..., Tk), selected from a collection of tables C, in response to a textual query q. This task is often
referred to as ad-hoc table retrieval since the relevance of each table Ti is determined independently of
the other tables Tj (where i ̸= j). Consequently, the ranking assigns scores to each table, which are then
arranged in descending order based on these scores.
Overview of Related Work. Zhang and Balog [151] were one of the first to formalize the table
search problem in recent literature and propose deep-learning methods to match keyword queries to
table content. However, the problem had previously appeared in earlier work in the context of web
tables [7, 8] (we refer the reader to [152] for a longer list of related work). Since then, more recent work
has followed and proposed improvements, including algorithms based on PLMs. For example, Chen
et al. [14] proposed to leverage a pre-trained BERT model to encode the table content. To workaround
BERT’s input size limit, they proposed and evaluated different ways to select content from the table
that improves the overall ranking quality. Inspired by TaBERT [143], a pre-trained LM that jointly
learns representations for natural language sentences and semi-structured tables, Trabelsi et al. [121]
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introduced StruBERT. This new model, which was designed for table search and matching, combines
textual and structural information of a table to produce context-aware representations for both textual
and tabular content. They expand on the concept of vertical self-attention from TaBERT and introduce
horizontal self-attention, allowing for equal treatment of both dimensions of a table. Graph-based models
have also been proposed that capture table layout, including tables with nested structure [124].
Table Search using LLMs. A common approach to leverage LLMs in table search is to use them as
generators of training data to build smaller and more efficient models. For instance, Fujita et al. [46]
explored different strategies for generating labels (relevant/irrelevant) for a given table and query. Silva
and Barbosa [113] introduced a method for generating synthetic queries based on dataset descriptions.
The resulting pairs of queries and descriptions are regarded as soft matches when training fine-tuned
dense retrieval models for re-ranking. Wang and Fernandez [126] used an LLM to generate synthetic
training data to train a lightweight encoder model that generates embeddings that are used to efficiently
retrieve tables that answer natural language questions. Specifically, their pipeline includes a fine-tuned
T5 model to translate SQL queries into natural language questions. Another possibility is to use LLMs
for query understanding. For instance, Chen et al. [13] used GPT-3.5 Turbo to decompose a natural
language query into multiple sub-queries that can potentially be mapped to different tables and columns.
They aimed to solve the problem of answering questions that require retrieving multiple tables and
joining them through a join plan that cannot be easily discerned from the user query.

Dataset search systems and infrastructure that power data portals [4, 23, 115] treat datasets as
documents and rely on metadata (i.e., dataset names and descriptions) to build an inverted index
for keyword-based queries. Findability is thus dependent on the quality of dataset descriptions. For
data in the wild, descriptions are often incomplete and sometimes inconsistent with the data contents.
Zhang et al. [147] proposed a data-driven approach that uses LLMs to automatically generate dataset
descriptions and showed that the derived descriptions lead to improved accuracy and recall for table
retrieval.

3.2 Query-by-Tables

Semantic Joinable Table Search. Joinable table search aims to find tables that can be joined with a
query table to augment it with additional attributes. This type of search is useful for data scientists
who want to find new features to improve machine learning models, enrich data for analysis and support
decision-making. There are different types of joinable table search, including equi-join, which finds exact
matches between joinable columns; fuzzy join, which finds approximate column matches; and semantic
join, which matches tables based on semantic relationships between columns. Traditional techniques
for joinable table search have often relied on syntactic similarity measures, including Jaccard similarity
and set overlap, to find potential joinable tables [43, 68, 159, 160]. More recently, there has been a
shift towards methods that capture semantic relationships between columns by using embeddings and
pre-trained language models [24, 29, 30, 61] to improve precision and recall.

