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Abstract

Community search is a query processing task of finding query-dependent communities in graphs,
which has particularly useful applications in social circle discovery, personalized recommendation, and
fraud detection. Over the past years, extensive studies have been devoted to this challenging problem
due to diverse application scenarios and the complexity of communities in nature. Most classical
community search works follow an algorithmic framework by designing a dense subgraph-based model
and developing offline indices to accelerate online community search. However, many recent works
have studied novel problems of community search over complex graphs and extended new directions
from this algorithmic framework, which unfortunately lacks a timely review. This survey reviews the
state-of-the-art community search works and summarizes them in terms of three aspects as follows.
First, we introduce the latest community search works, in terms of methodologies from querying
algorithms to machine learning models. Second, we give a review in terms of graph types, from
structural and attributed graphs to complex graphs. We focus on the studies of community search
over two kinds of complex graphs: heterogeneous information networks and multilayer graphs. Third,
we present a newly exciting direction of interactive community search, which needs human-in-loop
interactions and allows users to give feedback for advising community refinement. We finally share
future directions and promising opportunities in this research area of community search.

1 Introduction

The topology structure of graphs widely exists in numerous real-world scenarios, such as social networks,
citation networks, e-commerce platforms, traffic transportation systems, and biomedical networks [3,
52, 59, 60, 63]. Due to various attributes associated with nodes and edges, one simple graph cannot
accurately depict real relationships. Therefore, many kinds of graphs are used to comprehensively model
these scenarios, including attributed graphs, heterogeneous information networks (HINs), temporal
graphs, multilayer graphs, bipartite graphs, dynamic graphs, and so on [15, 19, 22, 31, 33, 43, 58, 70, 81].
Communities that are formed by a group of individual nodes, naturally exist in graphs, such as family
groups, biological functional organs, event groups in social networks, and so on. The discovery of
community is very useful for understanding network dynamics and user behaviors. These communities
are characterized by diverse attributes and different sizes of participants, which presents challenges in
developing effective algorithms and models to discover them.

The task of community search focuses on identifying query-oriented cohesive communities in graphs,
which is determined by user-provided queries [20, 30]. Unlike community detection, which seeks to
uncover all potential communities within a graph, community search has demonstrated fast response
efficiency and powerful capabilities in various personalized search tasks [13, 55, 63]. The applications of
community search include social circle discovery in social networks, personalized recommendations in

42



e-commerce platforms, the formation of interdisciplinary expert groups in collaborative networks, drug
discovery in biological networks, and fraud detection across different financial systems [13, 59, 60, 80].
These applications highlight the utility and impact of community search in enhancing user experience
across multiple domains.

A wide range of community search studies [19, 28, 29] have been investigated in the literature. Fang
et al. [20] provides a systematic classification of existing community search studies based on various dense
subgraphs, including the k-core, k-truss, k-clique, quasi-clique, k-plex, k-edge-connectivity components,
and other metrics-based densest subgraphs. Besides structural community search over simple graphs,
another major contribution of this survey summarizes various works of attributed community search for
different attribute types, e.g., keywords, locations, temporal, weighted influences, and profiles. However,
most discussed works [20][30] had been published on or before 2020. Based on our investigation of recent
studies, community search have been studied from static and querying algorithms to interactive and
learning-based approaches [2, 10, 12, 25, 36, 37, 42, 43, 45, 47, 53, 69, 70, 74, 82, 83, 88]. Even more, the
problems of community search have been studied from simple and attributed networks to more complex
graphs (e.g. HINs and multilayer graphs) [1, 7–9, 14, 17, 26, 39, 41, 65, 73, 79, 84–87]. Thus, it is timely
and important to have a state-of-the-art survey on existing community search works. In this survey, we
make contributions to discuss and categorize these state-of-the-art community search works, in terms of
three aspects, including community search methodologies, complex networks, and user interaction.

First, in terms of community search methodologies, we review advanced works using querying
algorithms and learning-based approaches. These works apply classical querying algorithms, e.g., exact
algorithms, heuristic solutions with pruning strategies, and indexing-based methods, to address attribute
community search. Furthermore, we summarize recent learning-based approaches, e.g., graph neural
networks and transformers, to significantly improve the quality of community search and introduce fast
solutions.

Second, in terms of complex networks, we summarize recent community search works over two
complex networks of HINs and multilayer graphs. Specifically, HINs consist of multiple typed nodes
and edges with a given network schema. Thus, community search over HINs usually needs an input of
meta-path query. On the contrary, multilayer networks consist of multiple graph layers, where each layer
has one graph with internal edges and two graphs at different layers have cross-layer edges. Community
search over multilayer graphs usually needs no input meta-path but focuses on the interested querying
nodes.

