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Abstract

We revisit benchmarks for differentially private image classification. We suggest a comprehensive
set of benchmarks, allowing researchers to evaluate techniques for differentially private machine
learning in a variety of settings, including with and without additional data, in convex settings,
and on a variety of qualitatively different datasets. We further test established techniques on these
benchmarks in order to see which ideas remain effective in different settings. Finally, we create a
publicly available leader board for the community to track progress in differentially private machine
learning.

1 Introduction

Machine learning (ML) models have been repeatedly demonstrated to leak sensitive information pertaining
to their training data. These issues manifest through a number of different types of attacks, including
membership inference [31, 56], model inversion [26], and even training data extraction [13, 14, 57]. This
can be problematic if the training data contains privacy-sensitive information belonging to people. To
alleviate such concerns, a popular solution is differential privacy (DP) [23]. DP is a rigorous notion of
individual data privacy, which can be used to mask the presence or absence of any single training data
point when observing a trained model. In particular, training a model with DP provably prevents all
the aforementioned attacks.

The past decade has seen significant effort and success in training ML models with DP, including image
classifiers [1, 18, 48, 62], large language models [2, 44, 69], and other generative models [6, 8, 12, 20, 29, 67].
However, in a recent position paper, Tramèr, Kamath, and Carlini critique a number of trends in DP
ML [63]. Most pertinent to our work, they question whether benchmarks used in DP ML are truly
measuring progress in the field, specifically in the context of DP image classification, which will be our
focus. The most common benchmark datasets used in DP image classification include MNIST [43],
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CIFAR-10 [41], and ImageNet [19]. While significant progress has been made on each, TKC question
whether this progress generalizes to privacy-sensitive settings where DP may be deployed. For example,
CIFAR-10 and ImageNet are both composed primarily of natural images of everyday objects. While
these datasets indeed have some privacy concerns [9], it is less clear whether they resemble domains
where DP is of high practical concern, such as, e.g., medical images. Since, informally speaking, medical
images appear to qualitatively differ from those in the aforementioned datasets, it is unclear whether
techniques previously established to be effective remain so in these settings. This question is even more
pronounced when models are pre-trained on public data (i.e., supplementary data which is not subject
to any privacy constraints), a popular trend in private ML. In such settings, the chosen “public” datasets
are often visually similar to the private ones – as a representative example, [18] treat ImageNet as public
and privately fine-tune on CIFAR-10. On the other hand, for domains such as medical images, private
images may be specialized and ill-represented in public pre-training datasets. Finally, further muddying
the waters is the fact that results on these benchmark datasets are often reported for incomparable
settings, in particular, with vastly differing public pre-training datasets. Overall, these issues make it
difficult to isolate which ideas and techniques are truly effective in privacy-critical settings.

Our contributions are as follows:

• We propose standardized benchmark datasets and evaluation settings to measure progress in DP
image classification, with a particular focus on privacy-sensitive domains;

• We release a public leaderboard for DP ML, for the community to track improvements on these
benchmarks;

• We evaluate previously established techniques for DP image classification across a variety of
settings to see which are and are not broadly effective.

2 Preliminaries

We recall the celebrated notion of differential privacy.

Definition 1 ([22, 23]) An algorithm M : X n → Y is (ε, δ)-differentially private if, for all neighboring
datasets (i.e., datasets that differ in exactly one entry) X and X ′ and all events S ⊆ Y, we have that
Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ.

DP is a quantitative definition of individual data privacy. The privacy cost is measured by the parameters
(ϵ, δ), also called the privacy budget. Smaller values of ϵ correspond to stricter privacy guarantees, and it
is standard in the literature to set δ ≪ 1

n , where n is the size of the database. Complex DP algorithms
can be built from the basic algorithms following two important properties of differential privacy: 1)
Post-processing states that for any function g defined over the output of the mechanismM, ifM satisfies
(ϵ, δ)-DP, so does g(M); 2) Basic composition states that if for each i ∈ [k], mechanism Mi satisfies
(ϵi, δi)-DP, then a mechanism sequentially applyingM1,M2, . . . ,Mk satisfies (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

Given a function f : D → Rd, the Gaussian mechanism adds noise drawn from a normal distri-
bution N (0, S2

fσ
2) to each dimension of the output, where Sf is the ℓ2-sensitivity of f , defined as

Sf = maxD,D′differ in a row ∥f(D) − f(D′)∥2. For ϵ ∈ (0, 1), if σ ≥
√

2 ln(1.25/δ)/ϵ, then the Gaussian
mechanism satisfies (ϵ, δ)-DP.