To find semantic joinable tables, PEXESO [29] encodes columns into high-dimensional vectors using
word embeddings such as fastText and GloVE. Joinable tables are then retrieved by comparing vector
representations using similarity predicates. Similarly, DeepJoin [30] encodes columns as vectors, and uses
column vector similarity to find joinable tables. Unlike PEXESO, DeepJoin uses a pre-trained language
model (DistilBERT or MPNet) as the column encoder, which is trained in a self-supervised manner.
This way, DeepJoin is able to consider table semantics. To support both equi-joins and semantic joins,
the model is fine-tuned on labeled data specific to each joinability task. WarpGate [24] also performs
semantic join discovery by leveraging pre-trained language models. WarpGate uses pre-trained web
table embeddings [50] to capture the semantic relationships between tables. TabSketchFM [61] was
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introduced as a sketch-based tabular pre-training model that can be fine-tuned for different search tasks.
TabSketchFM leverages data sketches to represent tabular data and combines embeddings of these
sketches with column and token embeddings to create an input embedding for a BERT encoder model.
While these approaches for semantic joinable search focus on table retrieval, DTT [91] addresses the
challenge of joining values in semantically joinable columns. DTT leverages ByT5 and fine-tunes it to
learn transformation rules to align and transform values for joins.
Table Union Search. In table union search, the objective is to discover tables that can be unioned (or
concatenated) with a query table to extend it with additional tuples. This type of search is particularly
valuable for data scientists who want to compile training or test data for machine learning models or
expand the scope of their query tables to cover different geographical regions or time periods, among
other use cases. Early work defined unionable tables as entity-complements that share the same subject
column and similar schema [109]. More recently, Nargesian et al. [90] relaxed this assumption that
unionable tables share the same schema as the query table. They formally defined table unionability
based on attribute unionability, such that tables are considered unionable if they have attributes that
originate from the same domain as the query table. Bogatu et al. [3] adopted this definition and used
five similarity metrics to find unionable and joinable columns. This definition was further refined by
Khatiwada et al. [60], who considered relationships between columns in addition to individual column
unionability when finding unionable tables that share similar semantics as the query table.

Recent approaches for table union search [25, 38, 51] leverage pre-trained language models to capture
column semantics more effectively. Starmie [38] finds unionable tables via self-supervised learning, namely
contrastive learning, leveraging a pre-trained language model (RoBERTa) to capture table context when
encoding column embeddings. To determine unionability, Starmie computes cosine similarity between
column vectors and explores various column aggregation techniques to produce table unionability scores.
Similarly, Pylon [25] employs self-supervised contrastive learning for table union search. Pylon explores
different encoder models, including fastText, web table embeddings [50], and BERT, to generate column
representations. In contrast, AutoTUS [51] shifts the focus to encoding the relationships between column
pairs, rather than the columns themselves. By leveraging BERT, AutoTUS produces column relational
representations that capture table contexts.
Query-by-Table Approaches using LLMs. Recent methods for joinable and unionable table search
have largely been embedding based. While the use of large language models (LLMs) for these tasks has
yet to be explored, it comes with its own set of challenges, which we discuss in Section 3.4. There are
also many opportunities to take advantage of the power of LLMs to help perform these tasks, we discuss
these in Section 5.

3.3 Other Goal-Oriented Dataset Discovery Tasks

Beyond the tasks described above, some discovery methods aim to satisfy more specific information
needs. For instance, find tables that (1) satisfy specific distributional characteristics, such as percentile
predicates [1], (2) are joinable and contain attributes correlated to columns in the input query table [35,
105, 106, 108, 122], (3) improve the performance of machine learning models [17, 55, 56, 78, 79],
(4) uncover causal links among attributes [80, 144], (5) provide explanations for salient features in
data [11, 18].
Overview of Related Work: PLMs and LLMs. Since the majority of work on goal-oriented tasks
involves numerical data, the approaches used are typically based on traditional algorithmic techniques
such as sketches and indexes. However, recent studies have shown that PLMs and LLMs can potentially
be used in these tasks. Trummer [122] empirically demonstrates that PLMs can effectively predict
correlations between table attributes using only their schemas in many cases. This shows that schemas
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are important for data profiling and allow language models to extract insights about the data such as
correlations between columns. For the problem of causal dataset discovery, where the goal is to discover
datasets containing columns with causal relationships to those in a query table, Liu et al. [80] leverage
LLMs to infer causal relationships. They use LLMs to determine whether there are causal links between
the correlated tables and to infer the direction of these links. They experiment with GPT-3.5 and GPT-4
and different prompting techniques such as Chain-of-Thought [131] as well as fine-tuning, and show that
GPT-4 performs particularly well in identifying causal relationships and their directions.

3.4 Limitations and Research Gaps

Table Discovery methods face similar challenges when leveraging PLMs and LLMs. First, these models
rely primarily on textual values in tables and often struggle to capture the semantics of numerical values.
This poses a significant limitation for tasks like joinable table search, when join columns are numerical,
or unionable table search, that often requires identifying matching numerical columns. Additionally,
LLMs may struggle with the complexity of joins, especially transitive joins that involve many tables.
Scalability is another major concern, particularly when searching over a large number of tables. Last
but not least, LLMs’ susceptibility to hallucination raises concerns about their reliability [137].

The effectiveness of techniques that rely on pre-trained models are heavily dependent on the size of
the training data. At the same time, the limited context windows of PLMs and LLMs make it challenging
to process large amounts of tabular data. Moreover, PLM techniques often lack generalizability. While
methods like TabSketchFM [61] demonstrate task generalizability–for example, a model fine-tuned for
joinable table search can also be applied to table union search–they often struggle to generalize to unseen
data or entirely new domains. Finally, embedding-based approaches lack interpretability, making it
difficult to explain retrieval results. Despite these challenges, embedding-based methods highlight the
importance of encoding table semantics into column representations when discovering related tables in
a large data lake. Building on this idea, we discuss potential opportunities to utilize LLMs for data
discovery in Section 5.