Third, in terms of user interaction, we introduce a new direction of interactive community search,
which allows users to give feedback for improving community search answers. Last but not least, we also
point out interesting research directions and promising opportunities leveraging recent large language
models (LLMs), including the retrieval augmented generation (RAG) improvement using community
search, LLM-enhanced community search solutions, and developing a unified dense subgraph model for
various community search tasks.

2 Community Search on Attributed Graphs: Algorithms and Learning

We start with a widely used graph model of attributed graphs. Then, we introduce the state-of-the-art
studies of community search over attributed graphs, in terms of algorithmic approaches and learning
models.

Attributed graphs naturally exist in various real-world scenarios. For instance, individual nodes are
often associated with multiple attributes of hobby tags in social networks; In academic collaboration
networks, author nodes tend to specialize in a few attributes of research topics; In protein-protein
interaction networks, each protein node is associated with several distinct functions. Therefore, a
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keyword-based attributed graph consists of vertices, edges, and a set of keywords, denoted as G(V,E,A),
where V is the set of vertices, E ⊂ V ×V is the set of edges, and A = {a1, a2, ..., an} is a set of keywords
associated with vertices. The objective of community search over attributed graphs (ACS) is to find
query-dependent communities with cohesive structure and homogeneous attributes. As summarized in
the previous survey [20], there were two representative community search works on keyword-attributed
graphs, which adopt k-core model [19] and k-truss model [28] to measure a structural density of
communities. However, both methods [19, 28] use algorithmic approaches to solve community search
problems. After an investigation of recent studies on attributed community search, we summarize new
research directions, in terms of three aspects: community model improvement [6, 90], new problems with
complex queries [44, 48, 78], and new solutions of machine learning models [18, 24, 34, 38, 61, 72, 78].
In the following, we introduce a few representative works of querying algorithms and machine learning
based attributed community search.

2.1 Algorithmic Approaches

We discuss two representative ACS studies based on the types of keyword/numeric attributes and
semantic-based attributes, respectively.

2.1.1 Keyword and numeric attributed community search

Different from previous ACS studies [19, 28] that only consider keyword attributes, recent works [48,
56, 57] consider the combination of keyword attributes and numeric attributes in attributed community
search tasks.

Liu et al. [48] introduce a new combined attribute score to measure an attribute similarity of
two vertices by employing a distance metric. Specifically, it applies Euclidean distance to compute
the numeric location distance, while applying Jaccard distance to eliminate the similarity of textural
keywords. Moreover, it employs a unified function to combine multiple kinds of distance functions, which
provides better scalability to support multiple types of attributes, including both textual attributes
(keywords) and numeric attributes (numbers). Based on this unified attribute score, Liu et al. propose
the problem of vertex-centric attributed community search problem (VAC-Problem) as follows.

VAC-Problem [48]. Given an attributed graph G = (V,E,A), a set of querying vertices Q ⊆ V , and
a parameter k, the problem of vertex-centric attributed community search aims to find the community
H ⊆ G satisfying the following properties: (1) query participation, i.e., Q ⊆ V (H); (2) structure
cohesiveness, such that H is a connected k-truss; (3) attribute cohesiveness, requiring that H has
the smallest attribute score; (4) the maximality, requiring that there does not exist another subgraph
H ′ ⊃ H satisfying the above three properties.

Here, the k-truss [28] is a dense subgraph pattern H, requiring that every edge (u, v) in E(H) is
contained in at least k − 2 triangles in H. The unified attribute score is denoted as Ascore(u, v) =
α · Sdist(u,v)Sdistmax

+ (1− α) · Tdist(u,v)
Tdistmax

, where Sdist(·) and Tdist(·) denote the spatial distance and textual
distance, respectively. Note that Sdistmax and Tdistmax are the maximal limits used for normalization.

The VAC-Problem is proven as NP-hard, reduced from the maximum clique problem. To solve the
VAC-problem, a DFS-manner exact algorithm and a BFS-based exact algorithm are proposed. Due
to the NP-hardness, several heuristic rules are proposed for vertex addition and deletion separately to
improve efficiency performance. These heuristic strategies can be summarized into three aspects: pruning
strategy, early termination strategy, and ordered search strategy. The pruning strategy pre-removes
some useless edges and vertices based on the property of the k-truss model to reduce the search space.
The early termination strategy stops the algorithm early by precomputing the low bounds of subgraphs’
attribute scores. The ordered search strategy precomputes the vertex attribute score to query vertices and
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(a) VAC Problem (b) CSSAG Problem

Figure 1: Typical examples of two attributed community search problems.

arranges the order when adding/deleting vertices from the graph. To further improve the efficiency and
scalability of proposed algorithms, an approximate algorithm is proposed by achieving a 2-approximation
guarantee to exact algorithms.

