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Abstract

Echo chambers in social networks are environments where like-minded users cluster together,
often reinforcing shared beliefs while limiting exposure to opposing viewpoints. This phenomenon has
profound implications for information diffusion, political discourse, and societal polarization. In this
survey, we systematically review the landscape of echo chambers in online social networks, focusing
on three key aspects: detection, measurement, and mitigation. We categorize existing methods
for identifying echo chambers, analyze diverse metrics that quantify their effects, and examine
intervention strategies aimed at alleviating their negative consequences. By synthesizing findings
from recent literature and highlighting open challenges, our survey aims to provide a comprehensive
reference for researchers and practitioners seeking to understand and address the echo chamber effect
in contemporary digital platforms.

1 Introduction and Background

Online social networks, such as Twitter and Facebook, have fundamentally transformed the way
individuals consume information, engage in discourse, and form social ties. While these platforms
enable unprecedented connectivity and rapid information diffusion, they also give rise to complex social
phenomena that challenge the health and diversity of public discourse. Among these, the echo chamber
effect has emerged as a central concern for researchers across computer science, social science, and digital
media studies.

Definition (Echo Chamber): An echo chamber is a phenomenon prevalent in online social networks,
characterized by like-minded users predominantly interacting with each other. Within these echo
chambers, users express and reinforce their beliefs on specific issues, thereby amplifying their shared
viewpoints [14].

The terms echo chamber and filter bubble [32] carry distinct nuances but are frequently treated as
synonyms in the literature [11]. While both limit exposure to diverse perspectives, their underlying
mechanisms and effects differ. Echo chambers arise when users deliberately discredit and exclude
dissenting views, fostering distrust of outsiders and resistance to counterevidence. In contrast, filter
bubbles result from passive algorithmic curation that limits exposure to diverse perspectives, though
users may remain open to opposing information when encountered. Recognizing this distinction is
critical for designing interventions, as mitigating echo chambers requires addressing active exclusion and
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psychological biases, whereas filter bubbles may be alleviated through algorithmic transparency and
diversification [21].

The echo chamber effect has been linked to a range of negative consequences for both individuals
and society at large. Five common attributes [21] associated with echo chambers are: the diffusion
of misinformation [33, 81, the spread of conspiracy theories [35], the formation of social trends [30],
increased political polarization [27], and the emotional contagion of users [38]. These dynamics can
contribute to the amplification of extreme views, the hardening of group boundaries, and the erosion of
trust in public institutions.

Despite growing attention, systematic understanding and management of echo chambers remain
challenging. First, echo chambers are multifaceted: they involve both the structural arrangement of
social ties (who interacts with whom) and the semantic alignment of opinions (what people believe and
express). Second, the observable effects of echo chambers—such as polarization, misinformation, and
network segregation—are not always easily separable from other social processes. As a result, existing
research has produced a wide array of methods for detecting, quantifying, and mitigating echo chambers,
yet a unified framework remains elusive.

While there have been a few recent surveys on the literature on echo chambers in specific contexts |14,
21, 41], they exclude one of the key aspects: detection, measurement, or mitigation, or omit many recent
and relevant studies due to their publication date, or lack a coherent framework for classifying existing
approaches. Motivated by these gaps, our survey provides a comprehensive and up-to-date synthesis of
the literature on echo chambers, with a particular focus on social networks. We systematically compare
and extend prior surveys by incorporating recent work, offering a clear and structured taxonomy of
methods, and highlighting overlooked yet important perspectives. Our goal is to offer a one-stop reference
for both scholars and practitioners seeking to understand the full landscape of echo chamber research.
Throughout, we draw attention to the conceptual nuances that distinguish echo chambers from related
ideas, and we identify open challenges and promising directions for future inquiry.

Scope of this survey: This paper provides a comprehensive review of echo chamber research in
online social networks, focusing on three interrelated aspects: detection, measurement, and mitigation.
We systematically categorize methods for identifying echo chambers, analyze the diverse metrics used
to quantify their effects, and survey intervention strategies designed to alleviate their negative impact.
Our discussion emphasizes the interplay between network topology and semantic content, and highlights
both methodological advances and open challenges. While echo chamber-like phenomena have also
been observed in domains such as e-commerce recommender systems [15], we restrict our focus to social
media and communication networks, where the social, political, and informational stakes are particularly
pronounced.

For further reading on the definitions, attributes, mechanisms, and modeling of echo chambers and
related risks, readers are encouraged to consult recent surveys such as [14, 21]. The remainder of this
paper is organized as follows: Section 2 surveys methods for echo chamber detection; Section 3 reviews
metrics for measuring echo chamber effects; Section 4 discusses mitigation strategies; Section 5 outlines
open challenges and opportunities; and Section 6 concludes with a summary and future outlook.

2 Echo Chamber Detection

In this section, we summarize existing methods for echo chamber detection, which can be broadly
classified based on their use of semantic and/or topological information: (1) Topology-Based Detection,
which treats echo chambers as communities characterized by dense internal interactions and sparse
external connections. Methods in this category commonly apply community detection algorithms—such
as the Louvain algorithm—emphasizing metrics related to inter-community edges; (2) Content-Based
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Detection, which focuses on analyzing the semantic content generated by users (e.g., tweets or posts) to
identify differences, similarities, or polarization within the network; and (3) Hybrid Detection, which
integrates both topological and semantic information to detect communities with high internal alignment,
pronounced polarization between groups, and limited cross-community interaction. Table 1 summarizes
related works, detailing their classification, detection methods, and a brief description of their detection
logic or graph construction process.

Table 1: Comparison of Echo Chamber Detection Methods

Category Detection Method Reference

Community Detection (Fast Greedy [73], [22-25, 31, 51, 53~
Topology-Based Infomap [20], Louvain |79], WalkTrap [81], etc) , O8]

Graph Partition (METIS [59]) [22, 60]

Post-comment pair classification [4]

Content-Based
Engagement in opposing views [1]

METIS [59] on semantic-enriched graph 6]

Hybrid Maximizing the likelihood of observed cascades [3]

Polarized communities detection in signed networks [97, 98]

2.1 Topology-Based Detection

Based on the definition and intuition of an echo chamber, users interact much more frequently within
their own communities than with those outside. Therefore, topology-based detection methods focus
on network structure and construct social networks using various user interactions, such as retweets,
replies, and follows. They then identify communities by finding groups with dense internal connections
and sparse interactions with users outside the group.

Cossard et al.[22] detect echo chambers in the Italian vaccination debate on Twitter by leveraging the
structural properties of interaction networks, particularly the retweet network. They construct a weighted,
directed retweet network where nodes represent users and edges represent repeated retweet interactions,
filtering out low-weight edges to reduce noise. Using the graph partition algorithm, METIS [59], they
repeatedly bi-partition the giant connected component of this network to assign each user a “leaning
score” based on retweet behavior, effectively mapping users to one of two polarized communities: vaccine
advocates and vaccine skeptics. Manual annotation of a random user sample confirmed high classification
accuracy. Similarly, Amendola et al. [60] model the social network as a graph, with nodes representing
users and edges denoting topological relationships such as mentions, retweets, or follower/followee links.
To detect communities within this network, they apply the METIS algorithm, which partitions the
graph into balanced communities based on user interaction patterns.

Community detection algorithms are widely used to identify echo chambers in social networks. For

instance, the Fast Greedy algorithm [78| is utilized in [22, 24|, while the Louvain method [79] has
been applied in several studies |22, 23, 31, 51, 53-506, 58|. Similarly, Infomap [30] has been adopted
in |22, 25]. These methods are typically applied to networks constructed from retweet, quote, mention,

follow, comment, or reply interactions collected from Twitter or other platforms, as well as user-item
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interactions in recommender systems. The resulting communities are then analyzed as potential echo
chambers.

2.2 Content-Based Detection

Since content generated or endorsed by users often reflects their opinions, analyzing such content
through stance detection or emotion classification enables the quantification of underlying semantic
signals. Applying these techniques allows for the inference of a user’s stance based on their interactions,
facilitating the identification of users participating in echo chambers.