We focus on training ML models subject to DP, which (due to its post-processing property) allows
the trained model to be publicly released without further privacy concerns. The most popular method
for DP training of ML models is differentially private stochastic gradient descent (DPSGD) [1, 5, 58].
In contrast to non-private SGD where batches are sliced from the training dataset, DPSGD at each
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iteration works by sampling “lots” from the training with probability L/n, where L is the (expected)
lot size and n is the total data size. A set of queries are computed over those samples. These queries
include gradient computation, updates to batch normalization, or accuracy metric calculations. As there
is no a priori bound on these query outputs, the sensitivity Sf is set by clipping the maximum ℓ2 norm
of the gradient to a user-defined parameter C. The gradient of each point is then noised and published.
All DP optimizers follow the same framework in which they take steps on the computed noisy gradient
as in its non-private counterpart. The privacy cost of the whole training procedure is calculated using
privacy accounting techniques. We discuss the specifics of DPSGD for our experiments in Section 3.

3 Benchmark design

In this section, we report our specific prescriptions for benchmarks, including datasets, parameters, and
best practices, in a variety of settings, in order to standardize and (ideally) propel progress in DP image
classification in privacy-critical settings. We note that we (intentionally) do not introduce any new
datasets, and instead appeal to existing ones. This is because using established datasets allows for easier
comparisons between the private and non-private setting, and introducing an entirely new dataset would
serve no benefit for our setting.

Datasets We prescribe using the following two medical image datasets (which have been commonly
used in other areas of machine learning) as benchmarks for DP ML: a) CheXpert [33], a chest X-ray
dataset; and b) EyePACS [25], a diabetic retinopathy dataset. These datasets are primarily chosen due
their privacy-critical domain. We hope that progress on these benchmarks would align with progress
(i.e., increased utility) on truly private tasks in such settings. Secondarily, we choose these datasets due
to diversity in their sizes, balance of classes, and in the case of CheXpert, for inclusion of a multilabel
dataset. Further description of these datasets and justification of these choices appears in Section 4. In
addition, we recommend continuing to use CIFAR-10 [41] and ImageNet [19] as benchmarks for training
DP ML models from scratch, without any pretraining data. Indeed, keeping the caveats of [63] in mind,
the popularity of these datasets still allows for direct comparison of accuracy on these tasks, and thus to
track “how far behind” DP ML is behind the non-private setting.

Public datasets One of the most successful ways to improve the utility of DP ML has been pre-training
the model on “public” data (i.e., data free of any privacy constraints). As discussed by [63], the size and
nature of the pre-training data can dramatically affect the downstream utility of a privately fine-tuned
model. Therefore, for fair comparison between different techniques, we prescribe tracking progress with
the following datasets treated as public: a) no public data, for the “purest” measure of progress in DP
ML; b) ImageNet-1K, perhaps the most commonly used large image classification dataset c) LAION-2B,
due to it being the pre-training data for OpenCLIP’s ViT-G/14 (representing the common use-case of
privately fine-tuning a pre-trained CLIP model), and d) “anything goes.” To elaborate on the last of
these, we use “anything goes” to refer to the case when public pre-training data is unrestricted (barring
data-leakage-like considerations where the private dataset contaminates the public one): it may include
large-scale Internet datasets, additional domain-specific data, etc. As mentioned before, results in this
category may not be directly comparable with each other. Nonetheless, they serve as a measure of
absolute progress on a benchmark.

Privacy parameters It is not clear how to compare results on DP image classification at varying
levels of the privacy parameters ε and δ. For example, is 90% accuracy at ε = 1 better or worse than 95%
at ε = 2? We propose fixing the value of ε to be 1, 3, 5 and 8 to facilitate direct comparisons between
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results. This set of ε covers both high and low privacy regimes across the range usually considered in
DP ML. We additionally propose fixing δ to to be the largest power of 10 that is at most the inverse of
the training set size (consistent with previous parameter settings), though in many parameter regimes, δ
can be dramatically increased or decreased with minor effect on the value of ε.