2.1.2 Semantic-based attributed community search

Besides the simple types of keywords and numerical values, attributes can have semantic relationships.
Lin et al. [44] studied a problem of community search in semantic-based attributed graphs (CSSAG-
Problem), which makes use of semantic information among attributes and gives an interpretability
of community answers. In semantic-based attributed graphs, two keyword attributes may have a
relationship in a directed acyclic semantic graph. This kind of graph is also meaningful in real life,
e.g., identifying the synonyms and distinguishing polysynonyms. In the semantic attribute graph,
attributes of vertex v is not a set of independent attributes, but a small directed acyclic semantic
graph, denoted as SG(v) = (VSG(v), ESG(v)), where VSG(v) is the semantic keyword set of the vertex v,
ESG(v) is the semantic relations between theses keywords. In the semantic-based attributed graph H, it
proposes the maximal common subgraph MSG(H) to denote attribute cohesiveness, by satisfying the
following properties: (1) ∀v ∈ V (H),MSG(H) ⊆ SG(v); (2) there exists no other MSG′(H) such that
MSG(H) ⊆MSG′(H); (3) there exists at least one edge in MSG(H). To find a subgraph H with the
maximal common sub-semantic graph, the CSSAG-Problem is formulated as follows.

CSSAG-Problem [44]. Given a semantic-based attribute graph G(V,E,A), a positive integer k, and
a query vertex q ∈ V , the CSSAG-Problem is to find a maximal set of communities H satisfying the
following properties: (1) H is a connected subgraph and q ∈ V (H); (2) the degree of v in V (H) is no
less than k; (3) there exists no other MSG′(H) such that MSG(H) ⊆MSG′(H), i.e., the MSG(H) is
maximal.

As shown in Figure 1(a), given an attributed graph with both keyword and location attributes,
a query vertex v4, and parameter k = 4, the VAC problem requires the community follows three
constraints: H1 is a 4-truss; vertices in H1 has similar keywords; the vertices in H1 is close to each
other. Thus, the VAC problem aims to find the community H1 that has similar keywords “DB” and is in
the same region. Figure 1(b) provides an example of a semantic attributed graph, where each vertex
corresponds to a small semantic subgraph. Given the query v4 and k = 3, the CSSAG problem finds the
community H2, where each vertex in H2 has a degree no less than 3, and the common sub-semantic
graph MSG(H) = {CS,DB} is maximal.

In summary, besides the above two ACS works, there are also other ACS studies, including anchored
vertex set exploration in attributed graphs [6], k-truss-based cohesive attributed community search with
maximal common attributes [90], and a unified hierarchy index structure for attributed community
search [77].
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2.2 Learning Approaches

Different from algorithmic approaches that bulid up the indexes in advance and then support the online
community querying, there are a dozen of recent studies [4, 11, 18, 24, 34, 38, 61, 71, 72, 78] that develop
machine learning models to learn the properties among trained communities and queries for tackling
community search problems. In the following, we introduce two kinds of learning approaches based on
graph convolutional neural networks [24, 34] and transformer [71, 76], respectively.

GNN-based Approach. Gao et al. [24] propose the ICS-GNN framework by applying GNN-based
approaches to solve interactive community search problems for the first time. It first encodes the
attributes to vertex features, then trains the GNN model by labeling a set of positive vertices and
negative vertices separately for each query process. Following their work, several studies focus on
applying the popular learning techniques to solve community search problems in attributed graphs. Jiang
et al. [34] introduce the AQD-GNN model to solve community search problems on keyword-attributed
graphs. Different from [24] that supports vertex-only queries, AQD-GNN can handle attribute-vertex
combined queries in keyword-attributed graphs in three steps. First, it constructs a vertex-attribute
bipartite graph to model the relationship between vertices and keyword attributes. Second, it applies
the GNN model to bipartite graphs in order to learn both vertex feature similarity and topological
similarity. In the training process, besides the labeling of positive/negative vertices, it further selects a
set of query-community pairs as the training data to enhance the learning model. Finally, it constructs
a fusion graph by capturing vertices with high attribute and topology similarity to the query vertices
and applying BFS search to ensure the connectivity of answer community.

Transformer-based Approach. Most of the GNN-based community search approaches require labeling
vertices during the training process, i.e., supervised learning and semi-supervised learning. Wang et
al. [71] first propose an unsupervised transformer-based approach called transformer-based community
search framework that uses zero label (TransZero), which does not required labeled vertices. TransZero
contains two phases: pre-training phase and online search phase. In the pre-training phase, it proposes a
community search graph transformer model to learn both vertex-level and subgraph-level representations.
After that, it designs two kinds of self-supervised loss functions, including personalization loss and link
loss, to avoid labeling vertices, and then conducts loss computation. In the online search phase, it
first computes the community score for each vertex based on the pre-trained transformer model, and
then designs a modularity-based function called community identification with expected score gain
solver (IESG) to identify the community, where the IESG problem is proved to be NP-hard. Another
transformer-based approach called CSFormer contains three phases [76]. First, it proposes a l-hop
neighborhood community vector based on the n-th order h-index community model, which can be used
to extract cohesiveness features. Based on the cohesiveness features extractor, it then proposes an
attention-based transformer model to predict the vertex coreness. Finally, it conducts the online k-core
community search based on predicted vertex coreness.