4 Large Language Models for Data Integration

Data integration pipelines depend on identifying and connecting relevant elements across disparate
datasets. Schema matching and entity resolution represent foundational techniques that identify
semantically related elements and enable the creation of unified views from heterogeneous data sources.

This section first provides definitions of these core data integration problems, followed by an overview
of traditional state-of-the-art methods. We then examine recent innovations using Large Language
Models (LLMs) for data integration tasks, analyzing their potential advantages and limitations. Our
discussion primarily focuses on tabular datasets, which are ubiquitous across enterprises, the scientific
community, and the web. Table 2 summarizes the LLM-based approaches for data integration discussed
in this paper, highlighting their distinctive characteristics.

4.1 Schema Matching

Schema matching refers to the process of identifying semantic relationships between elements in different
schemas. For tabular datasets, this process involves finding column pairs from different tables that
are semantically similar. The typical input for a schema matching method consists of two or more
tables, while the output comprises of either pairwise column correspondences or clusters of semantically
similar columns. The effectiveness of schema matching approaches depends on two key factors: the
input information considered and the similarity metrics employed to identify related columns. In what
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follows, we review approaches proposed in the literature that demonstrate considerable diversity in both
the similarity metrics utilized and the types of information leveraged.
Overview of Related Work. Early schema matching methods relied primarily on syntactic similarity
measures between columns [102] and their value distribution [149], drawing mainly on information
captured in column names and their corresponding column values. Some approaches expanded beyond
syntax by incorporating external knowledge sources such as dictionaries and domain-specific thesauri [84]
to capture semantic relationships.

The emergence of word and character embedding models, such as GloVe [100] and fastText [85],
enabled the creation of semantically rich column representations that could be compared for similarity
assessment [9, 110]. However, these embedding-based methods have shown inconsistent behavior and
struggled with noisy data [65]. Specifically, traditional word embedding models do not properly handle
formatting discrepancies, such as typos, and they attach the same meaning to each syntactically unique
word, without accounting for context and polysemy (words with multiple meanings).

More recently, PLM-based methods, which produce contextualized representations of text, have been
proposed for schema matching. Specifically, several methods have been proposed to fine-tune PLMs and
perform schema matching [32, 123, 154]. The effectiveness of these methods is comparable to or even
better than schema matching techniques that rely on syntactic measures or word embeddings. However,
these PLM-based methods require large amounts of labeled column pairs. This labeled set is not always
available, like in the case of tables in the wild, and thus requires methods to generate training examples
with similar data distributions as the test data, such as contrastive learning. In addition, other methods
have been proposed that leverage other (self-)supervised deep learning models (e.g., GNNs) to produce
column representations for schema matching [66, 67, 148].
Schema Matching with LLMs. Several methods use LLMs with varied prompting approaches and
information. Narayan et al. [89] employed zero-shot and few-shot LLM prompts to address data cleaning
and integration tasks. Their prompts consist of serialized attribute/data values and, optionally, task
demonstrations (selected randomly or manually) from a pool of labeled data. When using only column
names in few-shot LLM prompts, the authors showed improvement over the deep-learning state-of-the-art
schema matching method in [148]. Kayali et al. [59] designed prompts specifically for identifying join
columns between two distinct pandas DataFrames, providing instructions with data samples and answer
templates to guide the LLM in completing a pandas.merge operation. Parciak et al. [97] explored various
prompting strategies for matching source attributes to a target schema. Huang et al. [53] developed a
method that utilizes LLM prompts containing table descriptions (which are generated using LLMs) and
schema information to capture PK-FK relationships (a special type of column match) between column
pairs. In an effort to improve prompts for schema matching, Xu et al. [136] incorporated manual rules
and additional insights extracted from either the input datasets or external knowledge bases.

Beyond using off-the-shelf LLMs, several researchers have explored fine-tuning LLMs specifically
for data wrangling and integration tasks. Li et al. [71] proposed Table-GPT, which fine-tunes LLMs
to address various table-related tasks, including schema matching. It incorporates fine-tuning for both
complex reasoning tasks and simpler table manipulation operations to enhance the model’s overall table
processing capabilities. They evaluated various prompt and table serialization templates, demonstrating
the importance of diverse augmentation techniques during fine-tuning. However, their experimental
results for schema matching are inconclusive, as both out-of-the-box and fine-tuned LLMs demonstrate
“perfect" effectiveness. This study leaves several questions unanswered, including how the number of
tuples in table serialization affects performance and how the approach scales to large tables (in terms of
both columns and rows).

