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Letter from the Editor-in-Chief

Traditional data management systems built on relational models have, for decades, provided the bedrock
of reliable data storage and efficient queries. Yet their inherently rigid structure can constrain advanced
analytics and sophisticated automation—limitations that have grown more pronounced as applications
demand ever richer insight from increasingly varied data. Large Language Models (LLMs) promise a
disruptive new chapter, offering a deep, context-aware grasp of both data and user intent. By moving
beyond the static assumptions of relational schemas, LLMs can potentially transform how we query,
integrate, and analyze data, easing the manual labor of transformations and freeing us to explore more
intuitive, semantic ways of managing information.

We are, however, still in the early days of tapping these capabilities for real-world data systems.
It remains unclear which designs or methodologies will prove most effective, how well these models
will scale, or the degree to which they can seamlessly merge with long-standing DBMS technologies.
Some paths will lead to breakthroughs in usability and analytics power; others may reveal unforeseen
complexities that challenge our notions of correctness, performance, and trust. It is precisely this
uncertainty—coupled with the tremendous opportunities—that makes LLMs such an exciting frontier
for data management research and practice.

This issue explores how LLMs open transformative possibilities in data management. For example,
instead of relying on tightly defined schemas or specialized data formats, LLMs enable a more flexible
approach that blends both structured and unstructured information. Their capacity for richer semantic
understanding can alleviate long-standing burdens in tasks like data integration and data quality, where
mismatched schemas and sparse documentation often lead to labor-intensive fixes.

Equally important, LLLMs encourage us to rethink analytics from a more holistic perspective. They
provide a single interpretive layer for text, time-series, images, relational tables, and other data types,
allowing diverse inputs to be processed with greater coherence and context-awareness. This unifying
capability can make data exploration more intuitive, especially in large-scale environments where data is
varied and often lacks a strict organizational scheme. In doing so, LLMs help unlock insights that might
otherwise remain obscured, fostering a new level of accessibility and analytic power for modern data
systems.

The contributors to this issue offer important glimpses into what the age of LLMs and generative Al
might look like for data management. Trummer’s work on operator-level customizations reveals how
systems can adapt to shifting query workloads in near-real time, while Freire et al. demonstrate how
complex data integration tasks can be simplified by deeper semantic modeling. Lin et al. push further
by showing how LLMs essentially behave like experienced data engineers, orchestrating cleaning and
reconciliation efforts that were once painfully manual. Wang et al. illustrate how large and unstructured
data repositories can be tamed through language-driven interfaces, making analytics more flexible and
intuitive. Throughout these pages, the central lesson is that we are beginning to glimpse a future where
LLMs help us rethink the very nature of data systems: how queries are processed, how data is unified,
and how organizations can derive insights from an ever-expanding universe of information.

It is my pleasure to extend special thanks to Dr. Steven Euijong Whang, the Associate Editor who
brought together these forward-thinking works. As you delve into the research presented here, I invite
you to envision how data management might evolve in an era where generative Al not only understands
our questions and the data itself, but also orchestrates every necessary process through a flexible suite of
tools. The opportunities are immense, and I look forward to the breakthroughs that our field is poised
to achieve.

Haixun Wang
EvenUp



Letter from the Special Issue Editor

Large Language Models (LLMs) are increasingly being integrated into databases, data analytics, and
emerging data systems. These models are capable of infusing human-level expertise into every stage of
data processing, from data discovery to predicting user intent. This issue explores cutting-edge research
on the current and future applications of LLMs across various data systems.

LLMs are becoming integral to modern databases. Beginning with the critical tasks of data discovery
and integration, the paper Large Language Models for Data Discovery and Integration: Challenges and
Opportunities by Juliana Freire et al. offers a comprehensive analysis of how LLMs can aid in these
tasks while highlighting ongoing challenges. LLMs can help decode the semantics of datasets, making
them more accessible and usable. Next, LLMs can enhance query processing. In LLMs and Databases:
A Synergistic Approach to Data Utilization, Fatma Ozcan et al. describe how LLMs leverage their vast,
pre-trained knowledge to effectively translate natural language into SQL queries. The authors also
develop pre-trained cardinality estimation models and foundation database models inspired by LLMs
to solve database performance problems. Finally, SQL programming itself also benefits from LLMs.
The paper Customizing Operator Implementations for SQL Processing via Large Language Models by
Immanuel Trummer introduces the GenesisDB system, which uses LLMs to generate relational operator
code for SQL queries. It is even possible to generate code required for running benchmarks like TPC-H.

Beyond databases, LLMs are being utilized in data analytics and next-generation data systems. The
paper iDataLake: An LLM-Powered Analytics System on Data Lakes by Jiayi Wang et al. presents the
iDatal.ake system, which automates analytics on multi-modal data lakes using LLMs, leveraging their
semantic understanding to provide a comprehensive and efficient solution. Data engineering workflows
also benefit from LLM integration. The paper Large Language Models as Pretrained Data Engineers:
Techniques and Opportunities by Yin Lin et al. introduces the UniDM system, which embeds LLMs
into key stages of the data engineering process, including data wrangling, analytical querying, and table
augmentation for machine learning. LLMs can even enhance the proactivity of data systems. The
paper LLM-Powered Proactive Data Systems by Sepanta Zeighami et al. demonstrates how LLMs can
anticipate user intent, perform transformation operations, and adapt both structured and unstructured
data to align with user needs. Lastly, the paper Top Ten Challenges Towards Agentic Neural Graph
Databases by Jiaxin Bai et al. explores Agentic Neural Graph Databases (NGDBs), which extend
neuralization processes to automate data management. The paper discusses the challenges of refining
the interfaces, learning, inference, and system components of traditional NGDBs.

Together, these studies represent the frontier of LLM integration into both established and emerging
data systems. LLMs are clearly driving impactful advancements in data systems and will continue to
shape their evolution in the future. We would like to thank all the authors for their valuable contributions.
We also thank Haixun Wang for the opportunity to put together this special issue, and Jieming Shi for
his help in its publication.

Steven Euijong Whang
Korea Advanced Institute of Science and Technology



Large Language Models for Data Discovery and Integration:
Challenges and Opportunities

Juliana Freire {juliana.freire@nyu.edu}, Grace Fan, Benjamin Feuer,
Christos Koutras, Yurong Liu, Eduardo Pena, Aécio Santos, Claudio Silva, Eden Wu
New York University, New York, USA

Abstract

The exponential growth of data across diverse sources—f{rom the web and scientific repositories to
enterprise systems—has amplified the need for effective data discovery and integration methods. While
data integration has been extensively studied for decades, traditional approaches face limitations
in generalization and scalability, often requiring a time-consuming and error-prone process that
demands manual effort. Dataset discovery, though a more recent research direction, encounters
similar challenges. A fundamental issue across both domains is semantic heterogeneity and ambiguity,
as existing methods frequently struggle to understand the underlying meaning of data, limiting their
effectiveness across diverse applications.

Large Language Models (LLMs) have emerged as a promising solution to enhance both data
integration and discovery tasks. These models encode vast amounts of knowledge from extensive
training data, enabling them to contextualize datasets—both their schema and contents—within
real-world semantics. Notably, LLMs have demonstrated remarkable generalization capabilities,
successfully performing various data tasks even without task-specific fine-tuning. This paper examines
how LLMs are being applied across various integration and discovery tasks, synthesizing recent
developments in this rapidly evolving field. We identify key limitations in current methods and
suggest potential directions for future research, offering insights into both the potential and challenges
of LLM-driven solutions.

1 Introduction

The increasing availability of datasets presents unprecedented opportunities for innovation across
government, industry, and scientific research. By integrating data from multiple sources, it is possible to
address complex and important questions that would otherwise be difficult or impossible to answer. For
example, integrating genomic, transcriptomic, proteomic, and clinical data from multiple studies allows
scientists to carry out pan-cancer analyses and identify common patterns, shared molecular mechanisms,
and unique characteristics across cancer types [74]. Similarly, in climate science, combining satellite
imagery with ground sensor data improves the accuracy of climate models and predictions [110]. Data
integration unlocks new insights, driving advancements across many domains.

Despite efforts to make data FAIR—findable, accessible, interoperable and reusable |133]-discovering
and integrating datasets remains a significant challenge |12, 19, 62, 96]. While datasets published on the
Web are easily accessible, finding specific datasets can be difficult. They are often spread across different
repositories that typically rely on simple keyword-based search interfaces, which are insufficient for users
to express important information needs [10, 62, 105]. This challenge is further compounded by data
heterogeneity: different datasets may use varying terminology for the same attribute or, conversely, the
same term for distinct concepts. Such heterogeneity hinders the accuracy and recall of discovery queries,



creating barriers to interoperability and re-usability and making it difficult to combine data from diverse
sources [27].

Dataset Discovery and Integration. Dataset discovery involves systematically identifying and
retrieving relevant datasets from data repositories or data lakes [3, 10, 36, 38, 42, 109]. Datasets can be
discovered through text-based search, where information needs are expressed in keyword-based queries
that are matched against metadata and contents [124, 126, 151], as well as dataset-oriented queries, where
users provide a query table and search for relevant, related datasets [3, 25, 29, 30, 43, 51, 60, 90, 105, 160].
These search paradigms largely rely on schema similarity or content-based relevance, but incomplete
metadata and semantic heterogeneity remain key challenges.

Data integration refers to the process of combining data from disparate sources into a unified,
coherent dataset [27]. It encompasses several key tasks such as schema matching [102], which identifies
semantically similar schema elements (e.g., attributes) across datasets, and entity resolution [19], which
determines when different records refer to the same real-world entity. Data integration has been a
long-standing research area, with a rich body of literature addressing its challenges [69]. Related
concepts have emerged in specific domains. For instance, data harmonization is a common concept in
digital healthcare [88] and social sciences [33] that refers to the process of combining datasets with the
explicit goal of maximizing dataset compatibility and comparability [16]. Ultimately, data integration
aims to create datasets with standardized formats and structures that enable meaningful comparisons
and analysis while addressing challenges such as semantic heterogeneity, data quality, and structural
differences across sources. Despite many advances in the area, data integration remains a time-consuming
and error-prone task.

Dataset discovery and data integration share several fundamental challenges related to understanding
tabular datasets, their schemas and attributes. For instance, to integrate two datasets, one must identify
correspondences between attributes across the datasets. Similarly, in dataset-oriented discovery, these
correspondences must be determined to enable effective retrieval of related datasets, e.g., that can be
joined or concatenated with a query dataset |38, 12, 105].

LLMs for Data Discovery and Integration. State-of-the-art methods for both dataset discovery
and integration struggle with semantic heterogeneity and ambiguity, as they often fail to understand
the semantics of the underlying data, limiting their effectiveness. Recent advances in language models,
particularly Large Language Models (LLMs), offer promising opportunities to address these challenges [14].
LLMs encode vast amounts of knowledge from extensive training data, allowing them to contextualize
datasets—both their schema and contents—within real-world semantics. Moreover, these models
have demonstrated the ability to generalize beyond their training data and perform data integration
tasks [15, 59, 89] without task-specific fine-tuning. Unsurprisingly, the data management community
has shown growing interest in leveraging LLMs for these tasks. In this paper, we survey recent advances,
challenges, and opportunities in applying LLMs to dataset discovery and integration.

Contributions. While previous surveys and studies have examined the role of language models in
data management [150, 155], they have largely focused on smaller models like BERT or overlooked the
specific challenges of using LLMs for dataset discovery. In contrast, this paper explores the emerging
role of LLMs, such as GPT and LLaMA, which primarily operate through prompt-based mechanisms,
and how these models are reshaping dataset discovery and integration practices. We begin with an
overview of language models in Section 2. We then review established techniques for dataset discovery
and integration and examine how LLMs have been used to address key challenges in Sections 3 and 4.
Finally, in Section 5, we discuss the limitations of existing LLM-based approaches, particularly challenges
related to scalability and consistency, and outline potential research directions in both dataset discovery
and integration, including opportunities to leverage their synergy to improve each of these tasks.



2 Large Language Models (LLMs): An Overview

A Language Model (LM) is trained to model the likelihood of future (autoregressive) or missing (masked
or denoising) tokens in a sequence, conditional on all previous tokens in that sequence (the input, often
called the context) [111]. These tokens are presumed to be drawn from some fixed vocabulary, typically
consisting of common subwords and characters in particular languages. In this work, for simplicity’s
sake, we refer to all discriminative language models whose final output is an embedding as Pretrained
Language Models (PLMs), and all generative language models whose final output is a string as Large
Language Models (LLMs). In fact, LLMs lack a formal definition, as the threshold for what qualifies as
large is subjective, and has evolved over time. The phrase was not, for instance, employed by [26] when
they introduced their 400 Mn parameter language model, although the phrase “large pre-trained model"
is. The authors in 5] use the phrase several times in reference to GPT-3, a 175 Bn parameter language
model, and are likely responsible for the term’s popularization.

One notable and often discussed property of LLMs that distinguishes them from PLMs is their
ability to learn to solve novel problems “in-context" — either through few-shot learning, where they
are provided examples with or without instructions, or zero-shot learning, where only instructions are
provided |5, 101]. It has been observed that such abilities, which extend well beyond traditional language
modeling to encompass, in principle, any task which can be expressed in language, tend to emerge as
data and parameter count scale up [22, 104].

The current standard practice with LLMs is to train them in two stages. In the pretraining stage, raw
strings are curated and filtered from a range of sources, tokenized, and served for training. This stage,
which generally accounts for over 90% of training compute, is where the model learns world knowledge
and internal algorithms it will rely on, such as copying |92]. In the post-training stage, the LLM learns
to follow instructions and adopt human preferences [22, 94, 130]. It is fine-tuned on a variety of tasks
presented as instructions [120], and typically aligned with human preferences using some form of human
preference feedback [94]. Post-training has been observed to work better with larger models [22, 130],
which in turn has increased the emphasis on scale. Another, more recent area of intensive research has
been the scaling of test-time compute, exemplified by OpenAI’s O1 and O3 models [157]. Prompting
strategies such as chain-of-thought (CoT), which encourage the model to generate more tokens before
answering, give the autoregressive model more “time to think” and can improve performance on complex
arithmetic, commonsense, and symbolic reasoning tasks [131].

As LLMs can be applied to any task which can be expressed in natural language, attempting to use
them to solve long-standing problems in processing tabular data is both logical and appealing. Recent
approaches have used LLMs for data cleaning and integration [71, 89, 118, 138, 116], data profiling
[45, 52], transforming tables [53, 91], reasoning and question answering over tables [142, 156], and more.
However, using LLMs for table related tasks entails several challenges [28, 57, 82, 117]. Naive serialization
of large tables as context rapidly explodes the number of tokens per query, increasing the cost and
decreasing the efficacy of autoregressive models [73, 86]. Test-time scaling methods exacerbate this
challenge, as they rely on the availability of long context, which they consume with their internal chains
of thought [157]. Although many methods for subsampling long contexts for tabular data have been
proposed, some of which we will discuss later, they tend to vary in efficacy depending on the particulars
of the task and the data. The inherent heterogeneity of tabular data poses another kind of challenge:
a table can contain anything, ranging from dense numerical attributes to sparse or high-cardinality
categorical features, to natural language strings and embeddings [11]. Last but not least, metadata
for tables in the wild (e.g., from open-data repositories) is often incomplete; the most reliable source
are column headers, but even this can be absent in web-scraped tables [7]. This fact makes it more
challenging to deploy solutions which rely on table metadata.

In the following sections, we discuss recent work on using LLMs on tabular data, specifically data



discovery and integration tasks, and highlight limitations and open research challenges.

3 Large Language Models for Dataset Discovery

As more tabular datasets become available from academic institutions, private companies, and govern-
ments, there is greater opportunity for innovation and advancements across technology, society, and the
economy |[37]. However, dataset collections, made available in open repositories or closed data lakes,
often contain a large number of datasets with varying sizes and complexity, making manual exploration
and retrieval practically infeasible. As a result, there has been growing interest in the data management
community to develop discovery systems that enable users to efficiently explore and retrieve datasets
from large collections.

Query-driven dataset (table) discovery systems address this challenge by allowing users to query
for relevant tables from a data lake. These systems support different types of queries, including (1)
keyword-based queries (e.g., users specify keywords such as “new york”); (2) natural language queries
(e.g., users can ask, “ What is the expected wait time of tazi cabs in NYC?”); and (3) query tables (e.g.,
users have a table about NYC Taxis and would like to find other related datasets). Methods that support
query tables consider different notions of table relatedness. For instance, some systems find tables that
can join with a query table on shared attributes |13, 159, 160], while others find tables that can union
with a query table to extend it with additional tuples [25, 60, 90]. Additionally, some methods support
task-specific table discovery, such as finding tables that are joinable and correlated with the query table
to augment it with additional features to improve the performance of machine learning models [105].

In this section, we provide an overview of approaches to table discovery, and survey recent approaches
that leverage LLMs for different discovery tasks. Table 1 summarizes LLM-based approaches for dataset
discovery.

3.1 Table Search

Table search (or table retrieval) is a data discovery method similar to traditional web search— it aims to
find tables that satisfy the information needs described in a textual query. Text-based table retrieval
systems initially focused on matching keywords in user queries against the dataset metadata [1, 23, 115]
or the content of tables [151], similar to conventional search engines. However, as language models
evolved and became more sophisticated, the task advanced to address more complex challenges, such
as identifying tables that can answer questions posed in natural language [124, 126]. Regardless of
the content of the queries, these methods usually aim to generate a ranked list of tables, denoted as
(T1, ..., Ty), selected from a collection of tables C|, in response to a textual query ¢. This task is often
referred to as ad-hoc table retrieval since the relevance of each table T; is determined independently of
the other tables T} (where i # j). Consequently, the ranking assigns scores to each table, which are then
arranged in descending order based on these scores.

Overview of Related Work. Zhang and Balog [151] were one of the first to formalize the table
search problem in recent literature and propose deep-learning methods to match keyword queries to
table content. However, the problem had previously appeared in earlier work in the context of web
tables |7, 8] (we refer the reader to [152] for a longer list of related work). Since then, more recent work
has followed and proposed improvements, including algorithms based on PLMs. For example, Chen
et al. [14] proposed to leverage a pre-trained BERT model to encode the table content. To workaround
BERT’s input size limit, they proposed and evaluated different ways to select content from the table
that improves the overall ranking quality. Inspired by TaBERT [113], a pre-trained LM that jointly
learns representations for natural language sentences and semi-structured tables, Trabelsi et al. [121]



introduced StruBERT. This new model, which was designed for table search and matching, combines
textual and structural information of a table to produce context-aware representations for both textual
and tabular content. They expand on the concept of vertical self-attention from TaBERT and introduce
horizontal self-attention, allowing for equal treatment of both dimensions of a table. Graph-based models
have also been proposed that capture table layout, including tables with nested structure [124].

Table Search using LLMs. A common approach to leverage LLMs in table search is to use them as
generators of training data to build smaller and more efficient models. For instance, Fujita et al. [10]
explored different strategies for generating labels (relevant/irrelevant) for a given table and query. Silva
and Barbosa [113] introduced a method for generating synthetic queries based on dataset descriptions.
The resulting pairs of queries and descriptions are regarded as soft matches when training fine-tuned
dense retrieval models for re-ranking. Wang and Fernandez [126]| used an LLM to generate synthetic
training data to train a lightweight encoder model that generates embeddings that are used to efficiently
retrieve tables that answer natural language questions. Specifically, their pipeline includes a fine-tuned
T5 model to translate SQL queries into natural language questions. Another possibility is to use LLMs
for query understanding. For instance, Chen et al. [13] used GPT-3.5 Turbo to decompose a natural
language query into multiple sub-queries that can potentially be mapped to different tables and columns.
They aimed to solve the problem of answering questions that require retrieving multiple tables and
joining them through a join plan that cannot be easily discerned from the user query.

Dataset search systems and infrastructure that power data portals [4, 23, 115] treat datasets as
documents and rely on metadata (i.e., dataset names and descriptions) to build an inverted index
for keyword-based queries. Findability is thus dependent on the quality of dataset descriptions. For
data in the wild, descriptions are often incomplete and sometimes inconsistent with the data contents.
Zhang et al. [117] proposed a data-driven approach that uses LLMs to automatically generate dataset
descriptions and showed that the derived descriptions lead to improved accuracy and recall for table
retrieval.

3.2 Query-by-Tables

Semantic Joinable Table Search. Joinable table search aims to find tables that can be joined with a
query table to augment it with additional attributes. This type of search is useful for data scientists
who want to find new features to improve machine learning models, enrich data for analysis and support
decision-making. There are different types of joinable table search, including equi-join, which finds exact
matches between joinable columns; fuzzy join, which finds approximate column matches; and semantic
join, which matches tables based on semantic relationships between columns. Traditional techniques
for joinable table search have often relied on syntactic similarity measures, including Jaccard similarity
and set overlap, to find potential joinable tables [13, 68, 159, 160]. More recently, there has been a
shift towards methods that capture semantic relationships between columns by using embeddings and
pre-trained language models [24, 29, 30, 1] to improve precision and recall.

To find semantic joinable tables, PEXESO [29] encodes columns into high-dimensional vectors using
word embeddings such as fastText and GloVE. Joinable tables are then retrieved by comparing vector
representations using similarity predicates. Similarly, DeepJoin [30] encodes columns as vectors, and uses
column vector similarity to find joinable tables. Unlike PEXESO, DeepJoin uses a pre-trained language
model (DistilBERT or MPNet) as the column encoder, which is trained in a self-supervised manner.
This way, DeepJoin is able to consider table semantics. To support both equi-joins and semantic joins,
the model is fine-tuned on labeled data specific to each joinability task. WarpGate |24] also performs
semantic join discovery by leveraging pre-trained language models. WarpGate uses pre-trained web
table embeddings |50] to capture the semantic relationships between tables. TabSketchFM [61] was



introduced as a sketch-based tabular pre-training model that can be fine-tuned for different search tasks.
TabSketchFM leverages data sketches to represent tabular data and combines embeddings of these
sketches with column and token embeddings to create an input embedding for a BERT encoder model.
While these approaches for semantic joinable search focus on table retrieval, DTT [91]| addresses the
challenge of joining values in semantically joinable columns. DTT leverages ByT5 and fine-tunes it to
learn transformation rules to align and transform values for joins.

Table Union Search. In table union search, the objective is to discover tables that can be unioned (or
concatenated) with a query table to extend it with additional tuples. This type of search is particularly
valuable for data scientists who want to compile training or test data for machine learning models or
expand the scope of their query tables to cover different geographical regions or time periods, among
other use cases. Early work defined unionable tables as entity-complements that share the same subject
column and similar schema [109]. More recently, Nargesian et al. [90] relaxed this assumption that
unionable tables share the same schema as the query table. They formally defined table unionability
based on attribute unionability, such that tables are considered unionable if they have attributes that
originate from the same domain as the query table. Bogatu et al. |3] adopted this definition and used
five similarity metrics to find unionable and joinable columns. This definition was further refined by
Khatiwada et al. [60], who considered relationships between columns in addition to individual column
unionability when finding unionable tables that share similar semantics as the query table.

Recent approaches for table union search [25, 38, 51] leverage pre-trained language models to capture
column semantics more effectively. Starmie [38] finds unionable tables via self-supervised learning, namely
contrastive learning, leveraging a pre-trained language model (RoBERTa) to capture table context when
encoding column embeddings. To determine unionability, Starmie computes cosine similarity between
column vectors and explores various column aggregation techniques to produce table unionability scores.
Similarly, Pylon [25] employs self-supervised contrastive learning for table union search. Pylon explores
different encoder models, including fastText, web table embeddings [50], and BERT, to generate column
representations. In contrast, AutoTUS [51] shifts the focus to encoding the relationships between column
pairs, rather than the columns themselves. By leveraging BERT, AutoTUS produces column relational
representations that capture table contexts.

Query-by-Table Approaches using LLMs. Recent methods for joinable and unionable table search
have largely been embedding based. While the use of large language models (LLMs) for these tasks has
yet to be explored, it comes with its own set of challenges, which we discuss in Section 3.4. There are
also many opportunities to take advantage of the power of LLMs to help perform these tasks, we discuss
these in Section 5.

3.3 Other Goal-Oriented Dataset Discovery Tasks

Beyond the tasks described above, some discovery methods aim to satisfy more specific information
needs. For instance, find tables that (1) satisfy specific distributional characteristics, such as percentile
predicates [1], (2) are joinable and contain attributes correlated to columns in the input query table [35,
105, 106, 108, 122], (3) improve the performance of machine learning models [17, 55, 56, 78, 79|,
(4) uncover causal links among attributes [30, 111], (5) provide explanations for salient features in
data |11, 18].

Overview of Related Work: PLMs and LLMs. Since the majority of work on goal-oriented tasks
involves numerical data, the approaches used are typically based on traditional algorithmic techniques
such as sketches and indexes. However, recent studies have shown that PLMs and LLMs can potentially
be used in these tasks. Trummer [122] empirically demonstrates that PLMs can effectively predict
correlations between table attributes using only their schemas in many cases. This shows that schemas



are important for data profiling and allow language models to extract insights about the data such as
correlations between columns. For the problem of causal dataset discovery, where the goal is to discover
datasets containing columns with causal relationships to those in a query table, Liu et al. [30] leverage
LLMs to infer causal relationships. They use LLMs to determine whether there are causal links between
the correlated tables and to infer the direction of these links. They experiment with GPT-3.5 and GPT-4
and different prompting techniques such as Chain-of-Thought [131] as well as fine-tuning, and show that
GPT-4 performs particularly well in identifying causal relationships and their directions.

3.4 Limitations and Research Gaps

Table Discovery methods face similar challenges when leveraging PLMs and LLMs. First, these models
rely primarily on textual values in tables and often struggle to capture the semantics of numerical values.
This poses a significant limitation for tasks like joinable table search, when join columns are numerical,
or unionable table search, that often requires identifying matching numerical columns. Additionally,
LLMs may struggle with the complexity of joins, especially transitive joins that involve many tables.
Scalability is another major concern, particularly when searching over a large number of tables. Last
but not least, LLMs’ susceptibility to hallucination raises concerns about their reliability [137].

The effectiveness of techniques that rely on pre-trained models are heavily dependent on the size of
the training data. At the same time, the limited context windows of PLMs and LLMs make it challenging
to process large amounts of tabular data. Moreover, PLM techniques often lack generalizability. While
methods like TabSketchFM [61] demonstrate task generalizability—for example, a model fine-tuned for
joinable table search can also be applied to table union search—they often struggle to generalize to unseen
data or entirely new domains. Finally, embedding-based approaches lack interpretability, making it
difficult to explain retrieval results. Despite these challenges, embedding-based methods highlight the
importance of encoding table semantics into column representations when discovering related tables in
a large data lake. Building on this idea, we discuss potential opportunities to utilize LLMs for data
discovery in Section 5.

4 Large Language Models for Data Integration

Data integration pipelines depend on identifying and connecting relevant elements across disparate
datasets. Schema matching and entity resolution represent foundational techniques that identify
semantically related elements and enable the creation of unified views from heterogeneous data sources.

This section first provides definitions of these core data integration problems, followed by an overview
of traditional state-of-the-art methods. We then examine recent innovations using Large Language
Models (LLMs) for data integration tasks, analyzing their potential advantages and limitations. Our
discussion primarily focuses on tabular datasets, which are ubiquitous across enterprises, the scientific
community, and the web. Table 2 summarizes the LLM-based approaches for data integration discussed
in this paper, highlighting their distinctive characteristics.

4.1 Schema Matching

Schema matching refers to the process of identifying semantic relationships between elements in different
schemas. For tabular datasets, this process involves finding column pairs from different tables that
are semantically similar. The typical input for a schema matching method consists of two or more
tables, while the output comprises of either pairwise column correspondences or clusters of semantically
similar columns. The effectiveness of schema matching approaches depends on two key factors: the
input information considered and the similarity metrics employed to identify related columns. In what



Table 1: Characteristics of LLM-based methods in the literature for Table Discovery.

Papers Query Type Task Models Type Inference
Textual Table | Table Search Joinable Unionable Others | Open Closed Fine-tuned | Zero-shot Few-shot
[113] v v v v
[126] v v v v
[13] v v v v
[50] v v v v v
[91] v v v v

Table 2: Characteristics of LLM-based methods in the literature for Schema Matching (SM) and Entity Resolution (ER).

vamumﬂm H‘Wm—ﬂ Hsﬁﬂﬁ zOﬁw@_m _H_V\Hv.w HSM@%@SO@
SM ER | Metadata Values External Knowledge | Open Closed Fine-tuned | Zero-shot Few-shot
[59] (equi-joins) v v v v
59 | (PKFK) v ; /
[110] v v v v v
23] v v v v v v
[31] v v v v v
[39] v v v (ER only) v v v
[136] v v v (ER only) v v v v
[146] v v v (ER only) v v v v v
[135] v v v (ER only) v v Y
7] v v ooV v v v
_ H v v v v
[39] v v v v v v
[116] v v v v v v
— _ v v v v v v
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follows, we review approaches proposed in the literature that demonstrate considerable diversity in both
the similarity metrics utilized and the types of information leveraged.

Overview of Related Work. Early schema matching methods relied primarily on syntactic similarity
measures between columns [102] and their value distribution [119], drawing mainly on information
captured in column names and their corresponding column values. Some approaches expanded beyond
syntax by incorporating external knowledge sources such as dictionaries and domain-specific thesauri [34]
to capture semantic relationships.