Besides the above studies, Li et al. [38] firstly introduce to use of contrastive learning approaches to
train the community using semi-supervised learning. Wang et al. [72] extend the attributed community
search works based on GNN models to billion scale graphs. Fang et al. [18] propose an inductive learning
approach to help improve the scalability of learning models, which provides a fairer way to train the
datasets.

3 Community Search on Complex Graphs

The investigation of community search on complex graphs has gained significant attention in recent
years [5, 15, 22, 81]. Unlike simple graphs with categorized attributes or features [19, 28], complex graphs
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Table 1: A summary of existing community search problems in HINs and multilayer graphs.

Community Model Graph Type Input Queries Dense Subgraph Pattern Community Homogeneity
CSH [22]

Heterogeneous
Information
Networks

Vertices; Meta-path (k,P)-core Single Vertex Type
CSSH [32] Vertices (k,P)-core Single Vertex Type
ICSH [89] Meta-path (k,P)-core Multiple Vertex Types
SACH [51] Vertices; Meta-path (k,P)-core Single Vertex Type

SSH [49] Vertices; Meta-path;
Triplet Constraints (k,P)-core Multiple Vertex Types

MRCS [31] Vertices;
Triplet Constraints k-core Multiple Vertex Types

CASH [40] Vertices Learning-based Component Single Vertex Type
CS-DAHIN [62] Vertices; Meta-path Learning-based Component Single Vertex Type

LCD [55]

Multilayer
Graphs

Vertices Random Walk-based Component Multiple Vertex Types
FTCS [5] Vertices k-truss Multiple Vertex Types
CTCS [50] Vertices k-truss Multiple Vertex Types
MCS [67] Vertices (k, d)-core Multiple Vertex Types

SynCS [54] Vertices k-SynCore Multiple Vertex Types
CSML [4] Vertices Learning-based Component Multiple Vertex Types

encompass multiple types of attributes and exhibit diverse structures, e.g., heterogeneous information
networks (HINs) [21, 22, 31, 32, 40, 49, 51, 62, 68, 89], multilayer graphs [4, 5, 50, 54, 55, 67], and
dynamic graphs [53, 62, 69, 70, 81]. Table 1 summarizes the existing community search problems in
heterogeneous information networks and multilayer graphs for a comparison, in terms of the query
pattern, dense subgraph pattern, community type, and problem hardness. In the following section,
we primarily focus on community search in two kinds of complex graphs: heterogeneous information
networks and multilayer graphs.

3.1 Community Search over Heterogeneous Information Networks

Heterogeneous information networks (HINs) can model complex entities and relations, where nodes and
edges have multiple types in the graph. For instance, authors write academic papers that are published
in various venues. Thus, in this academic network, nodes can be categorized into distinct types such
as authors, papers, and venues, while the edges represent different relationships including authorship
and publication. HINs are composed of multiple types of nodes and edges, defined as G(V,E,A,R),
where V is the set of vertices, E is the set of edges, A = {A1, A2, ..., An} is the set of node types, and
R = {R1, R2, ..., Rm} is the set of edge types. The type mappings ψ : V → A and ϕ : E → R, such that
ψ(v) = A1, ϕ(e) = R1. Community search over heterogeneous information networks (HIN-CS) attracted
significant attention in recent years [22, 31, 32, 40, 49, 51, 62, 89]. Various methodologies have been
proposed to identify communities in HINs. In the following, we categorize HIN-CS studies in terms of
two directions: meta-path-driven HIN-CS [22] and constraints-based HIN-CS [31].

3.1.1 Meta-path-driven HIN-CS

Fang et al. [22] propose a meta-path-based (k,P)-core model and study the community search problem
in heterogeneous graphs (CSH-Problem) based on (k,P)-core. Given a heterogeneous graph G, a
symmetric meta-path P, and an integer k, a (k,P)-core is defined as the largest subgraph Hk,P of
G such that every node v in Hk,P are P-connected with at least k P-neighbors of the same type, i.e.
∀v ∈ Vk,P , α(v,Hk,P) ≥ k. The P-neighbors of v represent nodes connected to v via an instance of P
(e.g., “Author → Paper → V enue→ Paper → Author” in an academic HIN) in H. The P-neighbors
have the same type as node v. The definition of P-degree is the number of P-neighbors of v in H,
denoted as α(v,H).
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The problem of (k,P)-core-based community search [22]. Given a heterogeneous graph G, a
query vertex q, a symmetric meta-path P, and an integer k, the (k,P)-core-based community search
problem is to output a community H, such that H contains q; H is a (k,P)-core. This problem extends
the minimum degree measure k-core to a meta-path-based (k,P)-core. The target community H has
two main characteristics. (1) For each node v of a community H, there are at least k other nodes, which
can be connected to v via instances of a particular meta-path P, within H. (2) H contains a group of
nodes with the same type of query q.