Similarly, Zhang et al. [146] developed Jellyfish, which also employs LLM fine-tuning for data
wrangling and integration tasks. Unlike Table-GPT, Jellyfish places special emphasis on prompt content
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and intended output, sometimes incorporating injected knowledge about input data and requiring
answers that include reasoning information. Their evaluation shows that Jellyfish’s fine-tuned models
slightly outperform a previous schema matching technique [148] on a benchmark using only attribute
names and descriptions (similar to the evaluation in [89]). Yan et al. [138] proposed a Mixture of Experts
(MoE) approach based on LLMs for various data preprocessing tasks, including schema matching. Their
results demonstrate improved effectiveness compared to both open-source and proprietary off-the-shelf
models, while also showing better efficiency than Jellyfish’s fine-tuned model [146], suggesting that MoE
represents a promising approach.

It is worth noting that several studies [89, 97, 136, 138, 146] evaluate schema matching using datasets
that only include table/attribute names and descriptions. However, there has not been a comprehensive
evaluation to compare all these approaches.

Instead of using LLMs on input data to directly capture matches, a number of methods incorporate
them as part of more complex schema matching pipelines. ReMatch [112] introduces a method that
refines candidates based on embeddings before prompting the LLM. Specifically, the authors focus on the
problem of matching a set of source tables to a set of target tables when table and attribute descriptions
and names are given. Their method first transforms each table to a document that includes table/column
names and descriptions; using GPT-4, each such document is transformed into an embedding. Then,
for each source attribute they leverage embeddings to find the most relevant documents, i.e., tables,
from which they retrieve the final matching target attributes based on the LLM response. Matchmaker
[110] targets the same variant of schema matching problem and proposes a multi-stage method with
several LLM-calls to suggest and refine candidate matches between source and target schemata, while
also assigning confidence scores. In contrast to ReMatch, Matchmaker uses both LLM-calls and PLM
embeddings to filter out candidate target attributes, while it also employs LLMs in a different way
to refine and finally match them to the query source attribute: matching is formulated as a multiple
choice question, where the task is to find the most relevant target column with respect to a given
source column. Both methods show improvements over a state-of-the-art deep-learning schema matching
method [148], while Matchmaker shows effectiveness gains over ReMatch and Jellyfish [146]. Instead of
relying only on the information in the input datasets, Ma et al. [83] proposed to leverage knowledge
graphs. Their method retrieves relevant knowledge graph triplets and uses them to augment LLM
prompts for answering whether a source attribute corresponds to a target one, on top of providing their
names, descriptions and demonstration examples; retrieval can be either LLM-based or employ vector
search over PLM-based embeddings.

Magneto [81] introduces a new approach for schema matching that combines small-PLMs (SLMs)
and LLMs in a novel way. Like ReMatch, it works in two steps. First, it leverages a pre-trained or
fine-tuned SLM to produce embeddings of columns and given a source column, outputs, a ranked list of
similar target attributes. Note that instead of relying on manually-labeled data, Magneto uses LLMs to
generate training data for fine-tuning the SLM. For the second step, the ranked list of matches is given
to an LLM for re-ranking. To deal with the context-window limitations of both PLMs and LLMs, they
explored different methods for sampling and serializing tables (including values). Experimental results
show that using LLMs for re-ranking can be effective, regardless of the SLM used to derive the initial
ranking, and that Magneto outperforms or performs comparably to state-of-the-art methods, including
[123] and [32].
Limitations and Research Gaps. Despite the progress in applying LLMs to schema matching, several
critical limitations remain unaddressed. First, existing work largely ignore the challenges of processing
large input sequences when tables contain a large number columns and rows. The tendency to disregard
data instances in favor of relying solely on column names and descriptions restricts these methods’
applicability in many real-world scenarios.
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Interestingly, current LLM-based approaches predominantly focus on matching source data to
standardized target schemas, with matching datasets to OMOP CDM (Observational Medical Outcomes
Partnership Common Data Model) [93] emerging as the most common evaluation scenario. Since these
benchmarks contain table/attribute names and descriptions, research has gravitated toward metadata-
based schema matching, resulting in a scarcity of LLM-based methods that effectively utilize actual
data instances.

Few studies include comparisons against other LM-based methods, impeding meaningful progress in
the field. Instead, most methods report improvements against pre-PLM schema matching techniques
or out-of-the-box models. Notably absent are detailed analyses of specific column match cases where
LLM-based methods significantly outperform previous state-of-the-art approaches. The absence of
granular performance analysis makes it difficult to identify genuine advancements and understand the
specific strengths of LLM-based approaches. Furthermore, evaluation results from multi-tasking models
like TableGPT [71] and Jellyfish [146] successfully demonstrate general applicability but fail to provide
task-specific insights crucial for understanding schema matching performance.