Calderon et al. [1] propose a novel content-based approach for detecting echo chambers on social
media, specifically focusing on Facebook fan pages. Instead of relying on complete network structures,
their method analyzes the content of posts and their associated comments to extract linguistic features
indicative of echo chamber behavior. They design two main types of features: Target Stance, which
captures whether a comment agrees or disagrees with the stance of the original post, and Emotion
Intensity, which measures the type and strength of emotions expressed. These features are extracted
using graph-based linguistic pattern mining and are then fed into a neural network model (ECHO model)
that uses attention mechanisms to classify post-comment pairs as echoing or not. By aggregating these
classifications at the fan page level, they compute an Echo Chamber Index that quantifies the degree
of echo chamber behavior present. Their experiments demonstrate that this approach outperforms
traditional models in both English and Mandarin datasets, highlighting the effectiveness of content-based
echo chamber detection.

Del Vicario et al. [1] detect echo chambers on Facebook by systematically analyzing user interactions
with public Facebook pages categorized as either science or conspiracy. The authors first classify pages
into these two categories based on their content and self-description. To identify echo chambers, they
examine each user’s commenting behavior over time and assign users to a community if at least 95%
of their total comments are made on posts within either the science or within the conspiracy category.
This high threshold ensures that only users with a strong and consistent preference for one type of
content are included in the respective echo chamber. By applying this method across their dataset, the
authors empirically isolate two distinct, polarized communities—one centered on scientific information
and the other on conspiracy theories. This quantitative approach allows for the objective detection
and longitudinal tracking of echo chambers, rooted in users’ selective engagement and reinforcement of
like-minded content.

2.3 Hybrid Detection

Topology-based detection methods utilize structural information to identify segregation between com-
munities, but cannot ensure that users within the same community are highly ideologically aligned
based solely on topology. Content-based detection methods leverage information from user-generated or
endorsed content to infer ideological leanings, but do not determine whether these users are structurally
divided into opposing groups. To more accurately detect echo chambers, some approaches combining
both topological and semantic information have been proposed.

In [8], Minici et al. introduce a probabilistic generative model that integrates content-based and
semantic-based approaches to identify latent communities with echo chamber characteristics within
social networks. By modeling communities based on their polarization and opinion polarity, the method
employs a scalable adaptation of the Generalized Expectation Maximization algorithm to optimize
the joint likelihood of social connections and information cascades. This dual approach captures the
propagation of ideologically aligned content while distinguishing echo chambers from other communities,
as validated through experiments on synthetic datasets and real-world cases, including the Brexit
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referendum and COVID-19 vaccine discussions.

In their study on echo chamber detection during the early COVID-19 pandemic, Villa et al. [0]
propose a method that integrates both topological and semantic aspects of online interactions. The
process begins by modeling a Twitter conversation graph, where nodes represent users and edges are
established through mention relationships, with edge weights reflecting the frequency of mentions. The
authors enrich the graph with semantic information by adjusting edge weights according to users’
sentiment similarity (using VADER sentiment analysis) and topic similarity (using LDA topic modeling),
producing four distinct graph representations: topology-based, sentiment-based, topic-based, and a
hybrid of sentiment and topic. To detect echo chambers, they apply the METIS community detection
algorithm to partition each graph into two groups, corresponding to potential polarized communities.
The presence of echo chambers is then assessed by quantifying controversy (using random walk-based
and boundary connectivity measures) and community homogeneity (analyzing sentiment and topical
coherence within each group). Their results show that incorporating content-based features, especially
sentiment, enhances the detection of polarized, homogeneous groups—providing a robust framework for
echo chamber identification in social media contexts.

Although graph partitioning techniques have been applied for community detection, they often
produce overly balanced divisions that may fail to reflect the intricate structures found in real-world
datasets. To address this limitation, [97] presents a novel generalized balanced subgraph model that
allows for some degree of imbalance. They propose a region-based heuristic algorithm that effectively
balances computational efficiency with solution quality. This approach is built on signed networks, which
capture the consistency of opinions among users and, as a result, incorporate semantic information.
Similarly, building on signed networks, [958]| detect polarized communities characterized by mostly
intra-community positive edges and inter-community negative edges, thus enabling fine-grained analysis
of controversy in social networks.

3 Echo Chamber Effect Measurement

In this section, we collate and analyze the various metrics used to measure echo chamber effects. Typically,
there is no single metric that directly quantifies whether a reported echo chamber is inherently “good”
or “bad”. Instead, echo chambers are typically assessed through their observable consequences, such
as polarization, network segregation, and intra-group homogeneity. By evaluating these phenomena,
researchers can gauge the extent to which echo chamber effects are present. In the literature, similar
aspects of echo chamber effects are often quantified using different terms. For example, the degree
to which communities within a social network are separated—and users predominantly interact with
others within their own community—may be referred to as “segregation”, “separateness”, “controversy”,
or “polarization”. Although these terms may emphasize slightly different nuances, they generally capture
the same underlying intuition and tend to be used interchangeably.

Existing approaches to measuring echo chamber effects can be broadly categorized into three groups:
(1) Network Segregation-Based Metrics, which analyze the structural properties of social networks
to capture the characteristic that intra-community interactions are much more frequent than inter-
community ones; (2) Opinion Homogeneity-Based Metrics, which assess the distribution of user opinions
to determine the degree of opinion alignment within echo chambers, or to evaluate overall opinion
diversity across the network; and (3) Hybrid Metrics, which integrate both network topology and user
opinions to assess intra-community alignment alongside cross-community segregation. Additionally, some
studies have explored echo chamber effects in non-social network contexts, such as e-commerce platforms,
and have proposed corresponding metrics. In the following subsections, we classify and introduce these
approaches in more detail.
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3.1 Network Segregation-Based

Intuitively, a higher number of intra-community edges and fewer inter-community edges indicate a
greater degree of segregation between groups of users, which structurally aligns with the concept of an
echo chamber. Consequently, many approaches focus on the structural characteristics of the network by
dividing it into communities, typically using community detection or graph partition methods that aim
to minimize the number of edges between different communities. Based on the resulting community
structure, various metrics are then employed to quantify the degree of segregation in the network.

Analyzing the challenges in accurately determining users’ political preferences and the expected
properties of informational separateness, Chkhartishvili et al. [2] introduced a metric to measure the echo
chamber effect, called the Binary Separation Index (BSI). This index requires only the identification
of the set of accounts disseminating information within the network and their corresponding political
positions. The BSI is calculated as follows:

BSI=4xaxp

where o and 3 represent the proportions of users in each of the opposing sources I; and Is, respectively,
who exclusively connect with information from their own source and not the opposing one. Note that
a, f € ]0,1]. The BSI attains its maximum value, 4, when the network is perfectly divided, with users
exclusively engaging with only one source or the other, indicating strong informational separation and
a pronounced echo chamber effect. Conversely, a lower BSI suggests greater cross-exposure between
groups, reflecting a less segregated information environment.

With a focus on nodes, BSI utilizes the ratio of border users in each community. In contrast,
edge-focused methods examine the connections between communities from a different perspective. Luo et
al. |3] introduce a quantitative measure of segregation in social networks by examining the formation of
edges both within and between communities. Specifically, they define segregation for a directed graph
G = (V, E), where the set of vertices V = R U B is partitioned into red (R) and blue (B) communities.
The segregation metric s is given by

B4
2|R||B|

where E; denotes the set of edges connecting members of different communities, and 2| R||B| represents
the maximum possible number of inter-community edges. A segregation value of s = 1 corresponds to
complete segregation, while lower values indicate greater integration between communities.

A related metric, the E-I Index [68], is used by Ertan et al. [32] to measure political polarization
in network structures. After defining political blocs (e.g., based on formal electoral alliances), each
respondent’s network receives an E-I Index score, calculated as:

ET —1IT

E-I Index = m

where ET is the number of external ties (cooperation across blocs) and IT is the number of internal
ties (cooperation within blocs). The index ranges from —1 (homophily, mostly within-bloc ties) to +1
(heterophily, mostly cross-bloc ties). The key distinction between the E-I Index and the BSI lies in their
denominators: the BSI normalizes by the maximum possible number of edges, whereas the E-I Index
uses the actual number of observed edges.

As many works use community detection methods to find echo chambers, modularity proposed
in [17] is widely used in works such as [0, 33, 31| to evaluate the quality of a discovered community
structure. Modularity measures how well a network is partitioned into communities by comparing the
density of links within communities to that expected in a random network. A higher modularity score
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indicates a stronger community structure. Intuitively, modularity assesses whether more edges fall within
communities than would be expected by chance. It does this by comparing the actual fraction of edges
within each community to the expected fraction if the edges were distributed randomly, while preserving
the network’s degree distribution. If the observed number of intra-community connections is significantly
higher than expected at random, the modularity score will be high. A value of modularity close to its
theoretical maximum of 1 indicates a strong community structure, while a value near 0 suggests that
the observed partition is no better than random.

