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Abstract

The increasing popularity of artificial intelligence and the wide adoption of machine learning has
raised new privacy and security issues. Indeed, the massive amount of data on which Al and ML rely
can include sensitive or company-confidential information. To enable the wide distribution of trained
models as a service to interested final users, as well as the adoption of external parties for training
models (e.g., to leverage the flexibility and economies of scale offered by cloud solutions), data need
to be adequately protected. Also, the correctness and completeness of computations (e.g., for running
or training models) delegated to external parties need to be guaranteed. In this paper, we consider
some privacy and computation integrity issues arising when data and machine learning models or
tasks are shared with external parties, together with possible solutions and research directions.

1 Introduction

The growing adoption of machine learning in our daily lives brings several advantages, such as better
decision making and faster problem solving. Machine learning applications rely on the availability of
massive amounts of data, together with powerful and efficient computational infrastructures and services
used to train models and support increasingly complex analytics tasks. In many scenarios, these data
can be provided by different owners, and often contain personal, sensitive, or company-confidential
information that cannot be freely shared without proper protection. It is therefore important to ensure
that both data confidentiality and privacy of data subjects (i.e., the entities to whom the data refer,
such as users or organizations) are adequately protected throughout these data-sharing and analysis
processes. Furthermore, privacy risks are not limited to data. When trained models are shared with
external parties (e.g., for testing the performance of the model), they may also leak sensitive information
about the data used for training. Although the protection of the confidentiality and privacy of data,
models, and users is extremely important, this is not sufficient to guarantee that machine learning
applications operate correctly, especially when the data sharing and preparation, model training, or
inference phase of the machine learning life cycle is delegated to external providers.

Existing solutions for protecting confidentiality when sharing training datasets with external parties
(e.g., [6, 7]) are based on cryptographic techniques such as homomorphic encryption that, together with
secure multi-party computation, can be used to protect the dataset while used to train a machine learning
model. More recent solutions combine cryptographic techniques with, for example, differential privacy,
hardware-based trusted execution environments, or secure aggregation protocols used in federated
learning (e.g., [12, 27]). Alternative solutions aim to avoid sharing real data by releasing synthetic data,
that is, artificially generated data that preserve the statistical properties of the original data (e.g., [3]).
While promising, these solutions based on synthetic data do not guarantee full protection (e.g., [2]).
Training data can also be subject to attacks aimed at degrading the resulting model or altering its
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behavior. One of the well-known threats is data poisoning that happens when an adversary intentionally
injects, modifies, or manipulates data in the training dataset. Existing solutions aim at detecting and
removing poisoning samples or to make learning algorithms more robust (e.g., [5, 25]). The privacy of
data subjects represented in training datasets released to third parties is instead protected through the
application of anonymization techniques such as k-anonymity [23] or differential privacy [14] and their
variations. Although these techniques help to preserve privacy, they often reduce the accuracy of the
resulting machine learning models (e.g., [24]). One of the main challenges is therefore to balance privacy
and utility with respect to the analytical task for which the data will be used (e.g., |1, 9, 17]). Public or
outsourced models are instead vulnerable to different types of inference attacks, such as membership
inference, attribute inference, model inversion, and property inferences as well as model extraction
attacks, which allow adversaries to reconstruct an equivalent model (i.e., a model that provides nearly the
same results as the original model) and exploit it for further privacy violations (e.g., [22]). Periodic model
updates (e.g., incremental learning) can also disclose changes in the underlying data such as the addition
or removal of data subjects in unlearning settings. In addition to protecting the privacy of data subjects
in the training dataset, also the sensitive information that users provide when using the model need
to be protected. Indeed, a privacy-friendly model should not require users to disclose (either releasing
directly or exposing indirectly) sensitive information. All these privacy and confidentiality issues become
particularly significant in emerging collaborative learning scenarios (e.g., federated learning), where data
are not centralized but remain distributed among multiple clients (e.g., [1, 15, 26]). In this context, the
clients exchange only model updates (e.g., the gradients or parameter modifications computed during
the training performed by the participants). These updates, however, can be exploited for inferring, for
example, information about the underlying data (e.g., [12, 27]).