While few-shot inference with LLMs can achieve state-of-the-art effectiveness, this approach requires
carefully selected demonstration examples from labeled data pools. This presents a significant challenge,
as ground truth data for schema matching tasks is notoriously limited. Even when labeled data exists, it
may not accurately reflect the intrinsic characteristics of test data, potentially leading to suboptimal
performance in real-world applications.

4.2 Entity Resolution

Entity Resolution involves identifying the same entities across different datasets. In tabular data, the
objective is to determine which tuples refer to the same entity. Entity resolution pipelines typically
consist of several distinct tasks [19]. Initially, input tables may undergo an optional pre-processing step
that includes integration and curation tasks such as schema matching (as discussed in Section 4.1), data
cleaning [21], and other preparatory operations. Following this, the blocking phase examines all tuples
across datasets and produces a set of candidate pairs that might be semantically similar; essentially,
blocking serves as the filtering step within an entity resolution pipeline. Finally, the matching phase
evaluates each candidate pair and determines whether it constitutes a valid match. In the following
sections, we discuss proposed methods that focus on either the blocking phase exclusively [95], the
matching phase exclusively [76], or address both phases [20]. We then examine approaches that leverage
LLMs for entity resolution tasks.
Overview of Related Work. The majority of entity resolution methods target the matching step.
Specifically, several approaches rely on human experts to devise rules [40, 114], guide the entity matching
process through crowd-sourcing [48, 125], or provide labeled data for training machine learning models
[63]. Moreover, automated methods using supervised learning with deep learning models [34, 87] exhibit
considerable effectiveness gains.

More recently, various methods have leveraged the representational capabilities of PLMs to build
fine-tuned models that capture entity matches in a supervised manner [6, 75, 77, 98, 123]. While these
approaches show performance improvements, they continue to require a substantial amount of labeled
data. To address this limitation, alternative research directions have explored self-supervised [47, 127] and
unsupervised [134, 145] frameworks. These approaches have shown comparable or superior effectiveness
relative to supervised models, helping overcome the labeled data bottleneck that often constrains
learning-based entity resolution methods.

To address the blocking phase of entity resolution, methods have been proposed to employ various
filtering techniques to identify potential matches across datasets, including rule-based filtering, hash-
based comparisons, sorted key comparisons, similarity functions, and ensemble methods combining
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multiple approaches [95]. Deep learning solutions have also emerged in the blocking space [34, 119],
which project tuples into embedding spaces and leverage these representations to construct clusters of
potentially matching entities.

Moving beyond the traditional separation of blocking and matching, some researchers have proposed
integrated approaches [70, 135]. Such methods demonstrate the benefits of addressing both tasks
simultaneously, allowing signals from each phase to inform and improve the other’s performance.
This integrated perspective represents a promising direction for enhancing overall entity resolution
effectiveness.
Entity Resolution with LLMs. Recent research has explored using LLMs out-of-the-box with
dedicated prompts for direct entity matching decisions. Narayan et al. [89] demonstrated that an LLM
prompt that serializes column names and values for tuple pairs alongside demonstration examples
can sometimes outperform state-of-the-art solutions like Ditto [75, 77]. Peeters et al. [99] conducted
a comprehensive experimental study on LLM-based tuple-pair matching. Their investigation encom-
passed multiple LLMs using both zero-shot and few-shot prompting approaches, while also exploring
fine-tuning with labeled data from existing annotated dataset pairs. Their findings revealed that no
single model or prompting technique consistently outperforms others, with traditional non-LLM super-
vised methods sometimes achieving superior results. Wang et al. [128] introduced a novel approach
that considers matching of a single tuple against a set of tuples, rather than focusing on tuple-pair
matching. This problem formulation enabled their method, ComEM, to explore diverse input-output
prompting strategies and effectively combine them for enhanced performance. When compared against
state-of-the-art approaches—including supervised methods (e.g., Ditto [77]), self-supervised techniques
(e.g., Sudowoodo [127]), and out-of-the-box LLM prompts [99], ComEM demonstrated comparable or
occasionally superior effectiveness. Dou et al. [31] explored the advantages of jointly training blocking
and matching components through supervised learning. Specifically, they introduced an innovative
architecture supports fine-tuning either traditional PLMs or instruction-tuned open-source LLMs for
the matching phase. Their experimental results reveal that while instruction-tuned LLMs demonstrate
superior effectiveness compared to PLMs, they still fall short of the performance achieved by proprietary
models like GPT-4 when used out-of-the-box. Xu et al. [136] presented a method that claims applicability
to entity matching tasks through the use of manual instructions and external knowledge integration.
However, their evaluation focuses exclusively on schema matching, leaving the method’s effectiveness for
entity resolution tasks unverified.