However, Guerra et al. |7] note that “non-polarized networks still show positive modularity”, limiting
modularity’s effectiveness for detecting polarization. To address this, they introduce Boundary
Connectivity (BC), P, a metric that measures antagonism by evaluating boundary nodes’ connectivity
preferences between two communities:

b di(v) B
P15 [db@ T diw) 0?

where d;(v) is the number of edges from node v to internal nodes, dp(v) is the number of edges to
opposing boundary nodes, and B is the set of boundary nodes. A positive P indicates polarization, while
negative or near-zero values suggest its absence. BC is applied in many studies [0, 16, 30, 35, 36, 60] to
quantify controversy or polarization.

Guyot et al. [10] introduce ERIS, a metric akin to BC but incorporating edge weights, to assess
polarization by examining community boundaries. For each pair of communities C; and Cj, ERIS
identifies the boundary area (B; ;), defined as the set of users in C; who interact both with their own
community and with C;. The first metric, Community Antagonism (A;;), quantifies the directed
opposition from C; to C; based on the interaction patterns of boundary users. For an individual
boundary user v, antagonism A;’J is computed as:

4 ZeEIE;’,]. w(e) 0.5
" ZeeIEl?JJ. w(e) + ZeEEE;”j w(e) ‘

where IE}, and EE;; denote the sets of v’s internal and external edges, respectively, and edge weight
w(e) is the number of times u quoted v for edge e = (u,v). The overall community antagonism A; ; is
obtained by averaging A” over all users in B; ;. The second metric, Boundary Porosity (P; ;), measures
the permeability of the boundary, defined as the proportion of boundary users who interact more with
the external community:

{veB;;| Af; <0}
P ;= Bo| x 100.
Together, these metrics capture both the degree of antagonism between communities and their suscepti-
bility to external influence.

While many existing metrics primarily focus on edge counts, Garimella et al. [16] introduced a
random walk-based metric, the Random Walk Controversy (RWC) score, to quantify the structural
separation in partitioned conversation graphs. The underlying intuition is that, in highly controversial
topics, opposing sides form distinct communities with minimal interaction between them. As a result, a
random walk initiated within one community is more likely to remain there than traverse to the other.
The RWC score formalizes this notion. Given a graph partitioned into two disjoint user sets, X and Y,
the metric is defined as the difference between the probability that two random walks remain within
their respective starting partitions and the probability that both cross over to the opposing partition.
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Specifically, let P4p denote the conditional probability that a random walk starting from a random node
in partition A terminates in partition B. The RWC score is then calculated as:

RWC = PxxPyy — PxyPyx

Here, the term Px x Pyy represents the likelihood that both communities are internally cohesive and
isolated, while Pxy Py x reflects the strength of cross-partition interaction. A score approaching 1
indicates strong separation between partitions and thus a high level of controversy. Conversely, a score
near 0 suggests that the probability of crossing partitions is similar to that of remaining within them,
implying a lack of clear division and therefore a non-controversial topic. For practical computation,
the authors propose an efficient variant utilizing Random Walk with Restart (RWR) to estimate
these probabilities in large, directed graphs. In [0], the authors employ the RWC score to measure
controversy and further introduce variants such as Authoritative Random Walk Controversy (AWRC) and
Displacement Random Walk Controversy (DRWC). The RWC score has also been applied in [22, 51, 52].

The aforementioned metrics evaluate segregation at the level of the entire network. To determine the
degree of homogeneity within individual partitions, “coverage” is employed in [(], as originally introduced
in [18]. Coverage quantifies the proportion of a graph’s total edges that are intra-community, i.e., those
connecting pairs of vertices within the same community. In the idealized case where communities are
completely separated—forming disjoint subgraphs with no inter-community edges—the coverage reaches
a maximum value of 1. Consequently, coverage offers a direct measure of partition cohesiveness by
indicating how well the detected communities encompass the network’s edge structure. Additionally,
in [8, 13], “conductance” is utilized, which measures the fraction of the total edge volume that leaves
the community. Intuitively, conductance reflects how well a community is separated from the rest of
the network: it compares the number of edges that connect the community to the outside to the total
number of edges associated with the community, both internal and external. To ensure that a community
is sufficiently insular to be considered an echo chamber, conductance is constrained to be at most 0.5
in [8, 13], meaning that more than half of the total edges must remain within the community boundaries.

3.2 Opinion Homogeneity-Based

Echo chambers cluster like-minded users who predominantly interact with others sharing similar views.
A straightforward approach to quantifying echo chambers is to measure how closely aligned users’
leanings are within the same echo chamber, and how distinct the average leanings are between different
echo chambers. Additionally, by examining the overall distribution of user leanings, one can determine
whether there is significant polarization—for example, whether the distribution exhibits a “U”-shaped
pattern indicative of extreme polarization, or is more uniform. From this perspective, many studies have
investigated polarization and the echo chamber effect through the lens of user opinions.

A common approach for quantifying polarization is to focus on opinion homogeneity within a network.
Several studies [20, 27, 64, (7] use the variance of expressed opinions as a direct indicator of polarization,
which measures how much individual opinions deviate from the average opinion in the group. A higher
variance indicates greater diversity or polarization in user opinions, while a lower variance suggests more
consensus.

Chen et al. [13]| define controversy as the summation of squared user opinions that captures the
overall intensity of expressed opinions in a group by aggregating how strongly each opinion deviates
from neutrality. The same formula is adopted in Musco et al. [50] under the term polarization, and
Matakos et al. [63] propose a “polarization index” computed as the average squared opinion per user,
i.e., dividing the sum above by the total number of users.

Moving beyond aggregate measures, Interian et al. [29] introduce a probabilistic framework to
quantify network polarization by evaluating the statistical significance of node-level homophily. Instead
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of relying solely on raw homophily counts, their method calculates a p-value for each node. This p-value
represents the likelihood that a node’s observed number of same-group connections (or more) could occur
by chance in a “balanced” network, where connection probabilities are proportional to group sizes. The
overall polarization for a network or group is then characterized by the distribution of these p-values:
a distribution skewed towards zero indicates strong, statistically significant polarization. Empirical
cumulative distribution functions of these p-values are used for robust comparison of polarization across
groups or networks.

Cota et al. |9] take a different approach, quantifying the echo chamber effect by assigning each user
a political position based on the average leaning of their tweets, with tweet classification performed
manually as pro-impeachment, neutral, or anti-impeachment. Echo chambers are then measured by
analyzing the correlation between a user’s political position and the average leanings of both their
nearest neighbors and the tweets they receive. Strong correlations indicate that users primarily interact
with others holding similar political views, confirming the existence of echo chambers. This joint
distribution approach is also utilized in [53, 54, 58, 61, 62]. Notably, this approach is primarily
visualization-based and does not provide a single summary statistic. For more quantitative assessment,
the correlation coefficient between the joint distribution and the y = x line can be calculated to measure
the degree of homophily between users’ opinions and the average opinions of their neighbors.

Further exploring the dynamics of opinion formation, Sikder et al. [19] model agents in a social
network tasked with determining the truth of a binary statement (X = +1 or X = —1). Opinion
formation begins at ¢ = 0 with each agent receiving a private signal. At each discrete time step,
agents synchronously share all accumulated signals with their immediate neighbors, causing each agent’s
information set to grow recursively. Polarization is quantified in several steps: each agent i computes
their “signal mix” x;(t) at time ¢, representing the proportion of positive signals (N;"(¢)) among all
signals received:

B (t) _ N, i+(t)

WENO+N 0
Based on z;(t), the agent adopts a public orientation y;(t), set to +1 if ;(¢) > 0.5 and —1 otherwise.
For a group C, polarization z¢(t) is defined as the size of the minority camp:

zo(t) = min(yc(t), 1 — yo(t)),

where yc(t) is the fraction of positive orientations in C'. Polarization reaches zero under full consensus
and is maximized at 0.5 when the group is evenly split.

At the individual level, Al Atiqi et al. [10] introduce the Individual Echo Chamber Coefficient
(ECCQC), which measures the diversity of opinions among a user’s neighbors. Instead of a formula, the
ECC for a user quantifies how varied the opinions are within that user’s network; if all neighbors share
similar views, the ECC will be low, whereas a wide range of opinions among neighbors leads to a higher
ECC. Values near zero indicate strong echo chambers. For network-wide assessment, they define the
Global Echo Chamber (GEC) Indicator, which reflects the overall tendency of connected individuals
to share the same or opposing opinions throughout the network. A lower GEC value suggests weaker
clustering of like-minded individuals.