While one may assume an overall proper behavior, the use of external providers in the machine
learning life cycle is clearly vulnerable to possible misbehavior by them, which can either be sloppy in
their operation, or - even worse - intentionally misbehave, and therefore opportunistic in their responses.
Since users as well as organizations are increasing their dependency on data and on the results of
machine learning and data analytics tasks for their daily operations, data and computation integrity
is paramount. Guaranteeing integrity means that techniques should be adopted to discover possible
misbehavior that tampered with data or results of computations. When training datasets are stored and
managed by external providers, it is necessary to ensure that no unauthorized modification occur (e.g.,
data poisoning). When prediction computations are outsourced, users should be able to verify that the
results returned by the external provider are both correct and complete. Incorrect or incomplete results
may arise from laziness, misconfiguration, or malicious tampering. Ensuring integrity therefore requires
solutions that allow data owners and users to assess the integrity of every computation performed by
the service provider (e.g., [10]).

To concretely analyze and discuss possible solutions to the confidentiality, privacy, and integrity
issues discussed above, we focus on the classification problem since it is at the basis of a wide range of
real-world applications (e.g., medical diagnosis, fraud and anomaly detection in financial systems, and
spam filtering, just to name a few). Data classification is the process of training a machine learning
model that is used for predicting the correct label of a given input data. The model learns patterns from
a labeled training dataset (i.e., a dataset where each piece of information is associated with the correct
label), and then uses this model to make predictions on new, unseen data. In the remainder of this paper,
we address some data privacy, confidentiality, and integrity issues that can arise in the machine learning
life cycle. Specifically, at data sharing and preparation time, we focus on the problem of protecting the
privacy of data subjects while preserving the utility of the data for the downstream classification task
(Section 2). We describe TA DA, a target-aware data anonymization technique that allows data owners
to contribute with their data to a classification task, anonymizing their data while maintaining utility
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Gender | Age | Smoker Disease Risk
t1 F 65 former | emphysema | yes
to M 54 never cirrhosis no
ts F 61 current bronchitis yes
ta M 72 never cirrhosis no
ts F 35 former arthritis no
te M 68 former bronchitis yes
tr M 64 never diabetes no
ts F 15 never asthma no
tg F 39 never osteoporosis | no
t10 M 29 never celiac no
t11 M 33 never arthritis no
t12 F 54 current bronchitis yes
t13] F 75 former bronchitis yes

Figure 1: An example of dataset including information about a sample of people

for the downstream task. At the model training time, we focus on the problem of minimizing leakage
of sensitive information from the training data used for building a model made publicly accessible as
well as from data of users interacting with the model. We describe PriSM, a solution for generating a
privacy-friendly classifier that requires neither sensitive information nor information correlated with
it for training a high accuracy classifier (Section 3). Finally, we address the problem of ensuring data
and computation integrity by enabling the detection of incorrect or incomplete results returned by
external providers (Section 4). We describe sentinels and twins that span all three phases of the machine
learning data life cycle. In the following, we assume that the training dataset is a relational table R
characterized by a set {a1,...,an,s,} of attributes, where s is sensitive and [ is the label attribute.
Figure 1 illustrates a running example showing a dataset collecting information about chronic disease
and smoking habits of a sample of people. In particular, the relation keeps track, for each subject, of
their gender (attribute Gender), age (attribute Age), smoking habits (attribute Smoker with values
current, former, or never), chronic disease (attribute Disease), and risk of suffering from a Chronic
Obstructive Pulmonary Disease (binary attribute Risk). Attribute Disease is considered sensitive,
while Risk is the label attribute.

2 Target-aware anonymization

When data owners contribute their datasets to collaborative data analytics and machine learning tasks
for training more comprehensive and accurate models, their datasets could be revealed to both the
party in charge of the training phase and to other contributors. To provide protection to such datasets,
solutions based on noise injection (e.g., differential privacy [11]) or on generalization and suppression
(e.g., k-anonymity [23]) can be used. While noise injection may significantly distort the data and can
compromise the quality of the downstream analysis, generalization preserves the truthfulness of the
data. However, generalization needs to be applied with care as it inevitably causes information loss,
which can reduce the accuracy of downstream analytical task, especially when applied on attributes that
are good predictors of the classification label. Based on this observation, TA DA (Target-Aware Data
Anonymization) [4, 9] relies on generalization for protecting (i.e., anonymizing with k-anonymity [23]
and (-diversity [19]) data, while preserving as much as possible the utility of the protected data for the
downstream collaborative analytics.