Recent work has explored multiple strategies to optimize LLM-based entity matching, ranging from
model architecture modifications to prompt engineering and computational efficiency improvements.
Table-GPT [71] demonstrates that LLMs specifically tuned on tabular data outperform their untuned
counterparts in both zero-shot and few-shot settings for tuple pair matching. Building on this foundation,
Jellyfish [146] achieves superior entity matching results compared to both Table-GPT and traditional
non-LLM methods. However, Jellyfish’s performance advantage is most pronounced when the test data
distribution is represented in the fine-tuning dataset, and comparisons against state-of-the-art LLMs like
GPT-4 have yielded inconclusive results. A systematic study by Steiner et al. [116] further explores fine-
tuning approaches across both open-source and proprietary LLMs, analyzing various data representation
formats and example selection strategies. They also evaluated model robustness against domain shifts
between training and test data. While their fine-tuned models demonstrate enhanced performance
for in-domain generalization, an interesting finding reveals that zero-shot approaches actually achieve
superior results when handling test data that comes from a domain different from the training data.
This highlights an important trade-off between fine-tuning benefits and domain adaptability.

Alternative architectural approaches have also shown promise. The Mixture-of-Experts (MoE)
LLM-based model proposed in [138] brings improvements in entity matching over standard open/closed-

14



source and fine-tuned models. It demonstrates superior performance compared to both conventional
and fine-tuned LLM models, highlighting the advantages of specialized task experts within a unified
framework. Taking a different approach, Seed [15] introduces a flexible system that leverages LLMs
in two ways: either for code and training data generation, or for direct entity matching tasks. A key
innovation of Seed is its optimization framework, which generates and selects execution plans based on
both computational efficiency and effectiveness metrics. While Seed does not match the accuracy levels
of state-of-the-art supervised methods like Ditto [77] or pure LLM approaches [99], it achieves a balance
between effectiveness and LLM-cost efficiency.

Huh et al. [54] investigated demonstration example selection by leveraging pre-trained language models
(PLMs) to embed tuple pairs and identify similar examples in the representation space. Interestingly,
their findings reveal that this sophisticated approach does not consistently outperform simpler random
or manual example selection methods. Addressing computational efficiency, BatchER [39] demonstrates
that batch processing of tuple pairs within single prompts can achieve both cost savings and effectiveness
gains. BatchER achieves comparable results to state-of-the-art PLM-based entity matching methods
that require extensive labeled datasets, while maintaining lower computational overhead.
Limitations and Research Gaps. While LLMs show considerable promise for entity matching tasks,
there are also important challenges. First, prompt engineering significantly impacts matching accuracy,
with different model architectures exhibiting varying levels of prompt sensitivity. Peeters et al. [99]
demonstrated that while GPT-4 maintains consistent performance across different prompt formulations,
other models like GPT-mini, Llama2, Llama3.1, and Mixtral show higher sensitivity to prompt variations.
This finding highlights the critical importance of careful prompt design, particularly when using more
cost-effective models.

The evaluation landscape presents a mixed picture. Unlike schema matching, entity matching research
benefits from common benchmark datasets, enabling direct comparisons between LLM-based approaches
and traditional methods. However, inconsistent result presentation and reporting practices often lead to
inconclusive comparisons. This challenge is particularly evident when trying to determine the precise
advantages of LLM-based methods over existing approaches. A significant gap in current research is the
lack of detailed analysis of specific use cases or scenarios where LLM-based methods demonstrate clear
advantages over traditional approaches. While studies often report aggregate performance metrics, they
frequently fail to identify and analyze the particular types of entity matching problems where LLMs
excel or struggle compared to conventional methods. This limitation makes it difficult for practitioners
to make informed decisions about when to adopt LLM-based solutions.

A significant challenge in deploying LLMs for entity matching is managing computational costs,
particularly with hosted commercial models. The cost structure, based on token count for both input
prompts and model outputs, becomes especially problematic when handling tuples with extensive textual
attributes that require longer prompts. While advanced models like GPT-4 provide superior performance,
their higher per-token costs create a substantial economic barrier compared to smaller models like
GPT-mini. The cost-quality trade-off becomes more complex when considering performance optimization
strategies. In-context learning can significantly improve matching accuracy through demonstration
examples, but each additional example or rule increases the token count and consequently the operational
costs [39]. Similarly, while fine-tuning offers a promising path to improve performance of smaller open-
source models, its benefits are often limited to scenarios where test data closely aligns with the training
domain [99, 116]. Furthermore, the fine-tuning process itself presents two significant barriers: the high
computational overhead and the requirement for substantial labeled training data—a limitation shared
with traditional PLM-based methods [77].
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5 Research Challenges and Future Directions

Despite the rapid advancement in applying LLMs to data discovery and integration tasks, significant
research challenges and opportunities remain unexplored. Building on our analysis of existing methods
(Sections 3 and 4), we identify and discuss both task-specific challenges and broader research directions
that warrant further investigation. Our discussion encompasses not only technical limitations identified in
current approaches but also emerging opportunities to enhance the effectiveness and practical applicability
of LLM-based solutions in this domain.