Botte et al. [1 1] propose two complementary metrics for echo chambers. The global echo chamber
size measures the relative growth of fully homogeneous neighborhoods: instead of focusing on the
exact calculation, this metric essentially compares how the number of individuals who are exclusively
surrounded by others with the same opinion changes from the beginning to the end of the observation.
They also assess local polarization by analyzing the distribution, the fraction of an individual’s
neighbors sharing their opinion. A bimodal distribution of these values, with peaks near 0 and 1, signals
strong polarization into segregated groups.
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Similarly, Madsen et al. [12] introduce the “belief purity” metric to quantify echo chamber formation.
The intuition is that this metric reflects how similar the beliefs are among connected agents: as the
average difference in belief between connected nodes decreases, the belief purity approaches its maximum
value of 1. This indicates that, in highly purified networks, connected agents tend to share nearly
identical beliefs.

The concept of “purity” is also employed in [3, 13]. In [8], purity is the ratio of users with the same
ideological alignment, measured as the average leaning of reshared tweets. In [13], purity is defined as
the product of the frequencies of the most common labels among nodes in a community. Combined with
“conductance” (as discussed above), low conductance and high purity are identified as hallmarks of echo
chambers.

To capture the distributional aspects of polarization, Lelkes [30] employs specific metrics. For
ideological divergence between partisans, the Overlap Coefficient (OC) is used, which intuitively
measures the extent to which the ideological distributions of two groups (such as Republicans and
Democrats) coincide. An OC value of 1 indicates perfect overlap, while 0 indicates complete separation.
For detecting polarization in the general public, the Bimodality Coefficient is utilized to formally test
for the emergence of two peaks in the ideological distribution, thereby providing an alternative to mean
comparisons.

To quantify “echofication” in multiparty networks, Markgraf and Schoch [31] present a two-pronged
framework. First, they identify “Social Boundaries” (the chamber) via community detection and measure
the insularity of these boundaries. Second, they assess “User Similarity” (the echo) by modeling user
ideology as a multi-dimensional vector, based on the politicians each user follows. Cosine similarity
between users provides a homophily score, serving as a direct proxy for the level of echo within each
chamber.

3.3 Hybrid

Network topology-based methods can quantify the degree of segregation between different communities;
however, they are unable to assess individuals’ ideological alignment within each community or the
ideological differences between communities, as analyzing interactions alone may not accurately reflect
users’ true opinions without analyzing their posts or other outputs. Although it is challenging to obtain
users’ genuine thoughts, opinion-based methods can evaluate whether the distribution of users’ leanings
as expressed in their posts aligns with the expected characteristics of echo chambers. However, these
methods often overlook the assessment of users’ interaction patterns (i.e., frequent intra-community
interactions and infrequent inter-community interactions), particularly when the metrics quantify
polarization only at the network level. For example, a variance score or leaning distribution calculated
for the entire network does not contain information about the position of each node. Compared with
two ideologically opposing groups that have high intra-group homogeneity, a network composed solely
of users with extreme and polarized viewpoints, where these users frequently interact with both like-
minded and opposing individuals, can still exhibit a high variance score or highly polarized leaning
distribution. Therefore, in this section, we discuss measurement approaches that combine both the
network’s topological structure and users’ opinions simultaneously. Such hybrid approaches are promising
for providing a more comprehensive and precise quantification of the echo chamber effect.

To quantify the structural dimension of polarization beyond just opinion distribution, [20] proposed
a metric that assesses the alignment between opinion similarity and the strength of connections within
the network. Building upon the basic concept of edge homogeneity (the product of two connected users’
opinions), they introduce the average weighted mean edge homogeneity (hom,,). This measure
incorporates the evolving connection strength between users, providing a more nuanced view of the
network’s structure. Instead of simply averaging opinion similarity across all connections, this measure
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gives more weight to stronger connections, effectively capturing how strongly people with similar or
different opinions are connected in the network. A high value of hom,, signifies a strongly polarized and
segregated structure, characteristic of an echo chamber, where users with similar opinions are linked by
strong connections and those with different views are linked by weak ones.

Several metrics explicitly integrate network topology with the distribution of opinions to quantify
polarization and fragmentation. Shekatkar [18] proposes “correlated polarization” (¢), which is
defined as the product of two components: (1) the balance or bimodality of opinions, R = 1—2|n~ — 0.5/,
where n™ is the fraction of nodes holding one of the two opinions (maximized when opinions are evenly
split), and (2) the assortativity coefficient r [19] with respect to node states, measuring the tendency
of like-minded nodes to connect. Thus, ¢ = R X r achieves high values only in networks exhibiting both
a sharp division of opinions and pronounced structural segregation, capturing social fragmentation more
effectively than methods based solely on opinion counts.

Morales et al. [52] introduce a polarization index, p, to measure the degree to which an opinion
distribution is divided into two distinct and opposing groups. Conceptually inspired by the electric
dipole moment in physics, their metric defines perfect polarization as a state where a population is split
into two factions of equal size holding maximally distant opinions. The index is calculated as the product
of two key components: group size balance and ideological distance. The first component, (1 — AA),
captures the population balance, where AA is the absolute difference between the relative sizes of the
two opposing groups. This term equals 1 when the groups are perfectly balanced in size and 0 when one
group comprises the entire population. The second component, d, represents the ideological distance,
calculated as the normalized distance between the “gravity centers” (i.e., the mean opinions) of each
group. This distance ranges from 0, for no ideological separation, to 1, for maximum opposition. The
final polarization index, = (1 — AA)d, thus reaches its maximum value of 1 only when both conditions
are met: the two groups are of equal size (AA = 0) and their average opinions are maximally far apart
(d=1).

To address the limitations of approaches focused solely on network structure, Emamgholizadeh
et al. [37] propose the Biased Random Walk (BRW) framework for quantifying controversy in
attributed networks. Unlike methods that only consider topology, BRW integrates both structural and
node-level attributes. The core of the framework is a random walk with a finite lifetime, simulated
through a novel energy mechanism. The initial energy for a walk starting at a given node is determined
by considering how close that node is to the center of its own community as well as how close it is to the
center of the opposing community, reflecting both local and cross-community influence. As the walk
traverses the network, it loses energy at each step, with the amount of energy lost depending on how
far the current node is from the center of the opposing community. This means that the deeper a walk
ventures into the opposing community, the faster it loses energy, making it increasingly difficult to reach
the core of the opposition. Controversy is then measured by the “penetration depth”—the maximum
level a walk can reach within a contradicting community before its energy is depleted. This approach
models an idea’s ability to be heard by an opposing audience, offering a more nuanced controversy score
that captures the combined effects of network structure and user characteristics.

Alatawi et al. [51] propose the Echo Chamber Score (ECS), a metric that quantifies the echo
chamber effect by evaluating the geometric properties of user communities within a learned embedding
space. Their approach first uses a self-supervised Graph Auto-Encoder, EchoGAE, to embed users
into a low-dimensional space where distance corresponds to ideological similarity, leveraging both user
interaction patterns and post content. The core idea behind ECS is to measure two key properties:
cohesion, representing how similar users are within their own community, and separation, representing
how distinct they are from users in other communities. For each user u in a community w, cohesion is
calculated as their average distance to all other users in w. Separation is their average distance to users
in the nearest neighboring community. These values are then aggregated into a score for the individual
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community by assessing, for each member, the relative difference between their similarity to their own
community and their dissimilarity to the closest external community. This aggregation is inspired by
the silhouette score and normalized so that it ranges from 0 to 1, where higher values indicate stronger
echo chamber effects. The overall ECS for the entire graph is then the average of these scores across
all detected communities. A score approaching 1 signifies a strong echo chamber effect, with tightly
clustered and well-separated communities, while a score near 0 indicates more ideologically integrated
groups. A key advantage of this method is its unsupervised nature, as it requires neither pre-defined
user labels nor a fixed number of communities.