Basic (k,P)-core algorithm. A straightforward solution of (k,P)-core-based community search
problem is to transform the heterogeneous graph to a homogeneous graph via meta-path P , and perform
core decomposition to find the largest k-core subgraph. There are three main steps of basic algorithm.
First, it collects all vertices with target node type to set S. Second, it enumerates all meta-path
instances in P starting with v for each vertex v ∈ S, and adds edges between v and each of its P-
neighbors. Finally, it finds a connected k-core containing q. However, there are two weaknesses of this
straightforward solution: (1) leads to some vertices weakly engaged; (2) causes high degrees and high
clustering coefficients.

Edge/Vertex-disjoint (k,P)-core [22]. To overcome the weakness, two definitions of edge-disjoint
path and vertex-disjoint path are proposed to formulate useful subgraphs of edge/vertex-disjoint (k,P)-
cores. Edge-disjoint paths set ψ[v] is a set of edge-disjoint paths if for any two path instances p1,
p2 ∈ ψ[v], their i-th (1 ≤ v ≤ l) edges are different and (l + 1)-th nodes are different. Similarly, the
vertex-disjoint paths set ψ[v] is a set of vertex-disjoint paths if for any two path instances p1, p2 ∈ ψ[v],
their i-th (2 ≤ v ≤ l + 1) nodes are different. Thus, given a heterogeneous graph G, a symmetric
meta-path P, and an integer k, an edge/vertex-disjoint (k,P)-core is the largest subgraph Ek,P / Vk,P
of G such that every node v in Ek,P /Vk,P has at least k P-neighbors with the same type and are
P-connected, i.e. ∀v ∈ Ek,P (Vk,P), β(v,Ek,P) ≥ k / γ(v, Vk,P) ≥ k.
A lazy peeling-based algorithm and its improvement. Based on the edge-disjoint (k,P)-core, a
greedy algorithm is proposed to improve the efficiency of the basic algorithm. The lazy peeling process
contains three parts: (1) it first collects a set S of all vertices with target type; (2) then it uses a greedy
strategy to compute the edge-disjoint (k,P)-core, β(v,Ek,P), with an approximation ratio of 1

l ; (3) it
performs core decomposition by removing nodes with β(v,Ek,P) < k one by one. To further improve
efficiency, a batch peeling-based algorithm is proposed. In summary, the (k,P)-core-based community
search problem aims to find a single type of community close to the query node q by using semantic
information offered by HINs.

3.1.2 Constraint-based HIN-CS

In the following, we introduce representative HIN-CS works, driven by query constraints instead of
meta-paths.

Minimum relational community search [31]. Jian et al. [31] propose a problem called Minimum
Relational Community Search problem (MRCS-Problem) by setting relational constraints. Given a
heterogeneous graph G, a concerned label set LS , a constraint set S, and a query node q, the MRCS-
Problem is to find a community H in G, such that H contains q; H is a relational community r-com;
and |H| is minimized.

This problem allows users to design the paired relational constraints personally. Formally, the
relational constraint is defined as a triplet s =< l1, l2, k >, where l1, l2 ∈ LG and k ≥ 1. Note that each
node with label l1 must connect with at least k neighbors with label l2, where l1 and l2 can be the
same or different. Users can also define a constraint that focuses on not only node types but also edge
types, such that, s =< l1, l2, l3, k >, where node with label l1 must connected with at least k neighbors
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with label l2 and linked with edge labeled as l3. The constraint set S is a set of relational constraints
S = {s1, s2, ...st}. The set of concerned labels, LS , is defined as LS = {l| < l, l′, k >∈ S}.
MRCS exact algorithm and greedy algorithm. The key point to solve the MRCS-Problem is
how to compute the qualified connected components in graph G. A message-passing algorithm [31] is
developed to iteratively remove disqualified nodes. On the basis of this message passing algorithm, four
extension algorithms are proposed, including an exact algorithm, a greedy algorithm, a local search
approach, and a round index-based algorithm. The basic exact solution contains three main steps. It
first computes all connected qualified node components using the message passing algorithm. Then, it
finds the largest connected subgraph containing the query node. After that, it removes a group of nodes
recursively until there is no node that can be removed. For different removing groups, it outputs the
result with the minimum number of nodes. However, this method can be costly since it tries all possible
groups of nodes. By improving the efficiency, a greedy algorithm has been proposed. It changes from
trying all possible ways to get a globally minimized answer by removing the largest removable group in
each iteration.

In summary, the MRCS-Problem is to find a query-dependent small-sized community that satisfies
user-given relational constraints. The constraints can restrict both inter-layer and intra-layer relationships.
However, the answer quality is highly related to the given constraints. However, it may be hard for users
to design a set of suitable constraints.