Privacy accounting. Every DP algorithm is associated with a proof of privacy, which provides
an upper bound on the value of ε and δ. For DPSGD, this is generally automated using “privacy
accountants,” which take as input various hyperparameters and δ, and outputs the value of ε. Over time,
improved accounting methods have given increasingly tight analyses, culminating in “exact” privacy
accounting techniques [1, 28, 40, 45, 46]. However, as highlighted by some recent works [17, 42, 51],
simply using a tighter accountant may give the illusion of an improved result, even if the training
procedure is identical. Therefore, we recommend that the privacy accounting method (or, if not using
DPSGD, the specific proof followed) is reported in order to keep track of such discrepancies (ideally, all
future DPSGD works ought to use exact privacy accountants).

Applicable techniques. The most popular algorithm for DP ML is DPSGD [1, 5, 58], in part due to
its flexibility: it can be used to privately train any differentiable model, even non-convex ones. Other
methods, such as objective perturbation [15, 34, 38, 54], are usually applicable only to convex models.
Consequently, in addition to several non-convex settings, we suggest some standardized convex settings
so that a wider variety of methods may be compared and evaluated. We recommend linear probe
(i.e., logistic regression) on a) Wide ResNet-28-10 pre-trained on ImageNet-1K;1 and b) OpenCLIP’s
ViT-G/14 pre-trained on LAION-2B.

“Anything goes” zero-shot Parallel to the literature on DP ML, the general ML community has
studied the challenging “zero-shot” setting, in which goal is to correctly classify a test image without
seeing a single image in its training set. Naturally, this requires large-scale public pre-training to achieve
acceptable results. In terms of DP, this corresponds to ε = 0 but with “anything goes” pre-training
(described above). We suggest tracking the current SOTA for such settings, as a) they serve as an
important measure of absolute progress on benchmarks; and b) it is otherwise easy to report a DP
result with “anything goes” public data and ε > 0 as SOTA, despite being already dominated by existing
zero-shot results.

Overall, we remind that our community’s goal ought not be to get the highest numbers on these
specific datasets, but instead to improve our techniques and understanding of DP image classification for
settings that may generalize to those used in practice. We thus focus on a breadth of settings to hopefully
cover a range of conditions in which DP classifiers may be deployed. Even if a model can achieve high
utility on a benchmark in the “anything goes” zero-shot setting, this does not mean the problem is
necessarily “solved.” For instance, due to legal, ethical, computational, or safety reasons, depending on
the specific setting, it may not be possible to use large, uncurated public datasets for pre-training in a
real-world deployment. Therefore, we consider all settings outlined above to be of potential practical or
technical interest, and do not identify any of them as “canonical” or more important than another.

3.1 Leaderboard

Tracking progress on benchmark datasets via leaderboards is an established practice in (non-private)
ML.2 This is not yet the case for DP ML: a broad and up-to-date knowledge of the literature is required

1Inspired by [18]. While they release their weights in JAX, we release comparable PyTorch weights with the code
https://github.com/mshubhankar/DP-Benchmarks.

2See, e.g., https://paperswithcode.com/sota
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to keep track of the latest results, making entering the field especially challenging and intimidating
for newcomers. As one of our contributions, we alleviate this issue by creating and maintaining a
leaderboard for DP ML.3

Due to the particulars of the DP setting, it is unnatural to simply incorporate results into an existing
leaderboard for the non-private setting. Specifically, beyond just the specific dataset, a leaderboard
for DP ML would need to track many of the considerations already discussed, including the privacy
parameters (ε, δ), which privacy accountant was used, and which public datasets were used. Another
difference from the non-private setting is the issue of correctness. For a proposed algorithm, the DP
guarantees must be mathematically proven, and a claimed result could be false if there is a bug in
the proof. This is in addition to existing concerns from the non-private setting on whether results are
independently reproducible or not. However, since it is notoriously easy to have bugs in a proof of DP,
we incorporate a verification system to our leaderboard. By default, all results are unverified when
added. However, anyone is able to submit a pull request to our GitHub to verify that they reproduced
the result, and believe correctness of the privacy proof (if applicable).