Anonymization with k-anonymity and ¢-diversity operates by generalizing the values of the quasi-
identifier attributes (i.e., attributes that, in combination, could be used to reconstruct the identity of
data subjects through linking with external data sources) in the training dataset R in such a way that

35



E— e _
e N EE— —
| l—}
target-aware grop . .
partitioning nonymizatiomr > —
I | .
Dataset e Anonymized dataset

TA DA

Figure 2: Overall working of TA DA

each combination of generalized quasi-identifier values appears at least k£ times in the released dataset,
and each group of tuples sharing the same generalized quasi-identifier contains at least £ well-represented
(e.g., distinct) values for the sensitive attribute. Given a dataset R and privacy parameters k and ¢,
different generalization strategies can enforce k-anonymity and ¢-diversity. Among all the solutions
guaranteeing k-anonymity and ¢-diversity, TA DA aims at computing the one that preserves as much
as possible those attributes on which the label attribute depend more, favoring generalization on the
other attributes of the quasi-identifier. For instance, with reference to the example in Figure 1 where
the quasi-identifier includes attributes Gender and Age, TA DA would prefer a solution generalizing
attribute Gender if Risk highly depends on Age. To achieve this goal, TA DA operates in two steps
(see Figure 2): target-aware partitioning, which partitions the tuples in R in groups according to the
downstream classification task while satisfying k-anonymity and ¢-diversity; and group anonymization,
which anonymizes each partition generated by the previous step.

Target-aware partitioning. The goal of this phase is to partition tuples in the training dataset in such
a way that each group includes tuples with similar values for the attributes in the quasi-identifier that are
the best predictors of the label attribute (i.e., the attributes on which the label attribute value depends
more). The intuition is that keeping in the same group tuples with similar values for an attribute limits
the amount of generalization needed on it for achieving k-anonymity. The problem is that the best
predictors of the label attribute are not known and must be learned from the dataset itself. TA DA
learns predictors and partitions the dataset according to their values by building a (k, ¢)-compliant
decision tree for the label attribute. A (k, £)-compliant decision tree is a decision tree [16] having leaf
nodes including at least k tuples with at least ¢ different values for the sensitive attribute. TA DA
builds a (k, £)-compliant decision tree considering only quasi-identifying attributes for split operations.
Other attributes, including the sensitive attribute are not considered. The sensitive attribute is not
considered because there is the need to ensure diversity of its values in each generalized group. Other
attributes are not affected by generalization, and therefore the anonymization process has no impact
on them. Starting from the original training dataset, which corresponds to the root node, TA DA
recursively splits the dataset according to the values of a quasi-identifier attribute, generating children
nodes. The split attribute, and its values used for partitioning tuples, is selected to maximize the quality
of the decision tree (e.g., maximize information gain to have uniform labels in the leaf nodes), provided
the resulting nodes guarantee that the tree is (k, £)-compliant. The recursive split terminates when a
stopping condition is satisfied (e.g., uniform values for the label in leaf nodes) or when any split would
result in a decision tree that is not (k,¢)-compliant. By construction, the split attributes are those on
which the label attribute depends more and each group contains tuples with similar values for these
attributes, since the tuples in a node satisfy the same decision rule (i.e., the same set of conditions
defined over the split attributes along the path from the root to the node). Figure 3 illustrates an
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Gender | Age | Smoker Disease Risk
t1 F 65 former emphysema yes
to M 54 never cirrhosis no
t3 F 61 current bronchitis yes
ta M 72 never cirrhosis no
ts F 35 former arthritis no
te M 68 former bronchitis yes
tr7 M 64 never diabetes no
tg F 15 never ashma no
tg F 39 never osteoporosis no
t10 M 29 never celiac no
t11 M 33 never arthritis no
t12 F 54 current bronchitis yes
t13 F 75 former bronchitis yes
/ - = \
Gender | Age | Smoker Disease Risk Gender | Age | Smoker Disease Risk
ts F 35 former arthritis no 11 F 65 former emphysema yes
ts F 15 never ashma no to M 54 never cirrhosis no
tg F 39 never osteoporosis no ts F 61 current bronchitis yes
t10 M 29 never celiac no tq M 72 never cirrhosis no
t11 M 33 never arthritis no te M 68 former bronchitis yes
tr M 64 never diabetes no
t1o F 54 current bronchitis yes
t13 F 75 former bronchitis yes
/\
/ F M \>
Gender | Age | Smoker Disease Risk Gender | Age | Smoker Disease Risk
t1 F 65 former emphysema yes to M 54 never cirrhosis no
t3 F 61 current bronchitis yes tq M 72 never cirrhosis no
ti2 F 54 current bronchitis yes te M 68 former bronchitis yes
ti13 F 75 former bronchitis yes tr M 64 never diabetes no

Figure 3: An example of (2,2)-compliant decision tree built over the relation in Figure 1

example of (2,2)-compliant decision tree built over the relation in Figure 1 and considering attributes
Gender and Age in the quasi-identifier. The root node corresponds to the whole dataset that is split
over attribute Age on condition < 40 (> 40, resp.), obtaining two partitions. For the first partition of
tuples, representing patients with Age< 40, the process stops since all the tuples in the group have the
same value for label attribute Risk. For the second, representing patients with age Age> 40, there
is a further split on attribute Gender. The partitioning process then stops, since there are no other
attributes in the quasi-identifier that could be used for further splitting the two leaf nodes. In the figure,
attributes with gray values are those that cannot be used for splitting, and the attribute with a light
blue background (gray in b/w printout) is, at each level, the one on which a further split is performed.
The resulting decision tree is (2, 2)-compliant since each leaf node includes at least two tuples and has
at least two different values for the sensitive attribute Disease.