The emergence of word and character embedding models, such as GloVe [100] and fastText [37],
enabled the creation of semantically rich column representations that could be compared for similarity
assessment |9, 110]. However, these embedding-based methods have shown inconsistent behavior and
struggled with noisy data [65]. Specifically, traditional word embedding models do not properly handle
formatting discrepancies, such as typos, and they attach the same meaning to each syntactically unique
word, without accounting for context and polysemy (words with multiple meanings).

More recently, PLM-based methods, which produce contextualized representations of text, have been
proposed for schema matching. Specifically, several methods have been proposed to fine-tune PLMs and
perform schema matching [32, 123, 154]. The effectiveness of these methods is comparable to or even
better than schema matching techniques that rely on syntactic measures or word embeddings. However,
these PLM-based methods require large amounts of labeled column pairs. This labeled set is not always
available, like in the case of tables in the wild, and thus requires methods to generate training examples
with similar data distributions as the test data, such as contrastive learning. In addition, other methods
have been proposed that leverage other (self-)supervised deep learning models (e.g., GNNs) to produce
column representations for schema matching [66, 67, 148].

Schema Matching with LLMs. Several methods use LLMs with varied prompting approaches and
information. Narayan et al. [39] employed zero-shot and few-shot LLM prompts to address data cleaning
and integration tasks. Their prompts consist of serialized attribute/data values and, optionally, task
demonstrations (selected randomly or manually) from a pool of labeled data. When using only column
names in few-shot LLM prompts, the authors showed improvement over the deep-learning state-of-the-art
schema matching method in [148]. Kayali et al. [59] designed prompts specifically for identifying join
columns between two distinct pandas DataFrames, providing instructions with data samples and answer
templates to guide the LLM in completing a pandas.merge operation. Parciak et al. [97] explored various
prompting strategies for matching source attributes to a target schema. Huang et al. [53] developed a
method that utilizes LLM prompts containing table descriptions (which are generated using LLMs) and
schema information to capture PK-FK relationships (a special type of column match) between column
pairs. In an effort to improve prompts for schema matching, Xu et al. [136] incorporated manual rules
and additional insights extracted from either the input datasets or external knowledge bases.

Beyond using off-the-shelf LLMs, several researchers have explored fine-tuning LLMs specifically
for data wrangling and integration tasks. Li et al. [71] proposed Table-GPT, which fine-tunes LLMs
to address various table-related tasks, including schema matching. It incorporates fine-tuning for both
complex reasoning tasks and simpler table manipulation operations to enhance the model’s overall table
processing capabilities. They evaluated various prompt and table serialization templates, demonstrating
the importance of diverse augmentation techniques during fine-tuning. However, their experimental
results for schema matching are inconclusive, as both out-of-the-box and fine-tuned LLMs demonstrate
“perfect" effectiveness. This study leaves several questions unanswered, including how the number of
tuples in table serialization affects performance and how the approach scales to large tables (in terms of
both columns and rows).

Similarly, Zhang et al. [116] developed Jellyfish, which also employs LLM fine-tuning for data
wrangling and integration tasks. Unlike Table-GPT, Jellyfish places special emphasis on prompt content
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and intended output, sometimes incorporating injected knowledge about input data and requiring
answers that include reasoning information. Their evaluation shows that Jellyfish’s fine-tuned models
slightly outperform a previous schema matching technique [148] on a benchmark using only attribute
names and descriptions (similar to the evaluation in [89]). Yan et al. [138]| proposed a Mixture of Experts
(MoE) approach based on LLMs for various data preprocessing tasks, including schema matching. Their
results demonstrate improved effectiveness compared to both open-source and proprietary off-the-shelf
models, while also showing better efficiency than Jellyfish’s fine-tuned model [116], suggesting that MoE
represents a promising approach.

It is worth noting that several studies [89, 97, 136, 138, 116] evaluate schema matching using datasets
that only include table/attribute names and descriptions. However, there has not been a comprehensive
evaluation to compare all these approaches.

Instead of using LLMs on input data to directly capture matches, a number of methods incorporate
them as part of more complex schema matching pipelines. ReMatch [112]| introduces a method that
refines candidates based on embeddings before prompting the LLM. Specifically, the authors focus on the
problem of matching a set of source tables to a set of target tables when table and attribute descriptions
and names are given. Their method first transforms each table to a document that includes table/column
names and descriptions; using GPT-4, each such document is transformed into an embedding. Then,
for each source attribute they leverage embeddings to find the most relevant documents, i.e., tables,
from which they retrieve the final matching target attributes based on the LLM response. Matchmaker
[110] targets the same variant of schema matching problem and proposes a multi-stage method with
several LLM-calls to suggest and refine candidate matches between source and target schemata, while
also assigning confidence scores. In contrast to ReMatch, Matchmaker uses both LL.M-calls and PLM
embeddings to filter out candidate target attributes, while it also employs LLMs in a different way
to refine and finally match them to the query source attribute: matching is formulated as a multiple
choice question, where the task is to find the most relevant target column with respect to a given
source column. Both methods show improvements over a state-of-the-art deep-learning schema matching
method [148], while Matchmaker shows effectiveness gains over ReMatch and Jellyfish [146]. Instead of
relying only on the information in the input datasets, Ma et al. [$3] proposed to leverage knowledge
graphs. Their method retrieves relevant knowledge graph triplets and uses them to augment LLM
prompts for answering whether a source attribute corresponds to a target one, on top of providing their
names, descriptions and demonstration examples; retrieval can be either LLM-based or employ vector
search over PLM-based embeddings.

Magneto [31] introduces a new approach for schema matching that combines small-PLMs (SLMs)

and LLMs in a novel way. Like ReMatch, it works in two steps. First, it leverages a pre-trained or
fine-tuned SLM to produce embeddings of columns and given a source column, outputs, a ranked list of
similar target attributes. Note that instead of relying on manually-labeled data, Magneto uses LLMs to
generate training data for fine-tuning the SLM. For the second step, the ranked list of matches is given
to an LLM for re-ranking. To deal with the context-window limitations of both PLMs and LLMs, they
explored different methods for sampling and serializing tables (including values). Experimental results
show that using LLMs for re-ranking can be effective, regardless of the SLM used to derive the initial
ranking, and that Magneto outperforms or performs comparably to state-of-the-art methods, including
[123] and [32].
Limitations and Research Gaps. Despite the progress in applying LLMs to schema matching, several
critical limitations remain unaddressed. First, existing work largely ignore the challenges of processing
large input sequences when tables contain a large number columns and rows. The tendency to disregard
data instances in favor of relying solely on column names and descriptions restricts these methods’
applicability in many real-world scenarios.
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Interestingly, current LLM-based approaches predominantly focus on matching source data to
standardized target schemas, with matching datasets to OMOP CDM (Observational Medical Outcomes
Partnership Common Data Model) [93] emerging as the most common evaluation scenario. Since these
benchmarks contain table/attribute names and descriptions, research has gravitated toward metadata-
based schema matching, resulting in a scarcity of LLM-based methods that effectively utilize actual
data instances.

Few studies include comparisons against other LM-based methods, impeding meaningful progress in
the field. Instead, most methods report improvements against pre-PLM schema matching techniques
or out-of-the-box models. Notably absent are detailed analyses of specific column match cases where
LLM-based methods significantly outperform previous state-of-the-art approaches. The absence of
granular performance analysis makes it difficult to identify genuine advancements and understand the
specific strengths of LLM-based approaches. Furthermore, evaluation results from multi-tasking models
like TableGPT [71] and Jellyfish [116] successfully demonstrate general applicability but fail to provide
task-specific insights crucial for understanding schema matching performance.

While few-shot inference with LLMs can achieve state-of-the-art effectiveness, this approach requires
carefully selected demonstration examples from labeled data pools. This presents a significant challenge,
as ground truth data for schema matching tasks is notoriously limited. Even when labeled data exists, it
may not accurately reflect the intrinsic characteristics of test data, potentially leading to suboptimal
performance in real-world applications.

4.2 Entity Resolution

Entity Resolution involves identifying the same entities across different datasets. In tabular data, the
objective is to determine which tuples refer to the same entity. Entity resolution pipelines typically
consist of several distinct tasks [19]. Initially, input tables may undergo an optional pre-processing step
that includes integration and curation tasks such as schema matching (as discussed in Section 4.1), data
cleaning |21], and other preparatory operations. Following this, the blocking phase examines all tuples
across datasets and produces a set of candidate pairs that might be semantically similar; essentially,
blocking serves as the filtering step within an entity resolution pipeline. Finally, the matching phase
evaluates each candidate pair and determines whether it constitutes a valid match. In the following
sections, we discuss proposed methods that focus on either the blocking phase exclusively [95], the
matching phase exclusively |76], or address both phases [20]. We then examine approaches that leverage
LLMs for entity resolution tasks.

Overview of Related Work. The majority of entity resolution methods target the matching step.
Specifically, several approaches rely on human experts to devise rules [10, 114], guide the entity matching
process through crowd-sourcing [18, 125], or provide labeled data for training machine learning models
[63]. Moreover, automated methods using supervised learning with deep learning models |34, 87] exhibit
considerable effectiveness gains.

More recently, various methods have leveraged the representational capabilities of PLMs to build
fine-tuned models that capture entity matches in a supervised manner [6, 75, 77, 98, 123]. While these
approaches show performance improvements, they continue to require a substantial amount of labeled
data. To address this limitation, alternative research directions have explored self-supervised [17, 127] and
unsupervised [134, 1415] frameworks. These approaches have shown comparable or superior effectiveness
relative to supervised models, helping overcome the labeled data bottleneck that often constrains
learning-based entity resolution methods.

To address the blocking phase of entity resolution, methods have been proposed to employ various
filtering techniques to identify potential matches across datasets, including rule-based filtering, hash-
based comparisons, sorted key comparisons, similarity functions, and ensemble methods combining
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multiple approaches [95]. Deep learning solutions have also emerged in the blocking space [34, 119],
which project tuples into embedding spaces and leverage these representations to construct clusters of
potentially matching entities.

Moving beyond the traditional separation of blocking and matching, some researchers have proposed
integrated approaches [70, 135]. Such methods demonstrate the benefits of addressing both tasks
simultaneously, allowing signals from each phase to inform and improve the other’s performance.
This integrated perspective represents a promising direction for enhancing overall entity resolution
effectiveness.

Entity Resolution with LLMs. Recent research has explored using LLMs out-of-the-box with
dedicated prompts for direct entity matching decisions. Narayan et al. [39] demonstrated that an LLM
prompt that serializes column names and values for tuple pairs alongside demonstration examples
can sometimes outperform state-of-the-art solutions like Ditto [75, 77]. Peeters et al. [99] conducted
a comprehensive experimental study on LLM-based tuple-pair matching. Their investigation encom-
passed multiple LLMs using both zero-shot and few-shot prompting approaches, while also exploring
fine-tuning with labeled data from existing annotated dataset pairs. Their findings revealed that no
single model or prompting technique consistently outperforms others, with traditional non-LLM super-
vised methods sometimes achieving superior results. Wang et al. [128] introduced a novel approach
that considers matching of a single tuple against a set of tuples, rather than focusing on tuple-pair
matching. This problem formulation enabled their method, ComEM, to explore diverse input-output
prompting strategies and effectively combine them for enhanced performance. When compared against
state-of-the-art approaches—including supervised methods (e.g., Ditto [77]), self-supervised techniques
(e.g., Sudowoodo [127]), and out-of-the-box LLM prompts [99], ComEM demonstrated comparable or
occasionally superior effectiveness. Dou et al. [31] explored the advantages of jointly training blocking
and matching components through supervised learning. Specifically, they introduced an innovative
architecture supports fine-tuning either traditional PLMs or instruction-tuned open-source LLMs for
the matching phase. Their experimental results reveal that while instruction-tuned LLMs demonstrate
superior effectiveness compared to PLMs, they still fall short of the performance achieved by proprietary
models like GPT-4 when used out-of-the-box. Xu et al. [136] presented a method that claims applicability
to entity matching tasks through the use of manual instructions and external knowledge integration.
However, their evaluation focuses exclusively on schema matching, leaving the method’s effectiveness for
entity resolution tasks unverified.

Recent work has explored multiple strategies to optimize LLM-based entity matching, ranging from
model architecture modifications to prompt engineering and computational efficiency improvements.
Table-GPT [71] demonstrates that LLMs specifically tuned on tabular data outperform their untuned
counterparts in both zero-shot and few-shot settings for tuple pair matching. Building on this foundation,
Jellyfish [116] achieves superior entity matching results compared to both Table-GPT and traditional
non-LLM methods. However, Jellyfish’s performance advantage is most pronounced when the test data
distribution is represented in the fine-tuning dataset, and comparisons against state-of-the-art LLMs like
GPT-4 have yielded inconclusive results. A systematic study by Steiner et al. [116] further explores fine-
tuning approaches across both open-source and proprietary LLMs, analyzing various data representation
formats and example selection strategies. They also evaluated model robustness against domain shifts
between training and test data. While their fine-tuned models demonstrate enhanced performance
for in-domain generalization, an interesting finding reveals that zero-shot approaches actually achieve
superior results when handling test data that comes from a domain different from the training data.
This highlights an important trade-off between fine-tuning benefits and domain adaptability.

Alternative architectural approaches have also shown promise. The Mixture-of-Experts (MoE)
LLM-based model proposed in [138] brings improvements in entity matching over standard open/closed-
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source and fine-tuned models. It demonstrates superior performance compared to both conventional
and fine-tuned LLM models, highlighting the advantages of specialized task experts within a unified
framework. Taking a different approach, Seed [15] introduces a flexible system that leverages LLMs
in two ways: either for code and training data generation, or for direct entity matching tasks. A key
innovation of Seed is its optimization framework, which generates and selects execution plans based on
both computational efficiency and effectiveness metrics. While Seed does not match the accuracy levels
of state-of-the-art supervised methods like Ditto [77] or pure LLM approaches [99], it achieves a balance
between effectiveness and LLM-cost efficiency.

Huh et al. [54] investigated demonstration example selection by leveraging pre-trained language models
(PLMs) to embed tuple pairs and identify similar examples in the representation space. Interestingly,
their findings reveal that this sophisticated approach does not consistently outperform simpler random
or manual example selection methods. Addressing computational efficiency, BatchER [39] demonstrates
that batch processing of tuple pairs within single prompts can achieve both cost savings and effectiveness
gains. BatchER achieves comparable results to state-of-the-art PLM-based entity matching methods
that require extensive labeled datasets, while maintaining lower computational overhead.

Limitations and Research Gaps. While LLMs show considerable promise for entity matching tasks,
there are also important challenges. First, prompt engineering significantly impacts matching accuracy,
with different model architectures exhibiting varying levels of prompt sensitivity. Peeters et al. [99]
demonstrated that while GPT-4 maintains consistent performance across different prompt formulations,
other models like GPT-mini, Llama2, Llamag3.1, and Mixtral show higher sensitivity to prompt variations.
This finding highlights the critical importance of careful prompt design, particularly when using more
cost-effective models.

The evaluation landscape presents a mixed picture. Unlike schema matching, entity matching research
benefits from common benchmark datasets, enabling direct comparisons between LLM-based approaches
and traditional methods. However, inconsistent result presentation and reporting practices often lead to
inconclusive comparisons. This challenge is particularly evident when trying to determine the precise
advantages of LLM-based methods over existing approaches. A significant gap in current research is the
lack of detailed analysis of specific use cases or scenarios where LLM-based methods demonstrate clear
advantages over traditional approaches. While studies often report aggregate performance metrics, they
frequently fail to identify and analyze the particular types of entity matching problems where LLMs
excel or struggle compared to conventional methods. This limitation makes it difficult for practitioners
to make informed decisions about when to adopt LLM-based solutions.

A significant challenge in deploying LLMs for entity matching is managing computational costs,
particularly with hosted commercial models. The cost structure, based on token count for both input
prompts and model outputs, becomes especially problematic when handling tuples with extensive textual
attributes that require longer prompts. While advanced models like GPT-4 provide superior performance,
their higher per-token costs create a substantial economic barrier compared to smaller models like
GPT-mini. The cost-quality trade-off becomes more complex when considering performance optimization
strategies. In-context learning can significantly improve matching accuracy through demonstration
examples, but each additional example or rule increases the token count and consequently the operational
costs [39]. Similarly, while fine-tuning offers a promising path to improve performance of smaller open-
source models, its benefits are often limited to scenarios where test data closely aligns with the training
domain [99, 116]. Furthermore, the fine-tuning process itself presents two significant barriers: the high
computational overhead and the requirement for substantial labeled training data—a limitation shared
with traditional PLM-based methods |77].
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5 Research Challenges and Future Directions

Despite the rapid advancement in applying LLMs to data discovery and integration tasks, significant
research challenges and opportunities remain unexplored. Building on our analysis of existing methods
(Sections 3 and 4), we identify and discuss both task-specific challenges and broader research directions
that warrant further investigation. Our discussion encompasses not only technical limitations identified in
current approaches but also emerging opportunities to enhance the effectiveness and practical applicability
of LLM-based solutions in this domain.

5.1 Dataset Discovery

Although the direct application of LLMs to large-scale tasks like semantic joinable table search and
table union search faces scalability challenges, LLMs’ sophisticated semantic understanding capabilities
present promising opportunities for advancing dataset discovery tasks.

Improved Semantic Understanding and Metadata Enrichment. While existing PLM-based
methods [24, 25, 30, 38, 51, 61| have demonstrated the value of semantic approaches in finding related
tables, LLMs could potentially enable more precise semantic matching and relationship identification.
LLMs have shown success in fundamental table understanding tasks, including column-type annotation
[45, 59, 64, 71, , , |, table-class detection |52, 59, 64], and column-relation extraction [59, |.
These capabilities can be leveraged to enhance tables with rich semantic information, thereby improving
joinable and unionable table search accuracy.

Cross-Task Integration. Advances in LLM-based entity matching (Section 4.2) could be extended to
multi-table entity matching and attribute discovery. Similarly, schema matching techniques (Section 4.1)
could be adapted to identify semantically similar columns for unionable table search. This cross-
pollination of techniques offers promising paths for improvement. Research is needed on how to
effectively combine different LLM-based tasks (e.g., type annotation, relation extraction, and matching)
in a unified discovery pipeline.

Hybrid Approaches. Another direction of research is to further explore hybrid approaches that combine
LLMs with traditional techniques. Such approaches could leverage LLMs’ semantic understanding while
maintaining the efficiency of established methods. Particularly promising is the integration of LLMs
with existing join discovery techniques like sketches and indexes [30, 43, , |, which could enhance
emerging join-aware textual query methods that retrieve multiple tables [2, 13].

Explainable Discovery. Lastly, LLMs’ ability to generate natural language explanations for semantic
matches and relationships between columns and tables represents an underexplored opportunity. Such
explanations could significantly improve user trust and understanding of discovery results, facilitating
more effective use in downstream tasks. Research is needed on how to generate explanations that are
both technically accurate and accessible to users with varying levels of expertise.

5.2 Schema Matching

Handling Instance Data. Current LLM-based schema matching methods predominantly focus on
scenarios where only metadata is available for matching source datasets to target schemas (Section 4.1).
However, schema matching must also handle more challenging scenarios where column names may be
opaque or missing, making instance data the primary source of matching information. This disconnect
presents several key challenges to the development of LLM-based schema matching approaches. A
fundamental challenge is managing large input sequences when tables contain numerous columns and rows.
While recent LLM architectures offer expanded context windows exceeding 100,000 tokens, two critical
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issues emerge: First, studies indicate that LLMs face accuracy degradation with longer contexts [72]
and efficiency challenges [139]. Second, even with larger context windows, the computational costs and
performance trade-offs must be carefully balanced. This points to promising research directions. Rather
than using LLMs for direct schema matching, approaches like [31] demonstrate the potential of leveraging
LLMs as sophisticated reasoning engines in post-processing steps. Future research should explore
approaches to efficiently sample and summarize instance data to create informative yet compact LLM
inputs, develop adaptive strategies that selectively invoke LLM processing based on data characteristics,
design cost-effective architectures that maintain accuracy while managing computational overhead.

Profiling for Schema Matching. LLMs present significant opportunities for enhancing schema
matching through automated data profiling and metadata enrichment, particularly in scenarios where
metadata is missing or unreliable. Recent works demonstrate promising applications: generating detailed
table and column descriptions |52, |, and inferring semantic types for columns [15]. The information
obtained through profiling can be used to identify matching columns. In addition to improving the
effectiveness of schema matching methods, the generated metadata an help prune the search space of
potential column matches, contributing to lower computation cost and execution time.

5.3 Entity Resolution

Handling Long Entities. While LLM-based entity matching solutions benefit from significantly
longer context windows compared to PLM-based methods, incorporating all attribute values into entity
representations may not always improve matching accuracy. The impact of long attribute values on LLM
reasoning can vary significantly - for instance, extensive user comments might either obscure or enhance
product matching depending on their content. This complexity necessitates sophisticated pre-processing
strategies for optimizing entity representations in LLM prompts. Several promising research directions
emerge for effective pre-processing, including: the development of profiling techniques to identify and
prioritize informative attributes; integration of schema matching techniques to focus on comparable
attributes, following successful approaches from traditional entity matching methods [20]; and techniques
for condensing long attribute values while preserving matching-relevant information [77]

Blocking. While LLMs have shown promise in entity matching (Section 4.2), their application to
blocking—a crucial step in real-world entity resolution [95]—remains largely unexplored. This gap
stems from the inherent complexity of blocking tasks: unlike pair-wise entity matching, blocking must
efficiently process the entire search space of possible tuple pairs across datasets to identify candidate
matches. The computational demands and complexity of this task make direct application of LLMs
impractical, even with their expanding context windows and enhanced reasoning capabilities. However,
LLMs can contribute to blocking effectiveness through indirect approaches. For example, through
metadata enhancement — enriching tuples with additional semantic information, generating standardized
representations of attribute values. Recent work [129] has demonstrated the potential of LLM-based
tuple enrichment for improving blocking effectiveness

5.4 General Directions

Prompt Engineering. The effectiveness of LLMs in data integration and discovery tasks heavily
depends on prompt engineering, but there are significant challenges in developing robust prompting
strategies. Experimental evaluations of methods discussed in Sections 3 and 4 point out that there are
no universally effective prompting templates and strategies. Even minor changes in table serialization
formats or task descriptions can significantly impact performance |71, 99]. Moreover, the rapid evolution
of prompting strategies [103] makes it difficult to establish best practices.
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This complexity points to several critical research directions in automated prompt optimization
and the integration of context and knowledge. Inspired by recent advances in automatic prompt
engineering efforts [158], automated prompt optimization methods could be tailored to each given input
and table-related tasks. Moreover, choosing suitable in-context examples [51] and effective retrievers
for incorporating external knowledge to prompts [55] is equally important. Finally, recent advanced
prompting techniques that enable tool calling abilities [141]| are an exciting direction that allows the
development of agentic systems that integrate existing efficient algorithms with LLM-based reasoning
and interactive user interfaces [107].

Cost Considerations. Evaluating LLMs’ feasibility in practical scenarios demands rigorous analysis of
cost and runtime factors, which present significant deployment barriers. The current landscape presents
a complex trade-off between hosted and open-source solutions, each with distinct challenges. Hosted
models pose several significant challenges for practical deployment. Leading providers’ high API costs
per token '?? can accumulate rapidly, becoming prohibitive for large-scale deployments — involving
large datasets or a large number of datasets. Response latency issues become particularly acute when
processing large datasets, potentially impacting real-time applications.

Open-source models present a different set of challenges. Models like LLaMA2 require a significant
upfront investment in specialized hardware infrastructure, particularly high-performance GPUs. Beyond
the initial investment, organizations must consider ongoing operational and maintenance costs, as well
as the technical expertise required for effective deployment and optimization. These factors can make
the total cost of ownership substantial, even without per-token API fees.

This dichotomy highlights a critical research gap: the absence of standardized frameworks for
comparing hosted and open-source models. Such frameworks would need to address multiple dimensions
including effectiveness-cost ratios, scalability characteristics, total cost of ownership, and operational
complexity. The development of comprehensive comparison methodologies would enable organizations
to make more informed deployment decisions based on their specific needs and constraints.

Comprehensive Task-Specific Evaluations. Recent LLM-based approaches that target multiple
tabular data curation and integration tasks [71, 138, 146] have established their effectiveness through
extensive experimental evaluations that typically assess each task using dedicated benchmarks and
compare against state-of-the-art methods using standard metrics like Fl-score. Additionally, they
often include task-agnostic ablation studies examining the impact of different prompting strategies,
demonstration examples, and LLM architectures.

While these evaluations demonstrate the general applicability and advantages of LLM-based methods,
they often lack granular, task-specific insights that could better illuminate their unique strengths. Current
evaluation approaches rarely analyze specific challenging instances where LLMs demonstrate particular
advantages. For example, cases involving columns or entities with significant syntactic differences but
semantic similarities could provide valuable insights into LLMs’ semantic understanding capabilities.
Such fine-grained analysis could reveal where LLMs excel compared to traditional approaches. Future
evaluations should therefore incorporate detailed analysis of specific challenging cases that highlight
LLMs’ distinctive capabilities. This could include examining performance on instances requiring
complex semantic reasoning, handling of ambiguous or context-dependent matches, and cases where
traditional methods typically struggle. By providing concrete examples of where LLMs bring meaningful
improvements, such task-specific evaluations would offer stronger justification for their adoption and
better guide their application in practice.
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Abstract

Large language models (LLMs) are not merely changing computing; they are igniting a revo-
lution across industries, from healthcare to finance. Their prowess in tackling complex problems,
demonstrated by breakthroughs in chatbots, translation, and code generation, is undeniable. A
notable breakthrough in data management, driven by LLMs, is the advancement of natural language
to SQL translation. This technology has fueled substantial progress, making database interactions
more accessible and enabling the deployment of numerous real-world applications. Yet, even these
powerful models falter with latency-sensitive regression problems, a critical need in database perfor-
mance optimization. Inspired by the foundational principles of LLMs, we are developing pre-trained
cardinality estimation and foundation database models, bridging this gap and unlocking the next
generation of database optimization.

1 Introduction

Large Language Models (LLMs), a key part of GenAl, have captured the attention of many people,
technical and non-technical alike. LLMs are bringing significant changes to the field of computing and
this is not just an incremental step; it’s a fundamental shift on how to approach computing problems
and data. Notably, LLMs have demonstrated a powerful capability to tackle challenging problems across
diverse domains, including data management. For instance, LLMs have greatly improved NL2SQL
(converting natural language to SQL queries), leading to high accuracy solutions and making commercial
applications more feasible. Beyond NL2SQL, LLMs have the potential to help with other difficult data
management tasks like data integration, data discovery, and semantic understanding of tables and
schemas.

LLMs, trained with all data available on the Internet, are very adept at question answering over
unstructured context. Combining LL.Ms with databases allows us to analyze structured and unstructured
data together in innovative ways [I—1|. These emerging systems explore how to augment RDBMS with
pre-trained knowledge of LLMs to drive insights from a broader knowledge base.

For years, the seamless integration of structured and unstructured data has remained an elusive goal
for enterprises. Traditional approaches, relying on ETL and predefined entity extraction, suffer from
inherent limitations: rigid schemas and batch-oriented processing lead to significant delays. However,
the advent of Large Language Models (LLMs) is ushering in a paradigm shift. LLMs, with their inherent
ability to process unstructured data, combined with database capabilities, are unlocking unprecedented
analytical power. Innovative systems, such as Lotus [1| and Palimzest [2|, are leveraging LLM-powered
operators to facilitate on-demand information extraction from unstructured sources. This eliminates the
need for predefined entities and minimizes processing latency, unlocking new possibilities for Al-driven
data analysis.

The synergy between databases and LLMs extends far beyond their respective handling of structured
and unstructured data. Databases operate within a closed-world paradigm, relying solely on their
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stored information, while LLMs possess vast, pre-trained knowledge derived from the entire internet.
Furthermore, their primary access mechanisms, SQL and natural language, respectively, offer distinct
advantages. To realize the full potential of data analytics, we must explore more innovative ways to
integrate these contrasting strengths.

LLMs have shown promise in addressing certain database challenges, including data wrangling[5| and
semantic query equivalence checking[(]. These initial studies highlight the potential of LLMs for data
management. However, LLMs currently struggle with regression tasks|7] and latency-sensitive problems,
which are prevalent in database performance optimization. For example, cardinality estimation is one
such latency sensitive regression problem, which can be solved more accurately using traditional ML
models.

Early work on ML-based cardinality estimation focused on instance-based models, where a new
model is trained for each data set and workload. However, one significant learning from LLMs’s success
is the importance of pre-trained models that can generalize to new tasks and data sets, with or without
fine-tuning. Building on this observation, we build pre-trained cardinality estimation models. Inspired
further by foundation models, we also explore the building blocks for database foundation models, and
build data and query experts, which can be combined to solve many database performance problems.

In this paper, we first describe our findings and insights using LLMs to solve natural language to
SQL. Then, we present our research on pre-trained cardinality estimation models, followed by foundation
database models, which are inspired by foundation language models. Finally, we conclude with future
research directions.