3.1.3 Discussions

Both meta-path-based community search [22] and constraint-based community search [31] focus on
heterogeneous information networks and adopt k-core dense subgraph models, but the community
answers can be quite different. The meta-path-based (k,P)-core requires every vertex v in H has at least
k numbers of neighbors u where u and v is connected via a meta-path P . Users are required to provide
a meta-path P, and the community is required to be a (k,P)-core containing multiple of meta-paths.
On the other hand, constraint-based relational community search [31] asks users to provide multiple
pairwise constraints between pairs of vertices. For example, they can set up different k-core conditions
for different pairs of vertices, i.e., set 3-core between “paper” and “venue”, and set 2-core between “author”
and “paper”. It is more flexible to organize the relationship between different pairs of entities, but it
needs more input parameters.

In addition to the above two HIN-CS works [22][31], there are other studies of community search over
heterogeneous information networks. As shown in Table 1, several studies [32, 49, 51, 89] also employ
meta-path-based approaches and (k,P)-core model, which facilitates the identification of communities
that contain specified meta-paths critical to the analysis. Jiang et al. [32] propose the concept of
non-nested meta-path core to identify communities in star-schema HINs and do not require a meta-path
as input. [49] also supports user-defined constraints to help make the search more personalized. The
works [40, 62] utilize learning-based approaches to develop a unified representation of HINs, enabling
the discovery of flexible communities.

3.2 Community Search over Multilayer Graphs

Heterogeneous information networks mainly focus on the relationship between different types of entities,
for example,“ author write−−−→ paper

published−−−−−−→ venue”, which ignores the relationships between the same
entities. Different from HINs, multilayer graph models the vertices with the same type in the same layer,
and constructs multilayer graphs by entity types. Given a multilayer graph MG(VM , EM ,L), where
VM =

⋃l
i=1 Vi represents vertices in all l layers, EM =

⋃l
i=1{Ei ∪

⋃
i<j≤lEij} represents all inter-layer

edges and cross-layer edges, and a function of layer identification L(.) ∈ Z+. Thus, the academic graph
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can be divided into a three layer graph containing the author layer, the paper layer, and the venue layer.
Edges in the author layer represent the coauthorship between authors, edges in paper layer represent
citations, and edges between author and paper represent authorships. In the literature, community search
over multilayer graphs (MLCS) has attracted increasing attention [4, 5, 23, 46, 50, 54, 55, 67, 75], due to
its significant impact in various applications. In this section, we mainly discuss two representative works
of random walk-based community search [55] and (k, d)-core-based cross-layer community search [67] in
multilayer graphs.

3.2.1 Random-walk based MLCS

Random-walk-based multilayer community search [55]. Luo et al. [55] propose a problem called
local community detection in multiple networks, which aims to find a community in each layer of the
heterogeneous graph. Given a heterogeneous graph G = {G1, G2, ...Gn}, a set of query nodes Q, the
community search problem in heterogeneous graphs is to detect all relevant communities in each layer of
G.

RWM-based method. A model of random walk in multiple networks (RWM) [55] is proposed in the
following procedures: (1) send a random walker to each layer of the graph; (2) detect query-relevant
subnetwork relations by calculate the cosine similarity between two layer; (3) the walkers reinforce each
other by dynamically modifying their transition matrices; (4) sort nodes according to the converged
score vector; (5) for each compute the conductance of the subgraph introduced by the top l ranked
nodes (L is the number of non-zero elements in x(T )

i .) ; (6) the node set with the smallest conductance
can be considered as the detected community. However, a straightforward solution of performing RWM
suffers from the limitation of imbalanced visiting probability vectors. To tackle it, an early stopping
strategy splits the RWM model into two parts, before the error bound T , it updates both the transition
matrices and the visiting vectors; after T , it keeps the transition matrices static and only updates the
visiting probability vectors. Another is a partially updating strategy which splits the visiting probability
vector into two parts and keeps the unrelated part static.

In summary, this work of community search over multilayer graphs [55] proposes a RWM model
motivated by the random walk with restart strategy, trying to find out communities with a small
conductance at each layer.

3.2.2 Cross-layer based MLCS

Sun et al. [67] introduce a (k, d)-core model to identify communities characterized by dense inter-layer
and intra-layer connections, as well as robust connectivity among all pairs of sub-communities across
different layers. It presents three key contributions: (1) the introduction of a fully-connected and a
path-connected community model; (2) the design of a compact (k, d)-core index; and (3) the development
of several efficient algorithms for community querying.

Fully-connected multilayer community [67]. Before introducing the fully connected community, let’s
first introduce the cross-layer (k, d)-core, which is defined across two layers. Let H(Hi, Hj , E

H
ij ) ⊆MG

denote a two-layer subgraph in the multilayer graph MG, and assume that k and d are two user-specified
parameters. Given a multilayer subgraph H ⊆MG, we say that H is a full-layer connected multilayer
community if and only if for every pair of layers i, j ∈ L(H), there exists a strong cross-layer connectivity
between Gi and Gj , such that ∀i, j ∈ L(H), Hi

H←→ Hj .