At present, our leaderboard focuses exclusively on DP image classification (as does this paper),
though it may be extended to other problems (e.g., DP natural language understanding or generation).

(a) EyePACS (b) CheXpert (c) CIFAR-10 (d) ImageNet

Figure 1: EyePACS and CheXpert qualitatively look different than common benchmark datasets such
as CIFAR-10 and ImageNet.

4 Datasets and Architectures

Here, we describe the relevant datasets and architectures, which are later explored in the experiment
section.4

4.1 Overview of datasets

CheXpert The CheXpert dataset [33] has 224,316 chest X-ray images of size 390×320 from 64,540
patients. Images may have multiple labels, where the possible labels correspond to five pathology classes:
‘Cardiomegaly’, ‘Edema’, ‘Consolidation’, ‘Atelectasis’, and ‘Pleural Effusion’. In our work, following
prior state-of-the-art training, we re-scale all images to size 224×224 and augment the dataset using
random affine transformations [70, 71].

EyePACS Kaggle EyePACS [25] contains retinal images of diverse populations with various degrees
of diabetic retinopathy (DR). Each image is classified into one of five classes depending on the severity
of the disease. The classification task is diagnostic of DR, as measured on a scale from 0 (no DR) to 4
(severe DR). The training set consists of 35,126 and the test set contains 53,576 color eye fundus images.

3Our leaderboard is available at https://private-machinelearning.github.io/
4Any omitted hyperparameter or architectural details appear in the code repository

https://github.com/mshubhankar/DP-Benchmarks
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To speak to these particular dataset selections: as mentioned before, we chose medical images to
address a privacy-critical setting where DP may be deployed. Within this area, chest X-rays and fundus
images are two of the most common domains, so we chose one of the most popular datasets from
each of these domains. Additionally, we took guidance from [53], which also focuses on medical image
classification, and studies CheXpert and a Google-proprietary DR dataset. While there are several
public fundus photography datasets, most of them are very small (< 100 images) and thus not settings
we would expect DP to function well: EyePACS is the most popular one of an acceptable size.

4.2 Overview of architectures and techniques

ScatterNets ScatterNets [47] (SN) are convolutional neural networks (CNNs) that utilize pre-defined
wavelets for their architecture and filters. In other words, the features are “hand-crafted” rather than
learned from data, and thus use neither public nor private data. Tramèr and Boneh [62] employ this
architecture for DP image classification, using DPSGD to train either linear or convolutional layers
acting on these features, and demonstrate compelling results on MNIST and CIFAR-10, particularly for
small values of ε. We exclusively use ScatterNets without any public data.

Wide-ResNets The Wide-ResNet [72] (WRN) is a variant of the ResNet[30] that reduces issues of
vanishing and exploding gradients by making the model wider instead of deeper. De et al. [18] use them
to reach DP SOTA in multiple settings on CIFAR-10. They consider both DP training from scratch, and
DP fine-tuning after being (publicly) pre-trained on ImageNet-1K (downsampled to 32× 32, which we
call IN-32 [16]).5 To allow direct comparison, we emulate their setting as much as possible, e.g., using
weight standardization [10], group normalization, and their choices of hyperparameters for pre-training.
We use both without any public data, and pre-trained on ImageNet-1K.

Additionally, Tang et al. [60] utilize WRN-16-4 to achieve DP SOTA performance on CIFAR-10,
when no extra public data is used for pretraining. They leverage image priors generated by random
processes [3] instead of starting from random initialization, outperforming [62] and [18] when they only
train from scratch. Moreover, they achieve SOTA performance using only a linear probe, making for
a direct comparison to the linear ScatterNet method of [62]. We adopt the same architecture and
replicate their settings to the greatest extent possible, incorporating techniques such as augmentation
multiplicity and normalization. Tang et al. [60] build on the approach of De et al. [18] by using the
third-to-last layer of the network, which has a dimension of 4096. We adopt a similar strategy but
reduce the dimensionality to 2048. This adjustment is necessary due to the larger image sizes in our
datasets (CheXpert and EyePACS with 224 × 224 images) compared to CIFAR-10 (32 × 32 images)
and resource constraints.