Group anonymization. The goal of this phase is to independently anonymize each group of tuples
corresponding to the leaf nodes of the (k, ¢)-compliant decision tree computed in the previous phase.
Intuitively, by generalizing each leaf node in a (k, £)-compliant decision tree, the resulting dataset would
be k-anonymous and /-diverse. While any anonymization algorithm can be used for this second phase,
TA DA relies on Mondrian [18]. Mondrian has the advantage of leveraging a multi-dimensional spatial
representation of the dataset similarly to the approach of construction of the (k, £)-compliant decision
tree. Each tuple is modeled as a point in a multi-dimensional space having a dimension for each attribute
in the quasi-identifier. Mondrian recursively splits the multi-dimensional space in two partitions, in
such a way that each partition includes at least k tuples with at least ¢ different values for the sensitive
attribute. This process terminates when any further split would generate subspaces with less than &
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GenderAgeSmoker| Disease Risk Gender Gender| Age Smoker| Disease |Risk
ts F 35 | former | arthritis | no F _ ts F [15-39]| former | arthritis | no
tg F 15 | never asthma no ts F [15-39]| never ashma no
tg F 39 | never |osteoporosis| no M to F [15-39]| never |osteoporosis| no
tig M 29 | never celiac no t1 M [29-33]| never celiac no
t11l M 33 | never arthritis no t11 M [29-33]| never arthritis no

15 29 33 35 39 Age
(a) (b) (c)

Gender|Age|Smoker| Disease |Risk Gender Gender| Age |Smoker| Disease |Risk
to M 54 | never cirrhosis no F to
ty M 72 | never cirrhosis no tr

ty t o
te M 68 | former | bronchitis | yes | M| @ d - ty M  |[68-72]| never cirrhosis no
t7 M 64 | never diabetes no te M  |[68-72|| former | bronchitis | yes

51 64 68 72 Age
(d) (e) ()

Figure 4: Anonymization of the first (a-c) and third (d-f) leaf nodes of the (2,2)-compliant decision tree
shown in Figure 3

Gender | Age | Smoker Disease Risk
t1 F [54-75] | former | emphysema | yes
ts F [54-75] | current bronchitis yes
t12 F [54-75] | current bronchitis yes
t13 F [54-75] | former bronchitis yes
to
t7
ty M [68-72] | never cirrhosis no
te M [68-72] | former bronchitis yes
ts F [15-39] former arthritis no
tg F [15-39] | never ashma no
tg F [15-39] | never osteoporosis | no
t1o0 M [29-33] | never celiac no
t11 M [29-33] never arthritis no

Figure 5: An example of (2,2)-anonymous version of the relation in Figure 1

tuples or less than ¢ different values for the sensitive attribute. For all the tuples in each sub-space,
the values of the attributes in the quasi-identifier are generalized to the same combination of values,
thus guaranteeing that all the generalized tuples in the subspace are indistinguishable according to
the quasi-identifier. The anonymized version of the dataset R is then obtained through the union of
the anonymized groups of tuples corresponding to the leaves of the (k,[)-compliant decision tree. For
instance, with reference to the (2,2)-compliant decision tree in Figure 3, the first leaf node includes five
tuples and Mondrian performs a split over attribute Gender producing two groups on which attribute
Age is then generalized. Similarly, for the third leaf node, Mondrian performs a split on attribute
Age, producing two groups of tuples, in which attribute Age is then generalized. For the second
leaf, Mondrian cannot perform a split on the attribute Age (which is the only attribute with different
values for the tuples in the group), since the result would violate ¢-diversity. Figure 4 illustrates the
tuples in the first and third leaf nodes of the tree, their spatial representation, and the corresponding
(2,2)-anonymous version. Figure 5 illustrates the resulting generalized table after the partitioning and
the group anonymization described.