2 Natural Language to SQL with LLM

One particular domain that stands out to benefit from recent advancements in LLMs is Natural Language
to SQL (NL2SQL). NL2SQL is a challenging task that requires translating ambiguous natural language
questions into structured SQL queries over complex data schema [3]. Early approaches in NL2SQL
relied on rule-based semantic parsing or seq-to-seq language models treating NL2SQL as a machine
translation problem [9—11] with limited success. Recently, the latest LLMs with their superior language
understanding and code generation capabilities have revolutionized the NL2SQL landscape. Since mid-
2023, LLM-based approaches have dominated popular NL2SQL benchmarks, significantly outperforming
earlier methods based on semantic parsing and machine translation [12-17].

LLMs lack the pre-trained knowledge of database schemas. Hence, each new database schema, with
its different data model and semantics, pose a new challenge. This missing information needs to be
provided as context to the LLM model. As such, we focus on schema linking and creating the right
context for LLMs in our NL2SQL research.

2.1 Schema linking for NL2SQL

While LLMs excel at queries with less semantic ambiguity and simple schema, they can still struggle
with more nuanced and ambiguous questions asked over complex data schema. Rather than directly
translating natural language questions into SQL queries, LLMs can link relevant schema elements (e.g.,
tables, columns) to the natural language questions and generate SQL queries that align with users’
intent. This so called schema linking is crucial for generating accurate and executable SQL queries.
Many LLM based NL2SQL systems have focused on improving schema linking accuracy via careful
relevant table and column retrieval |18, 19]. Recent studies [12, 20] showed that LLMs can generate
accurate SQL queries given the entire database schema. The enhanced reasoning and “near-perfect'
retrieval capabilities [21] of the latest LLMs, such as gemini-1.5, enable accurate schema linking during
inference.
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Table 1: Schema Selection Performance (TBR: Table Retrieval, CR: Column Retrieval) and Execution
Accuracy on BIRD dev. Using the entire DB table schema without any relevant column selection yields
comparable performance to using one of the state-of-the-art schema linking method; the ground truth
TBR and CR results in the prompt boosts the SQL generation accuracy significantly.

Filtered Schema [19] All DB Schema [20] Ground Truth Schema
Ex Acc (%) 64.08 64.80 72.43
TBR Recall (%) 97.69 100 100
TBR Precision(%) 89.72 34.29 100
CR Recall(%) 97.12 - 100
CR Precision(%) 69.43 - 100

Table 1 illustrates that the perfect relevant table and column retrievals (Ground Truth Schema) lead
to accurate schema linking and give a significant boost to the generated SQL accuracy. It is important to
note that such perfect table retrieval and column retrieval are infeasible in practice due to the question
ambiguity as well as the semantic complexity of the underlying schema. High quality, but expensive,
table and column selection can be done via multiple LLM calls (Filtered Schema [19]), and alternatively,
one can pass the entire DB schema to the prompt, skipping relevant table and column retrievals entirely.
In [20] we further study this alternative approach leveraging the extended context window of the latest
LLMs, and evaluate the trade-offs of passing more contextual information for in-context learning.

2.2 In-context learning for NL2SQL

While providing table and column schema aids schema linking, it does not ensure accurate SQL generation.
The model must comprehend the semantic correlation between the user’s question and actual SQL query.
This is further complicated by the absence of domain knowledge. For instance, consider a query such as
"find patients with normal blood pressure". "Normal" is a domain-specific term that requires context
and interpretation. Moreover, text search semantics frequently deviate from SQL semantics. A user
might ask "find me all account holders in south bohemia," but it remains ambiguous how to translate
"south bohemia" into a SQL predicate. Depending on the actual literal stored in the table, "South
Bohemia", "south Bohemia", or "SOUTH BOHEMIA" are all possible options. Entity recognition,
especially with proper nouns, introduces additional complexity.

One promising approach to address these challenges is in-context learning (ICL). ICL is a popular
technique to guide the LLM to perform new tasks by providing a few-shot examples in the prompt.
It has been demonstrated to improve the performance of LLMs in many challenging NLP tasks, such
as math and reasoning [22]. We have found that in-context example selection is critical to NL2SQL
accuracy. By selecting text2SQL example pairs similar to the user question, we can provide additional
references about the schema, domain knowledge, and even help resolve literal issues.

Figure 1 illustrates the impact of example selection on NL2SQL generation. Our findings indicate
that semantically similar examples within the prompt context lead to significant accuracy improvements.
While even random examples from the same database schema provide some benefit, likely by exposing
semantic relationships between question types and query structures, similarity-based example selection
yields superior results. This improvement suggests that relevant examples convey valuable, schema-
specific knowledge that enhances the capabilities of off-the-shelf LLMs. The highest accuracy is observed
when the ground truth example is included, indicating that LLMs are adept at recognizing and leveraging
correct examples but are less proficient at generating accurate queries without such guidance. However,
it is important to note that even with ground truth examples, perfect accuracy is not achieved. This
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implies a potential for LLM overconfidence, where pre-training biases can lead to incorrect generations
despite the availability of correct examples.
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Figure 1: Generation accuracy with different ICL strategies on different databases from BIRD Bench.
"No Ex": No examples are provided in the prompt. "Random Ex": 10 random examples from the same
database schema are included in the prompt. "Similar Ex": The top 10 examples most similar to the
question, based on question embedding similarity, are provided in the prompt. "Similar Ex w/ GT":
The ground truth example is provided along with 9 other similar examples based on question embedding
similarity.

2.3 Self-consistency for NL2SQL

Another technique that we see in the latest state-of-the-arts in the BIRD benchmark [13] leaderboard is
self-consistency [14, 23]. The idea is to generate multiple output candidates via repeated runs and the
most common (majority voting) or the most likely (specialized picker) output is selected. In [11], we use
three different NL2SQL pipelines to generate a more diverse set of candidate pool, which result in a
higher overall accuracy paired with a fine-tuned picker LLM model. While the strong results demonstrate
how the stochastic nature of LLM generation can be exploited to address more ambiguous user queries
and tasks, the ambiguous user queries and complex data schema still remain as unsolved challenges.
Self-consistency also raises concerns about the increased number of LLM calls and the cost and latency
of NL2SQL output generation. Therefore, improving the efficiency of these multi-step LLM interactions
is a critical research priority.

2.4 Long context for NL2SQL

Much of LLM-based NL2SQL research and solutions assumed a limited context size (typically smaller
than 8k tokens, which is just enough hold a few select table schema) and also degrading performance
over increasing amount of contextual information [24]. As such, many NL2SQL pipelines focused
on retrieving a handful of top-K table schema along with 3-5 examples or chain-of-thought (CoT)
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demonstrations [15, 25]. Alternatively, in a recent study [20] we explored the potential of leveraging the
long context LLMs, like gemini-1.5 with 2-million tokens context limit, with lots of extra contextual
information(e.g., entire DB table schema, hundreds of examples for ICL). In particular, we explored
including entire database schemas, hints, tens of example queries, sample column values, as well as entire
distinct values of columns. We study in detail the utility and cost of various long context-based strategies
in [20]. The results indicate that the long context model exhibits a very strong retrieval capability over
the extended context window for NL2SQL and is robust to extra irrelevant information in the prompt.
This means that NL2SQL generation does not need to be impaired by the imperfect performance of
retrieval services — we can retrieve more to ensure higher recall at the cost of lower precision.

3 Using Traditional ML for Latency-sensitive Database Problems

Recently, machine learning models have been used effectively in many database problems|26], showing a
lot of promise. These early works show that there are many database problems where ML can benefit
database systems, including run-time prediction [27], and query optimization [28]. All such internal
database optimization tasks have in common that they have strict latency requirements as they happen
at query time and they are data dependent. Cardinality estimation (CE), as one of the key building
block in modern databases for optimizing performance, has been studied extensively as a target for
many ML based approaches |29, 30].

Traditional CE techniques used in modern database systems have well-known limitations, as they
make simplistic data modeling assumptions, such as data uniformity and independence of columns
in the tables. Recent research has explored learned CE, employing machine learning for improved
accuracy. Learned CE model following an instance-based approach have been shown to improve upon
the state-of-art techniques used by database systems today [29]. Instance-based models are trained
and evaluated on a specific database instance, requiring retraining for each new dataset. This category
encompasses workload-driven models that are trained using a representative set of queries executed on the
target database, incurring significant overhead and data-driven models that learn the data distribution
within the database, avoiding query execution but still requiring retraining upon data updates. Despite
their better accuracy, such learned CE models have not been adapted in practice, due to their high
training overheads, among other reasons. As a result, pre-trained CE models, which are trained on a
corpus of diverse datasets on transferable features, are highly desirable to alleviate the training costs
and increase adaption.

Zero-shot models: This emerging paradigm aims for generalizability across diverse datasets without
retraining. Pre-trained on a variety of databases, these models leverage transferable features to adapt to
unseen data and are more robust to data modifications. We developed such pre-trained CE estimation
models, which we describe next.

3.1 Cardinality Estimation Model

Recognizing the inherent graph representation of SQL queries, we explore the following two model
architectures for the cardinality estimation task: Graph Neural Network (GNN) and Graph Transformer.

The design of the GNN model is based on the GNN cost model from [31]. Each node’s features
are passed through a separate Multi-Layer Perceptron (MLP) based on the node type. The GNN then
mirrors the query execution order to propagate information in a topological order from leaf to the root
node. Finally a learned graph-level embedding from the root node is used to predict query cardinality.

In addition to GNN, we build a Graph Transformer model which extends the attention mechanism
to graph-structured data. Inspired by Graphormer [32], we make several modifications on top of
the traditional transformer architecture to better capture graph complexity. These changes include
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heterogeneous input embedding to accommodate node-type specific feature types, shortest-path spatial
encoding as an attention bias to capture structural relationships between nodes, directional causal
masking to enforce topological ordering, and a virtual node connected to all other nodes used for a
comprehensive graph-level representation for the final cardinality prediction.

3.2 CardBench

To train and test the pre-trained CE models, we need a new benchmark. Existing benchmarks for
cardinality estimation models often rely on limited datasets, like the Join Order Benchmark (JOB) with
its single IMDb dataset. While JOB offers realistic data distributions, a single dataset is not sufficient
for zero-shot training. Recent efforts have introduced new benchmarks with additional datasets, but
they still fall short in representing the wide range of real-world data required for training and testing
pre-trained models.

To close this gap, we have developed and open-sourced CardBench[33]!, a benchmark containing
thousands of queries on 20 distinct databases, and scripts to compute data summary statistics and generate
queries. CardBench contains 20 distinct datasets and thousands of queries of different complexities. Our
goal is to foster further research in the area of learned CE, with a focus on enabling the training and
testing of pre-trained zero-shot CE models.

CardBench datasets were chosen to be diverse, complex and cover a wide range of data distributions
to stress CE models. All the datasets are publicly available or are based on publicly available datasets
(we list the sources in the CardBench github repository). In comparison to existing CE benchmarks,
CardBench includes a much higher number of datasets and training data (i.e., queries and cardinalities)
to experiment with and compare different types of learned CE approaches. Our training data are SQL
queries represented as graphs annotated with dataset statistics and the query cardinality as the label
(Table 2, right). As shown in Figure 2, we represent the SQL query as a graph. The graph nodes are
annotated with relevant the features described in [33]. The query graph has table nodes (in blue),
column nodes (in green), operator nodes (in red), predicates (in yellow) and correlations across column
of the same table (white circles with red outline).

CardBench includes three sets of training data, Single Table, Binary Join and Multi-Join. Single
Table queries filter a single table using 1 to 4 filter predicates. Binary Join queries join two tables that
are also filtered with 1 to 3 filter predicates per table. Multi Join queries perform 0 to 8 joins and also
apply 0 to 2 filter predicates per table. The three training dataset configurations can demonstrate the
challenges of more complex queries on CE models. Next, we present our experiments using Cardbench,
with the two pre-trained CE estimation models that we trained.

3.3 Experiments with CardBench

In this section, we present our empirical findings, evaluating the accuracy of various model configurations
for cardinality estimation. We focus on the Binary Join CardBench dataset that contain queries with 0
to 1 joins, and 1-3 predicates on each table, as often the majority of queries fall in this category (in the
recently released dataset by Amazon [34] more than 90% of the queries have 0 to 1 joins).

We use the g-error, which is a common metric in database systems research for evaluating the
accuracy of CE models[30]. It calculates the relative deviation of the predicted cardinality from the true
cardinality for a given query. The g-error for a single query is calculated as follows:

1https://github.com/googlefresearch/googlefresearch/CardBench_zero_shot_cardinality_
training
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SELECT » FROM orders o, lineitem 1
WHERE o.orderkey = l.orderkey

AND o.orderkey >= cl

AND l.orderdate > c2

AND l.clerk = c3

AND o.orderkey = l.orderkey

orderkey

orders

Figure 2: Foundation database models can generalize across tasks and datasets which is very different
from current approaches where we need to train multiple models either per task (Zero-shot) or per
dataset (Multi-Task) or even per combination (Instance-specific).

g-error = max <y7 %) € [1,400), (1)
Yy

where y and ¢ represent true and predicted cardinalities, respectively.

We assess CE performance using three distinct ML model configurations: instance-based, zero-shot,
and fine-tuned.

Instance-based Models: In this configuration, we train and evaluate individual models using a
single dataset. For each dataset, queries are randomly partitioned into training and validation sets with
85:15 train-validation split. An additional 500 queries are reserved as a standalone test set to evaluate
final model accuracy.

Zero-shot Models: This configuration investigates the generalizability of cardinality prediction
models to unseen datasets, i.e., data from another dataset apart from the training data. We train and
validate the model on queries from 19 datasets, maintaining the 85:15 train-validation split. The model
is then tested on the 20th dataset (not used in training). This test set contains the same queries used in
the instance-based setting to ensure a fair comparison.

Fine-tuned Models: This configuration investigates whether fine-tuning a pre-trained zero-shot
model improves accuracy and sample efficiency. We fine-tune the model initially trained on 19 datasets
using the 20th dataset. The fine-tuned model’s accuracy is then evaluated using the same 500 holdout
queries from this 20th dataset.

The average training and inference times under each configuration are 2. We observe that training
the zero-shot model over extended epochs can often result in lower accuracy due to over-fitting to the
training set. Therefore, we cap the maximum number of training epochs for zero-shot training to 20, and
set a maximum training epochs of 100 for the other two configurations. The graph transformer model
size is 33.6MB, with 8.4M parameters in total, the GNN model size is 7.5MB, with 1.88M parameters in
total.

We compare the learned cardinality approaches against a the cardinality estimation of PostgreSQL?.

*https://www.postgresql.org/
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Model Training Time Inference Time

Instance-Based (GNN) 1.3hr

Zero-Shot (GNN) 1.5hr 35ms
Fine-Tuned (GNN) 11min

Instance-Based (Transformer) 11.1hr

Zero-Shot (Transformer) 11.1hr 97ms
Fine-Tuned (Transformer) 2.1hr

Table 2: Training and Inference times for difference model types. The inference time of the zero-shot,
fine-tuned and instance-based configurations of the same model type are the same since they share the
same architecture and model size. For training a V100 GPU was used.

To get the estimates we load the CardBench data in PostgreSQL and use the explain command, similar
to [31]. We call this baseline Postgres.

Cardinality prediction for queries with binary joins is challenging due to cross-table distribution and
multi-column correlation, which are difficult to model, significantly impact join cardinality. Table 3
shows the P50, P75, P90 and P95 qg-errors for queries with binary joins. The baseline algorithm exhibits
significant inaccuracy in binary join query cardinality estimation, with a median g-error of 55.54 and
P95 g-error of 4.4 x 10°, respectively.

Learning-based models significantly outperform the baseline though, particularly at the 95th percentile.
Instance-based models, which learn cross-table distributions within a dataset, achieve low median g-
errors of 1.16 (GNN) and 1.20 (transformer). While their P95 g-errors are higher (37.55 for GNN,
43.96 for transformer), the results suggest that estimating join cardinality via learned distributions is
feasible. However, out-of-distribution cardinality estimation for binary joins proves more challenging, as
zero-shot models experience a dramatic increase in g-errors (up to 20x at the median, 5300x at P95).
However, even a small amount of data used for fine-tuning improves the accuracy of pre-trained models
considerably. Hence, we conclude that pre-trained models with fine-tuning is a viable approach to
cardinality estimation.

Model Qg & s orr
Postgres  5.29 21.03  38557.10 411511.45
GNN Instance  1.17 1.82 10.92 37.55

GNN Zeroshot 22.66 102.12  3430.23 16271.84
GNN Finetune 1.32 2.45 13.62 109.77

Transformer Instance 1.20 1.99 11.93 43.96
Transformer Zeroshot 24.88 264.06 6000.99 228499.79
Transformer Finetune 79.52 1.57 4.19 47.14

Table 3: Average g-error percentiles for Binary Join Queries, the best accuracy are in bold.

4 Foundation DB Models

As discussed in the previous section, the state-of-the-art is one-off models that need to be trained
individually per task and even per dataset, which causes extremely high training overheads. Hence,
a new learning paradigm is needed that moves away from such one-off models towards generalizable
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Figure 3: Foundation database models build on a mixture pre-trained experts where some experts learn
representations independently (e.g., the data expert) and experts that enrich representations (e.g., the
logical plan and physical plan expert). Shallow downstream models take these representation as input
and solve a particular database task.

models that can be used with only minimal overhead for an unseen dataset on a wide spectrum of tasks.
Recent advances in LLMs have proven that generalizable (i.e., foundation) models for text, coupled with
fine-tuning, can be used to solve a wide variety of NLP problems [35]. In this section, inspired by LLMs,
we propose a new direction which we call foundation database models[36], which are pre-trained in both
task-agnostic and dataset-agnostic manner, making it possible to use the model with low overhead
to solve a wide spectrum of downstream tasks on unseen datasets. In [36], we propose a vision for
foundation database models, and describe our initial prototype and findings.

We make the observation that a set of foundational experts — data, resource, logical and physical
query plan — could be used to solve many database problems, including cardinality estimation, index
selection, run-time estimation, materialized view selection, partitioning and clustering key selection, etc.
(see . Figure 3).

The insight to realize such a foundation model for database problems is that we use a mixture of
pre-trained expert models as shown in Figure 3, which enable generalizability along the two dimensions:
(1) To generalize across datasets, we provide a data expert that learns to summarize databases into
learned embeddings which represent the characteristics of a given dataset. (2)Foundation database
models come with additional pre-trained experts that enrich the data expert to solve a wide range of
downstream tasks with only low overheads.

We pre-train expert models in a modular manner, each with a set of inputs that could be raw data,
engineered features or learned embedding vectors from other expert models. This is where we differ
from foundation language models that are trained end-to-end.

For our initial validation, we developed three expert models: the data expert, a logical plan expert,
and a physical plan expert. The data expert does not use database specific information such as
particular constants in the data or attribute and table names to learn the embedding, but it uses a new
transferable-encoding of databases which allows the data expert to learn general data characteristics of
a database such as data distributions and correlations across columns. The logical plan expert takes
embeddings produced by the data expert as input, in addition to other features, and learns how various
query operators modify their input data. The logical plan representation as such enriches the data
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representation and can be used to solve tasks such as cardinality estimation or even approximate query
answering where this information is needed. Finally, the physical plan expert also learns how logical
operators are executed using various implementations.

In [36], we report our initial findings for cardinality and run-time estimation. For cardinality
estimation at P50, our model achieves a g-error of 2.12 without fine-tuning, and 1.69 with fine-tuning
compared to the g-error of 1.98 for Postgres, for a workload of queries with up to 2 joins and 5 filters.
Our model does even better at the tail (P95), with g-error of 92.92 without fine-tuning and 26.08 with
fine-tuning compared to the g-error of 294.15 for Postgres. Once again, we observe that fine-tuning is
essential to achieve high accuracy.

We believe our initial results are quite promising, and more work is needed to investigate more experts,
and a wider spectrum of downstream database problems. We also argue that different pre-training tasks
need to be explored to identify the most effective way of training these models.

5 Concluding Remarks

In this paper, we described our experiences and insights using LLMs for natural language to SQL
generation. While significant progress has been possible with the use of LLMs, there is still a knowledge
gap in understanding enterprise schemas and data semantics for high accuracy.

We also argued using traditional ML models for solving latency sensitive regression problems, such
as cardinality estimation. We presented two approaches, both inspired by LLMs. The first one pre-trains
a model using a number of diverse datasets, and using database agnostic input features, and is able
to generalize to an unseen dataset with fine-tuning, using small amounts of training data. The second
one takes this one step further and argues for foundational database models that are generalizable both
across datasets as well as across multiple database problems.

We posit that both foundational database models and LLMs hold significant promise for future
research and the development of novel data management solutions.
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Abstract

Recent advances in generative Al enable code synthesis at unprecedented levels of accuracy. In
the context of data management, this opens up exciting opportunities to automatically customize
core components of database management systems with the help of large language models such as
OpenAl’s GPT model series. This paper describes the vision of GenesisDB, a framework powered by
large language models, that uses code synthesis to customize relational operators according to user
specifications. The paper describes the first, simple prototype of GenesisDB that generates operator
implementations in the Python programming language. The first experimental results demonstrate
that the prototype is able to generate implementations for most relational operators, required for
running standard benchmarks such as TPC-H. At the same time, the experiments reveal a multitude
of research challenges that need to be solved to make this approach practical.

1 Introduction

Database management systems typically use a code base that evolves slowly over time, supported by
large teams of software developers. End users may still influence system behavior via tuning knobs.
However, the scope of such modifications is limited and insufficient for the examples outlined next.

Example 1: A user, trying to formulate a complex SQL query, would like to add custom SQL debugging
support. For instance, this may take the form of customized output, including input/output samples,
printed after each operation in the query plan.

Example 2: A developer wants to integrate SQL processing into a Python application that uses
specialized in-memory data structures. To avoid conversion overheads and external dependencies, the
developer would like to generate custom implementations of relational operators that are tailored to
existing data structures.

Example 3: A database vendor would like to explore different types of progress updates while data is
being processed. This can take the form, e.g., of a progress bar or of notifications detailing the amount
of data processed at certain time intervals. The vendor would like to test various different variants in a
user study before fully implementing the most popular version.

Example 4: The teacher of an introductory database class would like to create a specialized processing
engine that generates educative content on used operators while processing. This output could take the
form of operator descriptions, links to associated SQL tutorials or book chapters, or information on the
complexity of each operator as it is processing.
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Existing systems are typically unable to support all of the aforementioned specializations via
parameter settings. Hence, supporting the example scenarios requires code changes of existing systems
or implementing a new system from scratch. Such changes are beyond the capabilities of lay users
without significant expertise in coding and databases. Even for experienced developers, some of the
aforementioned changes may represent significant endeavors that consume large amounts of time.

This paper proposes the use of generative Al to customize core components of database management
systems, thereby reducing or, in the best case, even eliminating customization overheads for developers
and end users. As a proof of concept, it also reports on the first experimental results of a prototype
system, GenesisDB, that uses generative Al to synthesize relational operator implementations.

The enabling technology of GenesisDB are large language models, based on the Transformer ar-
chitecture. This architecture, together with pre-training approaches that leverage large amounts of
unlabeled samples, has recently led to fundamental advances in the domain of natural and formal
language processing. The newest generation of such models is often used without task-specific training,
merely by specifying generation tasks as part of the input text (the so-called “prompt”) while optionally
providing a few solution samples. This is the approach taken by GenesisDB: it employs OpenAI’'s GPT
models to synthesize custom code implementing relational operators.

GenesisDB comes with a set of prompt templates that describe the desired behavior of standard
operators, as well as input and output formats. These prompt templates contain placeholders that can
be substituted by user instructions (in natural language), thereby enabling customization. GenesisDB
uses GPT to synthesize code for each operator. Then, it validates implementations by a sequence
of more and more complex tests. Such tests include SQL queries, processed using newly generated
operator implementations as well as a reference system (currently Postgres) to verify result consistency.
Failed test cases initiate an automated debugging approach. Here, GenesisDB analyzes dependencies
between operators and test cases as well as a probabilistic model to identify likely faulty operators.
Next, GenesisDB tries to re-synthesize code for those operators, varying the prompt structure as well as
generation settings to obtain a variety of alternative implementations to test. Specifically, GenesisDB
may use code generated previously for other operators which passes a large number of test cases (and is
therefore likely to be correct) as samples directly in prompts. This increases the chance to generate
better code for other operators.

At run time, GenesisDB uses traditional query planning to translate queries into sequences of
operator invocations. This process does not involve code synthesis by models and is therefore fast and
robust. GenesisDB translates query plans into code that references custom operator implementations.
While their implementation is dynamically synthesized, their input/output signature is known a-priori.
More precisely, for each operator, the name of the function implementing it as well as the names of its
parameters are known a-priori. On the other side, the type of each input parameter can be influenced by
user commands. Despite of that, as GenesisDB uses a dynamically typed language for query execution,
the code referencing custom operators does not require customization. Hence, GenesisDB synthesizes
code only before run time. At run time, it uses a static component generating query-specific code that
invokes previously synthesized operator implementations. Note that generated operator implementations
can also be used outside of GenesisDB, e.g. in the context of an existing application storing data in
specialized data structures.

GenesisDB is currently an early prototype and is restricted to generating operator code in the Python
programming language. Despite its early stages, the experiments show that the current version already
synthesizes correct operator implementations for a majority of relational operators. While the data
processing performance is currently not competitive, the proof-of-concept results show that the resulting
implementations can process even queries of elevated complexity of the TPC-H benchmark. In summary,
the original scientific contributions in this paper are the following:
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e The paper introduces the vision of using generative Al to synthesize customizable code for core
components of database management systems.

e The paper describes an early prototype of GenesisDB, a code synthesis framework using OpenATI’s
GPT models, that follows this approach.

e The paper presents first experimental results, revealing the general feasibility of the approach
while also pointing out limitations.

e The paper discusses next steps and future research challenges, based on observations with the
current prototype.

The remainder of this paper is organized as follows. Section 2 provides background information and
discusses prior, related work. Section 3 describes an early prototype of GenesisDB that is used for the
experiments in the following section. Section 4 reports on proof-of-concept experiments, performed with
the current prototype. Finally, Section 5 discusses next steps and research challenges that need to be
solved to make the approach practical.

2 Background and Prior Work

The last few years have seen transformative advances in the domain of language processing, including
natural as well as formal languages (while less relevant for this publication, recent Transformer models [13]
can also be used for data of other modalities than text, such as images). These advances are due to novel
neural network architectures, in particular the Transformer model [22, 24|, as well as to the successful
application of transfer learning methods in training. Transformer models, among other advantages,
facilitate the creation of large models with hundreds of billions of trainable parameters. When trained
on generic tasks (e.g., predicting the next token) on sufficiently large amounts of unlabeled training data,
such models require little to no specialization to solve new tasks |2]. Transformer models can be used
for code synthesis [1, 12|, a feature exploited by GenesisDB. Trained on large amounts of code from
repositories such as GitHub, such models complete prompts, i.e. short text documents containing partial
code or natural language instructions, into fully specified code in general-purpose programming languages.
In certain settings, their performance is nowadays comparable to the one of human developers [3].

These developments motivate the vision of database components, synthesized via language models.
GenesisDB is a prototype implementing this approach. GenesisDB is based on OpenAT’s GPT models [12].
Similar models power GitHub’s CoPilot [5], an auto-completion tool offered on the GitHub platform.
Unlike CoPilot, GenesisDB is however specialized to generating code for relational operators that, when
combined, form a complete SQL processing engine. GenesisDB features prompt templates, specialized
for generating relational operators, as well as strategies needed to create a complex system from parts
generated in different code synthesis steps. The size of a typical engine, generated by GenesisDB, exceeds
the code size typically generated in a single model invocation. GenesisDB relates most to CodexDB [20)],
a system synthesizing code for processing SQL queries that additionally implements natural language
instructions. While CodexDB synthesizes code for processing one specific SQL query, GenesisDB aims
at generating a system that can process all queries without run time code synthesis.

GenesisDB also relates to other recent applications of language models and, more broadly, machine
learning in the context of database management systems. These include, for instance, prior work on

natural language query interfaces [0, 10, 19, 23, 25], as well as approaches for entity matching [9], data
wrangling [11, 16], database auto-tuning |18, 21], and data integration [3]. Several recent publications use
language models or, generally, machine learning to implement relational operators directly [3, 7, 15, 17],
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Table 1: Operators synthesized by GenesisDB.

Group Operators

Tests CheckColumnType, CheckTableType
I/0 LoadTable, StoreTable

Basic GetColumn, GetValue, CreateTable,

GetNull, IsNull, IsEmpty, SetColumn,
AddColumn, FilllntColumn, FillFloat-
Column, FillBoolColumn, FillStringCol-
umn, NrRows, Map, Tolnt, ToFloat, To-
Bool, ToString, Substring, Limit

Arithmetic  Addition, Subtraction, Multiplication,
Division, Floor

Boolean LessThan, GreaterThan, LessOrEqual,
GreaterOrEqual, Equal, NotEqual,
Case, And, Or, Not, Filter

Aggregates Sum, Min, Max, Avg, Count, Sum-
Grouped, MinGrouped, MaxGrouped,
AvgGrouped

Complex Sort, InnerJoin, LeftOuterJoin,
RightOuterJoin, CartesianProduct

leading to approximate processing. Instead, GenesisDB uses machine learning before run time to
synthesize code for processing.