Similarly, Amendola et al. [60] move beyond structural analysis to incorporate the semantic content
of user interactions. Their approach is founded on the principle that true opinion alignment requires
agreement on specific facets of a topic, not just a general sentiment. The method employs Aspect-Based
Sentiment Analysis (ABSA) to capture nuanced opinions and Group Decision-Making (GDM)
principles to measure consensus. The process begins by using ABSA to generate a sentiment vector
for each user on every specific aspect of a topic. The core of the metric is built upon a multi-level
aggregation of these opinions. First, the agreement between any two users on a specific aspect is
calculated as a pairwise similarity, typically using cosine similarity. These pairwise similarities for
a single aspect are then aggregated across all users to determine the Aspect Consensus, which
intuitively reflects the average level of agreement within the community on that aspect, with greater
weight given to stronger agreements. Finally, the consensus scores from all aspects are aggregated
to produce a single Community Consensus value, representing the overall agreement within the
community by summarizing the aspect-level agreements in a way that emphasizes more consistent
patterns of alignment. The diagnostic power of this metric comes from comparing the within-community
consensus (calculated among members of the same group) with the in-between-communities consensus
(calculated between members of different groups). A high within-community consensus coupled with a
low in-between-communities consensus provides a strong, content-driven signal of an echo chamber.

Hohmann et al. [65] introduce a holistic measure for ideological polarization that integrates three
distinct factors into a single score: the extremity of opinions, the structural clustering of individuals into
communities (homophily), and the mesoscale organization of these communities along an ideological
spectrum. Their approach is based on the generalized Euclidean (GE) distance, which quantifies
the “effort” required for influence to travel between opposing sides of a debate on a given network. For a
graph G and an associated opinion vector o (a list of users’ opinions, where opinions are normalized
between —1 and +1), the polarization measure, denoted d¢,, is formulated as:

8o = \/(0+ —o )Lt (ot —07)

In this equation, o™ contains the positive opinions (and zeros elsewhere, i.e. oj = max(0;,0),Vi), o~
contains the absolute value of negative opinions, and L™ is the Moore-Penrose pseudo-inverse of the
graph’s Laplacian matrix. The term LT embeds the network’s topology, weighting the distance by
the paths (or lack thereof) connecting individuals. Conceptually, the measure represents the network
distance between the “centers of mass” of the opposing opinion groups. The authors demonstrate through
synthetic and real-world data that this metric is uniquely sensitive to all three aspects of polarization,
unlike measures that focus only on opinion distributions or local network assortativity. This measurement
is further extended to multipolari polarization in [66].

Huang et al. [39] propose a partition-agnostic polarization measure based on the correlation between
signed and unsigned random-walk dynamics. They define a signed random-walk transition matrix M(t),
where matrix entries encode both topological distances and the signs of paths, and contrast this with its
unsigned counterpart [M(¢)|. The polarization score for a node u is computed as the Pearson correlation
between its signed and unsigned transition vectors: Pol(u;t) = corr(|M|.,(t), M., (t)). Averaging these
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node-level scores gives the overall graph polarization. This methodology captures polarization at multiple
scales (controlled by the time parameter t), and crucially, it does not require pre-defined community
partitions.

3.4 Others

Amelkin et al. introduce Social Network Distance (SND) [39] to quantify the evolution of user
opinions in social networks, taking into account both the network structure and the dynamics of
competing polar views. SND frames opinion change as a transportation problem, allowing it to capture
not just individual shifts, but also the collective patterns of opinion propagation across the network.
This approach is effective for detecting events that trigger or intensify polarization within society. For
example, when applied to real-world X (formerly Twitter) data, SND is able to identify spikes in opinion
divergence around major political events, such as elections or controversial policy debates. These spikes
signal moments when public sentiment becomes sharply divided, enabling researchers to pinpoint the
timing and nature of polarization-triggering events.

Bozdag et al. [38] present a comprehensive framework for empirically measuring the manifestation
of offline political segregation in online environments. They operationalize information diversity using
Shannon entropy, calculating separate scores for a user’s information input and output. Specifically,
“source diversity” quantifies the political heterogeneity of tweets a user receives, while “output diversity”
measures the diversity of political content a user disseminates. The disparity between these scores,
together with an “input-output correlation” metric, serves as an indicator of the filter bubble effect.
Importantly, their framework goes beyond conventional diversity metrics by capturing structural exclusion
of minority voices. They introduce the concept of “openness” measured by two indicators: “minority
reach” which reflects the network-wide penetration of minority viewpoints, and ‘“minority exposure”
representing the proportion of minority content in an individual’s feed. This approach demonstrates
that even when overall source diversity appears sufficient, significant segregation can persist through the
marginalization of minority actors.

As discussed in the echo chamber detection section, Calderén et al. [1] introduce the Echo Chamber
Index (ECI), which quantifies echo chamber behavior on a given fan page by averaging the echoing
scores of comments under a post. This provides a straightforward yet effective numerical measure of
echo chamber dynamics at the post level.

In [90], the measurement of the echo chamber effect is formalized within the influence maximization
framework through the Influence Maximization with Echo Chamber(IMEC) problem. The
authors model echo chamber influence as an additional probabilistic mechanism: a user’s likelihood
of adopting information is increased if many members of their group have already adopted it. This
group-level effect is mathematically represented using an Ising-model-inspired function, where the
probability of group-based activation depends on the number of activated users and a group closeness
parameter. By comparing information diffusion outcomes with and without this global group influence,
the paper directly quantifies the impact of echo chambers on the overall spread.

Although not directly focused on social networks, Ge et al. [15] develop a quantitative framework to
measure interest reinforcement in the context of e-commerce echo chambers. Their approach segments
users’ interaction histories into temporal blocks, representing each user’s interests within a block as an
aggregate embedding of the items they engaged with. By comparing a “Following Group™—users who
frequently interact with recommendations—to a control “Ignoring Group”, they examine changes in the
structure of user interest clusters over time. The reinforcement effect is assessed using cluster validity
indices: a smaller decrease in the Calinski-Harabasz (CHK) score indicates that clusters remain more
compact, while a higher Adjusted Rand Index (ARI) suggests less user drift between clusters. Their
results demonstrate that this method effectively quantifies the reinforcement phenomenon central to
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echo chambers.

Finally, there exist several works that design polarization or controversy metrics as optimization
objectives for their mitigation strategies. These will be introduced in a subsequent section dedicated
to mitigation approaches. It is important to note that there is no single universally accepted metric
for measuring echo chambers; different metrics capture different aspects of echo chambers, such as
topological structure, opinion distribution, or a combination of both and cater to different conditions.
For example, if we can only obtain people’s post content and no interaction information among users due
to the privacy or terms of policies of the social media platform, we can embed people’s generated content
and infer their leanings with ML, then simply use the variance of leanings as an indicator of polarization
or the echo chamber effect. On the other hand, if only people’s interactions are available and we cannot
extract their post content, topology-based metrics could be employed. When only internal and external
edges are of concern or are available, the E-I index is one of the choices. If community size is also a
concern (as opposing communities with similar sizes are generally considered more polarized compared
to one very large and one very small community), BSI could take this into consideration.

Typically, these metrics do not quantify echo chambers directly; rather, they measure the effects
associated with echo chambers. For example, they assess which network aligns more closely with the
intuition or definition of an echo chamber, or better matches expected properties.

4 Echo Chamber Mitigation

Although this section focuses on echo chamber mitigation, we also include research on reducing related
phenomena such as polarization, segregation, and controversy, as these efforts often aim to counter or
mitigate echo chamber effects. For example, polarization is both a consequence of echo chambers and
a factor that accelerates their formation [5]; thus, reducing polarization contributes to echo chamber
mitigation. Since most studies do not explicitly distinguish between these terms, in this survey, we
consider all such efforts to fall within the scope of echo chamber mitigation.

Existing social network-based approaches to mitigate echo chamber effects can be broadly categorized
into three groups: (1) Cross-group Promotion Approaches, which involves adding edges between opposing
groups or recommending posts from users with differing viewpoints to increase exposure to alternative
perspectives; (2) Opinion Dynamics-Based Approaches, which simulate the evolution of user opinions
through opinion dynamics models and seek to optimize a polarization metric that depends on the final
opinions and/or the network topology structure, by modifying the topology, edge weights, or users’
innate opinions (though the latter is less practical); and (3) Agent Addition-Based Approaches, which
introduce artificial agents that strategically disseminate information with targeted leanings or ideologies
to influence other users or affect recommender systems.