Summary and other issues. Combining target-aware partitioning with group anonymization, TA DA
enforces anonymization taking into consideration the downstream classification task. Indeed, TA DA
identifies and limits the amount of generalization on quasi-identifier attributes on which the label

38



Op = =F =%

correlations training . \
i PriSM mo&l\\

training dataset P r|S M

H users
trusted environment | external environment

Figure 6: Overall working of PriSM

attribute depends more, thus producing a generalized table that satisfies k-anonymity and ¢-diversity
and that also preserves utility for data classification. Hence, a classifier trained over data anonymized
using TA DA can provide higher accuracy compared to a classifier trained over data anonymized with a
classical (non target-aware) anonymization algorithm, as also demonstrated by the experimental analysis
in [1]. Note that, besides classification, TA DA can be used for clustering (a non-supervised learning
task [21]) as downstream analytics. To this purpose, the target-aware partitioning phase needs to be
revised to group tuples according to the same strategy adopted by clustering (e.g., minimize intra-cluster
distance or similarity), while at the same time guaranteeing k-anonymity and ¢-diversity. Besides the
consideration of different downstream analytics, TA DA could be extended to consider different privacy
definitions, like differential privacy, with the goal of limiting noise and driving its injection based on the
downstream machine learning task.

3 Privacy-friendly training

Allowing users (beyond the data or model owners) to rely on machine learning models trained using
large and valuable data collections represents a clear advantage, especially for those who would not
have the resources for collecting data and/or training models. However, this increased accessibility to
machine learning models also increases the risk of exposing sensitive data in the training dataset. As
a matter of fact, even if the training dataset is not released, its content might partially be exposed
if the model is publicly released, or even through its simple use (e.g., observing the behavior of the
model and its output). To address this challenge, we illustrate PriSM (Privacy-friendly Support vector
Machine) [3], which aims at building a privacy-preserving classifier that guarantees protection of the
sensitive attributes in the training dataset. For enabling final users to take advantage of machine learning
models, while protecting the data used for training, PriSM removes from the training dataset not only
sensitive attributes but also those (combination of) attributes that could indirectly expose them (e.g.,
through inferences). This strategy has a twofold advantage as it protects the sensitive information in the
training dataset as well as the privacy of the users, who would not need to disclose sensitive information
for obtaining predictions from the model. Intuitively, if an attribute is not considered in training, it will
not be used (and therefore asked) for prediction. Given attributes (or sets thereof) that are considered
sensitive, PriSM operates in two steps (Figure 6): it first identifies (sets of) other attributes that could
leak the sensitive attribute values, and then trains the classifier in such a way to protect the sensitive
attribute while limiting the impact on the accuracy of the model.

Sensitive correlation discovery. The goal of the first phase is to identify sets of attributes that could

39



leak the values of the sensitive attribute. A sensitive correlation is a set X of non-label attributes (i.e.,
X C R\ {i}, with [ the label attribute) that can be used to predict the sensitive attribute € R (i.e.,
the values of s can be inferred from the values of the attributes in X and knowing X could lead to
knowledge also of s). For instance, in the dataset in Figure 1, Age and Smoker can be used to infer (or
reduce the uncertainty about) sensitive attribute Disease. Intuitively, a correlation between a set X
of attributes and a sensitive attribute can be assessed by training a classifier that uses the sensitive
attribute as target. A set X is a sensitive correlation if the classifier achieves a prediction accuracy for s
higher than a predefined threshold. Since this approach is impractical in real-world scenarios, PriSM
uses a correlation coefficient as a proxy for such evaluation. If the coefficient is greater than a given
threshold, the correlation is considered sensitive and must be protected. Aimed at limiting information
loss and at maximizing classification precision, PriSM distinguishes critical values from non-critical
values in the domain of the sensitive attribute (e.g., a critical value for the attribute Disease could be
emphysema, while a non-critical one could be flu), and considers sensitive only those correlations that
can be exploited to infer critical values. As a matter of fact, not all values of the sensitive attribute are
critical, and focusing only on the critical ones allows PriSM to be more precise in identifying sensitive
correlations, excluding from consideration those correlations that are not considered sensitive, and hence
possibly improve accuracy in classification. PriSM verifies the ability to leverage non-sensitive attributes
to predict each critical value individually (assuming each value to represent a different class) as well as
the set of all critical values together (assuming a binary classifier distinguishing critical from non-critical
values), to better capture different sensitive correlations. Indeed, correlations discovered considering each
critical value singularly taken may not be discovered when the critical values are considered together
and vice versa. To identify attribute sets that could leak critical values of the sensitive attribute,
PriSM leverages the natural monotonicity of sensitive correlations. If a subset X of attributes leaks
the sensitive attribute, then any superset of X should be excluded from training, as it could expose
the sensitive attribute. PriSM therefore examines subsets of non-sensitive (and non-label) attributes in
R ordered by increasing cardinality, omitting any superset of already identified sensitive correlations.
As an example, consider the dataset in Figure 1. PriSM first evaluates the correlation between each
single attribute and the sensitive attribute Disease. Suppose that Smoker permits to infer critical
values of Disease, while Age and Gender do not. In the second iteration, PriSM then checks only the
correlation between the pair of attributes Age and Gender since all pairs including Smoker, although
sensitive, are implicitly represented by the singleton sensitive correlation involving Smoker.