5.1 Dataset Discovery

Although the direct application of LLMs to large-scale tasks like semantic joinable table search and
table union search faces scalability challenges, LLMs’ sophisticated semantic understanding capabilities
present promising opportunities for advancing dataset discovery tasks.
Improved Semantic Understanding and Metadata Enrichment. While existing PLM-based
methods [24, 25, 30, 38, 51, 61] have demonstrated the value of semantic approaches in finding related
tables, LLMs could potentially enable more precise semantic matching and relationship identification.
LLMs have shown success in fundamental table understanding tasks, including column-type annotation
[45, 59, 64, 71, 132, 146, 153], table-class detection [52, 59, 64], and column-relation extraction [59, 153].
These capabilities can be leveraged to enhance tables with rich semantic information, thereby improving
joinable and unionable table search accuracy.
Cross-Task Integration. Advances in LLM-based entity matching (Section 4.2) could be extended to
multi-table entity matching and attribute discovery. Similarly, schema matching techniques (Section 4.1)
could be adapted to identify semantically similar columns for unionable table search. This cross-
pollination of techniques offers promising paths for improvement. Research is needed on how to
effectively combine different LLM-based tasks (e.g., type annotation, relation extraction, and matching)
in a unified discovery pipeline.
Hybrid Approaches. Another direction of research is to further explore hybrid approaches that combine
LLMs with traditional techniques. Such approaches could leverage LLMs’ semantic understanding while
maintaining the efficiency of established methods. Particularly promising is the integration of LLMs
with existing join discovery techniques like sketches and indexes [30, 43, 106, 160], which could enhance
emerging join-aware textual query methods that retrieve multiple tables [2, 13].
Explainable Discovery. Lastly, LLMs’ ability to generate natural language explanations for semantic
matches and relationships between columns and tables represents an underexplored opportunity. Such
explanations could significantly improve user trust and understanding of discovery results, facilitating
more effective use in downstream tasks. Research is needed on how to generate explanations that are
both technically accurate and accessible to users with varying levels of expertise.

5.2 Schema Matching

Handling Instance Data. Current LLM-based schema matching methods predominantly focus on
scenarios where only metadata is available for matching source datasets to target schemas (Section 4.1).
However, schema matching must also handle more challenging scenarios where column names may be
opaque or missing, making instance data the primary source of matching information. This disconnect
presents several key challenges to the development of LLM-based schema matching approaches. A
fundamental challenge is managing large input sequences when tables contain numerous columns and rows.
While recent LLM architectures offer expanded context windows exceeding 100,000 tokens, two critical
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issues emerge: First, studies indicate that LLMs face accuracy degradation with longer contexts [72]
and efficiency challenges [139]. Second, even with larger context windows, the computational costs and
performance trade-offs must be carefully balanced. This points to promising research directions. Rather
than using LLMs for direct schema matching, approaches like [81] demonstrate the potential of leveraging
LLMs as sophisticated reasoning engines in post-processing steps. Future research should explore
approaches to efficiently sample and summarize instance data to create informative yet compact LLM
inputs, develop adaptive strategies that selectively invoke LLM processing based on data characteristics,
design cost-effective architectures that maintain accuracy while managing computational overhead.
Profiling for Schema Matching. LLMs present significant opportunities for enhancing schema
matching through automated data profiling and metadata enrichment, particularly in scenarios where
metadata is missing or unreliable. Recent works demonstrate promising applications: generating detailed
table and column descriptions [52, 147], and inferring semantic types for columns [45]. The information
obtained through profiling can be used to identify matching columns. In addition to improving the
effectiveness of schema matching methods, the generated metadata an help prune the search space of
potential column matches, contributing to lower computation cost and execution time.