3 Prototype Overview

Figure 1 shows an overview of the GenesisDB prototype. Section 3.1 discusses query processing.
Section 3.2 describes how GenesisDB synthesizes its core engine using generative Al

3.1 Query Processing

The Processing sub-system (left side in Figure 1) processes SQL queries and returns results to users.
GenesisDB is an analytical SQL processing engine and supports all queries of the TPC-H benchmark
(but no transactions). As discussed in more detail later, it uses relational operators for processing that
are synthesized according to user instructions. A GenesisDB database is represented as a directory,
containing a file with SQL commands creating the corresponding schema, as well as one .csv file for
each table in the database (containing the data). The current prototype is restricted to processing data
stored in .csv files. Expanding the scope to other data formats, likely enabling more efficient processing,
is part of the future work plans.

The database catalog contains information on the database schema and file locations, extracted from
the database directory. It is used to inform the query parser as well as the query planner. Currently,
GenesisDB uses a simple, rule-base query planner, implemented by the Apache Calcite library [1]. The
planner generates a logical query plan, determining the sequence of operations without selecting between
operator implementations. Using cost-based optimization is challenging as the implementation (and,
therefore, cost function) of operators changes dynamically. Learned cost models requiring a few samples
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Figure 1: Overview of GenesisDB system.

Table 2: GenesisDB accepts natural language instructions or code snippets for the following SQL engine
properties.

Property Semantics

Prefix Common prompt prefix (e.g., imports)
Table How to represent relations

Column How to represent columns

Null How to represent the SQL NULL value
Boolean How to represent Boolean values
Integer How to represent integer values

Float How to represent float values

String How to represent string values

Suffix Common prompt suffix (e.g., behavior)

may help in the future.

The SQL processor translates logical query plans into a sequence of steps, using a set of 54 operators,
shown in Table 1. These operators are more fine-grained than the ones typically used in database
engines (e.g., introducing separate operators for aggregation with and without grouping as well as for
different join types). The goal of using relatively specialized operators is to make operator synthesis
easier, reducing the number of cases that need to be handled per function. GenesisDB generates code
for processing queries, combining synthesized code implementing operators with code invoking the latter
to execute the query plan. In the current prototype, all code is formulated in Python (Version 3.8).
Generating code in lower-level languages such as C is planned for future versions.

3.2 Operator Synthesis

The distinguishing feature of GenesisDB, compared to prior systems, is that it synthesizes operator
implementations using generative Al. This opens up possibilities to customize generated components
according to user instructions. In principle, such instructions may change the in-memory representation
of tables, columns, or fields, as well as inject custom behavior during processing. For instance, this
may include generating output that is useful for debugging or training, executing custom performance
or data analysis, or writing checkpoints according to user instructions. GenesisDB generates code via
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def not_equal (column_1, column_2) :
""" True where column_1 <> column_2.

1. Return for rows where one input row is
2. Return true iff first row <> second row otherwise.
3. Ensure that the output is

Args:
column_1:
column_2:

Returns:

containing Boolean values.
mmnn

Figure 2: Prompt template for generating NotEqual operator. The template contains placeholders
(marked in color) that can be customized by users.

prompting [14], i.e. by submitting small text documents describing the generation task to generative
models. Users influence the generation process by providing substitutes for placeholders in prompt
templates or custom text that is added as a prefix or suffix to default prompts. Table 2 shows an
overview of all the prompt components that can be influenced by users. An example of a prompt
template containing placeholders from Table 2 follows.

Example 5: Figure 2 shows an example prompt template, used to generate the “NotEqual” operator.
Prompt parts marked up in color represent snippets that can be customized by users.

Algorithm 1 shows high-level pseudo-code for the synthesis process. Given user instructions, a
list of operators to synthesize, a set of test cases to validate synthesized operators, and, optionally,
default implementations for each operator, it returns a custom engine (i.e., operator implementations)
that follows the input instructions. The full list of operators, as well as their semantics and function
signatures, remain fixed (to enable the query processor to use them appropriately to realize query plans).
If desired, synthesis may only focus on a subset of operators (while using default implementations for
others). To validate generated implementations, the current prototype uses a set of 172 test cases by
default (users can easily add new test cases that are automatically used during synthesis). Test cases are
either realized as SQL queries (then, GenesisDB compares query results generated by custom operators
to the ones generated by a reference system) or as small code samples referencing operators (here,
GenesisDB ensures that all assertions hold).

GenesisDB first sorts operators using a simple heuristic (based on the length of the associated
prompt), prioritizing operators that are potentially easier to synthesize. As discussed more in the
following sections, operator order matters as it influences, for instance, the order in which tests are
performed. Also, code synthesized for operators that are ordered earlier may be used as a sample
when synthesizing operators that appear later. After sorting, GenesisDB synthesizes the first version
of the engine by generating one implementation for each required operator (FE.code[o] denotes the
implementation of operator o).

Next, GenesisDB validates generated code via test cases and tries to fix problems via re-synthesis.
This process continues until the generated engines passes all test cases or until a user-defined timeout
is reached. Testing via Function RUNTESTS stops at the first failed test case. The result of testing is
a summary, reporting passed and failed tests. GenesisDB uses that summary to identify likely faulty
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Algorithm 1 Generating SQL execution engines based on natural language instructions.

1: // Returns SQL processing engine using code synthesized

2: // according to natural language user instructions U or default
3: // implementations D to implement operator list O, validated
4: // via test cases T.

5: function GENEsSIS(U, O, T, D)

6: // Choose order in which operators will be validated
7: O +~SORTOPERATORS(O)

8: // Synthesize initial code for each operator

9: E +—ENGINE.INIT

10: for o € O do

11: ¢ <—SYNTHESIZE(U, E, O, 0)

12: E.code[o] + ¢

13: end for

14: // Run tests and re-synthesize faulty operators
15: while Not all tests pass and no timeout do

16: // Validate synthesized engine

17: r <RUNTEsSTS(O, E,T)

18: // Find operators likely to have bugs

19: F +FAULTYOPERATORS(7)

20: // Try replacing faulty operators

21: E +F1XOPERATORS(U, O, D, E, F, r.tests)
22: end while

23: return F

24: end function

operators, and then tries to fix them. Fixing an operator involves re-synthesizing its code, possibly with
a different prompt and different synthesis settings. If this approach fails to resolve previous problems,
using a limited number of tries, GenesisDB uses default operator implementations instead. Those
default operators should use the same data representation as the desired target engine (in order to be
compatible). They may however not implement any custom behavior, requested by the user. Therefore,
GenesisDB tries to minimize the number of default operators used. If default operators are not specified,
GenesisDB ultimately notifies the user, hinting at operators that likely need replacement. After providing
the corresponding code, the synthesis process can be restarted.

4 Proof-of-Concept Experiments

The goal of the experiments is to test whether the prototype is able to synthesize operator implementations
that can process complex SQL queries.

4.1 Experimental Setup

All experiments are executed on a t2.2xlarge EC2 instance, featuring eight virtual CPUs, 32 GB of main
memory, and 500 GB of EBS storage. The instance is running Ubuntu and GenesisDB uses Python 3.8
to execute queries. Postgres 10.22 is used to generate reference results for all test cases. All test queries
are executed on a TPC-H database with a low scaling factor of 0.01 to speed up test evaluation. The
following experiments use GPT-3 Codex for code synthesis. This model is relatively small, compared
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Figure 3: Performance on TPC-H queries with scaling factor 1. The red line marks the timeout of 10
minutes.

to recently released models, but has been specialized for code generation. GenesisDB retries operator
synthesis five times in case of errors. It uses 172 test cases for validation, including all TPC-H queries,
executed on a TPC-H database with a scaling factor of 0.01.

Tables 3 and 4 show values used to substitute placeholders in prompt templates in two separate
experiments. The first experiment synthesizes a system that exploits standard Python classes for
representing data in main memory. The second experiment generates an engine that relies on PyArrow
to represent and process data. To increase the chances of successful generation, each prompt template
was prefixed by the implementation of a simple operator (incrementing the values in a column by one)
that follows the requested style (i.e., in the first experiment, the increment operator uses Python lists
as input, in the second experiment it operates on Pyarrow data structures). Whenever GenesisDB is
unable to synthesize an operator after at most five tries, a corresponding operator implementation is
added manually. The ratio of successfully generated operators is one of the evaluation metrics discussed
in the next subsection.

4.2 Experimental Results

Using Python data structure, GenesisDB is able to synthesize correct operator implementations in 89%
of cases. On the other hand, GenesisDB was only able to generate correct implementations for 48% of
operators when customizing synthesis for PyArrow data structures. Generating operators and running
tests took about four hours for the first experiment and about three hours for the second experiment.
Figure 3 shows performance results for TPC-H queries, comparing GenesisDB (in arrow configuration
and with simple Python lists as in-memory data representation) to Postgres 10.22 with primary key or
primary and foreign key indexes and SQLite 3.36. Clearly, traditional database management systems
achieve optimal performance. On the other hand, there are a few queries where the PyArrow implemen-
tation performs better than some of the traditional systems. Overall, while performance improvements
are a primary goal of future work, the results show that the prototype can synthesize operator imple-
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Table 3: Settings used to synthesize a simple SQL engine.

Property Value

Prefix import functools
import operator
import streamlit as st
import time

Table a list of rows where each row is a list
Column a list

Null None

Boolean bool

Integer int

Float float

String str

Table 4: Settings to synthesize SQL engine using Pyarrow.

Property Value

Prefix import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.csv as csv

Table a pyarrow Table
Column a pyarrow Array
Null None

Boolean pa.bool ()
Integer pa.int64()

Float pa.float64()
String pa.string()

mentations enabling processing of complex SQL queries. More importantly, the results provide evidence
that customization has a significant impact on the properties of the generated implementations, notably
run time.

5 Future Work

The proof-of-concept experiments demonstrate that language models can synthesize code for a majority
of relational operators. At the same time, they provide the first evidence for the possibility of customizing
the generated operator implementations, leading to significantly different behavior in the generated
systems. While these first results are promising, they also reveal important limitations that need to be
addressed in future work.

First, the performance results demonstrate the limitations of using Python for implementing relational
operators. The choice of the Python programming language for those first experiments is motivated
by several factors. First of all, Python is advertised as one of the languages in which GPT models
are most proficient in (due to a large amount of corresponding training data in the corpora used for
pre-training). At the same time, high-level programming languages such as Python enable relatively
concise pieces of code that implement standard operators. Generating shorter pieces of code is oftentimes
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easier for language models, compared to generating the more verbose operator implementations that
are typical for traditional database management systems. However, as revealed in the experiments, the
performance penalty of using Python is enormous, motivating future research that aims at generating
code for relational operators in lower-level languages such as C.

Generating code in lower-level programming languages leads to new research challenges. First of
all, whereas the current implementation aims to generate entire operator implementations in case of
suspected errors, this may become inefficient in the case of larger operator implementations. Instead, it
seems prudent to restrict re-synthesis efforts to parts of operator implementations that are likely to be
incorrect. Here, language models can help to identify code parts, based on an analysis of error messages
or inconsistent results, that likely require re-generation. Second, whereas the current implementation
merely provides a description of desired operator behavior to the language model, future implementations
could provide more information, facilitating the synthesis task. For instance, it might be possible to
provide language models with a simple operator implementation as part of the prompt input, thereby
facilitating the task of generating more sophisticated versions. Also, instead of generating operators from
scratch, it may be easier to “morph” an operator implementation in multiple steps, running automated
tests after each transformation step.

A complementary avenue to improve the performance of the generated implementations is to bias
synthesis, based on automated performance tests. For instance, given user-defined performance goals,
the system could regenerate operators whenever performance goals are not met. Of course, doing so
introduces additional constraints that may make it harder to generate operator implementations that
pass all correctness and performance tests.

Another source of future research challenges lies in increasing the success ratio of code synthesis.
As shown in the experiments, the current prototype is not able to generate correct code in all cases.
As a first step, a study evaluating the cost-quality tradeoff achieved by different OpenAl models (e.g.,
the recently released OpenAl ol model) or models of other providers is interesting. Another possibility
for future improvements is to replace generic language models by versions that are specialized for the
task of generating relational operators. For instance, many of OpenAI’s GPT model variants enable
users to apply fine-tuning, meaning to re-train models on a corpora that is more representative of the
specific tasks they are targeted at. In the specific scenario investigated in this paper, relevant training
data could incorporate code from (open-source) database management systems. As the set of relational
operators is fairly standardized across different database management systems, fine-tuning on existing
code likely provides valuable information to the language model for operator synthesis. At the same
time, this could enable GenesisDB to integrate advanced techniques that have been proven to improve
performance for relational data processing, thereby benefitting performance as well.

Finally, future research could focus on improving the interaction between the user and the system.
Language models cannot currently provide guarantees on generating accurate code. Therefore, coding
assistants are typically considered tools for human-in-the-loop software development, rather than purely
automated tools. As shown in the experiments, GenesisDB requires help to synthesize complete sets of
operators as well. While some of the aforementioned approaches may push the boundaries in terms of
the success ratio in code synthesis, it still seems likely that GenesisDB requires guidance from users to
deal with complex scenarios. However, the time of users is precious which motivates research on how to
get the most valuable insights from users with limited time investments from their side. For instance,
users with an I'T developer background could provide sample code that is requested by the language
model. Here, the goal would be to carefully select which samples to request, maximizing the benefit
for code synthesis. Alternatively, users without an IT background could still be helpful in verifying
whether or not generated engine implementations satisfy the features requested via customization. Again,
minimizing the number of questions addressed to users will make the system more practical.
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6 Conclusion

This paper introduces the vision of highly customizable database management systems. Given recent
developments in the domain of generative Al, it becomes possible to generate core components of database
execution engines via generative Al. This opens up new possibilities for customization, according to user
specifications.

This paper described the first prototype of GenesisDB, a code synthesis framework powered by
language models that implements this approach. First experimental results show that GenesisDB is able
to generate correct code for a majority of operator implementations. On the other hand, the current
prototype is only able to generate correct code for a subset of operators and the performance of the
generated code is not yet satisfactory. This opens up various opportunities for future research.
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Abstract

Existing data lakes struggle to effectively analyze heterogeneous data — like unstructured, semi-
structured, and structured data — because of difficulties in heterogeneous data linking, semantic
understanding, and execution pipeline orchestration. In this paper we highlight challenges for
supporting data analytics on data lakes, and present a system iDataLake to address these challenges,
which takes natural language query as input, orchestrates a pipeline for the query and outputs the
results for the query. We first define semantic operators to support heterogeneous data analytics on
data lakes. Then we introduce our data embedding method for the alignment of multi-modal data
and introduce how to efficiently discover those data relevant to the query from the data lake. Next,
we introduce the pipeline orchestration method, which converts input natural language queries into
executable pipelines built from predefined semantic operators. By executing the pipeline over the
discovered data, the data analytics queries can be efficiently answered with high accuracy and low
cost.

1 Introduction

Data lakes are increasingly becoming the storage paradigm for managing large volumes of heterogeneous
data, including structured, semi-structured, and unstructured data. Structured data, such as relational
tables, is well-suited to traditional analytics methods like SQL. However, semi-structured data (e.g.,
JSON, XML) and unstructured data (e.g., text documents) present significant challenges because of
their inherent complexity (e.g., nested structure or or complete lack of structure) and the absence
of predefined schemas. Despite these challenges, performing analytics on such diverse datasets offers
tremendous value, enabling organizations to derive deeper insights and make data-driven decisions across
various domains and data formats.

Example 6: Consider a query: “Identify the top-5 directors whose movies in the 1980s received the
highest ratio of positive reviews." This query is highly relevant for film study. However, answering this
query poses significant challenges due to the fragmented nature of the required data. For instance,
structured information, such as production years, is typically stored in structured tables, while review
content resides in unstructured text documents. Additionally, resolving the query necessitates multi-step
reasoning, including data integration, sentiment analysis, and ranking, which further complicates the
process.

While SQL is effective for querying structured data, it cannot directly handle semi-structured and
unstructured data, which lack the well-defined schemas required for SQL. Furthermore, SQLs cannot
express semantic predicates, which limits the ability to process data in a way that reflects its inherent
meaning. Although some approaches often attempt to extract structured information from unstructured
data, such as transforming textual content into tables with the help of machine learning models |1, 2],
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this extraction process inevitably leads to data loss and may compromise the accuracy and depth of the
analysis. Therefore, traditional methods fall short in handling the diverse nature of data lakes, even
when unstructured data is converted into a structured format.

Recent advances in large language models (LLMs) have shown a great opportunity in addressing
these challenges. LLMs possess advanced semantic understanding capabilities, enabling them to handle
unstructured data (e.g., text) more effectively than traditional methods |3, 5—8|. Their ability to process
and generate meaningful representations of natural language data makes them a powerful tool for
performing analytics over semi-structured and unstructured datasets [9, 10]. However, integrating LLMs
into data analytics workflows for data lakes remains an open research problem, as it faces the following
challenges.

C1. Heterogeneous Data Modeling and Linking. Data analytical queries often involve diverse
subsets of correlated data. Accurately identifying and linking the relevant data for an input query is
crucial for both the accuracy and efficiency of the analytics process. Inaccurate data linking can lead to
incorrect results and significant delays. Developing effective methods to semantically model and link
heterogeneous data types effectively is essential for accurate and efficient data analytics.

C2. Semantic Data Processing. Semantic understanding is essential for processing semi-structured
and unstructured data, as it allows the system to interpret the inherent meaning of the data rather
than relying on rigid schemas and exact textual matching. Effectively leveraging the advanced semantic
capabilities of LLMs to process and analyze these data types (e.g., semantic filtering, semantic grouping)
is a critical challenge.

C3. Automatic Pipeline Orchestration. It is crucial to generate an execution plan for an analytical
query on data lakes. However, orchestrating an efficient and accurate query execution pipeline in a
multi-modal data lake is complex. Unlike traditional databases with deterministic query plans based on
relational algebra and predefined data schemas, data lakes require flexible and adaptive approaches to
handle diverse data types. Automating the generation and orchestration of such pipelines to ensure
efficiency and accuracy remains a key challenge.

C4. Efficient Pipeline Execution. Executing pipelines in a multi-modal data lake involves balancing
accuracy and efficiency. Enumerating all potential execution pipelines may yield high accuracy but
incur significant computational costs. Conversely, executing a single pipeline can improve efficiency
but may reduce accuracy, since semantic operator execution over heterogeneous data may fail or meet
unforeseen errors. Designing an adaptive plan selection process that balances both accuracy and efficiency
dynamically during execution is a challenging but essential task.

In response to these challenges, we propose iDatalake, a novel LLM-powered analytics system
designed to handle data analytics queries over multi-modal data lakes. iDatalLake addresses the
aforementioned challenges with the following contributions:

(1) Unified Embedding-Based Data Linking (for C1): We introduce a unified embedding
approach to efficiently link heterogeneous data types within a multi-modal data lake. We embed different
types of data into a shared semantic embedding space and align embeddings of relevant data through
a contrastive learning method. This alignment ensures that semantically relevant data is accurately
identified and retrieved even in heterogeneous formats, thus improving both the accuracy and efficiency
of query responses.

(2) Semantic Operators for Data Analytics (for C2): We present a set of semantic operators
tailored for data analytics over multi-modal data lakes. These operators are designed to perform
statistical and semantic analysis across structured, semi-structured, and unstructured data, enabling
iDataLake to handle a wide range of complex queries that traditional systems struggle with.

(3) Pipeline Orchestration Algorithm (for C3): We propose an iterative two-stage algorithm
for automatic pipeline orchestration. It iteratively selects an appropriate operator to reduce the query
and gradually form the execution pipeline. In each step, it filters out irrelevant operators using a
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Figure 1: Framework of iDatalake.

low-cost approach and focuses on selecting from the remaining operators and organizing the relevant
operators based on the query and available data. This ensures efficient and accurate query processing in
a heterogeneous data environment.

(4) Dynamic Pipeline Adjustment (for C4): Our system incorporates dynamic pipeline ad-
justment during query execution, allowing it to adapt to intermediate results. This flexibility enables
iDataLake to optimize performance by skipping unnecessary computations and adjusting to unforeseen
intermediate results, ensuring both efficiency and robustness.

In general, iDataLake represents a significant step forward in enabling high-accuracy, practical data
analytics on data lakes. Unlike previous approaches that rely on lossy data extraction or are limited by
SQL’s rigid schema, iDataLake employs the semantic understanding capability of LLMs effectively to
provide a more holistic and efficient solution.

2 LLM-Powered Analytics System on Data Lakes

We first introduce the system architecture of iDataLake (Figure 1), and then present the components in
iDatalake.

2.1 iDatalake Architecture and Workflow

As illustrated in Figure 1, iDataLake is designed to process data lakes containing structured (e.g.,
relational tables), semi-structured (e.g., JSON, XML), and unstructured data (e.g., text documents).
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Table 1: Summary of Semantic Operators

Operator Category Description

OrderBy Transformation | Sort data according to specified criteria.

Compare Transformation | Compare two input values and return the one that meets the criteria.
Refine Transformation | Adjust text for clarity or precision, aiding subsequent processing.
Translate Transformation | Convert text between languages using LLM or external tools.

Transform Transformation | Convert data from one format to another, e.g., table to text.

Validate Transformation | Verify the accuracy of generated information through external sources.
Scan Retrieve Load data files and enumerate their elements.

Filter Retrieve Remove irrelevant data based on specified criteria.

Augment Retrieve Fetch relevant data from external sources to enhance LLM responses.
Extract Extraction Extract relevant information from documents/tuples, similar to projection.
Conceptualize | Extraction Identify key concepts to simplify complex queries.

Generate Generation Produce coherent text based on input, often for final responses.

Explain Generation Provide explanations or justifications for decisions.

GroupBy Partition Organize data into groups for computing summary statistics.

Cluster Partition Cluster similar data together.

Classify Partition Categorize or label entities using LLM or external ML models.

Link Link Identify and link related data, such as tables and documents in the data lake.
SetOP Aggregation Perform set operations, e.g., Union, Intersection, Complement.

Integrate Aggregation Combine information from multiple sources into a cohesive response.
Aggregate Aggregation Compute aggregation results, such as sum or average, from data.
Summarize Aggregation Condense text into shorter summaries for improved context consumption.

During offline pre-processing, iDataLake constructs an index tailored to the characteristics of the
data, capturing inherent correlations across various data modalities. To enable efficient data linking and
retrieval, iDatalLake employs a unified embedding approach. Data of different types is transformed into
a shared semantic embedding space, aligning heterogeneous data for seamless integration. Then using
community detection algorithms, iDatalLake discovers hierarchical clustering relationships within the
data, partitioning the data into domain-specific clusters. This design ensures that relevant data can
be located efficiently for any given query. Moreover, a vector index is built on top of embeddings to
support efficient embedding retrieval. To address the out of distributions (OOD) issues among different
data types, we also build OOD vector index to facilitate cross-modal retrieval.

For online analytics, iDataLake introduces a suite of semantic operators specifically designed for
multi-modal data processing. When a query is received, iDatalake first utilizes the data linking index
to identify relevant data within the data lake. The pipeline orchestration component then constructs an
execution plan by iteratively selecting and applying appropriate semantic operators. The execution plan
is executed by the query execution engine, which dynamically adjusts the pipeline based on intermediate
results to maintain robustness and efficiency. Once the entire pipeline is executed, iDatalLake generates
the final result and returns it to the user. By following logically reasonable pipelines constructed over
query-relevant data, iDataLake ensures high accuracy in its results.

2.2 Semantic Operators

Traditional relational operators are insufficient for unstructured data analytics, as they lack semantic
processing capabilities and require data to adhere to strict schemas. To address this limitation, we
introduce a set of semantic operators that serve as the fundamental building blocks for performing
analytics over multi-modal data lakes. These operators are designed to handle diverse data types,
bridge the gap between heterogeneous data sources, and enable joint query execution based on semantic
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understanding rather than relying on predefined schemas.

2.2.1 Logical Operators

The logical operators in iDatalake are categorized into seven types, each designed to address a specific
aspect of the analytics process. Table 1 summarizes these operators.

Data Transformation Operators. These operators transform data to generate intermediate rep-
resentations or perform computations. Both input and output are typically lists of data. Examples
include:

OrderBy: Sort input data based on specified criteria and return the ordered results.

Transform: Convert data from one format to another, such as transforming a table into a text paragraph
describing its content.

Data Retrieval Operators. These operators retrieve relevant data from external sources. The input
is typically a query or criteria, and the output is typically a list of data. Examples include:

Filter: Remove irrelevant data from specified data based on user-specific criteria and output the result.
Augment: Fetch additional data relevant to the query from external sources to enhance LLM responses.
Data Extraction Operators. These operators extract relevant information from certain data sources.
The input is generally a list of data and the output is also a list. Examples include:

Ezxtract: Extract specific information from documents or tuples, similar to the projection operator in
relational algebra.

Conceptualize: Identify key concepts from input query, e.g., converting a description to its corresponding
term, to simplify complex queries and improve understanding.

Data Generation Operators. These operators generate target content based on given requirements
and input information. The input is generally text paragraphs, and the output is the target text result.
Examples include:

Generate: Produce coherent text based on input, often used for final responses.

Ezxplain: Provide explanations or justifications for decisions. The explanations of different reasoning
paths are generally integrated to generate the final answer.

Data Partition Operators. These operators partition data into meaningful subsets for further analysis.
The input is generally a list of data, and the output is a list of data lists. Examples include:

GroupBy: Organize data into groups for computing summary statistics or comparing information across
groups.

Cluster: Cluster data together based on similarity metrics using clustering algorithms or LLM identifica-
tion.

Data Linking Operators. These operators identify and link related data across different sources. The
input is typically a set of data elements, and the output is a linked structure. An example is:

Link: Identify and link related data, such as tables and documents in a data lake, supporting different
granularities (e.g., table level, tuple level, paragraph level, and document level).

Data Aggregation and Integration Operators. These operators integrate information from multiple
sources or compute aggregate insights. The input is typically a list of data, and the output is a single
value or cohesive response. Examples include:

Aggregate: Compute statistical aggregation results, such as sum or average, from data.

Summarize: Condense text into shorter summaries to reduce context consumption for LLMs.

2.2.2 Physical Operators

Each logical operator has multiple physical implementations tailored to different data types, corresponding
to different physical operators. Based on the involvement of LLMs in the analytics process, physical
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(a) LLM-based (b) Pre-programmed

1 def extract_with_llm(input_texts, prompt_template):

2 extracted snippets = [] 1 def extract_with_keyword (input_texts, keyword):

3 for text in input_texts: 2 keyword_pattern = re.compile (rf'\b{re.escape (keyword)}\b', re.IGNORECASE)

4 prompt = f£"{prompt_template}\n\nInput Text:\n{text}\n\nOutput:" 3 extracted_sentences = []

5 response = ChatCompletion.create ( 4 for text in input_texts:

6 messages=[{"role": "system", "content": SYS_PROMPT}, 5 sentences = re.split(r'(?<=[.!?]) +', text)

7 ("role": "user", "content": prompt}] 6 matches = [sentence for sentence in sentences if keyword pattern.search(sentence)]
s ) 7 extracted_sentences.extend (matches)

9 extracted_snippets.append (response.choices[0] .message['content']) g geturnfextractedisentences)

10 return extracted_snippets

:" Purpose: Use a large language model to extract specific infomation.'.
4 from input text based on a given prompt. '
\* Input Parameters:

+ ¢ Purpose: Use keyword matching to extract relevant information from input
! text without relying on an LLM.
n p + * Input Parameters:
1 input_texts (list of str): Text paragraphs to analyze. 1p input_texts (list of str): Text paragraphs to analyze

2 :::r:::itix;\:l::ee(s;;l:‘:tExtractlon o3 el dn e 1 . 2 keyword (str): The keyword to identify relevant information. ]
E guage prompt. ) X 1| | ' ¢ Expected Output: A list of sentences from the input text that contain any of !
< Expected Output: A list of text snippets extracted from the input, . D CEoEAECE ToreEeD 1

. '

Figure 2: Example physical operators for the Extract operator.

operators are classified into two categories:

LLM-Based Physical Operators: These implementations leverage LLMs for tasks requiring
semantic understanding by formulating appropriate prompts. For example, as shown in Figure 2(a), the
Ezxtract operator can utilize an LLM to identify and extract text snippets by providing prompts that
specify the extraction target, such as information related to sports.

Pre-Programmed Physical Operators: These implementations rely on pre-defined logic to
process data, similar to the physical operators in relational databases. For example, as shown in the
Ezxtract operator can extract information using keyword matching or regular expressions to extract
information that follows certain patterns.

In order to select the appropriate physical operator for each logical operator in the plan, iDataLake
maintains detailed text descriptions for each physical operator, including its purpose, input parameters,
and expected outputs. If such descriptions are unavailable, iDataLake invokes the LLM to generate
them with few-shot examples of existing operators automatically. With this information, the overall
pipeline can be constructed accurately by LLMs based on actual needs.

To support user-defined functions (UDFs), we invoke LLMs to generate codes for UDFs.

2.2.3 Adding Other Operators

In practical applications, existing operators may not satisfy specific analytical requirements. iDatalLake
supports the seamless addition of new operators to address such needs. Only the following information
is required to add a physical operator: (1) The programmed implementation of the physical operator for
execution. (2) A detailed text description of the operator, including its purpose, input parameters, and
outputs.

If these descriptions are incomplete, iDataLake can call the LLM to generate them. By defining
these elements, iDatalake ensures that the newly added operators integrate seamlessly into the analytics
framework.

2.3 Embedding and Linking

As introduced in Section 1, a key challenge for data analytics over data lakes is to efficiently identify
the data that needs processing, as processing the complete data lake, extensively large in volume, is
impractical. The effectiveness of identifying relevant data is critical since all subsequent operations
are performed on this subset. Therefore, the identification process must achieve both high recall and
high precision. High recall with low precision retains excessive irrelevant data, leading to inefficiencies.
Conversely, high precision with low recall excludes relevant data, rendering correct results unattainable
due to incomplete information.
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Figure 3: Example of embedding alignment between tables and text.