CLIP-based models CLIP [52] is a popular contrastive learning pre-training technique, which allows
one to jointly train a language and image encoder. CLIP has been observed to enable robust zero-shot
image classification when pre-training on very large Internet datasets. We use two ViT [21] models
pre-trained using CLIP: OpenAI’s ViT-B/16 (pre-trained on the proprietary WebImageText (WIT)
dataset) and OpenCLIP’s ViT-G/14 model (pre-trained on LAION-2B [55]).6 Besides pre-training data,
these models differ in their size (12 and 48 layers, respectively) and patch size (16 and 14, respectively).
For zero-shot experiments we use these models as-is, for DP fine-tuning experiments, we use only
the image encoder as a feature extractor, and on top of that, apply either a linear layer (i.e., logistic

5They use WRN-16-4 and WRN-40-4 for from-scratch experiments and WRN-28-10 for fine-tuning experiments. For
simplicity, we use WRN-28-10 in all our experiments.

6https://github.com/mlfoundations/open_clip
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(a) EyePACS (b) CheXpert

Figure 2: Normalization generally improves the final performance of all models. For CLIP-ViT models,
GroupNorm small and large are groups of 8 and 16, respectively. For ScatterNets, GroupNorm small is
9 and large is 27. The choice of 27 over 81 is due to its superior performance. All experiments are done
at ε = 3.

regression) or a two-layer neural network (TLNN, featuring tanh/tempered sigmoid activations [48]).
We exclusively use CLIP-based models with their respective public pre-training datasets.

5 Experiments

Beyond proposing a variety of datasets and evaluation settings for benchmarking, we experimentally
investigate techniques and the resulting utility obtained therein. Some of the key questions guiding our
exporation: how many of the lessons learned in DP image classification on datasets like CIFAR-10 and
ImageNet transfer to the privacy-critical setting of medical images? How much and when does public
data help for such datasets, which may be ill-represented in public data? And, in absolute terms, how
well can we do on these datasets with DP, in various evaluation settings?

After describing our experimental setup (Section 5.1), we revisit the efficacy of several ablations
commonly employed in DP settings (Section 5.2). Finally, we make more broad conclusions about DP
image classification based on our results (Section 5.3). Our code is included in the code repository.

5.1 Experimental Setup

We use PyTorch [49], and the Opacus library [68] for DP ML. We employed the Adam optimizer [39]
across all experiments, both private and non-private, with a default learning rate of 0.001. We run
our experiments at a variety of privacy levels (ε ∈ [1, 3, 5, 8]) with fixed delta values proportional to
the inverse of the dataset size (10−6 for CheXpert and 10−5 for EyePACS), as we prescribed earlier.
Batch size and total training epochs were fixed at 1024 and 20, respectively. A hyper-parameter search
was performed to identify the optimal clipping norm within the range [0.001, 0.01, 0.1, 1, 10]. Following
established metrics for all these datasets, we use AUC for CheXpert and EyePACS, and accuracy for
CIFAR-10. We report mean and standard deviation over three independent runs. We used early stopping
for non-private numbers due to overfitting, a phenomenon we did not observe for the DP setting due to
its natural regularization properties [37].
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(a) EyePACS (b) CheXpert

Figure 3: Augmentation multiplicity helps in general for CheXpert but not for EyePACS. We evaluate
augmentation multiplicity by adding 4 and 8 augmentations of each image in the training data. All
experiments are done at ε = 3.

5.2 Revisiting DP ablations

One of the most comprehensive ablation studies for DP image classification is by [18]. By using group
normalization, large batches, weight standardization, augmentation multiplicity, and parameter averaging,
they manage to raise CIFAR-10 accuracy on a validation set from 50.8% to an impressive 79.7%. We
fix ε = 3 and, focusing on the CLIP ViTs and ScatterNets, run the exact same ordered sequence of
ablations, without carrying forward the latest technique if it does not show improved utility. Broadly
speaking, while [18]’s techniques proved highly effective for CIFAR-10, our results reveal mixed outcomes
depending on various parameters.