4.1 Cross-group Promotion

A common strategy for mitigating polarization is to bridge opposing groups and expose individuals to
diverse perspectives. Many studies have explored methods such as adding cross-group connections or
recommending contents with opposing viewpoints. By increasing the diversity of information people
encounter, these approaches aim to prevent echo chambers and encourage more moderate ideologies.
Luo et al. [3] introduce a game-theoretic framework to mitigate segregation and echo chambers
in social networks by incentivizing inter-community connections. They model user interactions as an
edge formation game, where individuals trade off homophily (preference for same-group ties) against
exogenous rewards for cross-community links. Their Algorithmic Recommendation Mechanism
(ARM) leverages weak ties to encourage diverse connections, reshaping the Nash equilibrium from
segregated networks to integrated ones. Simulations demonstrate ARM’s efficacy in reducing segregation,
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particularly during polarizing events, offering a scalable mechanism design solution to counteract echo
chambers.

Several studies have approached the problem by identifying and algorithmically bridging structural
divides in social networks. Garimella et al. [12] propose an algorithmic approach to reduce polarization
by strategically bridging opposing communities in an online discussion. They begin by modeling a
controversial topic as a directed “endorsement graph” (e.g., a retweet network), which is then partitioned
into two disjoint communities representing the opposing sides. The authors’ objective is to reduce a
specific quantitative metric, the Random-Walk Controversy (RWC) score, which measures the isolation
of these communities by calculating the probability that a random walker remains within its starting
community. To achieve this, their method recommends a small set of new edges (“bridges”) to be added
between the two sides. Acknowledging that not all recommendations are equally likely to be accepted in
reality, they introduce a model for “acceptance probability” based on user polarity, shifting the goal to
minimizing the expected controversy score. They propose an efficient heuristic algorithm (ROV-AP)
that identifies the most effective bridges by primarily considering connections between high-degree users
on opposite sides, thus offering a practical method for algorithmically mitigating online echo chambers.

Interian, Moreno, and Ribeiro |14] solve the problem of reducing network polarization by formulating
it as an Integer Linear Program (ILP). Their method, which addresses the Minimum-Cardinality
Balanced Edge Addition Problem (MinCBEAP), is designed to find the smallest set of new edges,
E’, to add to a graph G = (V, E). The ILP model uses binary variables to represent the selection of new
edges and to track the shortest path distances. The core of the solution method is an optimization that
minimizes the number of added edges while enforcing a key structural constraint: ensuring that every
vertex v in a target polarized group A can reach a vertex outside of its group (V' \ A) within a specified
distance threshold D. The ILP formulation directly solves the following problem:

min |E'|
subject to dg(v,V\A) <D, YveA
where G'= (V,EUE)

By solving this ILP model with standard optimization software, they compute the minimal set of edges
required to structurally bridge the isolated groups in a network. Their subsequent work [15] further
compares three ILP formulations and reports computational results on both simulated and real-world
networks.

In [16], Haddadan et al. propose a method to reduce structural polarization in content networks by
adding a budget of k links. They introduce the (Polarized) Bubble Radius (BR), which measures the
expected random walk steps from a node v to a page with an opposing view. Nodes with a high BR are
termed “parochial”, and the network’s overall structural bias is the sum of their BRs. The problem of
minimizing the bias is framed as a submodular maximization problem, allowing for an efficient greedy
algorithm. The REPBUBLIK algorithm iteratively adds links from source nodes that are selected
based on a task-specific variant of Random-Walk Closeness Centrality (RWCC), thereby strategically
creating shortcuts that have the broadest impact on reducing network-wide polarization.

Recent studies have also examined the application of the influence propagation paradigm within social
networks to balance information exposure [91-94|. Garimella et al. [91] introduce an approach to mitigate
filter bubbles and echo chambers in networks by focusing on balancing information exposure across
opposing viewpoints. Their framework adopts a centralized perspective, seeking to maximize the number
of users exposed to both sides of a controversial issue. The authors model the spread of information using
the independent-cascade model and formalize the objective as maximizing the number of users who are
either reached by both campaigns or by neither, thereby directly addressing the problem of information
imbalance. They demonstrate that this balancing problem is NP-hard, and, crucially, that its objective
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function is neither monotone nor submodular, making it difficult to find efficient approximation solutions.
To address this, they propose and analyze several greedy algorithms with approximation guarantees,
and validate their effectiveness through experiments on real-world Twitter data spanning political and
social controversies. With a similar idea, Tu et al. [93] formally define co-exposure maximization
(COEM) as the task of selecting initial user sets for each campaign in order to maximize the expected
number of users who receive information from both campaigns, considering the probabilistic nature
of information spread in the network. They propose a greedy approximation algorithm that uses a
submodular lower bound for the co-exposure objective, offering theoretical guarantees. Additionally,
they introduce a scalable estimation method based on generalized random reverse-reachable sets, which
enables efficient computation of expected co-exposure in large networks. Matakos et al. [92] also address
filter bubble mitigation by maximizing the diversity of information exposure in social networks. However,
their approach models both user and content leanings, and strategically recommends news articles to
select users so that, as articles propagate, users are exposed to a wider range of viewpoints. The problem
is formulated as a submodular optimization under matroid constraints, and solved efficiently using a
novel sampling technique called reverse co-exposure sets. Considering the ignorance of the competition
between opposing opinions propagating in previous studies, Banerjee et al. [94] address filter bubble
mitigation by modeling the realistic competition between opposing viewpoints as they spread in a social
network. They propose the RIC-FB model, which distinguishes between awareness and adoption of
opinions, and incorporates a competition parameter that makes it harder for users to adopt a second,
opposing viewpoint after adopting the first. Their approach rewards co-adoption (users adopting both
viewpoints), thus directly targeting filter bubble reduction rather than just exposure balancing. They
formulate the mitigation task as an optimization problem and prove its computational hardness, then
introduce specialized algorithms—including a reverse-influence-sampling-based heuristic—to effectively
select seeds for the counter-campaign. Experiments on real networks show their competition-aware
methods outperform existing baselines, especially when competition is strong.

Beyond structural interventions, Orbach et al. [28] address echo chambers by introducing a novel
Natural Language Understanding (NLU) task for detecting countering speeches. Rather than
merely identifying content with opposing stances, their approach retrieves texts that directly refute the
specific arguments presented in an input document. By automatically surfacing targeted rebuttals, their
method aims to expose users to diverse viewpoints and foster a more balanced and informed perspective.

Although many studies have explored methods for promoting cross-group edges and have found that
inter-group contact can foster compromise and mutual understanding in some contexts, “confirmation
bias” |73] often impedes effective discourse and connection—especially especially when users behave
strategically for profit or other motives. Bail et al. [72] also point out that attempts to expose people
to a broad range of opposing political views on social media platforms like Twitter may not only be
ineffective, but even counterproductive. Other studies indicate that exposure to opposing political views
may trigger “backfire effects”[09], which can intensify political polarization[69-71]. It has also been
discussed in [11] that the effectiveness of this approach may depend on the specific network context and
the existing degree of polarization. Exposure to opposing views may reduce polarization during the
initial or intermediate phases of polarization, but it is less effective once polarization is already strong.
Bail et al. suggest that “future attempts to reduce political polarization on social media will most likely
require learning which types of messages, tactics, or issue positions are most likely to create backfire
effects.” Depolarizing users by exposing them to viewpoints only slightly less radical than their own may
be more effective |21, 75].
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4.2 Opinion Dynamics-Based

There is a class of works focusing on simulating opinion dynamics with existing or designed models
and optimizing polarization or similar metrics, which are computed using users’ final opinion values
after the opinion dynamics process. These studies achieve their goals by changing the network topology
(adding or deleting edges), modifying edge weights, adjusting parameters in the opinion dynamics model
(e.g., innate opinions or weights in the Friedkin-Johnsen model [74] (FJ model)), or by employing other
strategies.

A foundational direction in this area is to optimize the structure or weights of the network to mitigate
polarization. Musco et al. [50] formalize the problem of finding a network structure that minimizes
both polarization and disagreement. They propose a Polarization-Disagreement Index based on
the FJ model, which sums two terms: polarization (the variance of final opinions) and disagreement
(the opinion differences across edges). Crucially, the authors prove this index is a convex function of
the network’s edge weights, which allows the optimal graph topology to be computed efficiently. Their
analysis also shows that this optimal network can be well-approximated by a sparse graph with only
O(n/e?) edges.

Building on the FJ model, several works propose new metrics or optimization methods to further
enhance network robustness. Chen et al. [13] present a structural approach to conflict mitigation
that focuses on minimizing the risk of conflict rather than the conflict itself for a single, known issue.
Departing from methods that require specific opinion data, they propose network-level metrics that are
independent of any particular opinion distribution. They define the Average-Case Conflict Risk
(ACR) and Worst-Case Conflict Risk (WCR), which quantify a network’s inherent propensity
for disagreement over all possible opinion configurations. They then introduce optimization algorithms
(e.g., coordinate descent) to minimize these risk measures by making a small number of targeted edge
additions or deletions. This strategy aims to create a more robust and resilient network topology that is
less susceptible to polarization, regardless of the specific topic of controversy. Their empirical results
show that minimizing the WCR is particularly effective, as it tends to reduce the average-case risk as
well, leading to a more generally conflict-resistant network structure.