5.3 Entity Resolution

Handling Long Entities. While LLM-based entity matching solutions benefit from significantly
longer context windows compared to PLM-based methods, incorporating all attribute values into entity
representations may not always improve matching accuracy. The impact of long attribute values on LLM
reasoning can vary significantly - for instance, extensive user comments might either obscure or enhance
product matching depending on their content. This complexity necessitates sophisticated pre-processing
strategies for optimizing entity representations in LLM prompts. Several promising research directions
emerge for effective pre-processing, including: the development of profiling techniques to identify and
prioritize informative attributes; integration of schema matching techniques to focus on comparable
attributes, following successful approaches from traditional entity matching methods [20]; and techniques
for condensing long attribute values while preserving matching-relevant information [77]
Blocking. While LLMs have shown promise in entity matching (Section 4.2), their application to
blocking—a crucial step in real-world entity resolution [95]—remains largely unexplored. This gap
stems from the inherent complexity of blocking tasks: unlike pair-wise entity matching, blocking must
efficiently process the entire search space of possible tuple pairs across datasets to identify candidate
matches. The computational demands and complexity of this task make direct application of LLMs
impractical, even with their expanding context windows and enhanced reasoning capabilities. However,
LLMs can contribute to blocking effectiveness through indirect approaches. For example, through
metadata enhancement – enriching tuples with additional semantic information, generating standardized
representations of attribute values. Recent work [129] has demonstrated the potential of LLM-based
tuple enrichment for improving blocking effectiveness

5.4 General Directions

Prompt Engineering. The effectiveness of LLMs in data integration and discovery tasks heavily
depends on prompt engineering, but there are significant challenges in developing robust prompting
strategies. Experimental evaluations of methods discussed in Sections 3 and 4 point out that there are
no universally effective prompting templates and strategies. Even minor changes in table serialization
formats or task descriptions can significantly impact performance [71, 99]. Moreover, the rapid evolution
of prompting strategies [103] makes it difficult to establish best practices.
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This complexity points to several critical research directions in automated prompt optimization
and the integration of context and knowledge. Inspired by recent advances in automatic prompt
engineering efforts [158], automated prompt optimization methods could be tailored to each given input
and table-related tasks. Moreover, choosing suitable in-context examples [54] and effective retrievers
for incorporating external knowledge to prompts [58] is equally important. Finally, recent advanced
prompting techniques that enable tool calling abilities [141] are an exciting direction that allows the
development of agentic systems that integrate existing efficient algorithms with LLM-based reasoning
and interactive user interfaces [107].
Cost Considerations. Evaluating LLMs’ feasibility in practical scenarios demands rigorous analysis of
cost and runtime factors, which present significant deployment barriers. The current landscape presents
a complex trade-off between hosted and open-source solutions, each with distinct challenges. Hosted
models pose several significant challenges for practical deployment. Leading providers’ high API costs
per token 123 can accumulate rapidly, becoming prohibitive for large-scale deployments – involving
large datasets or a large number of datasets. Response latency issues become particularly acute when
processing large datasets, potentially impacting real-time applications.

Open-source models present a different set of challenges. Models like LLaMA2 require a significant
upfront investment in specialized hardware infrastructure, particularly high-performance GPUs. Beyond
the initial investment, organizations must consider ongoing operational and maintenance costs, as well
as the technical expertise required for effective deployment and optimization. These factors can make
the total cost of ownership substantial, even without per-token API fees.

This dichotomy highlights a critical research gap: the absence of standardized frameworks for
comparing hosted and open-source models. Such frameworks would need to address multiple dimensions
including effectiveness-cost ratios, scalability characteristics, total cost of ownership, and operational
complexity. The development of comprehensive comparison methodologies would enable organizations
to make more informed deployment decisions based on their specific needs and constraints.
Comprehensive Task-Specific Evaluations. Recent LLM-based approaches that target multiple
tabular data curation and integration tasks [71, 138, 146] have established their effectiveness through
extensive experimental evaluations that typically assess each task using dedicated benchmarks and
compare against state-of-the-art methods using standard metrics like F1-score. Additionally, they
often include task-agnostic ablation studies examining the impact of different prompting strategies,
demonstration examples, and LLM architectures.

While these evaluations demonstrate the general applicability and advantages of LLM-based methods,
they often lack granular, task-specific insights that could better illuminate their unique strengths. Current
evaluation approaches rarely analyze specific challenging instances where LLMs demonstrate particular
advantages. For example, cases involving columns or entities with significant syntactic differences but
semantic similarities could provide valuable insights into LLMs’ semantic understanding capabilities.
Such fine-grained analysis could reveal where LLMs excel compared to traditional approaches. Future
evaluations should therefore incorporate detailed analysis of specific challenging cases that highlight
LLMs’ distinctive capabilities. This could include examining performance on instances requiring
complex semantic reasoning, handling of ambiguous or context-dependent matches, and cases where
traditional methods typically struggle. By providing concrete examples of where LLMs bring meaningful
improvements, such task-specific evaluations would offer stronger justification for their adoption and
better guide their application in practice.
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