Normalization Batch normalization [32] is not compatible with DPSGD because it combines informa-
tion across a batch, making it impossible to bound the impact of a single image in the dataset. Instead,
prior work has shown that variants including group normalization [66] and data normalization can be
suitable replacements [7, 18, 24, 62].

Group normalization splits the channels of the hidden activations of an image into groups and
normalizes the activations within each group. For the CLIP ViT models, with an input dimension of 512
and 1280 for the B/16 and G/14 respectively, we experiment with 8 and 16 groups. For Scatter features,
with dimension (243, H/4, W/4) for RGB images and following [62], we use 9, 27, and 81 groups. Data
normalization works on data channels by normalizing using the corresponding mean and variance across
the training data. Normalizing in such a way, however, incurs a privacy cost as the per-channel means
and variances must be privately estimated. We use Gaussian noise with (σ = 8) to estimate these means
and variances for all runs, following [62].

In Figure 2 we show that normalization generally improves the final performance of all models,
though the most effective normalization differs across architecture and dataset. Interestingly, the four
experiments where data normalization was superior involved models with larger unclipped gradients. In
these cases, the optimal clipping norm chosen during hyperparameter tuning was also the highest value
(10). This suggests that data normalization can effectively manage large gradient magnitudes, especially
when clipping underestimates the true gradient norms. Detailed results for our experiments are given in
Table 1 and Table 2.
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Table 1: Studying the impact of normalization for ScatterNet + CNN, normalization consistently
improves performance. Data normalization tends to outperform group normalization for EyePACS and
CIFAR-10, particularly due to the large gradients of their Scatter features.

Dataset Model Baseline DataNorm GroupNorm9 GroupNorm27 GroupNorm81
EyePACS (AUC) SN + CNN 57.1± 0.38 66.35± 0.12 60.34± 0.22 62.41± 0.24 63.68± 0.15

CheXpert (AUC) SN + CNN 79.15± 0.26 80.74± 0.62 79.53± 0.28 80.99± 0.08 80.72± 0.35

CIFAR-10 (Acc) SN + CNN 55.18± 0.28 68.29 ± 0.17 65.97± 0.13 66.26± 0.11 66.45± 0.45

Table 2: Normalization impact for CLIP ViT models: Normalization generally improves performance,
but it also depends on the architecture and dataset. Normalizations marked in red show a drop in
performance compared to the baseline.

Dataset Model Baseline DataNorm GroupNorm8 GroupNorm16
EyePACS B/16 + Linear 65.44± 0.04 68.2± 0.04 69.28± 0.06 69.52 ± 0.08
EyePACS B/16 + TLNN 67.89± 0.06 68.86± 0.03 69.55 ± 0.06 69.41± 0.04
EyePACS G/14 + Linear 66.54± 0.04 72.04 ± 0.03 72.01± 0.04 71.78± 0.01
EyePACS G/14 + TLNN 70.30± 0.13 72.66 ± 0.03 72.1± 0.17 72.12± 0.31
EyePACS G/14(CLIPA) + Linear 63.88± 0.08 73.02 ± 0.2 70.7± 0.06 70.62± 0.07
EyePACS G/14(CLIPA) + TLNN 64.9± 0.2 72.9 ± 0.1 70.87± 0.25 70.8± 0.2

CheXpert B/16 + Linear 76.05± 0.19 78.31± 0.04 78.35 ± 0.05 78.03± 0.1
CheXpert B/16 + TLNN 78.21± 0.07 78.42± 0.07 78.5± 0.02 78.86 ± 0.1
CheXpert G/14 + Linear 79.32± 0.08 81.6 ± 0.01 81.55± 0.05 81.18± 0.2
CheXpert G/14 + TLNN 81.80 ± 0.06 80.48± 0.33 81.37± 0.1 81.47± 0.17
CheXpert G/14(CLIPA) + Linear 72.39± 0.07 76.12± 0.4 77.34 ± 1.1 77.17± 0.5
CheXpert G/14(CLIPA) + TLNN 77.65± 0.89 75.74± 1.1 77.38± 0.3 77.43 ± 0.7