The dynamics of filter bubbles and content recommendation are also a focus of recent research.
In their analysis of filter bubbles, [27] demonstrate how a “network administrator™—modeling a social
media platform’s content-filtering algorithm—can dramatically increase polarization by minimizing user
disagreement. They also propose a “simple remedy” to mitigate this effect. Their solution involves
modifying the administrator’s objective function by adding an L? regularization term. This “Regularized
Dynamics” approach discourages the algorithm from making large, concentrated changes to a few social
connections. Instead, it incentivizes smaller, more distributed adjustments across many edges in the
network. The authors show this method to be highly effective: in their experiments, the regularized
model limited the increase in polarization to just 4%, compared to an over 4000% increase in the
non-regularized model. Crucially, this was achieved while only minimally impacting user disagreement
(an increase of at most 5%), suggesting that platforms could control the formation of polarizing echo
chambers without significantly harming their engagement-driven business objectives.

Other research investigates network modifications under practical constraints. In their work, [64]
propose methods for a centralized planner to reduce sociopolitical polarization by perturbing a social
network’s structure under a fixed budget. Using the FJ model, where expressed opinions z are determined
by innate opinions s and the graph Laplacian L via the relation z = (I + L)_ls, they define polarization
P(z) as the variance of the expressed opinions. The authors first consider a setting where the planner has
full knowledge of the population’s opinions. They derive the exact change in polarization from adding
an edge and propose two greedy heuristics: a Coordinate Descent (CD) strategy that iteratively
adds the edge yielding the largest marginal decrease in polarization, and a simpler Disagreement-
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Seeking (DS) strategy that adds an edge between the two individuals with the highest expressed
disagreement, (z; — zj)2. In a second, more robust setting, they analyze the problem where opinions are
chosen adversarially to maximize polarization. They demonstrate this minimax problem is equivalent
to maximizing the spectral gap (A2) of the graph’s Laplacian. This motivates their third strategy, the
Fiedler Difference (FD) heuristic, which adds edges between vertices on opposite sides of the network
partition induced by the Fiedler vector—the eigenvector corresponding to Ao. This approach aims to
make the network structure more robust against divisive opinion configurations by bridging its most
prominent communities.

Extending these approaches to more realistic settings, Cinus et al. [67] address the problem of
mitigating polarization and disagreement in social networks by proposing a method to rebalance a user’s
social feed. Their approach is set within a directed graph context, where edges represent follower-followee
relationships, and it is based on the FJ model. The core idea is to re-weight the influence of existing
connections rather than creating new ones, thereby preserving each user’s total engagement. The authors
formulate an optimization problem that seeks to find a new row-stochastic adjacency matrix A* that
minimizes the sum of network polarization and disagreement at the equilibrium state of opinions. For a
vector of innate opinions s, their objective function for a directed graph is given by:

F(A,s) = sT(@I — 4)Ts+ 57 (21 — a) T2 =1

(21 — A)~1s

where Dy, is the diagonal matrix of in-degrees. A key contribution is the analysis of this problem’s
properties, where they demonstrate that while the feasible set of matrices is convex (maintaining original
sparsity and row-stochasticity), the objective function is not matrix-convex. To solve this challenging
non-convex problem scalably, they develop an algorithm named Laplacian-Constrained Gradient
Descent (LcGD), which is based on projected gradient descent. The algorithm efficiently computes
the gradient without explicit matrix inversion by solving linear systems and then projects the solution
back onto the feasible set to maintain the constraints. Their work is notable for being one of the first to
tackle this problem in the more realistic setting of directed graphs, providing a proper generalization of
previous work on undirected networks.

Apart from modifying network structure or edge weights, some works explore interventions at the
level of user opinions. Matakos et al. [63] propose and formalize two distinct, NP-hard problems for
polarization reduction by convincing a small set of k£ individuals to adopt a neutral stance. The first
method, MODERATEINTERNAL, models interventions that change an individual’s core beliefs,
such as through education. The goal is to select a set of k nodes, T, and set their internal opinions to
zero. If s is the original vector of internal opinions and s’ is the modified vector where the opinions for
nodes in Ty are zero, the objective is to find the set T that minimizes the polarization of the resulting
expressed opinions: ming, 7, = [|(L 4+ I)~'s'||>. The authors find that this strategy is most effective
when targeting “fringe” nodes with the most extreme expressed opinions. On the other hand, convincing
fringe nodes with extreme opinions to adopt a neutral stance is not realistic. In contrast, the second
method, MODERATEEXPRESSED, models interventions that incentivize individuals to moderate
their public statements. This approach involves selecting a set of k£ nodes, T, and fixing their expressed
opinions to zero, which directly alters the opinion dynamics as these nodes now propagate neutrality.
The objective is to choose the set 7T, that minimizes the polarization index. This strategy is shown to
be most effective when targeting central and influential nodes, as their moderated expression has the
greatest cascading effect throughout the network. While this intervention assumes that individuals can
be perfectly incentivized to propagate neutral public stances, in practice, the number of individuals who
can be targeted (k) is typically constrained by practical considerations such as resource availability and
intervention costs. As k increases, the potential to reduce polarization grows, but so does the cost and
complexity of implementation. Thus, there is an inherent trade-off between the scale of the intervention
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and its feasibility. Nevertheless, the model offers valuable insight by providing an upper bound on the
potential effectiveness of moderation-based interventions and can guide the design of more practical
strategies.

Although opinion dynamics models allow researchers to simulate the evolution of opinions, design
mitigation strategies, and evaluate their effectiveness based on final opinions, this class of methods has
several limitations:

1. Accuracy of Opinion Dynamics Models. While many opinion dynamics models have been
proposed to simulate opinion evolution (e.g., the FJ model, Sznajd model [76], and FJCB [77]—a
Friedkin-Johnsen type model that incorporates confirmation bias to better capture echo chamber
formation), their accuracy remains insufficiently analyzed and validated on real-world social
networks. Moreover, parameter selection often lacks clear guidance or established rules, potentially
limiting model performance. For instance, most methods rely on a simplified FJ model that assumes
a uniform stubbornness value of 1 for all individuals. This assumption fails to reflect real-world
scenarios, where individuals demonstrate varying degrees of stubbornness. Additionally, the model
computes the final opinion as z = (I+L)~!s, which implies that the sum or average of final opinions
equals that of the innate opinions. This suggests that overall opinion remains unchanged after
the opinion dynamics process, contradicting real-world observations where collective opinions can
shift over time. Furthermore, the simplified FJ model assumes that interpersonal influence weights
remain static throughout the process, whereas, in reality, these weights may evolve as individuals
opinions change due to factors such as exposure or personal leaning. Obtaining authentic innate
opinions for users, which directly determine final opinions when the Laplacian matrix is given, is
also nearly impossible. While the simplified model is frequently used for its analytical tractability
and has been adopted in previous studies, these simplifications may significantly limit its ability
to accurately capture the complexity of real-world opinion dynamics.

)

2. Practicality of Proposed Strategies. Although opinion dynamics can be simulated, the
resulting mitigation strategies may be difficult to implement in practice. For example, in [63], the
MODERATEINTERNAL intervention models changes to an individual’s core beliefs through
education or similar methods. However, attempting to educate users to alter their innate opinions
is challenging and time-consuming, particularly in large-scale networks or when user identification
is constrained by privacy concerns.

Despite these challenges, opinion dynamics-based methods offer a dynamic perspective for analyzing
networks and user opinions. Some studies that balance polarization and disagreement (e.g., [50]) point
to promising directions that consider both individual polarization and platform interests.

4.3 Agents Addition

Several studies have explored the strategy of introducing new agents into a network to disseminate
ideas more effectively or to influence recommender systems, thereby promoting a more diverse flow of
information among users.