To address this, we propose a bi-encoder-based method that transforms diverse data types into a
unified embedding space, where the similarity between embedding vectors serves as a metric to identify
relevant data across modalities. However, training separate embedding models for different data types
inevitably leads to misaligned embeddings. For example, embeddings for text and table data, although of
the same dimension, are inherently unaligned. Achieving semantic alignment between these embeddings
is a recognized challenge [11]. To the best of our knowledge, we are the first to semantically align
embeddings for table data and text data.

Existing methods extend text embedding models to structured table data by serializing table rows
into natural language (NL) sentences using formatting rules such as [Featurel] is [Valuel], [Feature2] is
[Value?2], ... or [Featurel]: [Valuel], [Feature2|: [Value2], ..., where [Feature] denotes the column name
and [Value/ denotes the cell value. Figure 3 illustrates this approach. However, directly computing
embeddings for table rows from their serialized NL expressions is inaccurate, as the serialized format
differs significantly from standard NL expressions, leading to embedding similarities that fail to reliably
identify relevant data.

Embedding Alignment Between Different Types of Data. To overcome this limitation, we
introduce a fine-tuning process that aligns text embeddings with embeddings derived from serialized
table data. We collect a corpus of tables paired with ground-truth relevant text paragraphs from diverse
sources. During fine-tuning, we employ a contrastive learning framework: table rows paired with their
ground-truth text paragraphs are treated as positive examples, while table rows paired with unrelated
text paragraphs serve as negative examples. Using these training pairs, we compute the Multiple
Negatives Ranking Loss [12]|, which minimizes embedding distances for positive pairs and maximizes
embedding distances for negative pairs.

The fine-tuning process proceeds iteratively, adjusting the embedding space to bridge the semantic
gap between table and text data. Upon convergence, embeddings achieve meaningful alignment, enabling
similarity measures in the unified space to accurately identify relevant data across data types. This
alignment ensures both high recall and high precision in retrieval tasks, significantly enhancing system
performance.

Data Linking. The vast size of data lakes results in an enormous number of data embeddings,
posing significant challenges for efficiently locating relevant data. To address this, we observe that
relevant data often forms natural clusters. Specifically, subsets of data relevant to one query are likely to
be relevant or irrelevant to other queries together, as they often represent related entities. Leveraging this
insight, we propose a preprocessing approach that identifies and organizes these clustering relationships
within the data lake. This process divides the data into distinct blocks, where related data locate in the
same block and the relevant blocks are linked.

To achieve this, we employ the Louvain community detection algorithm [!3], which identifies
hierarchical clustering relationships in the data. The algorithm starts by constructing a graph where
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Figure 4: An example pipeline orchestration process, detailing the selection of the Table Filter operator.

nodes represent data items and edges represent embedding similarities. It iteratively optimizes modularity
to detect communities, i.e., subsets of data points with high pair-wise similarities, producing a hierarchy
of clusters. These clusters are then used to organize the data into blocks, with each block representing
semantically similar data. When a query is issued, we first identify the relevant blocks and then
locate specific data within each block. This hierarchical clustering approach reduces the data needing
consideration, enhancing both retrieval efficiency and query accuracy.

2.4 Pipeline Orchestration

Orchestrating an accurate pipeline for query execution over multi-modal data lakes presents unique
challenges due to the heterogeneity of data types and the absence of unified data schemas. Unlike
traditional query execution in relational databases, which operates over structured data with predefined
schemas and deterministic query plans, multi-modal data lakes require a flexible and adaptive pipeline
orchestration mechanism capable of handling diverse data modalities and complex analytics tasks. In this
section, we introduce the pipeline orchestration method employed in iDataLake, which iteratively selects
and applies appropriate operators to reduce the query until it is fully solved. This method combines the
semantic understanding capability of LLMs with a cost-efficient, two-stage operator matching strategy
that minimizes LLM invocations to reduce cost and improve efficiency.

Overview of the Orchestration Process. The orchestration process in iDataLake follows an
iterative workflow aimed at progressively reducing the query. Each iteration involves three key steps:
(1) identifying suitable physical operators that can solve part of the query (coarse-grained matching);
(2) validating the applicability and availability of the matched operators (fine-grained re-ranking), and
(3) applying a feasible operator to simplify the query, solving part of the query logically. This process
repeats until the query is fully resolved, which is verified by the LLM. We next introduce each step in
detail.

Operator Matching. Efficiently matching a query with suitable physical operators is critical for
effective pipeline orchestration. A naive approach of directly prompting an LLM with descriptions of all
operators is infeasible due to constraints such as limited LLM context length and inaccurate selection
among numerous options |1]. To address these issues, iDataLake employs a two-stage operator matching
method:

Coarse-Grained Matching. This stage quickly eliminates irrelevant operators using low-cost checks. The
key idea is that operators are likely to be applicable only if their use cases align with the query. However,
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the specific values in the NL expressions are not helpful for the matching and can even mislead the
matching. Therefore, to facilitate matching, both the query and operator use cases are transformed
into “logical representations” by replacing concrete values with semantic placeholders such as [Entity]
and [Condition|. The transformation is performed by instructing LLMs to conduct semantic parsing
with few-shot examples. After computing these logical representations, the relevance between query
and operators can be measured by the similarity of their semantic embedding vectors. For instance, the
query “Select the documents that are related to swimming" corresponds to the logical representation of
“Select the documents that [Condition/", which has high semantic embedding similarity with the logical
representation of a use case for the Filter operator “Select the documents that satisfy [Condition]" and
thereby the matching can be conducted correctly.

Logical representations of operator use cases and their semantic embeddings can be precomputed.
The logical representation of the query can be computed online. These embeddings enable efficient
similarity-based comparisons, filtering out irrelevant operators accurately without involving the LLM.

After coarse-grained filtering, the remaining operators are further evaluated using the LLM. In this
stage, the LLM verifies the applicability of each operator through prompts and few-shot examples. For
applicable operators, the LLM determines the required inputs and checks their availability in the current
context. This step relies an intermediate variable list maintained throughout the orchestration process,
ensuring accurate and context-aware operator selection.

Fine-Grained Re-ranking. After coarse-grained filtering, the remaining operators are further evaluated
using the LLM. In this stage, the LLM is instructed to verify the applicability of each operator through
prompts and few-shot examples. For applicable operators, the LLM determines the required inputs and
checks their availability in the current context. Specifically, an intermediate variable list is maintained
throughout the whole orchestration process. The list is initialized with the whole data lake. During
the orchestration, intermediate results are generated after the application of each operator. For each
intermediate data, the LLM is instructed to generate a short text description of it. The generated
text descriptions will then be added to the prompt to guide the LLM to select the appropriate inputs.
Meanwhile, based on the dependency relationship between the inputs and outputs of the operators in
the pipeline, the dependency between operators can also be determined. For each operator, only the
dependency relationships with the operators whose outputs are prerequisites are necessary. In this way,
a directed acyclic graph, i.e., a DAG-format pipeline can be constructed that can obtain much higher
efficiency than sequential pipelines.

Query Reduction. Once an applicable operator is selected, it is applied to simplify the query. To
ensure accurate query reduction, the LLM is instructed to conduct this reduction. This involves resolving
part of the query logically. A concrete example of this process is illustrated in Figure 4.

Iterative Query Decomposition. The process iterates in a DFS manner until the query is fully
reduced to a solved form. Each iteration involves selecting an appropriate operator, validating its
applicability, and applying it to reduce the query. The resulting plan is represented as a directed
acyclic graph (DAG), where nodes correspond to the selected physical operators, and edges represent
dependencies between them. Notably, this orchestration method can generate multiple candidate
pipelines by exploring multiple paths in the DFS process.

By combining coarse-grained filtering with embedding-based similarity and fine-grained LLM-driven
operator selection, iDataLake achieves both high efficiency and accuracy in operator matching. This
iterative reduction process enables iDatalLake to systematically simplify complex queries over multi-
modal data lakes while leveraging LLMs only when inevitable. When the query is completely solved by
this iterative process, iDatalake constructs an efficient plan to solve complex queries effectively.
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2.5 Pipeline Execution

Unlike traditional databases, where execution plans are deterministic to guarantee correct results,
iDataLake needs to be able to adapt dynamically to handle the inherent unpredictability of both
unstructured data and complex queries. This section describes how iDatalake executes interactively,
adjusting its pipeline in response to intermediate results and unforeseen conditions. As illustrated in
Figure 1, iDataLake can decide to continue execution, adjust the pipeline, replan, or re-identify relevant
data based on the state of intermediate results.

Determining Operator Inputs. Similar to the orchestration phase (Section 2.4), identifying the
correct inputs for each operator is critical during execution. In the orchestration phase, the relationships
between operators’ inputs and outputs are established. During execution, iDataLake determines operator
inputs according to these identified relationships. Additionally, after each intermediate execution step,
the LLM generates a brief textual description of the results. If an input determined during orchestration
is unavailable or unsuitable during execution, iDatalLake dynamically re-evaluates the input selection by
repeating the orchestration process. This re-evaluation uses the generated descriptions of intermediate
results as part of the prompt to guide the LLM in selecting appropriate inputs for the operator.
Parallel Topological Execution. To maximize execution efficiency, iDataLake follows a bottom-up,
parallelized execution strategy based on the pipeline’s topological order. Operators are executed in
parallel once their prerequisites are met, continuing until all operators have been executed and the final
result is produced. After each operator executes, iDataLake verifies whether its intermediate result
aligns with expectations. Discrepancies can occur due to issues in the initially discovered relevant data
or the incorrectness of the orchestrated pipeline. Therefore, if discrepancies are found, iDataLake first
re-examines the relevant data identification steps, querying the LLM to rewrite the original query in
an alternative form and using the rewritten query to re-identify relevant data. If the re-identified data
closely matches the initial results, the system triggers a dynamic adjustment to the pipeline, as described
next.

Pipeline Adjustment During Execution. When an operator fails to produce the expected result,
iDataLake dynamically adjusts the execution plan without restarting the entire planning and execution
process. Early stopping conditions, identified by the LLMs, can prune unnecessary operations, enhancing
the execution efficiency.

Incremental Frecution. As discussed in Section 2.4, multiple candidate plans are generated during the
planning phase. Although only one plan is executed, many of these plans share a common sequence of
initial operators due to their generation by a depth-first search (DFS) strategy. When an operator fails,
iDataLake selects the plan with the longest matching sequence of initial operators and resumes execution
from the last successful operator. This prevents the need to regenerate the entire plan. However, if there
is minimal overlap between plans or no matching plans, iDataLake initiates replanning.

Replanning for Adjustment. If no plan shares a sufficient initial sequence, iDataLake replans from the
point of failure. This is faster than starting from scratch (replanning for the initial query), as the current
query has already been partially simplified by the earlier execution. If no suitable pipeline can be found,
iDataLake backtracks to the last successful operator, repeating this process until it reaches the root
(i.e., backtracks to the initial query).

Pruning Based on Insights from Data Analysis. Analyzing unstructured data can uncover relationships
such as equivalencies or exclusivities between entities or conditions that were not initially identified
during the planning phase. These insights enable the optimization of query execution by eliminating
redundant operations. For instance, if two conditions are found to be equivalent, applying both filters
becomes unnecessary, and one can be skipped to improve efficiency. Conversely, if conditions are
mutually exclusive, the query can be simplified or terminated early, avoiding unnecessary data processing.
Consider the query: List the mathematicians who have won the Fields Medal at the age of 50 or older. By
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analyzing the Fields Medal’s eligibility criteria, it becomes evident that the conditions "won the Fields
Medal” and "at the age of 50 or older" are mutually exclusive, as the award is restricted to individuals
under 40. This insight allows the query execution to be halted immediately, saving computational
resources by avoiding processing large datasets for a result that is guaranteed to be empty.

3 Challenges and Opportunities

Scalability and Efficiency. A major challenge in implementing LLM-powered analytics on a large
data lake is the inherent high cost and low computation efficiency of LLMs. Multi-modal data lakes
consist of structured, semi-structured and unstructured data, which require distinct processing pipelines.
Efficiently querying such vast datasets with LLMs necessitates reducing invocation costs without
sacrificing performance. Scaling LLMs to handle such vast quantities of heterogeneous data, demands
careful optimization of both the model’s computation and the overall query pipeline architecture. For
example, ordering the operators in the pipeline based on cardinality estimation [14, 15] is crucial for
efficiency. Research into more efficient LLM architectures, such as fine-tuning models for domain-specific
tasks or incorporating hybrid models with different sizes for tasks of different complexity [17], could
mitigate the scalability issue. Additionally, caching intermediate results in a distributed system or
identifying and indexing critical data components, such as coresets [18, 19] could improve the system’s
efficiency in handling large datasets.

Interpretability and Transparency. LLMs are often criticized for their “black box" nature, making
it difficult to understand how they generate results or why they make particular decisions. This lack
of transparency poses challenges for users who need to trust and interpret the outcomes of their data
analytics queries. In the context of multi-modal data lakes, where complex relationships between
structured and unstructured data must be identified and analyzed, ensuring that the system’s reasoning
is interpretable becomes even more critical. Approaches to improving the interpretability of LLMs,
such as attention mechanisms and counterfactual reasoning, can enhance the transparency of the
system. By providing insights into the specific data features or relationships that influence the model’s
decision-making, these methods could increase user confidence in the results. Moreover, incorporating
explainability into the pipeline design could facilitate the adoption of LLM-powered analytics in sensitive
or regulated industries.

Evaluation and Benchmarking. The evaluation of LLM-driven analytics over multi-modal data
lakes remains an open challenge, particularly in comparing the effectiveness of different methodologies.
Metrics for traditional data analytics, such as precision, recall, or F1 score, may not adequately capture
the nuances of integrating structured and unstructured data sources. Furthermore, due to the large-scale
and dynamic nature of the data lake, it is difficult to develop comprehensive benchmarks that can
consistently evaluate the model’s performance across different types of queries and use cases. Developing
new benchmarking methodologies tailored for multi-modal data lake analytics would be an essential step
forward. These benchmarks could focus on both the accuracy of the results and the system’s ability to
integrate and analyze heterogeneous data sources. Additionally, creating standardized test datasets for
data lake environments could encourage further research and provide a basis for consistently comparing
different models and systems.

Model Adaptation to Domain-Specific Needs. LLMs are typically trained on a wide array of
general-domain data, which may not always capture the specific nuances of particular industries or use
cases, such as legal, healthcare, or finance. As a result, LLMs may not fully comprehend domain-specific
terms, contexts, or relationships without further domain-specific fine-tuning. For example, the data
linking may become inaccurate for personal domain data, even after the alignment finetuning. Domain
adaptation of LLMs is a promising avenue for improving system performance in specialized applications.
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By leveraging transfer learning or few-shot learning techniques, LLMs can be fine-tuned to perform better
on industry-specific tasks. Furthermore, the system can be augmented with domain-specific knowledge
bases or ontologies, which can enhance the model’s understanding of complex, industry-relevant concepts.

4 Conclusion

In this paper, we present iDataLake, a novel LLM-powered analytics system designed to address
the challenges of data analytics in multi-modal data lakes. By integrating large language models
with advanced semantic operators, embedding-based data linking, and dynamic pipeline orchestration,
iDataLake provides a unified framework for querying and analyzing diverse data types, including
structured, semi-structured, and unstructured data. iDataLake introduces several key innovations
including semantic operators tailored to the unique requirements of multi-modal analytics, unified
embedding-based data linking for aligning heterogeneous data types in a common semantic space,
dynamic pipeline adjustment to adapt to evolving query execution requirements and interactive and
incremental plan execution to ensure robust and efficient query handling.
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Abstract

The advent of large language models (LLMs) has yielded promising results across various fields.
With their ability to understand, retrieve, synthesize information, and perform advanced reasoning,
LLMs have shown significant potential for facilitating and automating data management. We propose
that the extensive knowledge embedded within these models enables them to serve as pre-trained
data engineers, enhancing both the effectiveness and scope of data tasks.

In this paper, we illustrate an architectural framework for integrating LLMs into data engineering
workflows, aiming to enhance the applicability and usability of LLM-assisted data engineering
solutions. We explore key techniques and opportunities across three critical stages: (a) data
wrangling, to simplify and optimize data preparation and transformation; (b) analytical querying, to
extend querying capabilities and interfaces in data systems; and (c) table augmentation, to enhance
the original tables with additional data, improving the performance of data-centric tasks like machine
learning.

1 Introduction

Large Language Models (LLMs) have recently demonstrated remarkable progress across a variety of
tasks, including natural language processing, question answering, code generation, and information
retrieval [3, 8, 25, 57, 60, 75]. These models, trained on extensive data corpora, encompass vast amounts
of integrated knowledge and possess advanced reasoning capabilities [79-81]. Moreover, they have shown
strong cross-task generality on a wide range of natural language tasks.

Building on these impressive capabilities, the rapid development of LLMs has motivated data
researchers to reconsider traditional challenges in data management [21, 54, 72]. Data engineering, which
includes the preparation, analytical querying, and enrichment of data, demands specialized domain
expertise and is often time-consuming, lacking a one-size-fits-all solution due to the complexity of
data-related tasks [65]. For example, considering a data imputation task, imputing the categories of
items might require row-by-row interactions to understand contextual nuances, whereas imputing the
Body Mass Index (BMI) can be completed by using standardized formulas that rely on height and
weight. Similarly, to answer a user question such as “which item is the most positively reviewed” might
require semantic parsing of each row, whereas answering “what are the monthly sales for MacBook
Pro” may involve translating the question into an aggregate query to obtain the result. Pioneering
studies [3, 21, 52, 85| have illustrated that well-crafted prompts can effectively guide LLMs to achieve
state-of-the-art performance in specific data engineering tasks, such as data imputation, entity matching,
and Text2SQL. However, integrating LLMs into complex and heterogeneous data engineering workflows
remains a challenging endeavor.

First, designing a single prompt for each distinct data preparation task is suboptimal, as data
wrangling generally necessitates a multi-step process involving diverse tasks. Employing domain-specific
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solutions customized for each data set and problem may not be uniformly effective. Secondly, while LLMs
have empowered data querying with strong semantic reasoning capabilities and world knowledge [79-81],
challenges arise in designing effective interfaces for integrating LLMs into data systems to facilitate
efficient analysis. Recent efforts have focused on developing SQL-like [1, 15, 68, 86] and Pandas-like [58]
programming interfaces to improve LLM usability across diverse systems. Additionally, to assist non-
experts who may lack the ability to write code and queries, facilitating the translation of natural language
questions into executable queries |61, 77, 82] is also critical for enhancing accessibility. Lastly, to enhance
the performance of data-centric applications such as machine learning, augmenting the original tabular
data can be highly beneficial. However, challenges remain to effectively utilize LLMs for this purpose.
LLMs have the potential to enrich original datasets by retrieving relevant information [20, 33, 31] and
performing feature engineering [31, 16| to generate useful features.

In this paper, we introduce an architectural framework for integrating the powerful capabilities of
LLMs into data engineering, focusing on three key stages: data wrangling, analytical querying, and table
augmentation for machine learning. Within each stage, we review current research and demonstrate how
LLMs can facilitate and potentially expand the scope of data-related tasks.

In particular, we elaborate on three systems we have recently developed: UniDM [61], which proposes a
unified framework for data wrangling; DAIL-SQL [22], a Text2SQL solution that systematically examines
both in-context learning and supervised fine-tuning to optimize performance; and SMARTFEAT [10],
which automates feature engineering for machine learning by identifying and applying appropriate
transformations on the original table. Furthermore, we envision future directions to further extend
LLM-assisted data engineering applications, including (1) developing automated, unified systems for
efficient end-to-end data preparation, (2) enhancing querying capabilities for unstructured data and
world knowledge in data systems through flexible querying interfaces, and (3) constructing automated
solutions for machine learning data processing.

2 Integrating LLM Modules in Data Engineering

Data engineering often contains complex and labor-intensive tasks that traditionally require substantial
engineering effort. Figure 1 outlines an architectural framework for integrating LLM modules into data
engineering workflows, centered on three stages: 1) data wrangling, (2) analytical querying, and (3) table
augmentation for machine learning.

Data Wrangling. Real-world data are often heterogeneous, incomplete, or contain errors, rendering
them unsuitable for direct analytical or modeling tasks. Data wrangling typically encompasses tasks
such as entity matching [19], error detection [, 30], and data imputation [26], enabling the integration,
cleaning, and transformation of raw data into structured formats suited to downstream applications.
To facilitate complex data wrangling, the framework incorporates LLMs into data wrangling operators.
In these operators, LLMs are prompted with the task parameters, such as the task name, task query,
and relevant contextual inputs from the dataset. The LLMs are then applied to each row to predict the
next word for completing tasks |54, 61, 72|, or to the entire dataset to generate code |13] to process data
more efficiently.

Analytical Querying. Data engineers and analysts often query datasets to extract meaningful
insights. The framework extends the traditional definition of relational querying by incorporating
LLM capabilities, which enable querying not only of structured data but also of unstructured textual
content, documents, and world knowledge through various querying interfaces. Operators leveraging
LLMs facilitate access to extensive corpora of unstructured text [68, 86] and can even function as
knowledge storage mechanisms [7]. The framework describes multiple interfaces for utilizing LLMs in
analytical querying, including SQL interfaces |1, 5, 15, 15, 68, 70, 86], programming interfaces |1, 58],
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Figure 1: Integrating LLM-based modules into data engineering workflows: (1) facilitating data wrangling

tasks, (2) supporting complex analytical querying through multiple interfaces, and (3) augmenting
original tabular data for improved machine learning performance.

and natural language interfaces |7, 18], in which LLMs are commonly embedded as SQL extensions
or as Pandas-like data science APIs. They can also translate natural language (NL) into logical
operators [17, 19, 62, 64, 77, 82| and enable interactive, conversational NL-based interfaces |7, 18].

Table Augmentation for Machine Learning. Table augmentation can enrich original datasets
with new features or samples, thereby improving performance in data-centric tasks such as machine
learning. However, this process often relies heavily on domain expertise and demands substantial manual
effort from data scientists. Given a machine learning task, the framework leverages LLMs to support two
types of table augmentation [14]: generation-based augmentation |31, 16|, which uses LLMs to iteratively
generate semantically meaningful features for original datasets, and retrieval-based augmentation [27, 34,
which retrieves additional external data.

In the following sections, we review the detailed techniques for integrating LLM modules in each stage.
We then discuss unique opportunities to expand the scope and improve the usability of LLM-assisted
data engineering solutions.

3 Data Wrangling with LLMs

Data wrangling involves a series of data preparation steps that transform datasets into formats suitable
for analysis and modeling. To leverage LLMs in facilitating complex data preparation tasks, we first
formalize these tasks using a generalized data wrangling operator, defined as follows:

Definition 3.1 (Data Wrangling Operator) Let D be a dataset requiring data wrangling and let T
denote the task parameters. An LLM-based data wrangling operator opr,;,, is defined as a function

opry . (D, T) = Dy,

where LLM 1is the selected large language model. Given T and D, the operator constructs prompts to
instruct the LLM. The outputs generated by the LLM is then applied to D, resulting in a clean and
structured dataset D,.

Data Preparation Tasks. Data wrangling is rarely a single-step process; it usually involves multiple
individual preparation steps, each implemented by a data wrangling operator. These tasks can be
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categorized into three broad categories based on their purposes: data integration [17], data cleaning [63],
and data transformation |29, 35]. Data integration involves discovering and combining data from various
sources, which typically includes tasks such as schema matching [71], entity resolution [10, 44, 78], and
join/union discovery [20, 33, 34]. Data cleaning aims to remove or replace inaccurate data values with
more accurate ones. It typically includes tasks such as deduplication, error detection [1, 30], and data
imputation [26]. Data transformation involves restructuring and filtering data, including tasks such as
changing schema [35], and removing irregular rows or values [26]. Recent research has explored the use
of LLMs to address one or more of these tasks, showing promising results and, in some cases, achieving
state-of-the-art performance.

Prompts. LLMs have shown remarkable proficiency in text-intensive tasks. Researchers have also
demonstrated that LLMs trained to predict the next word (e.g., “Mary has a little” — “lamb”) can be
adapted to data-related tasks by providing natural language descriptions of those tasks [54]. For example,
to perform entity matching, one might ask an LLM “Are iPhone 16 Pro and iPhone 16 Pro Maz the
same?” and obtain the answer “No.”. Moreover, models such as GPT-3 [9], GPT-4 [57], and LLaMA
[75] also possess robust code-generation capabilities like human programmers.

Therefore, within data wrangling operators, the LLM is guided by prompts derived from task param-
eters, such as the task name, task query, and contextual inputs extracted from the data. These prompts
can be structured in various forms to perform row-wise executions using the ability of LLMs in performing
next-word prediction. For example, for a data imputation task, the prompt can be formatted such as a
question (e.g., “What is the timezone of Copenhagen?”), a cloze (e.g., “Copenhagen is in
the _ timezone.”), or a completion (e.g., “The timezone of Copenhagen is...”). Fur-
thermore, prompts can also be designed to synthesize code for domain-specific solutions |13, 52, 55], such
as “write a Python regular expression to extract dates in the format ‘YYYY-MM-DD’.” The operator
then incorporates a parser to extract outputs from LLMs and may apply additional transformations to
the original datasets, thereby producing the output data.

3.1 Unifying LLM-based Data Wrangling

While the integration of LLMs into data wrangling has demonstrated exceptional performance in various
data preparation tasks [14, 54, 72, 81], these approaches often rely on specifically tailored prompt
designs for each task, which limits their usability as end-to-end platforms that encompass multiple data
preparation steps.

In this subsection, we explore the generality of data preparation tasks based on Definition 3.1.
We propose that disparate data preparation tasks could be unified, applying a general procedure to
solve different tasks. To this end, we introduce a unified system, UniDM [G1]|, which generalizes data
preparation tasks into three main steps as shown in Figure 2. The core objective of UniDM is to unify
diverse data tasks by developing a general mechanism that transforms task parameters T', and contextual
inputs derive from D into a prompt understandable by LLMs to complete the task.

The first step, context retrieval, extracts the relevant context from the dataset D necessary for
solving the task. Prior approaches often require users to manually specify the context |6, 54] or rely
on attribute similarity to identify useful records [2, 51]. However, these methods can be less effective
when dealing with a diverse range of complex data preparation tasks. In contrast, UniDM introduces
an automated retrieval process that leverages LLMs through two specialized prompt templates. These
templates guide LLMs to determine the relevant attributes and rows in D required for completing the
task T'. For example, consider a data imputation task shown in Figure 2, where the goal is to impute
the timezone for Copenhagen. In this case, the first prompt identifies the “country” attribute as
essential for inferring the timezone and the second prompt selects a subset of relevant records to guide
this task (e.g., via few-shot prompting). One such record might be: “city: Alicante, country:
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Figure 2: An overview of the UniDM framework.

Spain, timezone: Central European Time”.

The second step, context data parsing, transforms the retrieved context from a tabular format into a
textual representation, enabling LLMs to better capture the semantics. Unlike conventional methods that
serialize input rows into a simple text string |54, 72|, UniDM employs a prompt template to instruct LLMs
to create a semantically rich text representation of the context. For example, the tabular record “city:
Alicante, country: Spain, timezone: Central European Time” is transformed into:
“Alicante is a city in Spain and is in the Central European timezone.”.

The final step is target prompt construction, where UniDM synthesizes the task parameters T, in-
cluding the task name, task query, and the contextual inputs of dataset D obtained from the previous two
steps, into a final prompt for the LLMs to generate results. The construction of this final prompt is also re-
lied on LLMs. For the data imputation task, the final prompt could take the form of a cloze-style prompt:
This task involves imputing the missing value...; The context is: Alicante is
a city in Spain and is in the Central European timezone ...; Copenhagen is a
city in Den- mark and is in the __ timezone.” This prompt is then used to generate
the final result for the data preparation task.

By abstracting these steps, UniDM unifies disparate data preparation tasks, offering a systematic
approach to leverage LLMs effectively and generalizing across multiple task types. In a similar vein,
another recent framework, CHORUS [38], presents a unified approach for synthesizing data discovery
and exploration tasks. Unlike UniDM’s three-step procedure, CHORUS decomposes prompts into six
fixed components and employs specialized templates and context retrieval methods to automatically
construct the final prompt. It has shown highly effective performance for data discovery tasks such as
table-class detection, column-type annotation, and join-column prediction.

3.2 LLM-as-a-Compiler for Data Wrangling

While UniDM offers a unified framework for automating data wrangling effectively, a limitation lies in
its reliance on row-wise execution, which can become inefficient and costly for large datasets due to
the need for LLM invocations on each record. To overcome this limitation, more recent work, SEED
[13], proposes an improved approach by introducing an optimizer that automatically selects from four
LLM-assisted modules: CodeGen, which generates code; CacheReuse, which reuses previous LLM query
results; ModelGen, which distills an LLM into a smaller machine learning model; and LLM, which
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directly generates answers. By combining these modules, SEED automatically produces a hybrid data
wrangling solution that achieves performance comparable to row-wise execution while dramatically
reducing the number of LLM calls.