Cross-layer community search [67]. Given a multilayer graph MG( VM , EM ,L), a set of query
vertices Q ⊆ VM , two positive integer parameters k, d, the problem of cross-layer community search in
multilayer graphs (MCS-Problem) is to find a connected community H ⊆MG satisfying the following
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four constraints: query-dependent personalization such that Q ⊆ V (H); Core-dense internal layers such
that ∀i ∈ L(H), Hi is a connected k-core; fully-connected cross-layers: ∀i, j ∈ L(H), two layers Hi and
Hj are connected via a (k, d)-core in H; cross-layer maximization: |L(H)| is maximized. To address this
problem, a fast search algorithm is developed using a binary search strategy of potential community’s
layer number. The (k, d)-core index-based algorithms have demonstrated efficient performance on a
large-scale multilayer graph dataset, FriendFeed (with 510,338 nodes, 20,204,534 edges, and 3 layers),
using a short response time of around ten seconds. In contrast, RWM [55] and FirmTruss have failed to
generate community results on FriendFeed.

Discussion of multilayer community search. Besides the above two studies [55][67], there are
several other multilayer graph analytics studies on community search in multilayer graphs. Several
studies [23, 46, 75] work on core decomposition of multilayer graphs, which help keep the records of dense
multilayer subgraphs for efficient community search. Another line of research investigates k-truss-based
community models and querying approaches in multilayer graphs [5, 50]. The k-core-based community
search in multilayer graphs [54, 67] explores a new formulation of cross-layer communities and fast
index construction. Furthermore, Behrouz et al. [4] leverage graph neural network (GNN) techniques to
discover communities in multilayer graphs.

4 Interactive Community Search

Communities in graphs exhibit a wide range of different topological structures and attributes, which
makes it challenging to identify exact communities relying solely on a single and static community
model. To fit with different structures of communities and enhance the accuracy of query answers,
existing community search models usually need a set of parameters to adjust the density, community size,
diameter, target attributes, or even meta-paths. However, it is difficult for users to adjust parameters to
navigate the correct search process, especially when users are not familiar with datasets and queries.
To tackle these challenges, a few studies [24][66] are devoted to the problem of interactive community
search (ICS), which allows users to refine community search answers by simply adding/deleting nodes
into/from the community answer within a given small rounds of interactions. In this section, we first
introduce the graph neural network-based interactive community search (ICS-GNN) [24]. We then
present a flexible framework of interactive community search that allows for fitting with the interaction
schema for several existing community search models [66].

4.1 Interactive Community Search via Graph Neural Network

Gao et al. [24] study the problem of interactive community search using GNN models as follows.

The k-sized maximum-GNN-score based community search [24]. The problem of k-sized
Maximum-GNN-scores community search aims to find a k-sized connected community with the maximum
GNN scores. The authors first abstract the GNN model as P = GNN(A,F,W ), where A is the adjacency
matrix, F is the feature matrix, and W is the matrix of learnable parameters. Here, P is a mapping of
probability, such that P [i] represents the probability that the i-th vertex belongs to the target community.
Given an enriched graph with GNN scores G = (V,E, F, P ), query vertex q and community size k,
where P is the community membership possibility, the kMG problem is to find the k-sized community
H with the maximum GNN scores, satisfies three constraints: (1) the query vertex q ∈ V (H) and H is
connected; (2) |V (H)| = k; and (3) the sum of GNN scores

∑
u∈V (H) P [u] is maximum. This problem is

shown to be NP-hard by reducing the Knapsack problem. The solution of GNN-based approach first
builds a suitable-sized candidate subgraph; Then, it trains the GNN model on the candidate subgraph
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guided by the query vertex and labeled positive/negative vertices. After that, it infers the probability
scores for all relevant vertices. Finally, it outputs the k-sized community with the maximum GNN scores.

Interactive community search via GNN. An interactive community search framework [24] is
proposed to allow users to interactively provide feedback during the community search process so that
the answer can be refined iteratively. The interactive process is conducted as follows: in each iteration,
users can label a new set of positive vertices and negative vertices, which are included in the training set.
The candidate subgraph for searching can also be updated based on user-provided labeled vertices. After
the retraining and inferring, the GNN score for each vertex in the candidate subgraph is updated and
produced as a refined k-sized community with the maximum GNN scores. If users are still unsatisfied
with the answer, they can further label new vertices and retrain the model. To enhance the efficiency of
the proposed ICS-GNN framework, the authors also develop a ranking-based loss function to simplify the
labeling tasks by allowing users to compare and rank the importance of two vertices, instead of labeling
them positive or negative. They also propose a greedy method based on a global view to identify the
community to tackle the scenario where query vertices are at the boundary of the community.