Classifier training. The goal of this second phase is to train a classifier that excludes from training the
sensitive attribute as well as any sensitive correlation that could leak its critical values, while maximizing
the predictive accuracy of the model. To this purpose, PriSM selects a subset of attributes in R to be
used for training while ensuring that, for each sensitive correlation, at least one attribute involved in that
correlation is excluded. PriSM extends classical Support Vector Machine (SVM) classifier, proposing an
approach that aims at minimizing misclassification while excluding the sensitive attribute and at least
one attribute from each sensitive correlation identified in the first phase. In addition, PriSM follows
a parsimony principle, aimed at using at most a predefined number of attributes as predictors. This
constraint has two advantages: it reduces the disclosure of unnecessary attributes and improves the
efficiency of the training process.

Summary and other issues. Excluding the sensitive attribute and sensitive correlations from training,
PriSM provides a privacy-preserving classifier able to protect the privacy of data subjects represented
in the training dataset, as well as final users who do not need to release their potentially sensitive
information for obtaining a prediction. While imposing constraints on the attributes to be used for
training, PriSM maintains high accuracy in predicting the correct value for the label attribute target
of the classification task, as demonstrated by experimental results on both real-world and synthetic
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datasets [3]. Besides maintaining high accuracy in classification, PriSM is also characterized by a limited
performance overhead in training a privacy-preserving classifier compared to a traditional classifier. It is
interesting to note that, although PriSM has been specifically designed to define privacy-preserving SVM
classifiers, the identification of sensitive correlations is independent of the underlying classifier. The first
phase of the approach identifies sensitive correlations analyzing the dataset, independently from the
specific classifier for which such dataset will be used. The first phase of the approach can then be used
in combination with any classification model (e.g., non-linear or non-binary classifiers), as well as with
any other machine learning model. The working of the classification/machine learning approach then
needs to be revised for excluding from training the sensitive attribute as well as sensitive correlation
maintaining, at the same time, high accuracy of prediction results.

4 Probabilistic integrity controls

Delegating the training or deployment of a machine learning model to an external party (e.g., a
computational provider or a set of workers), for cost efficiency or to enable access to a wider set of
final users, introduces potential risks to the correctness and completeness of the resulting computations.
Indeed, workers may be lazy or malicious and partially or entirely omit the computation, returning
an empty or randomly generated result. Lazy workers omit computations for economic reasons, with
the goal of saving on computational resources elaborating a subset of the tuples in the input dataset
while being payed for the elaboration of the whole dataset. Malicious workers instead intentionally
misbehave, partially omitting the computation or returning incorrect result on purpose (e.g., to influence
decision making processes). Integrity verification techniques verify the correctness, completeness, and
freshness of computation results. Correctness refers to the verification that the computation has been
executed in accordance with the algorithm defined by the data owner. Completeness ensures that the
computation has been executed over the entire dataset, with no tuples omitted. Freshness consists of
verifying that the computation has been performed over the most recent version of the dataset. Integrity
verification techniques fall into two main categories: deterministic approaches, providing integrity
guarantees with full confidence, and probabilistic approaches, providing such guarantees with a certain
degree of confidence [11].

Deterministic techniques associate each computation result with a Verification Object (VO), which
enables the recipient to verify the integrity of the returned result. The VO is constructed using an
authenticated data structure (e.g., a Merkle hash tree or a skip list [13, 20]) built by the data owner
over the dataset. The recipient of a computation then uses the VO, possibly together with information
provided by the data owner, to verify the integrity of the result. Deterministic techniques provide full
confidence in the integrity of computation results defined over the attribute(s) on which the authenticated
data structure is built, but they do not offer guarantees for computations involving other attributes.

Probabilistic techniques provide probabilistic integrity guarantees, meaning that they provide, with
a probabilistic degree of confidence, guarantee of a computation result to satisfy integrity property when
passing integrity checks. These techniques are typically based on the injection of control tuples into the
dataset. Their main advantage with respect to deterministic techniques is their broader applicability, as
they are not restricted to computations defined over specific attributes. However, the integrity guarantee
remains probabilistic because an integrity violation can be detected only if it affects the injected control
tuples.