4 Data Analytics with LLMs

Traditional relational queries enable users to perform scalable and accurate analyses on structured data
through formal querying languages. However, much of the information that data users want to query
[50] resides not only in structured datasets, but also in various types of unstructured sources such as
text, documents, and even in the vast world knowledge encoded within LLLMs. Moreover, traditional
systems often assume users have the technical expertise to write complex queries, which can be a barrier
for non-expert users. For example, a restaurant owner may want to analyze customer reviews (e.g.,
identifying the most positively reviewed dishes in Japanese restaurants in New York City) but may lack
the skills to write complex queries or code.

LLMs have demonstrated the ability to understand, extract, and answer questions using unstructured
data and world knowledge through methods such as retrieval-augmented generation (RAG) [10]. Recent
research |7] has demonstrated the promising potential of integrating LLM capabilities into data systems
to combine strong semantic reasoning and LLM knowledge with the efficient computational query
execution capabilities of traditional relational data systems.

In this section, we provide an expanded definition of analytical querying that extends the relational
querying definition @ : (Ds,q) — R, where q represents a query in the formal query language, and D,
is the structured dataset, and R is the query result. The LLM-powered analytical querying definition
includes support for unstructured data, integrates knowledge from LLMs, and accommodates diverse
interfaces, as follows:

Definition 4.1 (Analytical Querying) Let D, denote the structured dataset, D, denote the unstruc-
tured text data that may be leveraged for question answering, and Diiu denote the world knowledge
encoded within a large language model LLM . Given a user question q*, an LLM-powered analytical
querying is expressed as

Qv s (Ds, Dy, Dy q+) — 1,

where the output T represents the insights derived from the query result.

In Definition 4.1, the LLM-powered analytical querying not only enables analysis of structured data D,
but also enables the extraction and processing of information from unstructured text data D, to answer the
question. It also facilitates querying access and exploits the LLM knowledge through D;;;,. In addition,
the querying interface is not restricted to formal query languages; instead, the user question q* supports
various formats according to the data system and user requirements, including SQL queries |1, 15, 68, 80],
data science code snippets |1, 58], and natural language inputs |7, 47, 48, 62, 64, 77, 82]. It may also
incorporate a conversational agent to translate query results into more easily interpretable insights in
natural language [7, 18].

To support this extended analytical querying, recent research efforts have focused on enhancing or
developing next-generation data systems [19] that leverage the capabilities of LLMs. In the following
subsections, we will explore the specific mechanisms through which these systems achieve the goal:

e Building declarative querying interfaces. These interfaces enable users to ask questions based
on their needs rather than focusing on the technical execution details [19]. They can express their
queries in a more intuitive and user-friendly manner, which the systems then translate into the
necessary operations.
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e Translating natural language questions into queries. These systems may leverage semantic
parsers driven by LLMs to convert user questions expressed in natural language into executable
queries 48], which bridges the gap between user intent and system execution.

¢ Expending the set of logical operators and enabling optimizations. These systems
offer an enriched set of logical operators that augment traditional relational operations |58]. By
incorporating LLM-powered semantic data processing and information extraction capabilities,
these operators work with traditional relational operators to facilitate optimization and effective
query planning.

4.1 Interfaces for Analytical Querying

In real-world analytical querying applications, there are various design considerations when integrating
LLMs into data analytics systems. State-of-the-art research primarily focuses on three types of user
interfaces: SQL interface, programming interface and natural language interface.

SQL Interface. To incorporate user questions into executable operations within database man-
agement systems (DBMS), modern DBMS vendors have explored integrating LLMs as extensions of
SQL user-defined functions (UDFs). For example, systems like BigQuery [70], Databricks [15], and
Redshift [5] uses AI modules to perform information extraction based on the prompted user question.
However, these LLM UDFs typically support only row-by-row execution, making them inefficient and
prohibitively expensive for large datasets.

To address the challenge of querying both structured and unstructured data, several systems have
proposed transforming unstructured data and LLM knowledge into a structured format compatible with
SQL. For example, ZenDB [15] automatically extracts semantic hierarcal structure from text documents
allowing users to impose a schema on their documents and query the document with SQL interface.
Evaporate [1] generates structured views of data from input documents by employing efficient entity
extraction techniques on semi-structured data. GALIOS [68] enables users to query large language
models via an SQL interface, executing some parts of the query plan with prompt-based interactions to
retrieve data from the LLM. Similarly, HQDL [36] extends SQL beyond the data at hand, using LLMs
to answer questions that require additional context.

Programming Interface. Another approach to integrating LLMs into analytical querying is
through programmatic interfaces provided by data science platforms, such as packages in Python, which
enable developers to construct flexible data analysis pipelines. For example, Palimpzest [1]| allows users
to declaratively query text and images using an API, similar to querying tables in a relational database.
The LOTUS system [58] provides a Pandas-like interface enriched with semantic operators, such as
semantic filtering, ranking, and aggregation. This enables developers to make use of both traditional
relational functionalities and advanced LLM-driven semantic reasoning capabilities in data analytics.

Natural Language Interface. Recent advancements have demonstrated that LLMs can translate
natural language questions into executable relational queries with high accuracy [17, 62, 64, 77, 82].
Research has also explored developing interactive or conversational agents that provide end-to-end
query support for non-expert users. For example, SUQL [18] builds a conversational interface to answer
questions over semi-structured data by executing queries derived from user utterances that correspond
to specific query intentions. Similarly, TAG |7] proposes a general-purpose query model that translates
natural language inputs into queries and generates answers in natural language based on the query results.
Although natural language interfaces greatly improve usability for non-expert users, they inherently
carry ambiguities [11]. Therefore, we believe that data systems should not rely solely on natural language
as the querying interface. An ideal design would map natural language inputs to expressive SQL-like
or programming languages, ensuring accurate and efficient execution within the data system. Systems
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such as SUQL and TAG exemplify this approach by first interpreting and generating SQL queries from
natural language questions, then executing these queries and presenting the results in natural language.

4.2 Text2SQL Semantic Parser

A critical challenge in bridging user intentions to executable database queries lies in accurately translating
natural language questions into executable queries. While Text2SQL has long been a focus in both
natural language processing and database research, LLMs have recently emerged as a transformative
paradigm for this task [17, 62, 77].

In this subsection, we present DAIL-SQL [22] which provides an integrated tool for improving
LLM-based Text2SQL solutions. It systematically explores two key directions: prompt engineering for
in-context learning on closed-source LLMs and supervised fine-tuning (SF'T) on open-source LLMs.

Prompt Engineering. Effective prompt design is crucial to promote accurate SQL generation from
LLMs [9]. DAIL-SQL examines both question representation and example selection to optimize prompt
design.

e Question representation: This involves representing user questions and database information in
the most informative format (e.g., natural text, code-like schemas). We extensively evaluate five
widely adopted approaches [12, 47, 53, 56, 73]. We find that certain representations yield higher
execution accuracy than others. In particular, using the OpenAl demonstration prompts [56] or
the code representation [53| that includes comprehensive schema details tends to perform better.
DAIL-SQL adopts the code representation and finds that including supplementary details, such as
foreign key information and implication rules like the “with no explanation” implication, also helps
improve execution accuracy.

e Ezample selection and organization: The in-context learning ability of LLMs [18] is also helpful
in improving Text2SQL performance with carefully selected examples. DAIL-SQL demonstrates
that few-shot prompting is most effective when examples are similar to the user’s query. To
identify effective examples, DAIL-SQL masks domain-specific terms in both the natural language
questions and the pre-generated SQL for the user query and candidate examples. It then ranks the
candidates based on question and query similarity. Experimental results indicate that selecting
examples based on both question and SQL similarity consistently outperforms random selection.
Furthermore, while including full example details may yield optimal performance, we find that for
powerful LLMs like GPT-4, retaining only the question-SQL mapping is an efficient and effective
approach.

Supervised Fine-Tuning (SFT). Beyond prompting, DAIL-SQL explores fine-tuning open-source
LLMs (e.g., LLaMA variants [67, 7376, 87]) to improve Text2SQL performance. Empirical results
show that supervised fine-tuning is essential to achieve competitive accuracy. With carefully curated
training data (e.g., from historical Text2SQL workloads), DAIL-SQL shows that fine-tuned open-source
models exhibit strong potential for Text2SQL tasks. Unlike in-context learning with closed-source LLMs,
fine-tuned open-source LLMs do not learn from contextual examples, e.g., queries in the current data
analytical pipeline, but we can always applying in-context learning on fine-tuned LLMs to incorporate
the learned experience and characteristics of the workload in an online data analytical pipeline.

To evaluate the performance of Text2SQL techniques, a variety of benchmarks have been proposed,
such as Spider [83] and Bird [42], along with metrics like execution accuracy and query efficiency.
DAIL-SQL demonstrates that both prompt engineering and supervised fine-tuning can significantly
enhance Text2SQL’s execution accuracy, providing valuable insights for data systems aiming to translate
natural language questions into precise and reliable SQL queries. More recently, XiYan-SQL [23], a
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state-of-the-art Text2SQL system, further improved the benchmark performance by integrating schema
linking techniques to retrieve only relevant columns for a given natural language question, designing
a more efficient schema representation, and implementing an ensemble strategy for LLM in candidate
generation and selection.

However, Text2SQL research has primarily focused on relational queries over structured data, which
covers only a fraction of the questions posed by real-world users |7]. The incorporation of LLMs into data
systems brings significant opportunities to leverage world knowledge and semantic reasoning, thereby
extending relational queries through a broader set of logical operators, as we will describe next.

4.3 Logical Operators

Executing analytical queries relies on a set of logical operators and their corresponding physical execution
to complete the tasks. Integrating LLMs into data analytics does not mean overwriting traditional
relational operators. SQL and data science operators remain essential for supporting scalable and
efficient queries over structured data. The objective of developing LLM-powered logical operators is to
augment these existing operators with Al-based transformations.

Recent research has primarily focused on extending SQL operators because they can be seamlessly
integrated with database management systems and have the potential to leverage existing query engines
and optimizing compilers. For example, SUQL [18] augments SQL with free-text primitives (SUMMARY
and ANSWER) powered by LLMs. These primitives enable the system to provide row-by-row summaries
and answer user questions on unstructured text data, while automatic optimizations are considered to
reduce the number of LLM calls to improve efficiency. HQDL [30] treats an LLM as a virtual table
that can be queried for information unavailable in structured data, and TAG |7] integrates LLM-based
retrieval capabilities into table querying. In contrast, LOTUS [58] expands Pandas’ operator set with
semantic operators (e.g., sem_map, sem_Jjoin, and sem_filter), facilitating both logical query plan
optimization and operator execution optimization. We see significant potential for developing additional
operators. A key design criterion is to ensure these operators are expressive and comprehensive while
enabling execution optimizations. For instance, strategies such as model selection or prompt engineering
can optimize LLM performance, while using code generation instead of row-wise execution can improve
efficiency.

Another crucial aspect is planning the query execution to provide answers to user questions. For
instance, when a user poses a question in natural language, it’s vital to generate a query execution
plan that may involve extracting unstructured information or utilizing LLM knowledge. Traditional
Text2SQL approaches, as discussed, are insufficient for generating queries and utilizing the optimizers in
DBMS for the expanded set of operators. Utilizing the reasoning capabilities of LLMs to decompose
questions into executable operations and enable optimization of query execution plans is important.
Current methods often require users to specify updated schemas |15] or explicitly define the query plan
[1, 58], and incorporate rule-based optimization techniques like operator reordering, predicate pushdown,
and lazy evaluation to improve performance.

5 Table Augmentation for Machine Learning with LLMs

Machine learning (ML) is a pivotal data-centric application that plays a critical role in numerous
decision-making processes |16, 39, 66]. It derives sophisticated patterns from historical data to produce
predictive outcomes. However, real-world data are often unsuitable for direct ML training due to limited
data entries and potentially insufficient features [14]. Acquiring more high-quality tabular data with
well-suited features is essential for improving ML performance. However, this process often relies heavily
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Figure 3: SMARTFEAT overview: advancing from Figure 4: Example: constructing Bucketized
row-level to feature-level generation. Age.

on domain expertise, demanding considerable human effort [59] and remaining a persistent challenge in
both database and data science research [11].

Numerous approaches have been proposed to automate the ML data processing pipeline [38], yet
they often depend on machine learning or deep learning recommendations, which require substantial
data collection of training, or employ rule-based systems, thereby limiting their applicability. Recent
advancements in LLMs present significant opportunities to enhance tabular data augmentation process.
Existing work broadly falls into two categories: generation-based approaches, which generate new data
based on the original table, and retrieval-based approaches, which identify and extract relevant data
from external sources. Building on the general definition of table augmentation tasks [14], we formally
define the LLM-assisted table augmentation task for ML as follows:

Definition 5.1 (Table Augmentation for Machine Learning) Let T4 be the original table with
feature set A, and P be the data pool available for augmentation. Consider a downstream machine
learning model fg, where @ represents the model parameters. The objective of the table augmentation task
is to transform T4 into an augmented table ’TAnew to enhance the performance of fg. Formally, the table
augmentation task is defined as an augmentation function assisted with an large language model LLM :

7"/
augyy  (Ta, P, fo) = Ta,..s St E(f, ) < E(ng)’

T4 . . .
where E(fg—““) and E(fg™"") represent the empirical errors of the machine learning model trained on Ty
and T}, respectively.

5.1 Generation-based Table Augmentation

An effective approach to improving tabular datasets is feature engineering, which involves augmenting
existing features to create more relevant inputs for machine learning models. This process often leads to
substantial performance enhancements [33].

We introduce SMARTFEAT [16], a system that leverages LLMs to automate the feature engineering
pipeline. Compared with traditional rule-based automated feature engineering tools, SMARTFEAT
leverages the reasoning capabilities of LLMs to search for meaningful and interpretable features. Fur-
thermore, instead of generating new feature values through row-by-row LLM executions, which could be
computationally expensive, SMARTFEAT identifies promising features upfront and then synthesizes the
transformation code to compute these features efficiently at scale. SMARTFEAT operates through an
iterative search process, progressively refining and expanding the feature set. As shown in Figure 3, the
system consists of two main components:
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Table 1: Comparison of average AUC values (1) for different ML models: SMARTFEAT vs. baseline
methods.

Methods Diabetes Heart Bank Adult Housing West Nile Virus Tennis
Initial AUC 82.20 67.38 91.46 76.81 86.72 78.96 77.93
SMARTFEAT 86.76 (4+4.3%) 172.15 (4+7.0%) 91.47 (=) 87.00 (4+13.3%) 92.19 (+6.3%) 82.12 (4+4.0%) 87.39 (+9.5%)
CAAFE - 69.67 (+3.4%) 91.73 (40.3%) 83.10 (+8.2%) 92.15 (46.3%) 80.11 (+1.8%) 88.50 (+13.6%)
Featuretools 82.24 (=) 66.78 (-0.9%) 91.04 (-0.5%) 73.85 (-3.9%) 79.47 (-8.1%) 73.12 (-7.4%) 81.29 (+4.3%)
AutoFeat 75.24 (-8.4%) 64.92 (-3.7%) - - 77.63 (-10.5%) 70.90 (-10.2%) 71.73 (-8.0%)

e Operator selector (I): This component takes as input (a) dataset feature descriptions, (b) the
prediction task (e.g., classification), and (c¢) the downstream machine learning model. It applies
operator-guided feature generation using various operator prompt templates, such as unary, binary,
group-by—aggregate, and extractor operators. The operator selector interacts with the LLM to
determine suitable operators to apply and outputs the name of the new feature, the relevant
columns for computing the new feature, and a descriptive explanation of the feature.

e Function generator (2): Based on the outputs of the operator selector, this component generates
an executable transformation function. The function is applied to the original dataset to compute
the values of the new feature, and the augmented dataset and feature descriptions are updated for
further iterations. Including detailed feature descriptions during this process is highly beneficial in
guiding function generation. When no suitable function can be derived (e.g., extracting the capital
city for each country), SMARTFEAT resorts to row-level LLM generation to obtain feature values,
leveraging the common knowledge and reasoning abilities of LLMs.

In each iteration, the operator selector first chooses a semantically meaningful operator, and then
the function generator obtains the transformation to compute feature values. For example, as shown
in Figure 4, given the ML prediction task, model selection, and feature description, the operator
selector chooses a unary operator to bucketize the Age column. It generates a new feature name
(Bucketized_age), a description (e.g., “Bucketization of Age attribute”), and identifies
the relevant column(s). The function generator then translates this information into executable code,
applies the transformation to the dataset, and adds the resulting feature to the feature set.

The feature generation process begins by exploring potential unary operators on the original features.
Using a prompt template, the operator selector iterates over each original feature, prompting LLMs
to propose potentially beneficial unary operations (e.g., bucketization or scaling). Once an operator is
selected, the function generator retrieves the corresponding transformation function and applies it to the
dataset. Building on the original and unary features, SMARTFEAT prompts LLMs to suggest binary
and group-by-aggregate operators that may further enhance the data set. Finally, the process considers
extractors that can operate on multiple inputs to generate additional features.

In addition to SMARTFEAT, another feature engineering tool, CAAFE [31], also uses LLMs to
produce Python code for feature engineering. Unlike SMARTFEAT, which utilizes a pre-defined operator-
guided search for new features, CAAFE employs chain-of-thought instructions [79] to guide a series of
intermediate steps to generate new features.

Lastly, we compare the performance of SMARTFEAT and CAAFE against traditional automated
feature engineering tools based on expansion-selection methods |[37]: Featuretools [36], which exhaustively
generates features using predefined operators and applies feature selection, and AutoFEAT [32], which
constructs a large set of nonlinear features followed by a search algorithm to select an effective subset.
Using these tools, we processed seven datasets from Kaggle, performed classification, and evaluated the
Area Under the ROC Curve (AUC) as the primary performance metric across four ML classification
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models: linear regression, GaussianNB, random forest, and extra tree. The average AUC of the four
models is presented in Table 1.

The results show that the LLM-based approaches significantly outperform traditional methods.
SMARTFEAT enhances the original AUC score by up to 13.3% on the Adult dataset, while CAAFE
improves by 8.2%. We observe that CAAFE recommends a smaller set of features, and the operator-
guided search in SMARTFEAT generates a more comprehensive feature set. The new features generated
by Featuretools and AutoFEAT are agnostic to the dataset context and prediction task, and thus exhibit
comparatively lower performance. However, this evaluation is limited to publicly available datasets,
which LLMs might have encountered during training, potentially leading to overly optimistic results.
Evaluating the performance of LLM-assisted feature engineering on private datasets remains a topic for
future exploration.

5.2 Retrieval-based Table Augmentation

When generating additional information directly from the original table is insufficient, an alternative
approach to data augmentation involves performing dataset searches and utilizing external text to enrich
the data [14].

LLMs have demonstrated promising potential in identifying joinable [34] and unionable [20, 33]
structured data, facilitating data discovery of related tables to broaden available information. Additionally,
unstructured sources such as Wikipedia can be harnessed by performing entity linking [69] and extracting
relevant content. For instance, FeSTE [27] combines web search with fine-tuned BERT model to
supplement data with Wikipedia-derived information, demonstrating the potential of LLMs for retrieval-
based augmentation.

6 Concluding Remarks

In this paper, we explored three essential stages of the data engineering workflow: data wrangling,
analytical querying, and table augmentation for machine learning, which often require significant effort
from data engineers. Traditional automated approaches, which rely on rule-based algorithms or machine
learning models, can struggle with complex scenarios or demand significant human involvement for
training dataset collection. Recently, large language models (LLMs) have shown growing promise in
automating these tasks due to their extensive training data corpora and cross-task generality. LLMs
hold potential to function as pretrained data engineers, facilitating the automation of data engineering
workflows, optimizing performance, and expanding the scope of data tasks.

For data wrangling, we formally defined an LLM-based data wrangling operator, which uses task
parameters and dataset context to construct prompts that guide LLMs in performing data preparation
tasks. We introduced a unified system, UniDM, for LLM-based data wrangling, which automates prompt
construction to handle different tasks in the multi-step wrangling process. However, a limitation of
UniDM as we discussed is its reliance on row-level execution, which can be inefficient and costly for large
datasets. To this end, we encourage ongoing efforts to explore approaches to utilize LLMs more efficiently
for data wrangling. Looking ahead, we envision end-to-end data preparation platforms powered by LLMs,
where users provide raw data, and necessary operators and optimizations are determined automatically
to minimize costs and improve the wrangling quality.

For analytical querying, we are able to extend traditional relational queries by leveraging LLMs’
capabilities to query unstructured data and LLM’s knowledge via various interfaces (e.g., natural
languages). To better interpret users’ questions, we presented a Text2SQL framework, DAIL-SQL,
which incorporates techniques including prompt engineering and supervised fine-tuning to improve
the execution accuracy of translated SQL queries. We also discussed the importance of developing
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LLM-powered logical operators to expand the analytical capabilities of databases. We anticipate that
future data systems will integrate these operators to harness LLMs’ knowledge and reasoning ability.
These systems should also support query planning and optimization, and offer both natural-language
interfaces and declarative programming interfaces for analytical queries.

To support data processing for machine learning, we demonstrated that tabular data augmentation
through generation- or retrieval-based approaches can boost downstream prediction performance. We
introduced an automated feature engineering tool, SMARTFEAT, which employs operator-guided search
to enable LLMs to generate meaningful and interpretable new features. We also discussed retrieval-based
approaches using LLMs for searching and leveraging external text to enrich datasets. In the future, we
can utilize LLMs to autonomously plan and execute table augmentation pipelines for generating more
meaningful features and accessing additional data, while this may require careful pre- and post-processing
to ensure efficiency and reliability.

There are several additional topics we touched upon that are worth further discussion. For example, in
this paper, to optimize the performance of LLMs, we discussed approaches based on prompt engineering
and supervised fine-tuning, which are also used to explore different avenues: Table-GPT [13] proposes
fine-tuning LLMs with real tables to improve their ability to process two-dimensional data structures,
while Jellyfish [84] explores instruction tuning to enhance LLMs as universal data processing solutions
that better adhere to human instructions. In addition, reinforcement fine-tuning [28] has shown potential,
particularly for reasoning-intensive models such as OpenAl’s ol-mini, enabling stronger generalization
and reducing reliance on large-scale labeled data. More recently, Deepseek-R1 [21], an open-source LLM
based on reinforcement learning, has demonstrated strong reasoning capabilities without relying on
supervised data. Collectively, these advancements in post-training techniques show significant potential
to boost the performance of LLM-assisted data analytical tasks and open up new possibilities for
addressing complex data engineering challenges. Moreover, current evaluations are predominantly based
on public data sets, which can lead to overly optimistic results if LLMs have seen these datasets during
training. Evaluating LLMs on private data lakes and unseen tasks is essential for assessing their generality
and robustness.
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Abstract

With the power of LLMs, we now have the ability to query data that was previously impossible to
query, including text, images, and video. However, despite this enormous potential, most present-day
data systems that leverage LLMs are reactive, reflecting our community’s desire to map LLMs
to known abstractions. Most data systems treat LLMs as an opaque black box that operates on
user inputs and data as is, optimizing them much like any other approximate, expensive UDFs,
in conjunction with other relational operators. Such data systems do as they are told, but fail to
understand and leverage what the LLM is being asked to do (i.e. the underlying operations, which
may be error-prone), the data the LLM is operating on (e.g., long, complex documents), or what
the user really needs. They don’t take advantage of the characteristics of the operations and/or
the data at hand, or ensure correctness of results when there are imprecisions and ambiguities. We
argue that data systems instead need to be proactive: they need to be given more agency—armed
with the power of LLMs—to understand and rework the user inputs and the data and to make
decisions on how the operations and the data should be represented and processed. By allowing the
data system to parse, rewrite, and decompose user inputs and data, or to interact with the user
in ways that go beyond the standard single-shot query-result paradigm, the data system is able to
address user needs more efficiently and effectively. These new capabilities lead to a rich design space
where the data system takes more initiative: they are empowered to perform optimization based on
the transformation operations, data characteristics, and user intent. We discuss various successful
examples of how this framework has been and can be applied in real-world tasks, and present future
directions for this ambitious research agenda.

1 Introduction

The database community has long acknowledged the need to store, process, and query data in various
degrees of structure, from relational, to semi-structured, and more recently, to unstructured data,
including text, images, and video. Recent developments in Al models, and LLMs in particular, have
unlocked the ability to better process and make sense of unstructured data, in addition to structured
data, for tasks including information extraction [, 2|, summarization [3|, data cleaning [1], dataset
search [5], and data integration [6]. LLMs also enable us to better understand users, manifesting in
rapid progress in benchmarks on translating natural language queries into SQL |7, &|. LLMs truly have
the potential to disrupt our entire field [9].

All of this progress in harnessing LLMs for data management—for processing both unstructured and
structured data—is valuable. However, our belief is that we are still not leveraging the full potential of
LLMs for data management. In most data systems that leverage LLMs for data processing, including
those proposed in recent work [2, 10, 11], LLM operations are treated as a given, i.e., as black-box
invocations on monolithic user inputs and data, where, akin to other types of UDFs, the data system
doesn’t attempt to fully understand the underlying data, user intent, or constituent operations, and just
does as they are told. We call such data systems reactive, in that they passively execute user-specified
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operations, without understanding the underlying intent, the semantics of the operations, or the data on
which it should be applied. Reactive data systems are fundamentally limited in their ability to accurately
and efficiently address user needs. If the LLM operations as expressed in the user query have low
accuracy or throw an error, reactive data systems will faithfully pass the burden of low accuracy or
errors back to the user, without attempting to proactively correct for this. To understand the limitations
of reactive database systems, consider the following example.

Example 7: (Police Misconduct) At UC Berkeley, we are co-leading an effort, along with journalists
and public defenders, to build a state-wide police misconduct and use-of-force database®. As part of this
effort, our collaborators have gathered, through public records requests, millions of documents detailing
incidents across 700 agencies. Each incident can be split across multiple files, and can name several
officers. Each file itself can have many sub-documents, including officer testimonies, medical examiner
reports, eyewitness reports, and internal affairs determinations. The officers themselves may be part of
several incidents. Journalists and public defenders are interested in both investigating the behavior of
individual officers, as well as broader systemic patterns, all in an effort to ensure greater accountability.
In such a setting, a reactive data system would encounter various difficulties, as follows:

o (Difficulties with the Data). Suppose a journalist is interested in understanding the medical
impacts of use of force. This is typically detailed in the medical examiner report within the broader
use-of-force document. Simply providing the LLM the entire document as is (often hundreds
of pages) can lead to the LLM making errors [12]; instead, by decomposing the document into
specific semantically meaningful portions and focusing LLM attention on those portions can both
improve accuracy and reduce cost. Another alternative is RAG (Retrieval-Augmented Generation)
on pages or chunks, but RAG once again doesn’t try to proactively identify the meaning of the
documents, or chunks, leading to low accuracies. Here, treating unstructured data as a black box
monolith, as in present-day reactive systems, is problematic.

e (Difficulties with the Operations). The journalists have identified dozens of fields of interest in
the incidents, including, but not limited to: dates, people mentioned, locations, use of firearms,
drug use, use of batons and K9 units, among others. Some fields are dependent on other fields,
e.g., whether there was disciplinary action is contingent on whether there was an internal affairs
investigation. Simply specifying all of the fields to be extracted as is in a single prompt (as a
map operation or equivalently, a projection) can lead to the LLM making errors on some of them;
instead, by decomposing this operation into smaller “well-scoped” operations, we can ensure greater
accuracy of LLM outputs. Here, treating the operations as a black box, without understanding
their semantics, as in present-day reactive systems, is problematic.

e (Difficulties with the User Intent). Suppose a journalist is interested in exploring the documents
for mentions of a specific officer, “John Smith”. While a reactive data system would faithfully
return mentions of John Smith, if any, it would omit mentions of officers where the first name is
an initial, i.e., “J. Smith”, as well as mentions where the middle initial is present, e.g, “John M.
Smith”. One could certainly change the query by requiring a semantic match instead of an exact
match—but the journalist would have no way of knowing that such mentions exist in the first
place. A better approach would be to provide, as feedback to the journalist, what the query does
not currently cover (but could), so that they can make a more informed choice about what it is
they are actually after. Here, treating the user intent as given, as is done in present-day reactive
data systems, is problematic.

“https://bids.berkeley.edu/california-police-records-access-project
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In all three instances, we find that present-day data systems, especially those that harness LLMs to
help make sense of unstructured data, are reactive: they treat the data, user query, and operations as
black-box indivisible monoliths. Instead, we argue that data systems should be proactive: rather than
treating LLM invocations on data as a given, such data systems should posess the agency to understand
user intent, transformation operations, and the underlying data—and to make decisions on how to best
reconfigure the data, operations, and user input to suit the analysis need. In the example above, this may
include, for example, uncovering underlying layout or patterns in unstructured documents, decomposing
(or fusing) operations into semantically equivalent but more accurate ones, or going above and beyond
immediate user input to determine the actual underlying user intent, in concert with the user. We
argue for truly harnessing the power of LLMs, to understand and make sense of both structured and
unstructured data, rather than simply treating them as black box unstructured data processors. We believe
the three axes of understanding (1) user intent, (2) data operations and (3) the data itself are key to the
data systems’ ability to accurately and efficiently processes structured and unstructured data.