4.2 A Flexible Interactive Community Search Framework

Although ICS-GNN [24] tackles the interactive community search using GNN models, it is challenging to
extend it to other dense subgraphs based community models. Moreover, this method may be inefficient
due to the need to compute GNN scores at each round of interaction, which requires rerunning learning
models multiple times. To tackle these challenges, Sun et al. [66] propose a flexible framework to
generalize existing community models and handle query-oriented interactive community search, called
GICS. The techniques of GICS [66] can support different community models, e.g., attributed k-core-
based community search [19], k-core-based weighted community search [64], and also the GNN-based
community search [24].

A unified notation system to generalize existing community models. Sun et al. [66] first
summarize the representative community search models and introduce an integrated notation system to
define community models, denoted as M(G,M,O,P), where G represents graph data,M defines various
community metrics on the density, the graph size, or attributes, O contains a set of required operations,
and P is a set of input parameters. Based on the notation system M, it formulates the problem of
interactive community search as follows. Given a graph G = (V,E,A), a community model Mx(G,
M,O,P0), query vertices Q0 ∈ P0, the first iteration community search result H0, and the number of
maximum interactive round Imax ∈ Z+, the GICS problem aims to refine community H i−1 to H i in the
i-th iteration where 1 ≤ i ≤ Imax, with a sequence of actions to add/remove vertices Q± ⊆ V .

The GICS framework. The GICS framework for interactive community search [66] consists of three
main steps: personalized adding/deleting recommendations, an auto-tuning parameter mechanism, and
a fast refinement strategy. After the user chooses the specified community model Mx, the system first
implements the existing community search algorithm to get the initial community search result H0. To
enhance the efficiency of the interaction process, GICS system suggests a limited number of high-quality
adding/deleting candidate vertices for users. Users can choose to add vertices to the community or remove
vertices from the community by clicking the recommended vertices. This recommendation procedure
first computes an integrated community relevance score for candidate vertices and then outputs a group
of vertices with high community relevance and diverse location and attribute distribution. This paper
also proposes an auto-tuning parameter mechanism to automatically refine the required parameters
based on user adding/deletion actions, e.g., density metrics k for k-core and the size parameter k for
k-sized community, which can significantly affect the community search answer. Finally, the GICS
system develops a fast refinement strategy to help refine the choice of candidate subgraphs during the
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community search process, supporting partial refinement of communities.

5 Future Directions and Opportunities

In this section, we highlight a few future directions and promising opportunities for community search.

Leveraging community search for retrieval-augmented generation systems. Retrieval Aug-
mented Generation (RAG) is a promising direction to enhance the performance of large language models
(LLMs) by extracting relevant text chunks to a given query. Naturally, community search aims to find
relevant communities containing query nodes. Thus, community search has potential applications for
RAG systems with graph-structured documents. It is well-known that knowledge graphs are becoming
increasingly important for organizing and querying vast amounts of structured information. The semantic
information and complex relationships within knowledge graphs can help identify relevant subgraphs
or communities for these knowledge-graph-based RAG systems. GraphRAG [16, 27] introduces a
Leiden-based hierarchical community indexing solution, which leaves room for further exploration using
advanced community search techniques.

LLM-enhanced community search over text-attributed graphs. Attributes are used to describe
node properties, such as user interests, keywords, and check-in locations. Existing community search
studies focus on attributed graphs with simple formats of category and numerical keywords. Nowadays,
attribute information becomes richer and richer. Nodes and edges are associated with rich textual
information, reflecting their diverse properties and complex semantics, denoted by text-attributed
graphs [35]. An example of healthcare network consists of patients, doctors, diseases, and treatments,
incorporating medical records and histories to improve patient care. Thus, it is important to further
investigate community search over this complex and challenging textual graph, leveraging the strong
analytics ability of LLMs on long texts [35]. Moreover, LLM-based systems allow a user-friendly
interaction between users and systems. It suggests developing an interactive community search system to
support queries issued by natural languages without a formal formulation, which allows multiple rounds
of exploration in large-scale graphs. Such systems can further provide NLP-based interpretation to
community search results, which advances the results of community search with an explainable insight.

Developing a unified dense subgraph model to handle various community search problems.
Most existing community search models are usually proposed based on a particular subgraph pattern, e.g.,
k-core, k-truss, and quasi-clique. Thus, various community search algorithms and indexes are designed
to support a particular subgraph maintenance, which have different search strategies and updating rules
over dynamic graphs. Therefore, it is essentially important to develop a unified structure to generalize
all existing and frequently used subgraphs, e.g., k-core and k-truss. Although GICS framework [66]
gives a unified notation system for many dense subgraph-based community models, it still needs to
implement specific updating algorithms to maintain these dense subgraphs. Moreover, the corresponding
subgraph decomposition and index maintenance algorithms also need a unified solution over dynamic
graphs, where node/edge insertions/deletions can occur anywhere in graphs.
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