Ghezelbash et al. [17] present an innovative analytical framework for strategically inducing polarization
in social networks by selecting a minimal set of informed agents. Their approach models the social
network as a linear dynamical system, where opinion formation is determined by an influence matrix A.
The central insight is that steering the network toward a desired final opinion state, x4, can be formulated
as a control problem. By introducing the concept of “equilibratability”, they show that the necessary set
of informed agents corresponds exactly to the non-zero entries of the vector (I — A)xy. Consequently, the
challenge of selecting the fewest agents becomes a zero-norm minimization problem: identifying a target
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opinion state x4 that satisfies specific constraints (e.g., ensuring two subgroups attain distinct average
opinions) while simultaneously minimizing the sparsity of (I — A)xy. As this problem is NP-hard, the
authors reformulate it as a computationally tractable Integer Linear Programming (ILP) problem. A
notable finding from their analysis of Zachary’s Karate Club network is that the optimal agents for
inducing polarization are not necessarily the most highly connected “hubs”, but rather “bridge” agents
whose connections span opposing factions. This work offers a principled, optimization-based method for
targeted intervention, providing a formal alternative to heuristic or simulation-based agent selection
strategies. Their method represents a synthesis of opinion dynamics and agent addition techniques.

Although not directly focused on social networks, Rastegarpanah et al. [26] propose a novel approach
to reducing polarization in recommender systems by introducing “antidote data’. Their method involves
injecting a small set of new, artificial users whose ratings are strategically optimized to minimize a
chosen polarization metric, specifically the variance of predicted ratings for an item across the user
population. This additional data acts as a constraint during the system’s training phase, compelling
the underlying model (e.g., matrix factorization) to learn item representations that yield less divergent
predictions for the original users. Notably, this technique can effectively mitigate polarization without
necessitating any changes to the core recommendation algorithm or the original dataset.

4.4 Others

Alatawi et al.[21] summarize several “human-focused prevention” strategies, which empower users to
curate their own information feeds and thereby reduce bias. For a more detailed analysis, readers are
encouraged to consult [21]. Additionally, there are numerous field-studies and survey-based mitigation
strategies, as well as approaches focusing on recommender systems; readers are referred to [11] for further
information.

5 Challenges and Opportunities

In this section, we outline the key challenges and potential future research directions in the field of echo
chamber studies.

1. Echo Chamber Detection and Measurement:
Users’ opinions are central to detecting and measuring echo chambers. Some approaches rely on
manually annotated labels in user posts to infer leanings, which requires a deep understanding of
the topic and users’ intentions. Furthermore, these approaches are not scalable. Others depend
on existing scores for certain websites or public figures, which are not always generalizable to
other datasets or topics. Automated methods—such as regression, classification models, and
LLM-based approaches—have been applied to stance detection in text. Recent advances in LLMs
have substantially boosted the accuracy of traditional methods, with F1 scores now exceeding 80%.
Their application is still in an early, exploratory stage, and developing effective techniques to adapt
and utilize these models for specific stance detection tasks remains an open research challenge.
Additionally, the roles, background knowledge, and potential biases of LLMs in stance detection

contexts require further investigation [95]. To enable more accurate and efficient opinion inference
and support in-depth analysis, further improvements in stance detection—especially those tailored
to social networks [96] and controversial topics—might be needed.

2. Modeling Opinion Evolution:
Numerous opinion dynamics models have been proposed to study the evolution of users’ opinions.
Among these are models addressing polarization and echo chambers, which incorporate crucial
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factors such as confirmation bias and social influence. However, as discussed previously, some
models are overly simplistic and fail to capture the complex dynamics of real-world social networks.
Moreover, there is a lack of analysis regarding the accuracy of these models on large-scale, long-term
datasets where echo chambers may form and evolve. Developing opinion dynamics models that
can accurately reflect and predict opinion evolution would greatly benefit echo chamber mitigation
strategies and help minimize their negative side effects. In addition to improving theoretical models
and evaluating them on large-scale datasets, conducting field studies to validate these models in
real-world social networks is crucial. Such empirical validation can ensure that the models not only
fit observed data but also reliably predict opinion dynamics and the formation of echo chambers.
Additionally, field studies can also be conducted to identify factors contributing to the formation
of echo chambers, which may help in designing more realistic opinion evolution models.

. Quantification Metrics:

There is currently no universal, widely accepted metric for quantifying echo chambers in research.
Comparative studies of existing metrics are also lacking, making it difficult to assess whether these
metrics reliably capture any specific characteristics of echo chambers and provide trustworthy
scores. The GE method proposed in [65], which incorporates both network topology and opinion
information, offers a promising direction. This method has been compared with other metrics like
RWC on certain networks, demonstrating strong performance and sensitivity to both structural
and opinion distribution factors in polarization quantification. Given the large number of metrics
proposed for echo chamber and polarization measurement, deeper analysis and comparison based
on large scale field studies are needed to uncover their strengths and limitations as effective
measurement tools.

. Mitigation Strategies:

Practical mitigation strategies should balance the interests of platform companies, legal require-
ments, individual rights, ethical considerations, content diversity, and user engagement to foster
healthier social network environments. As highlighted in [11], “no studies about removing (or
adding) nodes for reducing the polarization were found in this review. However, this method is
often used in practice for banning specific posts or accounts from social networks.” While demot-
ing or banning radical and influential users is often applied in practice (e.g., banning malicious
accounts [11]), the effectiveness and consequences of such actions can be complex and not easily
predictable. On one hand, user/post demotion may not necessarily trigger the backfire effects
sometimes observed with cross-group promotion. On the other hand, high-profile bans, such as
the removal of US President Trump’s Facebook account, have resulted in significant controversy
and political backlash, illustrating that such interventions can have side effects whose costs are not
easily measurable. Beyond actions available to network operators, third parties—such as dedicated
users, civil society organizations, or automated agents—may also help mitigate echo chambers
and filter bubbles by disseminating diverse or corrective content, engaging in counter-speech, or
promoting fact-checking initiatives. Furthermore, gamification strategies, such as incentivizing
users to engage with diverse viewpoints or rewarding civil discourse, may also be promising
approaches to encourage healthier interactions and reduce polarization.

. Distinguishing Echo Chambers from Polarization:

As noted in [11], “Another issue with the existing definition is the equating of polarization in
the network with echo chambers, and subsequently, many of these studies attempt to propose an
approach to address polarization”. Consequently, much of the related work focuses on polarization
mitigation. However, by definition, echo chambers should not be equated solely with polarization,
as the “reinforcement” effect is a distinct characteristic, separate from polarity. Thus, an important
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future research direction is to develop models and measurement techniques that accurately
capture the reinforcement mechanisms unique to echo chambers. Detecting echo chambers by
focusing specifically on these reinforcement dynamics—particularly during their formation and
evolution—could provide deeper insights into their structure and impact. Furthermore, research
into effective mitigation strategies should aim to disrupt or weaken the reinforcement processes
that sustain echo chambers, rather than merely reducing overall polarization.

6. Data Availability and Privacy:
There is a lack of large-scale, long-term datasets for researching echo chamber formation and
evolution. Collecting such datasets, for example from platforms like Twitter, can be costly and
challenging. Furthermore, due to privacy concerns, specific content from these platforms cannot
be readily shared. Researchers using datasets from prior studies often need to re-collect content
through tweet IDs or links. Therefore, better platform policies are needed—ones that both protect
user privacy and facilitate social network research.

6 Conclusion

Echo chambers represent a critical challenge in the landscape of online social networks, with far-reaching
consequences for public discourse, information diversity, and societal cohesion. In this survey, we have
provided a comprehensive overview of echo chamber research, systematically reviewing approaches for
detection, measurement, and mitigation. Our analysis highlights the diversity of methods available,
spanning topological, semantic, and hybrid techniques, as well as the multitude of metrics employed in
the literature to capture the nuanced effects of echo chambers.

Despite significant progress, key challenges remain. The field lacks universally accepted definitions
and robust, generalizable metrics for quantifying echo chamber effects. Many mitigation strategies, while
promising in simulation or small-scale studies, face practical and ethical constraints when deployed in
real-world systems. Furthermore, the interplay between algorithmic design, user behavior, and societal
context complicates the task of designing interventions that not only are effective, but also balance users’
rights to diverse information, commercial interests of social media platforms, and practical feasibility.

Looking ahead, future research may address these challenges by developing more accurate models of
opinion dynamics, improving the reliability of detection and measurement techniques, and designing
mitigation strategies that balance competing interests. Interdisciplinary collaboration—spanning com-
puter science, social science, psychology, and ethics—will be essential for advancing our understanding
and management of echo chambers. By fostering a more nuanced and evidence-based approach to echo
chambers, we can work towards healthier, more inclusive online environments that promote informed
and diverse public discourse.
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