In the following, we will put forth our vision for proactive data systems—systems that more effectively
harness LLMs for structured and unstructured data processing by improving our understanding of data,
intent, and operations. While our vision is ambitious and expansive, our early work has already shown
promise:

e Our work has shown how understanding unstructured document collections better, especially
those that obey similar templates, can pay rich dividends in both cost and accuracy for document
processing |1, 13].

e Our work has shown how a better understanding of error-prone LLM-based unstructured data
processing operators, as well as the ability to decompose or rewrite these operators can lead to
data processing pipelines that are a lot more accurate [14, 15].

e Our work has also shown that tailoring our responses to the underlying user intent, especially as
part of a dialog with the user, rather than just strictly adhering to the user request as stated, can
be very helpful, as evidenced in tasks that range from data visualization to dataset search [16—-18].

Our experience is grounded in our police misconduct analysis application, as well as our other work in
understanding where and how LLMs go wrong, and how we may be able to avoid these mistakes [19, 20].

By moving beyond simply executing user instructions “as is” and treating LLM invocations as a black
box, the effective offline and online execution space of proactive data systems is effectively unbounded
and open-ended. For example, a user task for extracting information from documents can be decomposed
in a potentially unbounded number of different ways, with different accuracies. Simply leveraging an
LLM to, in turn, do this query planning and optimization for us can lead to suboptimal results. Instead,
in this vision paper, we discuss various recipes for proactive systems to help make sense of each of our
three axes of data, intent, and operations, such as performing decompositions and rewrites to improve
accuracy when performing a given operation, finding structure in unstructured data to better understand
the data and answer queries on it, and by adjusting data and query representations based on user
feedback to better align with user intent. We discuss future directions along each axis to build better
proactive database systems.

2 Typical User Workflows with Proactive Data Systems

A proactive data system understands, at a deeper semantic level, user intent, the specific operations it
performs, and the data it performs operations on. Typical user workflows with such a system are similar
to traditional database systems, where the user first provides (or ingests) the data, potentially alongside
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additional descriptive information about its content or schema, and then proceeds to execute queries on
this data. We describe this workflow in more detail next, while acknowledging that a range of design
choices may all be appropriate, depending on the use cases.

Data Definition. The user first ingests or registers their data (e.g., a PDF document collection of
incident reports, police officer employment CSVs, as well as audio/video of incidents in the police
misconduct case), along with metadata if any. Unlike traditional database systems, this metadata is
optional, and the system is free to proactively understand the structure and semantics of the data. That
said, any user-provided specification or description can help improve accuracy and better specialize the
system for specific use-cases of interest. In Example 7, such a specification can be similar to the first
paragraph of Example 7 as plain text, or could include definitions about technical terms or additional
background providing domain knowledge, e.g., defining police misconduct. We note that such information
is often needed to allow users to query the data meaningfully even in relational databases when using
text-to-SQL [21]. We also envision that in certain use-cases, the users may proactively identify the
entities of interest for downstream querying, even if they don’t register the attributes they may care
about in the future. For example, in the police misconduct setting, the users may want to indicate that
they intend to analyze information about incidents, police officers, and agencies. Armed with all of this
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information, the system can proactively add indexes, reorganize the data, and extract certain fields,
among other such offline actions, as we will describe in Section 4.

Task Specification. Users are then free to issue queries or tasks on the data, which can be specified
in natural language, or a combination of natural language prompts associated with data processing
operators, as shown in Figure 1 for a map operation on a collection of contracts, with a prompt extracting
a number of legal clauses, within DocWrangler, our IDE for DocETL [14]. If the user instead chose
to preregister a schema during the data definition stage, they are free to extend it with additional
LLM-populated attributes and issue SQL queries based on these lazily populated attributes, as we do in
ZenDB |[1].

Task Execution. The system then performs the task on the underlying data. Rather than performing
the task as is on predefined data monoliths, a proactive data system will try to understand the task
and the data, performing reformulations of this task by decomposing the corresponding operators, as
well as the data, all in an effort to maximize accuracy and minimize cost. For example, the system can
decompose the user-provided task into smaller easier-to-do operations, and can leverage the semantics of
the document(s) to intelligently focus the LLM’s attention on relevant portions.

In Section 3 we discuss various ways for a proactive data system to understand user-defined operations
and reformulate them, and we extend the discussion in Section 4 on how the system can similarly
understand the data and perform data transformations to improve accuracy. In Section 5, we discuss how
the data system can ensure the task was performed as the user intended. When it comes to unstructured
data, we focus our attention mostly on documents for concreteness, though our general approach may
be applicable to a variety of formats.

To further differentiate a proactive data system from a reactive one, Figs. 2 and 3 provide a high-level
overview of different components in these systems. While a reactive data system considers tasks and
data as is, and performs operations on the components as instructed, a proactive data system leverages
LLMs to understand user intent, the operations it performs, as well as the data to ensure maximal
accuracy at minimum cost.

3 Proactive Operation Understanding

In reactive data systems, the onus is on the user to author queries involving the “right” LLM-powered
operators, with the system then determining how to execute these in conjunction with other relational
operators. However, even in cases where users are able to specify clear, unambiguous operations, the
granularity at which they specify them may not be optimal for execution. Fundamentally, this stems
from a lack of understanding of what LLMs can do well versus what they can’t—something most users
are not aware of. In this section, we discuss various approaches to operation reformulation that can
improve accuracy while maintaining or reducing computational costs. We first describe new operators
that we may introduce, and then methods for assessing and improving cost and accuracy when leveraging
new or existing operators.

3.1 How and Where to Introduce New Operators

We now describe ways to reformulate existing LLM-powered operations into different ones.

Decomposition into simpler LLM operations. In Example 7, we described how sometimes
journalists want to extract dozens of fields from a given document (e.g., police officer names, descriptions
of misconduct, locations, use of firearms, among others). The journalist may specify the entire list of
fields along with instructions within a prompt. However, executing this as is in a single LLM call may
lead to poor accuracies as LLMs often struggle to identify multiple concepts simultaneously [14]. A
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proactive system can decompose such an operation into separate focused ones that each extract one
type of information, improving accuracy. An LLM can be asked rewrite a prompt that says “extract
fields fy, ..., f, from the following ...” into “extract field f; from the following ...”. In prior work, we
have identified several new decomposition-based rewrite rules [14] that can lead to higher accuracies,
when coupled with LLMs being used to instantiate the rewrites themselves. Recent work on Text-2-SQL
also leverages similar ideas [22]: rather than attempting translation in “one-shot” (i.e., single LLM call),
which often fails due to schema mismatches or poorly-named schemas [23], it is beneficial to parse the
operation into smaller units, e.g., given “find all employees who joined before 20207, first identify the
core concepts: employee records and hire dates, and treat each separately.

Leveraging non-LLM components. In certain cases, operations that are assigned to an LLM may
be better done through other means, e.g., through SQL. For example, finding the average settlement
amount for misconduct cases can be decomposed into an LLM operation to identify relevant cases and
their settlement amounts, followed by a SQL aggregation to compute the average. We have employed
similar techniques where we separate operations that require real-world reasoning (suited for LLMs)
from mathematical computations (better handled by traditional database engines or calculators) in our
work on ZenDB [1|. Determining how to do this automatically is challenging.

Leveraging reasoning or data feedback for reformulation. As described avove, a proactive data
system must reformulate (e.g., decompose or rework) operations to execute them better. However,
finding good reformulations is difficult. Current approaches to discovering good reformulations or
decompositions are quite naive. Systems like DocETL [14] simply prompt LLMs to suggest rewrites,
either taking the first suggestion or selecting from multiple candidates. One option is to use a powerful
“reasoning” model like OpenAl’s 0ol model to rewrite the task, but this still fundamentally relies on
one-shot prompting, and is unaware of how the rewrite will actually perform on the data. We need
approaches that can learn what characteristics of the data make tasks challenging, what types of LLM
errors occur in different contexts, and use this knowledge to guide reformulation—perhaps even in an
agentic fashion.

Calibrating LLM outputs. Independent of which decomposition or reformulation is used, when
LLMs are independently being applied to a set of items (documents, tuples), the outputs can often be
inconsistent and non-calibrated. For example, if we ask LLMs to rate the severity of every incident in
our document collection, it often gives all of them the same score, or worse, gives them scores that are
only losely correlated with the severity. To remedy this lack of consistency, we can take various actions.
We can leverage the LLMs themselves to pick representative examples that indicate the full range of the
categories of interest, provided as few-shot examples. Or they can rework the prompt to describe in
more detail the criteria used for evaluation—to ensure consistency. Finally, they can also restrict the
space of possible outputs (e.g., when LLMs are asked to extract state information from a collection of
US addresses, they may extract CA in some cases and California in others). While this doesn’t change
the semantic meaning of the operation, it can significantly improve LLM accuracy by providing better
context and guidance, as has also been explored in work on prompt optimization |24].

3.2 Assessing and Improving Performance with Reformulation

Next, we describe ways to assess the benefits of reformulations, and reduce cost while preserving accuracy.

Leveraging LLMs to assess benefits. One question that naturally emerges when considering
decomposing operations into smaller units is how to assess the benefits of such decompositions. While it
is a-priori hard to tell whether a decomposition will help, we can run both the non-decomposed and
decomposed variants on a sample. LLMs are much better at evaluating outputs than generating them,
so LLMs can be used to tell which version performs better. For example, one can employ a “generate-fix
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& rewrite-verify” pattern: generate an initial operation formulation, verify its correctness (e.g., through
automated checks or LLM verification), and if verification fails, attempt alternative formulations [25].
This pattern, which we also use in DocETL [14], allows a system to systematically explore the space
of possible formulations until finding one that passes verification, effectively optimizing for accuracy
through trial and refinement. However, doing evaluation in a cost-effective manner remains a challenge.

Deferring to cheaper LLMs for the “easy bits”. One concern with decomposition is that it may
increase the cost of the overall pipeline, since one LLM call per document may now become multiple.
One way to defray the cost is to couple decomposition with cost optimization: for the simpler newly
decomposed operations, we can alternatively use cheaper and smaller models to handle them, and only
use the more expensive model for the most complicated operations. For example, when we’re trying
to extract many fields from a police record document, we can use a cheaper model for extraction of
locations and dates, while using a more expensive model for harder tasks such as determining the type
of misconduct incident. While the idea of cheaper proxy models isn’t new [10, 26|, here, since the space
of decompositions is infinite, and for each decomposition (or sequences thereof), we could use different
models and different confidence thresholds, each with different cost-accuracy tradeoffs, the problem
becomes a lot more compliacated. Additionally, unlike previous settings which focused primarily on
tasks with well-defined accuracy metrics, we now must provide guarantees for open-ended generative
operations—where quality is harder to quantify.

Expensive predicate ordering, but with synthesized predicates. For operations that involve
subselecting documents based on certain criteria (all expressed together in one prompt), we can leverage
existing related work on expensive predicate ordering [27, 28|; however, in our context, we can introduce
an arbitrary number of new dependent predicates (that are potentially easier to check and therefore
cheaper). For example, instead of using an expensive model to examine each police record document to
extract medical impacts to the victims, if any, we can consider cheaper filters that are easier to check, for
example, if the document contains any medical information at all. This check could potentially be done
by a cheaper model and rule out a substantial fraction of the documents. Similarly, when decomposing
a complex filter like “find incidents involving both use of force and drug use” into two filters, one for
“use of force” and one for “drug use,” the system can evaluate the more selective filter first to minimize
expensive LLM calls.

4 Proactive Data Understanding

Proactive data systems take initiative to truly understand the data, rather than simply treating it as
inputs to opaque UDF (here LLM) calls. It can leverage the provided data descriptions, as well as actual
content, to create representations that are useful for downstream data processing tasks. The system can
understand each document on its own (Section 4.1), understand relationships between documents or
portions thereof (Section 4.2), or preprocess documents based on anticipated future tasks (Section 4.3).

4.1 Identifying Semantic Structure within a Document

Although documents may appear unstructured, they often are semantically structured. This structure
may be implicit in the text, e.g., content in adjoining portions of the text is often related. They can
also be explicit, e.g., tables or figures embedded within a PDF document. We discuss how to identify,
extract, and leverage hidden structure from unstructured documents.

Leveraging implicit hierarchical structure. Portions of documents are often semantically related.
A section or subsection within a document often contains information that is semantically related,
while other parts are less related or unrelated. For example, the medical examiner report within a
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broader police record PDF contains most of the medically relevant information about an incident, while
the eyewitness report contains most of the relevant information from eyewitnesses. Identifying these
subdivisions within a document and routing a query to the subdivision at the “right” granularity can lead
to higher accuracy than both RAG or providing the entire document to an LLM [1]. This structure is
best represented as a semantic hierarchy. There are various ways to construct such a hierarchy, including
leveraging formatting information that distinguishes headers from other portions, or using an LLM to
identify which phrases may be headers as we do in ZenDB [l]—see Figure 4 for an example. Another
approach is to construct this semantic hierarchy on content alone, where summaries of related chunks
are merged and recursively summarized [29]. Nonetheless, building semantic structures that are useful
for downstream tasks remains a challenge, as different views of the document may be useful for different
tasks, where even simple information such as location can have different connotations. For instance,
when organizing police activities in a specific case based on location they occurred in, a user might be
interested in geographical location of activities (i.e., at a specific address) while another user might be
interested in types of locations (e.g., if the police activity was outdoor or inside). The system needs to
consider various possible semantics of the data when identifying the semantic structure.

Leveraging explicit structure. Unstructured documents often contain structured portions, such as
embedded tables and key-value pairs. Treating them as plain text for data processing is ineffective and
error-prone. For example, if we’re not careful in preserving visual information, a missing value in a
key-value pair could lead to the next key being misinterpreted as the corresponding value. Moreover,
depending on the approach used to query such tables, we may lose visual information (used to show
table structure and group columns and rows), and be unable to effectively process numerical information.
A proactive data system therefore will identify and extract such structured portions and represent them
in a structured format, for example, as tabular data or key-value pairs in Figure 5, while preserving their
context within the document (e.g., their location and semantic relationships to the rest of the document).
Our recent tool, TWIX [13], proposes an efficient approach for automatically extracting structured
portions from documents, using a combination of visual and LLM-based inference, while preserving this
context for the extracted information. However, many challenges remain, such as accurately representing
the semantic relationship between structured and unstructured document portions, e.g., to understand
which queries should be answered based on the structured and unstructured portions, and how much
background context is necessary to make sense of the structured portions.
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Figure 5: Tables and Key-Value Pairs in Use of Force Records.

4.2 Identifying Cross-Document Relationships

There are multiple reasons to perform cross-document organization.

Identifying documents that may be queried together. Beyond understanding structure within
a single document, it is important to understand relationships across documents, since these related
documents may often be queried together. In Example 7, the dataset, a single incident can span several
PDF documents, often without such information being linked to each other. The data system needs
to proactively identify relationships between such documents to organize the data prior to querying.
This, for instance, can be done by clustering the documents. However, clustering is challenging, since
the system needs to understand the documents to be able to cluster them properly. Simply embedding
the documents, and clustering the embeddings does not work since the documents can vary considerably
in length. Another approach is to leverage LLMs to check if two documents correspond to the same
incident, but this is expensive, especially when there are O(n?) comparisons. We may be able to leverage
LLMs to identify cheaper proxies or blocking rules (e.g., two documents may not be related unless
the date ranges overlap) for this organization. In some settings, folder organization provides cues for
identifying cross-document relationships (e.g., documents that are very “far apart” from a folder structure
standpoint may be unlikely to be related).

Identifying shared templates across documents. A separate concern is to combine semantic
hierarchy construction with cross-document relationships, so that we are able to identify shared “templates”
across documents. These templates can both help scale up extraction across documents, but also help
identify documents whose structure differs considerably. For example, journalists may want to identify
incidents where there is an internal affairs report within a broader police record document, since these
are ones where there is a corresponding disciplinary action.

4.3 Task-Aware Data Pre-Processing

The system can attempt to proactively find and organize portions of the data that will be useful to
improve performance on a reasonable subset of data processing tasks downstream. Given that document
collections can span in the millions, it can be expensive to do extensive processing of the data upfront,
for instance, by populating a materialized view with all the attributes a user can ever hope to query; it
can also be time-consuming to leave all the data processing to when the user issues a task. As such the
system needs to decide how much preprocessing is beneficial upfront, and what to perform at query
time. To strike a balance between the two extremes, one option is for the system to identify and/or
extract data units that it deems to be useful in the future for a wide variety of queries. This can be done
by understanding the semantics of the data. For instance, in Example 7, the system can decide that
sections that describe police incidents at a high level (e.g., the internal affairs report) are typically useful
for future task processing as they provide a comprehensive summary of most relevant aspects. The
system can keep pointers to such sections as lightweight indexes, but leave more specific data processing
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to when the user issues queries. Similarly, the system can do schema identification in advance to find
what type of data is represented in the documents, and use the identified schema to answer queries. The
system can decide whether to extract information upfront to populate the schema, or keep pointers
to where the information can be found at query time. For instance, the system may choose to retain
pointers to all portions that mention police officers in the document so as to accelerate analysis of those
aspects downstream, without going all the way to populating a materialized view with officer attributes
(since these can vary depending on user need).

5 Proactive User Understanding

Even with best-effort operation reformulation and data understanding capabilities, a fundamental
challenge remains: the gap between what users specify and what they actually need. This challenge
manifests in multiple ways—users may provide ambiguous specifications, fail to articulate implicit
assumptions, or simply not know how to express their requirements fully [20, 30]. To bridge this gap
between the user’s intent and the operations performed, a proactive data system needs to be internally
aware of this gap when executing the task (Section 5.1), leverage user feedback to bridge the gap

(Section 5.2) and provide mechanisms for users to externally validate query results (Section 5.3).

5.1 Imprecision-Aware Processing

Unlike reactive data systems that only execute the query as stated, proactive data systems can leverage
LLMs to help truly identify user intent, despite the user-provided tasks representing an imprecise or
incomplete specification thereof. The system should therefore internally consider multiple possible user
intents when processing tasks, potentially providing different answers that correspond to these different
interpretations. This can be done to varying degrees. In the simplest form, the system can consider
multiple interpretations of the statements provided by the user. In Example 7, the system can consider
various spellings of the same name, either in the input provided by the user or derived from the data.
Such attempts are similar to possible world notions in the database community [31], where the database
can consider various possibilities for “fuzzy” data and queries.

A proactive system can take more aggressive steps to understand user intent. For example, the
system can consider adding new predicates that the user may be interested in—e.g., if a user has
previously asked several questions about police misconduct in a specific city but submits a new query
without specifying location, the system might prioritize results from that city. This intent discovery
can be data-driven—the system might determine that records from certain cities are more relevant or
interesting and prioritize them in the output. Moreover, if the output for an operation is too large, the
system can selectively display what it determines to be the most relevant answers or provide appropriate
summaries or sample outputs.

The system can also anticipate user questions, for example, “why was a certain record not provided
in the answer”, and proactively relevant records that, while not strictly matching the query, might be
of interest to the user. Additionally, the system can modify queries by dropping or relaxing certain
predicates—e.g., if the user has specified a predicate that leads to empty results. Or, the system might
expand query scope, for example, geographically, to include potentially interesting results (such as when
a specific type of police misconduct, while not present in the queried city, occurred in neighboring
jurisdictions).
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5.2 Leveraging User Feedback

A proactive system can leverage feedback from users to clarify intent in a lightweight manner. This
feedback serves two purposes: improving accuracy for the current task, and enhancing the system’s
understanding of user intent for future queries.

To improve the accuracy on the current task, the system can decide to ask follow-up questions [32].
This might include asking for clarification about task goals, gathering additional specifications, or
presenting example results for users to indicate which best match their needs. The important challenge is
balancing the need for clarity with minimizing user burden: for example, when processing police miscon-
duct documents, rather than asking multiple detailed questions, the system might show representative
document types and let users select which are most relevant—then apply this learning broadly across
the document collection. Similarly, when encountering potential name variations in Example 7, the
system might ask a single question about handling typos that can inform its overall matching strategy,
rather than asking the user to confirm every typo correction. While LLMs offer promising capabilities
for generating targeted feedback requests, automatically determining what feedback to request and when
remains an open research challenge. Prior work on predictive interaction is highly relevant here [33].

User feedback can also be leveraged to improve system performance on future tasks. For example,
if the user provides feedback that a certain document is relevant or not relevant to a task, the system
can then update its data and task processing mechanism to take that feedback into account. This can,
for instance, change operation rewrite rules used internally for processing (Section 3), modify data
representation [16] or change how semantic structure is extracted from the data (Section 4). While this
approach shares similarities with query-by-example systems that learn from user-provided examples,
e.g., [34], it extends the concept more broadly—allowing the system to refine its understanding of user
intent across a diverse range of tasks and feedback types.

5.3 Verifying Execution

A proactive system must provide users with the means to verify that their tasks were executed correctly.
Verification is particularly important when the system makes autonomous decisions—for instance, when
correcting potential typos in names, the system should clearly show which corrections were made to allow
users to catch any incorrect modifications. If, during processing, the system encountered anomalous
documents, it’s best to indicate them as such to the users so that they don’t pollute the rest of the
analysis.

While the system can provide comprehensive execution traces, including details of LLM operations
performed and data sources accessed [35], presenting this information in a user-friendly way remains
challenging. Simply showing raw execution traces or complete datasets is overwhelming and impractical,
as users cannot reasonably review large amounts of data to verify correctness. An interesting open
challenge is to determine a small subset or explanation that conveys the same information as the entire
provenance; we can always verify such explanations using an LLM.

6 Conclusion

The database community stands at a pivotal moment where LLMs offer unprecedented capabilities
for processing both structured and unstructured data. In this vision paper, we proposed proactive
data systems: systems that possess agency in understanding and optimizing data processing tasks.
Unlike traditional reactive systems that treat LLMs as black-box UDFs operating on monolithic inputs,
proactive systems go further in leveraging LLMs to aid data processing along three axes. We presented
these axes—operations, data, and user intent—and demonstrated the potential of LLMs to help in
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each one through our recent work on operator reformulation, document organization and analytics, and
intent-aware optimization. Overall, proactive data systems can achieve both higher accuracy and lower
costs than reactive systems that treat LLMs as black boxes.
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Abstract

Graph databases (GDBs) like Neo4j and TigerGraph excel at handling interconnected data but
lack advanced inference capabilities. Neural Graph Databases (NGDBs) address this by integrating
Graph Neural Networks (GNNs) for predictive analysis and reasoning over incomplete or noisy
data. However, NGDBs rely on predefined queries and lack autonomy and adaptability. This paper
introduces Agentic Neural Graph Databases (Agentic NGDBs), which extend NGDBs with three core
functionalities: autonomous query construction, neural query execution, and continuous learning.
We identify ten key challenges in realizing Agentic NGDBs: semantic unit representation, abductive
reasoning, scalable query execution, and integration with foundation models like large language
models (LLMs). By addressing these challenges, Agentic NGDBs can enable intelligent, self-improving
systems for modern data-driven applications, paving the way for adaptable and autonomous data
management solutions.

1 Introduction

Graph databases like Neo4j [1]|, TigerGraph [2]|, and Azure Cosmos DB are useful tools for representing
and querying interconnected data using nodes and edges. These databases are adept at handling the
complex relationships inherent in graph-structured data, providing efficient mechanisms for storage and
retrieval.

A Neural Graph Database (NGDB), as introduced in [3], represents a system architecture that
merges the predictive capabilities of Graph Neural Networks (GNNs) with the rich data representation
features of graph databases (GDBs). NGDBs enhance graph databases by leveraging GNNs for advanced
machine-learning tasks while preserving and utilizing the information embedded within the graph data
model.

However, methodologies for conducting inferences within this latent neural space are yet to be
thoroughly explored. To address this gap, the integration of neural execution engines on top of neural
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Figure 1: The top ten challenges in achieving Agentic NGDB. Its three perspectives include interface,
learning, and system.

graph storage has been proposed [1]. By utilizing neural embeddings and neural networks, NGDBs
enhance their ability to perform complex reasoning and more effectively infer hidden relationships, which
are the capabilities that traditional graph databases lack. This fusion of symbolic graph representations
with neural computation paves the way for more intelligent and adaptable data management systems
to address contemporary applications’ diverse demands. The process of “neuralization” is particularly
beneficial for inferring missing information within the underlying graph data model, enriching the
database with additional knowledge.

From a broader perspective, the principles of data management systems revolve around efficiently
storing, retrieving, and managing data while providing a layer of abstraction to users. These systems aim
to handle large volumes of data and complex operations, concealing the underlying complexities from
end-users. Motivated by this principle, we propose the concept of Agentic Neural Graph Databases
(Agentic NGDBs), extending neuralization to further automate data and data management processes.
Here, we summarize the challenges regarding the Agentic NGDB from the following three perspectives
interface, learning, and system:

e Interface: The Agentic NGDB should automatically construct appropriate queries that generate
useful answers for a given task in a specific context.

e Learning and Inference: Agentic NGDB should leverage neural networks to execute queries and
derive meaningful answers as neural network predictions, even when the underlying data model is
incomplete.

e System: The Agentic NGDB should remain compatible with existing graph databases, supporting
most standard GDB operators. Additionally, it should function as an adaptor for foundation
models, enhancing knowledge and reasoning capabilities. Furthermore, it must actively learn by
constructing and executing appropriate CREATE, UPDATE, or DELETE queries in a given context.

There are significant challenges to achieving each of these aspects, as illustrated in Figure 1. We
identify the most critical challenges for realizing these functionalities based on recent progress in the
research community on logical query answering and logical hypothesis generation for relational graphs.

Interface The first significant challenge in the Interface component is addressing fundamental
semantic units (Challenge 1) within the neural graph database’s query and data model. Semantic
units refer to the data types associated with nodes and edges, such as atomic IDs, text strings (e.g.,
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entities and events), numbers, and dates. Constructing queries that effectively handle these diverse
semantic units presents a significant obstacle. Beyond managing individual semantic units, another
critical challenge lies in connecting these units to construct more complex queries. The Interface
component also requires advanced abductive reasoning capabilities (Challenge 2). In Agentic NGDBs,
abductive reasoning refers to identifying the optimal NGDB query that best explains or supports a
specific task in a given context. This capability ensures that the database can adaptively generate
meaningful, task-relevant queries. The generated queries can then be executed symbolically by a graph
database or through neural execution within the system.

Learning and Inference Neural query execution is the core functionality of traditional NGDBs,
referring to the ability to perform tasks or actions according to a predefined plan or strategy within
the neural space 5] by learning and inferences. However, several practical challenges remain in this
area. One major challenge is enhancing inference capabilities for better generalization (Challenge 3)
across query families. This involves ensuring that NGDB systems can effectively handle and generalize
across diverse query structures and types, even when presented with novel or complex combinations of
queries. Another critical hurdle involves maintaining data privacy and security (Challenge 4). Due to
their inherent vulnerability to extracting latent knowledge, NGDBs must safeguard sensitive information
against advanced inference attacks, particularly in neural models. Robust privacy mechanisms are
essential for building trust and ensuring security in NGDB applications. The scaling laws of neural
query execution (Challenge 5) must be explored. Scaling laws in NGDBs describe how the system’s
performance improves as key factors, such as the number of model parameters, the size of the training
dataset, and training costs, are increased. This concept is rooted in neural scaling laws observed in deep
learning, where larger models generally lead to better performance, albeit at higher computational costs.

System The System component focuses on building a system on top of the learning and inference
algorithms that can ensure continuous learning and adaptation within Agentic NGDBs. Efficiently
processing and managing large-scale data while maintaining high performance becomes especially
critical when dealing with massive datasets. This challenge is further amplified in distributed NGDB
architectures, where optimizing query performance under read-intensive workloads and dynamically
fluctuating demands is necessary. Ensuring elastic scalability and developing NGDBs that operate
effectively as distributed systems (Challenge 6) are key to achieving these goals. These systems must
be capable of improving themselves by writing and executing CREATE, UPDATE, and DELETE clauses
or performing model editing directly within the neural latent space. The first aspect of this functionality
involves ensuring compatibility with graph database models (Challenge 7). The fundamental CRUD
(CREATE, READ, UPDATE, DELETE) actions are essential for managing and modifying persistent
data elements in traditional graph databases. Seamlessly integrating these actions into NGDBs is
necessary for enabling effective self-improvement. The second aspect involves grounding vectors within
NGDBs (Challenge 8). For effective learning and adaptation, the system must accurately identify the
locations of relevant knowledge and understand how reasoning is conducted within the latent neural
space. Proper grounding ensures that modifications and updates align with the underlying knowledge
representation. Moreover, the Agentic NGDB must be capable of integrating with foundation models,
such as large language models (LLMs), to enhance its reasoning and knowledge capabilities (Challenge
9). The NGDB can provide more reliable and contextually accurate results for various tasks by leveraging
foundation models’ advanced natural language understanding and reasoning capabilities. Finally, we
discuss the challenge of developing Smart Neural Graph Databases (NGDB) applications (Challenge
10), particularly Agentic NGDB. The challenges lie in creating systems that leverage their advanced
functionalities across diverse applications.
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Agentic NGDBs extend the capabilities of traditional NGDBs by incorporating autonomy, active
learning, and adaptability. While NGDBs enhance graph databases by integrating Graph Neural
Networks (GNNs) to perform advanced inference and reasoning and handle incomplete or noisy data,
they rely heavily on predefined tasks and human-defined queries. In contrast, Agentic NGDBs introduce
three core functionalities: automatic query construction tailored to specific tasks and contexts, neural
query execution for predictive analysis, and continuous learning and adaptation through active updates
to the knowledge base. In the following sections, we will individually discuss each identified challenge.