CIFAR10 CLIP + Linear 99.64(93.91) 99.76(94.41) 99.75(94.43) 99.75(94.57)
CIFAR10 CLIP + TLNN 99.69(94.10) 99.74(94.15) 99.74(94.36) 99.75(94.51)

Larger Batch Size The impact of larger batch sizes in differentially private training has been observed
both theoretically [4, 59] and empirically [2, 18]. In Table 3, scaling the batch size from 1024 to 4096
showed that CheXpert benefited in 80% of experiments, while EyePACS did not. This disparity is likely
due to CheXpert having a training set six times larger than EyePACS, resulting in fewer model update
steps for EyePACS and potential underfitting with a fixed number of epochs. We further observed that
increasing the number of epochs showed a positive impact of larger batch sizes on EyePACS when using
the ScatterNet model.

Weight Standardization We experiment with weight standardization (WS) on the Scatternet +
CNN model as it applies to only convolution layers. From our results in Table 3, we observe that weight
standardization does not help with EyePACS but helps with CheXpert and CIFAR-10. As alluded by
prior work [10, 18], we also observe a positive correlation of group normalization with WS. However,
due to a limited number of experiments, we do not have strong evidence either way.

Augmentation Multiplicity We apply a sequence of augmentations to our benchmark datasets:
reflect padding, random cropping, and random horizontal flipping. While [18] recommend 16 augmenta-
tions per image, due to computational constraints with large datasets, we use 4 and 8 augmentations. As
shown in Figure 3, contrary to [18]’s findings, augmentation multiplicity (augmult) does not consistently
yield positive effects. Except for one experiment, (ViT-G/14+TLNN), augmentations generally benefit
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(a) EyePACS (b) CheXpert

Figure 4: Pre-training datasets have different impacts: Wide-ResNet, pretrained on ImageNet, performs
best on EyePACS, while ViT-G/14 with linear probe surpasses Wide-ResNet 28-10 linear probe across
all ε values on CheXpert. Furthermore, ViT-G/14 achieves near-random performance on EyePACS in
zero-shot settings but attains a non-trivial 59.11% AUC on CheXpert.

(a) EyePACS (b) CheXpert

Figure 5: Pre-training public data is more beneficial with higher ε values. For CheXpert, ScatterNet
performs better at smaller ε values, while pretrained models show marginal improvements at larger ε
values. Similarly, for EyePACS, CLIP ViT-G/14 linear performs better as ε value increases.
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Table 3: Studying all ablations together, we observe an almost consistent improvement in performance
for CIFAR-10, whereas this pattern is not observed with the other datasets.

Dataset Model Best Normalization +Larger Batch +WS +Best Augmult +EMA
EyePACS SN + CNN 66.35± 0.12 66.24± 0.23 65.81± 0.06 65.69± 0.42 66.65 ± 0.16
EyePACS B/16 + L 69.52 ± 0.08 68.95± 0.24 - 69.04± 0.05 69.09± 0.12
EyePACS B/16 + TLNN 69.55 ± 0.06 69.16± 0.28 - 69.24± 0.08 69.3± 0.21
EyePACS G/14 + L 72.04 ± 0.03 71.59± 0.24 - 71.45± 0.37 71.29± 0.17
EyePACS G/14 + TLNN 72.66± 0.03 73.07 ± 0.06 - 73.07± 0.05 73± 0.03
EyePACS CLIPA + L 73.02 ± 0.2 68.5± 0.07 - 68.37± 0.05 70.94± 0
EyePACS CLIPA + TLNN 72.09± 0.1 72.17 ± 0.1 - 72.04± 1.6 71.9± 0.07

CheXpert SN + CNN 80.99± 0.08 81.54± 0.34 82.11± 0.29 81.41± 0.3 82.24 ± 0.22
CheXpert B/16 + L 78.35± 0.05 78.42± 0.07 - 78.65 ± 0.1 78.65 ± 0.04
CheXpert B/16 + TLNN 78.86± 0.1 78.86± 0.1 - 78.97± 0.12 79.01 ± 0.1
CheXpert G/14 + L 81.6± 0.01 81.76± 0.05 - 82.04 ± 0.14 82.01± 0.05
CheXpert G/14 + TLNN 81.8± 0.06 81.04± 0.16 - 81.06± 0.34 81.14± 0.26
CheXpert CLIPA + L 77.34± 1.1 80.17± 0.08 - 80.38 ± 1.5 80.34± 0.15
CheXpert CLIPA + TLNN 77.43± 0.7 80.4± 0.2 - 80.75 ± 0.18 80.52± 0.02