Probabilistic techniques are based on the injection of fake tuples (sentinels) with known results, or
on the replication of a subset of the tuples (twins) in the dataset. A sentinel is a tuple generated by
the client with known computation result: a result different from the expected one signals an integrity
violation. Sentinels should be indistinguishable from genuine tuples, to prevent workers from selectively
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Figure 7: Sentinels and twins for integrity verification

processing them while omitting non-sentinel tuples. A twin is a tuple assigned to multiple workers:
inconsistency in the results of twins signals an integrity violation. Twins are allocated to different
workers to prevent them from detecting control tuples and selectively omitting their processing, while
returning a coordinated result, to bypass integrity verification checks.

To assess the effectiveness of the combined adoption of sentinels and twins, several aspects must
be investigated: How should sentinels be distributed among classes? Is it preferable to employ more
twin pairs or more replicas of the same job? How many sentinels and twins are required to achieve
a given integrity guarantee? In the following, we provide an answer to these questions, based on the
analysis in [10]. Figure 7 illustrates the considered scenario, characterized by a client distributing
classification jobs (i.e., the computation of the class associated with each tuple in the dataset) to a set of
workers. In the figure, control jobs are circled, with twin pairs characterized by the same symbol. When
omitting a classification job, a worker can return a random result (i.e., a randomly extracted a class), or
opportunistically select the class that maximizes the probability of the omission to go undetected. In the
following, we will refer to a worker omitting jobs as a lazy worker and, taking a safe approach, assume
that lazy workers return an opportunistic answer for omitted jobs. We do not distinguish between lazy
and malicious workers as the impact on integrity guarantees provided by sentinels and twins is the same
for any omission, independently from the reason why the classification job has been omitted.

Distribution of sentinels in classes. To maximize the effectiveness of sentinels, it is important to
properly tune their distribution in classes and their allocation to workers. The client has full control over
how sentinels are distributed in the classes, since these jobs are generated ad hoc. Although the client
may choose to take the distribution of the original dataset into account when distributing sentinels in
classes, their effectiveness is maximized when they are uniformly distributed, that is, when injecting the
same number of sentinels in each class. Otherwise, a lazy worker could exploit knowledge of the input
data distribution in its opportunistic behavior. If sentinels are distributed according to genuine data
distribution, by returning the most frequent class for each omitted classification job a lazy worker would
correctly guess the sentinel’s expected class for a high percentage (frequency of the most frequent class)
of sentinels. Consider, as an example, a data distribution following Zipf’s law with a = 1 (Figure 8(a)),
the injection of sentinels according to the same distribution as the data would result in 48% of them
with label ¢; (see Figure 8(b), reporting sentinels added to each class on top of the corresponding bar).
A lazy worker returning ¢y as a default value for omitted jobs would correctly guess almost half of the
sentinels. Similarly, if the client distributes sentinels according to the normalized inverse of the input
distribution, a lazy worker could simply return the least frequent class (D in the above example, see
Figure 8(c)) for every omitted job, again correctly guessing the correct result of a high percentage of
sentinels (48% in the example above). In contrast, when sentinels are uniformly distributed, lazy workers
cannot leverage any knowledge of class frequencies to reduce the risk of the client detecting omissions.
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Figure 9: Probability that omissions go undetected using only twins and varying the number of twin
pairs and the number of replicas (a), using only twins and varying the percentage of omissions (b), using
sentinels and twins varying the frequency of the most frequent class (c)

With reference to the example above, a uniform distribution would result in distributing 25% of the
sentinels in each class (Figure 8(d)), with therefore 25% probability for the lazy worker of correctly
guessing omitted sentinels, independently from the data distribution.