2 Challenge 1: Semantic Units

The NGDB primarily relies on relational graphs, where nodes and relations are the basic semantic units.
Incorporating diverse semantic units, such as numbers and events, introduces complexity due to their
intrinsic relationships. For example, numbers involve algebraic operations (e.g., addition, subtraction),
while events involve temporal and causal relations. Addressing these complexities requires reasoning
engines that can learn and process such relationships effectively.

Number literals (e.g., age, height) are critical for filtering and querying within NGDBs. Prior
work includes methods like KBLRN [6], KR-EAR [7], and LitCQD [8], which improve reasoning by
integrating numeric constraints into queries. Despite these advancements, challenges remain. These
include developing advanced numerical operations and integrating neural-symbolic systems into NGDBs
while ensuring compatibility with symbolic solvers for faithful reasoning. Existing approaches focus on
entity-centric knowledge graphs, but event-centric knowledge graphs (EVKGs) like ATOMIC [9] and
ASER [10] emphasize relationships between events (e.g., temporal and causal relations). Reasoning on
EVKGs involves determining event occurrences and their sequences, which introduces unique challenges
compared to entity-centric KGs. Recent work extends traditional reasoning by integrating temporal and
occurrence constraints|11].

Moreover, beliefs, desires, and intentions (BDI) represent higher-level, abstract semantic units
extending beyond simple entity-attribute relationships and eventualities. These elements are crucial for
modeling human-like reasoning, decision-making, and behavior prediction. Beliefs refer to what an agent
(human or system) assumes or holds to be true about the world. These can include factual statements
like It is raining outside and subjective perspectives like This movie is great. In KGs, beliefs are often
represented as knowledge nodes or statements that may vary across agents or contexts, allowing for
personalization or multi-agent reasoning. Intentions represent the goals or purposes behind an agent’s
actions or decisions and as a bridge between beliefs and actions. Intentions are often implicit and must
be inferred from user behavior or contextual information. KGs are typically modeled as motivational
nodes or goals that guide reasoning about why an agent performs specific actions. For instance, PersonX
intends [to buy a gift for a friend], which could explain why PersonX searches for [gift shops nearby/. On
the other hand, desires represent an agent’s wants, preferences, or needs, which may not always lead to
concrete actions unless accompanied by intention. In knowledge graphs, desires are commonly expressed
as preferences or motivational entities that influence behavior, such as PersonX desires [to eat ice cream)/.
These three elements allow knowledge graphs to capture human motivations more comprehensively.
These concepts are closely connected to the Theory of Mind (ToM), which refers to the ability to
understand that other agents (humans, machines, etc.) possess their own beliefs, desires, and intentions
that may differ from one’s own. In the context of knowledge graphs, the Theory of Mind enhances
reasoning about multi-agent knowledge by enabling the understanding of diverse perspectives. Theory of
Mind also enables the inference of motivations by reasoning about the interplay between beliefs, desires,
and intentions.

Integrating BDI and ToM in Agentic NGDB has practical applications across various domains. In
e-commerce, systems like FolkScope [12], COSMO [13], and RIG [11] are the knowledge graphs that
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leverage BDI to model user behavior, enabling personalized recommendations by linking user actions
(e.g., purchases) with inferred desires and intentions. In commonsense reasoning, resources like ATOMIC
use BDI to represent cause-effect relationships, allowing systems to reason about potential outcomes of
actions. Multi-agent systems benefit from BDI-enhanced KGs by enabling cooperative and competitive
interactions that account for multiple agents’ goals, beliefs, and desires. Additionally, in natural language
understanding, BDI helps interpret user intent in queries, conversations, and social media posts by
associating semantic meanings with inferred motivations. We still need systematic storing and inference
with these intention knowledge graphs.

3 Challenge 2: Abductive Reasoning with NGDB

Abductive reasoning, the process of inferring the most plausible explanations for observations, is a
fundamental aspect of human cognition and artificial intelligence. In the context of knowledge graphs
(KGs), abductive reasoning generates hypotheses to explain observations (entity sets) by leveraging
structured relationships and entities. Complex Logical Query Answering (CLQA) has further advanced
abductive reasoning by enabling multi-hop logical inferences over large, incomplete graphs. Neural
Graph Databases (NGDBs) build on these advancements, offering a more flexible and robust framework
for abductive reasoning.

Early methods for abductive reasoning in KGs relied on supervised learning and search-based
techniques. Generative models, such as transformer-based architectures, were used to produce logical
hypotheses. For example, [15] proposed a supervised generative model trained on datasets like FB15k-237
and WN18RR, which excelled in structural fidelity but struggled to generalize to unseen observations
due to the limitations of supervised objectives. To address these limitations, reinforcement learning
(RL) techniques were introduced. Reinforcement Learning from Knowledge Graph feedback (RLF-KG)
employed proximal policy optimization (PPO) to generate hypotheses aligned with observed evidence.
This approach improved explanatory power and generalizability, achieving significant gains in metrics
like Jaccard similarity and Smatch scores across multiple datasets. NGDBs extend these methods by
embedding knowledge graph data in a latent space, enabling flexible query processing and hypothesis
generation. By leveraging latent embeddings, NGDBs can infer missing information and generate
hypotheses for complex logical queries, even on incomplete graphs, outperforming traditional graph
databases. NGDBs represent a significant step forward in abductive reasoning, synthesizing the strengths
of CLQA and advanced generative models. However, several challenges must be addressed:

e More Generalized Observation In the current definition of abductive reasoning, the definition
of the observations is a set of entities. However, observation can be further generalized to a
context, for example, a conversation history in the conversational recommendation task setting, or
a structured shopping session.

e More Complex Structured Hypotheses Existing abductive reasoning models on KGs primarily
focus on conjunctive tree-formed queries. NGDBs, with their increased query expressiveness, require
hypothesis generation models capable of handling more complex structured observations. For
instance, hypotheses should accommodate EFOy, (existential first-order logic) and cyclic queries,
expanding beyond the limitations of earlier models.

e Graph-Based Hypothesis Generation Models Traditional sequence-based models struggle to
capture the structural complexity of logical hypotheses, which are fundamentally query graphs.
These graphs exhibit features like permutation invariance of logical operators, requiring models
explicitly designed to generate graph-structured hypotheses.
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e NGDB as a Reward Model for Reinforcement Learning Previous RL-based methods, such
as [15], relied on symbolic execution results from knowledge graphs to provide reward signals during
hypothesis generation. However, these reward signals suffer from the incompleteness inherent to
the open-world assumption. NGDBs can address this issue by serving as a more robust reward
model, leveraging their latent embeddings and flexible query capabilities to improve hypothesis
generation.

4 Challenge 3: Generalization across Query Families

Introducing neural modules in graph databases enables the generalization to the knowledge in databases.
However, the development of neural modules is always entangled with their targeted query families, thus
naturally biased toward them due to their inductive biases, emphasizing the challenge of generalizing
towards different query types. Compared to classic database algorithms that support an entire query
family as long as it is formally defined, neural modules still suffer a loss in performance for generalization
even when the query family is fixed [16]. Readers are also referred to related surveys [17, 15].

4.1 Different Query Families and Their Neural Modules

Tree-formed Queries and Compositional Generalizability. The tree-formed query is a collective
term that describes the whole query family that can be recursively defined in a tree structure, in which
logical connectives and variables are carefully organized so that set operations can formally derive the
answers [16], the set operations include set projection [19], intersection, union [20], complement|20] and
set difference [21]. To tackle such kinds of queries, a line of research is known as query embeddings, where
sets are modeled as embeddings, and set operations mentioned above are modeled directly by neural
modules [21-23]. The set operations composition allows the models to generalize the entire tree-form
query family. This connection between model design and query family is termed the compositional
generalizability [16, 24|, and the performance drop with the increasing of compositional levels is still
universally observed and remains a challenge to address.

EFO-1 Queries and Query Graph. It is shown that tree-formed query family is constrained by
certain assumptions and fails to represent the whole family of Existential First Order queries with one
free variable (EFO-1 query) such as cyclic query [25]. To handle new graph-theoretic features which
cannot be represented in tree-formed queries. One commonly adopted technique for EFO-1 queries is the
DNF normal form or the UCQ query-solving strategy |20, 26], which solves the conjunctive query first
and then takes the union of the answer set of each conjunctive query. A query graph [26] can naturally
describe each conjunctive query. This formulation motivates graph-related search methods [25] or graph
neural networks [20].

More Advanced Query Types. More advanced query families still exist, though the development
of corresponding neural models on these topics is insufficient at the current stage. Thus, we discuss
some of the challenges we might face in pursuit of more advanced queries in NGDB from the following
aspects (i) Multi-arity predicates: The first challenge we may encounter is when the knowledge
databases are constructed by (n + 1)-ary tuples, the relation corresponds to n-ary predicate and a graph
becomes a hypergraph [27]. (ii) Support of functions The corresponding research gap is the support
for functions in the query — a function can output nodes, numbers, semantic units, or data of more
advanced modality — for example, the AVG and COUNT functions in SQL but not in current CQA models.
We have noted one preliminary research trying to fill this gap [3].
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4.2 Minimal Assumption for Broad Generalization

Previous case studies showcase the close entanglement of the neural modules and the query types
they support syntactically. In other words, the key to generalization is minimizing the query families’
assumptions and the inductive biases of the neural part of NGDB. We present two types of methods
with minimal assumptions.

Neuro-symbolic Methods. NGDB implies that the underlying database is a graph, meaning
neural modules solely modeling the graph itself impose no assumptions on the query family it might
support. Such neural modules include link predictors or knowledge graph embeddings that map a triple
(s,p,0) of subject, predicate, and object into a score [28]. Therefore, the critical design task of NGDB
with such modules is revising the algorithms into the neuro-symbolic forms with the scores produced by
link predictors [25, 29]. An apparent and more decomposed approach is to derive an instance of a classic
graph database using the link predictor, and all previous research in graph databases applies directly.
Notably, the neuro-symbolic approach achieves the same level of generalizability in queries as the classic
database research.

Sequence Models. Language models or sequence models are general-purpose models and thus
further disentangle the inductive bias of neural modules and the specific task (queries in NGDB). Such
models support the sequence inputs, which cover inputs from all possible kinds of query types. However,
the performance on specific query types is transferred from designing neural architectures to curating
the training datasets. The cost is transferred from the complex inference algorithms to the training
phase [30].

4.3 Learning Aspects of Generalization

From the machine learning perspective, one new issue is uniformly improving the performance of all
queries of a particular query family under the analogy of query types as tasks. The approach towards
this goal also varies for different methods. For neuro-symbolic approaches, the generalization will be
improved coherently as link prediction performance improves. For neural methods, the challenge of
generalization is the same as multi-task learning. Query embeddings, as a particular case of neural
methods, recent works propose adopting set operators with meta-learning, yielding the solution of meta
operators [24].

5 Challenge 4: Privacy and Security
5.1 Database Privacy

Privacy in data storage refers to protecting sensitive information from unauthorized access and misuse [31].
Traditional databases are facing several privacy risks, which can be categorized into: (1) Unauthorized

Access [32]: Unauthorized access to databases can result in large-scale data leakage, exposing sensitive
personal information. (2) Insider Threats [33]: Employees with legitimate access may misuse their
privileges, either intentionally or unintentionally compromising data privacy. (3) Data Inference
Attacks [34]: Attackers can employ various techniques to deduce sensitive information from seemingly

innocuous data.

To mitigate privacy risks, several protection methods have been developed: (1) Data Anonymiza-
tion [35]: Techniques such as k-anonymity [36] and I-diversity [37] help mask individual identities within
datasets, making it harder to trace data back to specific individuals. (2) Encryption [38]: Data encryption
ensures that unauthorized parties cannot access sensitive information even if they breach a database. (3)
Access Control [32]: Access control restricts data access to authorized users only, reducing the risk of
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insider threats. (4) Differential Privacy [39]: This approach adds noise to data outputs, ensuring that
the presence or absence of an individual in a dataset does not significantly affect the results of queries.

5.2 New Privacy Challenges in NGDBs

Graph databases, while offering advantages in managing complex relationships, introduce specific privacy
risks: (1) Link Prediction Attacks [10]: Adversaries can use machine learning models to predict hidden
relationships within the graph, potentially uncovering private connections. (2) Structural Attacks [41]:
Even when the data content is anonymized, the graph’s structure itself can reveal sensitive insights.
The unique structure of graph data amplifies these risks, as the relationships between entities can
reveal information that is not immediately apparent from isolated data points. Neural Graph Databases
(NGDBs) represent a significant advancement in data management, combining the strengths of traditional
graph databases with the capabilities of neural networks. The exploration of privacy issues in NGDBs
remains largely underdeveloped, with significant gaps in research addressing potential vulnerabilities
and mitigation strategies.

Potential Attacks. One of the primary strengths of NGDBs is their ability to generalize from
incomplete data by inferring hidden relationships. While this capability can enhance data retrieval
and knowledge discovery, it also poses significant privacy risks [12]: (1) Model Inversion Attacks [13]:
Neural models can be susceptible to inversion attacks, where an adversary uses access to the model to
recover the graph data used for NGDB training. (2) Membership Inference Attacks [141]: Attackers may
infer whether a particular data point (node or edge) was part of the training data, revealing sensitive
information in NGDBs. (3) Embedding Leakage [15]: The embeddings generated by NGDBs to represent
nodes and relationships can leak sensitive information, as these embeddings often capture detailed
structural and content-based features of the graph stored.

Promising Defenses. (1) Differential Privacy in NGDBs: Extending differential privacy techniques
to protect neural graph databases is a key research direction. Adding noise to the model parameters or
gradients during training can help mitigate membership inference and model inversion attacks |16, 17]. (2)
Embedding Obfuscation: Techniques to obfuscate embeddings without losing their utility for answering
complex queries need to be developed to prevent leakage of sensitive information [18]. (3) Private
Distribute Training: Privacy problems in distributed NGDBs need further development [19]. Feder-
ated learning, including Secure Multi-Party Computation (SMPC) [50] and Homomorphic Encryption
(HE) |51] techniques, can be adapted to NGDBs to ensure that data is processed without being revealed.

Evaluation Benchmarks. Another significant challenge in NGDBs is the evaluation of privacy
protection efficacy. Assessing the effectiveness of privacy-preserving mechanisms requires robust bench-
marks that can accurately measure both privacy protection and the quality of retrieved data. However,
such benchmarks are currently lacking in the field. To address this challenge, standardized evaluation
metrics and datasets should be developed that can facilitate comprehensive testing of privacy-preserving
techniques in NGDBs. Establishing reliable benchmarks will provide insights into the strengths and
weaknesses of different approaches, ultimately guiding future developments in privacy protection.

6 Challenge 5: Scaling for Higher Complexity

In deep learning, neural scaling law is an empirical law that describes the performance of neural models
improves with the number of parameters, training dataset size, and training cost [52, 53|. During the
development of the NGDB model, scaling is also a major thread, primarily encompassing the scaling of
parameter number, query data size, and training costs. The query embedding methods and sequence
models often scale the training costs in the training stage, including the model parameters and queries.
In contrast, the neuro-symbolic methods often scale the computation cost over the test stage to improve
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the performance. We mainly discuss how to scale these models further, particularly when the query
structure becomes increasingly complex [25, 54] and the magnitude of the knowledge databases becomes
very large [55]. Specifically, we introduce the complexity of these models in the training and inference
stages and discuss their efficiency and scalability challenges.

Data Scaling in the Training Stage. Both query embedding and sequence models are trained
from scratch, requiring many sampled queries as training data. The quality and size of these training
queries are crucial, and they typically encompass various query types. The NGDB models generally
use the same dataset, with the basic 1p query type enumerating the entire knowledge graph [20]. To
incorporate new features such as negation [22], cyclic queries [25], and multivariable queries [51], it
is essential to sample query types that include these features. Materializing training queries becomes
infeasible as the knowledge graph grows, and sampling logical queries is incompatible with traditional
single-hop frameworks based on graph partitioning. To address this challenge, SMORE [55] proposes a
scalable framework that efficiently samples training data on the fly with high throughput. In contrast,
neuro-symbolic methods primarily rely on pre-training for the knowledge graph completion task and
depend on search algorithms to address general logical queries.

Test Time Scaling in Inference Stage. We first introduce the notion of query complexity and
data complexity [56]. Data complexity captures the relation between the time complexity and the
database size |E| (number of the edges) when the query is fixed. In contrast, query complexity is assessed
based on the size of the query |@Q| (number of the predicates) when assuming the database is fixed.
When discussing the complexity, the query is restricted to tree-formed queries and EFO-1 queries that
we have discussed before. The complexity of neural symbolic search is well studied. The complexity
for tree-formed queries is O(|Q||E|). Such approaches [25, 29| require O(|Q)]) search steps, while each
step requires a search over the database, which is O(|E|). For the general EFO-1 query, the cyclic query
makes the general complexity particularly hard and results in O(|E||%l) time, which is polynomial in
data but exponential in query. One distinct feature of query embeddings and sequence models compared
to neuro-symbolic methods is the disentanglement of the |E| term and |Q| term. Notably, the neural
network encoder [26] or sequence model [30] work on the query directly, which is usually O(|Q|) to
encode query information and O(|E]) to decode the answer by embedding comparison. However, this
great advantage in inference time complexity of query embeddings and neural symbolic models comes
from the additional and usually resource-consuming training procedures.

7 Challenge 6: Distributed NGDB System
7.1 Scenario Features and System Requirements

Scenario Features. NGDB is targeted at a scenario where users can simultaneously conduct graph
data management and graph inference. We identify four features of such a scenario that significantly
affect the system design. (1) Hybrid symbolic and neural operation [1]. Users can input queries requiring
algebraic, neural, or hybrid computation; (2) Massive graph data and embeddings. Not only do the
graph data of different domain knowledge exhibit tremendous scale [57], but also various types of
embeddings [58] of these graph data further enlarge the volume; (3) Read intensive workload. During
the serving stage, most of the graph data and embeddings are queried more frequently rather than
updated [59]; (4) Dynamic workload fluctuation. Different parts of the graph data and embeddings are
accessed in different time slots and the number of online users and frequency and data volume of one
query fluctuate [60].

System Requirements. The neural graph database system should fulfill the following requirements
to handle these features effectively and efficiently. (1) Co-located graph and embedding management.
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The NGDB system should support symbolic graph data and neural embedding management. (2) High
query performance. The latency of a single query and system throughput for numerous tenants serving
massive data should be optimized. (3) Scalability.. The hardware resource management should be
scalable to handle workload fluctuation, especially computational resources, cost-efficiently. Challenges
are introduced to the system design of neural graph databases to implement these system features.

7.2 Challenges of System Design

User Interface Design. Existing vector databases provide SQL-like interfaces and parameterized
API[61], while most of the interfaces mainly focus on relational data. Graph databases provide numerous
interfaces[53|, but there is little experience in combining neural operations into symbolic graph operations.
It is essential to design highly expressive declarative user interfaces as well as programming interfaces.

Query-Oriented Distributed Storage. Due to the massive volume of graph data and corresponding
embeddings, which is out of the capacity of standalone storage, distributed storage is an indispensable
mechanism of NGDB. Under read-intensive workload, partitioning (or sharding), acting as a distributed
index, tailored for most frequent and costly types of query could remarkably reduce the intermediate data
transfer, consequently enhancing the overall latency and throughput|61]. Practices in graph database
community[62—65] and vector database community concludes valuable principles and strategies on
distributed storage and indexing of graph data and embedding separately. However, the hybrid storage
of both data types is not explored, especially in circumstances where hybrid queries, requiring both
symbolic and neural processes, are of evident importance. A typical example question is about whether
embeddings and raw graph data shall be co-located. Although some open source graph database[66, (7]
and vector databases|(0, 68-70] could be utilized as standalone storage engine in NGDB, partitioning
should be carefully designed under specific query workload.

Distributed Graph Computing and Inference. There are abundant works on distributed graph
query and analysis with various algorithms in the graph database community|71, 72|. However, distributed
system support for knowledge graph inference has not been adequately explored. Atom|73| points out
a key observation that query embedding is the performance bottleneck, which shall be one of the
considerations in NGDB query execution. On the base of these two kinds of computation optimization,
when encountered with hybrid queries requiring both computation, query planning, and scheduling for
maximized parallelism and minimized network communication overhead, still remain an unexplored
direction. There are some preliminary practice cases in relational databases [74—76], which consider the
optimization with neural operators but are still far from mature.

Elastic Scalability. To deal with dynamic workload fluctuation, fine-grained elasticity is of great
importance to distributed NGDB systems, in which case on-demand resource provision helps reduce
the cost|77] of NGDB service. Besides, not all the massive data are simultaneously accessed. There
are evident biases and data heat shifts in database serving scenarios. Therefore, we argue that being
cloud-native with elastic scalability is a crucial requirement for the NGDB system. Manu|60]| detects
such workload fluctuation in industrial applications, thus fully embracing the mechanisms of elastic
scalability via dedicated abstraction of hardware resource management, including GPU, CPU, and disk.
Besides, storage-computation-separation is essential for cloud-native databases|78]. It is essential to
explore the combination of these separate practices. Additionally, the trade-off between latency and
elasticity is a critical concern since practices in vector databases reveal that embedding management
requires a large memory occupation.
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8 Challenge 7: Compatibility of NGDB with Traditional Graph Database

Like graph databases, Neural Graph Databases (NGDB) are another way of the data model that derives
the properties from the existing graphs, including nodes and edges, to represent entities and their

relationships [1]. This structural consistency makes migrating and interoperating data between the two
databases relatively easy. In terms of interfaces, NGDB can maintain support for standard graph query
languages |66, 79] while providing vectorized query capabilities, allowing users to query and operate

in familiar languages. In terms of operations, traditional CRUD operations remain fully functional,
with the reasoning function of neural networks serving as enhanced features. For instance, conventional
graph databases provide foundational support in query processing through mature storage and indexing
technologies, while NGDB handles queries requiring missing link inference. Such compatibility design
will enable a seamless system transition, where users can migrate to get NGDB capabilities without
completely reconstructing existing applications. However, NGDB faces several challenges with traditional
graph databases:

Novel Query Interface. Incorporating deep learning and graph neural networks extends beyond
conventional graph database functionalities, requiring novel interfaces for deep learning-based queries
and inference. This creates compatibility issues when attempting to reuse existing query languages,
highlighting the need to develop new query languages or extend current ones [79, 80].

Performance-Consistency Trade-off. While traditional graph databases are optimized for storage
and querying [31], they may struggle to meet performance requirements when handling large-scale graph-
based deep-learning tasks. NGDB emphasizes representation learning on nodes and edges ||, requiring
consideration of high-performance computing and distributed training paradigms. For instance, during
conventional CRUD operations, NGDB may need to update node and relation embeddings, introducing
additional computational overhead. Moreover, integrating neural components introduces temporal
consistency challenges, where model updates may lead to temporary discrepancies between the base
graph data and learned representations. Finding an optimal balance between consistency guarantees
and computational efficiency remains a considerable challenge for NGDB systems.

9 Challenge 8: Grounding to Vectors with NGDB

Grounding natural language to knowledge bases has been extensively studied in conventional graph
databases. Traditional approaches typically handle different grounding scenarios: hypothesis or query
grounding (with free variables) [20, 82|, and entity [33] or event [ 1, 81]). With the emergence of NGDBs,
where structural information and semantic content are encoded as vectors, the grounding process faces
new challenges and opportunities. Recent work [1] introduces a neural graph engine that learns query
planning and execution strategies through interactions with Neural Graph Storage. However, grounding
to general NGDBs still presents several unique challenges.

Semantic Granularity and Disambiguation. Semantic granularity and disambiguation pose
fundamental difficulties. The grounding process must accurately translate natural language queries
into appropriate vector representations while determining suitable levels of semantic granularity, such
events, propositions, etc. [34, 85]. This challenge is compounded by the need to handle abstraction and
polysemy when mapping linguistic elements to vector spaces, as meanings can vary significantly based
on context.

Compositional Semantics and Reasoning. Second, compositional semantics and reasoning path
selection present significant challenges. NGDBs must effectively represent complex multi-hop relations
while maintaining transitivity and logical consistency in vector operations. The system needs to identify
relevant paths in the vector space for query resolution, which becomes particularly challenging when
dealing with multiple possible reasoning paths. In addition, determining appropriate termination criteria

114



for path exploration is crucial for both efficiency and accuracy.

Interpretation and Groundedness Evaluation. The third challenge is around interpretation
and groundedness evaluation. The system is expected to reliably convert vector-based results back to
natural language while providing clear explanations for its reasoning process. Additionally, it needs to
report the level of groundedness for each grounding operation, ensuring semantic fidelity is maintained
throughout the process. This is particularly important for applications requiring high precision and
explainability.

10 Challenge 9: Adapting NGDB to LLM

This section explores the integration of Neural Graph Databases (NGDBs) with Large Language Models
(LLMSs) to enable joint reasoning and Retrieval-Augmented Generation (RAG). NGDBs can serve as
retrieval modules for LLMs, leveraging structured data and reasoning capabilities to enhance generated
outputs’ accuracy, scalability, and contextual relevance. Joint learning of LLMs and NGDBs involves
training these systems within a unified framework to combine natural language understanding with
advanced logical reasoning.

NGDB-RAG: Definition and Components. NGDB-RAG (Neural Graph Database - Retrieval-
Augmented Generation) is a system that integrates NGDBs with LLMs to enhance both retrieval and
generation tasks. The NGDB-RAG system is composed of three main components. The first is the neural
graph storage, which stores embeddings of nodes and edges in the graph. These embeddings capture
both local and global structural relationships within the graph, providing a rich representation of the
data. The second component is the neural query engine, which tries formulating and processing logical
queries in the embedding space. This engine enables flexible modeling and supports logical operations
such as conjunction, disjunction, and negation, allowing for robust retrieval even in incomplete or noisy
graphs. The third component is integrating with LLMs, where NGDB reasoning results are incorporated
into the language model. This integration can be achieved through text-based methods, by converting
structured data into natural language, or through vector-based methods, by embedding structured data
as vectors for direct input into the LLM.

Functionality of NGDB-RAG. NGDB-RAG enhances retrieval by utilizing the structured
relationships in NGDBs to perform advanced reasoning tasks. Unlike traditional RAG systems that rely
on document similarity, NGDB-RAG leverages the intricate dependencies within knowledge graphs to
retrieve more accurate and contextually relevant information. In the generation process, NGDB-RAG
integrates structured knowledge and reasoning capabilities from NGDBs to improve the generated text’s
factual accuracy and logical consistency while reducing hallucinations. Furthermore, NGDB-RAG is
designed to handle large-scale graphs and supports various query types, including temporal, spatial, and
numerical reasoning, ensuring scalability and expressiveness in practical applications.

Joint Learning Framework. The joint learning framework of NGDBs and LLMs employs a co-
training approach where both systems share parameters or representation spaces to enable collaborative
learning. Improvements in one component positively influence the other, creating a feedback loop that
enhances the overall system. The combined training objective is expressed as: Liotal = Ly + ALNGDB-
In this equation, L\ represents the loss associated with the language model, typically the cross-entropy
loss for next-token prediction. Lygpg denotes the loss related to NGDB reasoning tasks, such as the
error between predicted and true query answers. The hyperparameter A controls the balance between
the two loss components. The objective of this joint training is to improve the reasoning capabilities of
the NGDB while enhancing the LLM performance.

Future work aims to develop the co-training framework further to enable simultaneous training of
NGDB reasoning engines and LLMs, ensuring parameter sharing and collaborative learning. Efforts
are also being made to refine the combined loss function to balance language modeling and reasoning
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tasks better, enhancing both components’ performance. Integration modules are being developed to
incorporate NGDB reasoning results into LL.Ms through text-based and vector-based methods. These
advancements are expected to create a unified system capable of performing advanced reasoning and
generating high-quality, contextually accurate text.

11 Challenge 10: Smart Neural Graph Databases

Benefited from its rich functionalities, Agentic NGDB offers a wide range of applications across domains:

e Autonomous Data Management: Agentic NGDB can autonomously manage complex datasets,
optimize query execution, and organize storage structures without human intervention. This is particu-
larly useful in large-scale systems where manual optimization is impractical.

e Personalized Recommendations: Through continuous learning, Agentic NGDB can provide
real-time personalized recommendations by analyzing user preferences and graph-based relationships.
This is crucial in e-commerce and social networks, where tailored experiences drive user engagement [30)].

e Complex Event Processing: Agentic NGDB is well-suited for handling complex event processing
[11], where multiple events and data streams need to be analyzed in real-time. By leveraging their
semantic understanding and neural inference, Agentic NGDB can identify correlations and patterns
across seemingly unrelated events, making them valuable in cybersecurity, fraud detection, and IoT
systems.

12 Conclusion

Agentic Neural Graph Databases (Agentic NGDBs) represent an advancement in data management,
building on traditional graph databases and Neural Graph Databases (NGDBs) by introducing autonomy,
continuous learning, and advanced reasoning.

This paper identifies ten key challenges to realizing Agentic NGDBs, including semantic representa-
tion, abductive reasoning, generalization across query types, scalability, privacy, and integration with
foundation models like large language models (LLMs). Ensuring compatibility with traditional databases,
grounding knowledge in vectors, and developing distributed systems are essential for achieving robust
and scalable solutions.

By overcoming these challenges, Agentic NGDBs can transform modern data-driven applications.
Their ability to autonomously generate and execute queries, support continuous learning, and integrate
symbolic and neural reasoning offers new possibilities in autonomous data management, personalized
recommendations, and complex event processing. These advancements promise to redefine how we
manage, query, and reason over interconnected data for the future.
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