Twin pairs vs replicas. Each job can be replicated multiple times, with each replica allocated to a
different worker. Considering a fixed budget that the client can spend for integrity verification, it is
worth noting that managing twins in pairs is substantially more effective, in terms of probability of
detecting omission, than producing many replicas of the same classification job. In other words, it is
preferable to generate a single additional copy for a larger number of different classification jobs rather
than replicating one job many times. This is mainly due to the fact that the client cannot control the
distribution of twins into classes, as jobs to be twinned are randomly extracted from the input dataset.
Twins are naturally distributed according to the same distribution as the input dataset. Assuming lazy
workers to return, for omitted jobs, the most frequent class (which minimizes classification error), the
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probability of a lazy worker of correctly guessing all the replicas of a classification job is the probability
of such a class. Therefore, investing all the budget replicating a single job is less effective than replicating
different jobs. Indeed, especially if the original data distribution is very unbalanced, the probability for
lazy workers of correctly guessing omitted replicas is very high. This behavior is confirmed in Figure
9(a), which reports the probability that an omission (50 omitted jobs by 49 workers out of 100 lazy
workers) goes undetected as a function of either the number of distinct replicated jobs (continuous blue
curve with triangles) or the number of replicas of a single job (dashed orange curve with circles). As
visible from the figure, the probability of undetected omissions rapidly approaches zero as the number of
replicated jobs increases, whereas it remains significantly higher (never going below the frequency of the
most frequent class) when increasing the number of replicas for a single replicated job.

Sentinels and twins balance. Given a budget (in terms of additional jobs) for integrity verification,
it is necessary to balance the adoption of sentinels and twins aiming at maximizing the probability of
detecting omissions by workers. While in general twins are roughly twice as effective as sentinels (with
one additional job, the client controls the behavior or two workers), a few sentinels are necessary to
avoid extreme omissions to go undetected. As a matter of fact, the effectiveness of twins decreases
in case of extreme omissions. Intuitively, if both the workers omitting the two replicas of a same job
return the most frequent class, the omission goes undetected (the results are coherent, even if wrong).
Then, if a large majority of workers omit their jobs, the probability of passing twins control is high,
even when injecting a large number of twins. Figure 9(b) illustrates the probability of an omission
to go undetected varying the percentage of omitted jobs, assuming to twin 5% of the jobs and that
all workers are lazy. As visible from the figure, the probability quickly decreases when the percentage
of omissions becomes non negligible, but it increases when the percentage of omissions becomes close
to 1. Therefore, a few sentinels are always necessary to prevent extreme omissions to go undetected.
The preference between the adoption of sentinels only or twins (with a few sentinels), based on their
effectiveness, depends on the distribution in classes of the input dataset. More specifically, sentinels are
preferred if Pae > 0.5 (14 ¢), with Py,4, the probability of the most frequent class and ¢ the number
of classes. If the data distribution is highly unbalanced, sentinels are more effective as the most effective
strategy for the lazy worker (i.e., return the most frequent class for omitted jobs) implies a correct guess
of the job result. Note that this threshold provides a nice and easy to use indication for the client. Once
defined which between twins and sentinels is better to use, the client can size the number of control
jobs based on either the client’s budget or the threshold of probability of omissions going undetected.
Figure 9(c) illustrates the probability of an omission to go undetected when using only sentinels (dashed
blue line with bullets) and when using only twins (continuous pink line with triangles), varying the
probability P, of the most frequent class, assuming 10 workers, 4 of which are lazy and considering
a probability of omitting jobs of 20%. As visible from the figure, the probability of omissions to go
undetected is lower when using twins if P4, is small, it is lower when using sentinels when P, grows.

Summary and other issues. While the results illustrated above permit to reason about the distribution
of sentinels and twins among workers to verify their behavior, they are based on the assumption that (lazy)
workers do not collude to maximize their probability of going undetected when omitting classification
jobs. Colluding workers can indeed identify twin pairs assigned to them and hence return a coherent
result, thus passing twin integrity check. In scenarios where workers can collude, twins need to be
distributed in such a way to minimize the probability that a job and its replica are both allocated
to colluding workers. Alternatively, twin jobs should be generated in such a way to make twin pairs
unrecognizable as such. We also note that sentinels and twins have been primarily designed to verify
precise computations (i.e., deterministic jobs, like the run of an algorithm), while real world scenarios
need to account for computations characterized by an acceptable (limited) amount of errors.
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5 Conclusions

We discussed some privacy and integrity issues that arise when external, potentially untrusted, parties
are involved in machine learning tasks (e.g., for training or deploying a machine learning model). In
fact, when releasing data to external parties for training models or releasing models for external use, it
is crucial to maintain confidentiality of potentially sensitive or company-confidential information and
to protect the privacy of the data subjects represented in the dataset or of the users interacting with
the deployed model. Furthermore, if the party responsible for training or executing the model behaves
lazily or maliciously, the resulting computation may be incomplete or incorrect, with potentially severe
integrity issues. To address these concerns, we discussed solutions for constructing privacy-preserving
machine learning models that preserve high utility. In addition, we presented mechanisms for verifying
the correctness and completeness of results returned by potentially untrusted parties. The solutions
discussed provide a foundation for designing privacy-aware and integrity-preserving machine learning
techniques in (distributed) environments.
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