CIFAR10 B/16 + L 99.75(94.57) 99.74(94.49) - 99.77(94.76) 99.76(94.67)
CIFAR10 B/16 + TLNN 99.75(94.51) 99.76(94.55) - 99.79(94.81) 99.78(94.76)
CIFAR-10 SN + CNN 68.29± 0.17 66.47± 0.31 68.96± 0.26 69.16 ± 0.08 68.07± 0.24

CheXpert but not EyePACS. Future work may explore the effectiveness of dataset-specific augmentations,
which could potentially yield more beneficial results. We show detailed experiment results in Table 4.

Parameter Averaging The final ablation that [18] suggests is the exponential moving average
(EMA)[50] of all the parameters in the model. In Table 3, we notice that EMA occasionally improves
performance, which contradicts the findings of [18] that it consistently enhances results across all
experiments.

5.3 Experimental findings

We highlight some findings from our experimental results.

Different pre-training datasets offer varying degrees of improvement depending on the
private data We compare representative models publicly pre-trained on a variety of datasets on both
CheXpert and EyePACS. Results are displayed in Figure 4. For the case of no pre-training data, we
choose ScatterNet+Linear, due to its consistently superior utility compared to Wide-ResNet trained
from scratch, particularly for high privacy (i.e., low ε) settings.

On the other end of the spectrum, when we allow large-scale public pre-trarining, the CLIP ViT
models provide a good indication of zero-shot performance (i.e., ε = 0).

When analyzing CheXpert, ViT-B/16 performs close to random in the zero-shot setting, whereas
ViT-G/14 achieves an AUC of 59.11%, moderately better than random. Moving from ScatterNet+linear
to Wide-ResNet+Linear, there is a noticeable decrease in AUC, yet ViT-G/14 consistently outperforms
across various ε values, indicating that ViT-G/14 is a better fit for CheXpert. Notably, at ε = 8,
Wide-ResNet with full fine-tuning exceeds the performance of ViT-G/14. However, considering that
Wide-ResNet is fully fine-tuned while ViT-G/14 is not, this doesn’t necessarily make Wide-ResNet
better suited for CheXpert. Nevertheless, for smaller ε, it is clear that ViT-G/14 is the superior model
with only linear fine-tuning.
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Table 4: Studying the impact of augmentation multiplicity, we find that it consistently improves
performance for CIFAR-10. However, looking at EyePACS and CheXpert, we observe inconsistent
behavior, except that it generally seems to reduce performance with EyePACS. For the third column, we
take the best result from Table 3 after best normalization, larger batch size, and weight standardization.

Dataset Model Norm + Larger BS + WS +Augmult(4) +Augmult(8)
EyePACS SN + CNN 66.35 ± 0.12 65.69± 0.42 65.36± 0.19
EyePACS B/16 + L 69.52 ± 0.08 69.04± 0.05 68.99± 0.11
EyePACS B/16 + TLNN 69.55 ± 0.06 69.24± 0.08 69.35± 0.2
EyePACS G/14 + L 72.04± 0.03 71.45± 0.37 71.36± 0.24
EyePACS G/14 + TLNN 73.07± 0.05 73.07 ± 0.05 73.02± 0.07
EyePACS G/14 (CLIPA)+ L 73.02± 0.2 68.37± 0.05 68.14± 1.2
EyePACS G/14 (CLIPA)+ TLNN 72.9± 0.1 72.04± 1.6 71.98± 0.3

CheXpert SN + CNN 82.11± 0.29 81.41± 0.3 81.39± 0.41
CheXpert B/16 + L 78.42± 0.07 78.58± 0.04 78.65 ± 0.1
CheXpert B/16 + TLNN 78.86± 0.1 78.91± 0.04 78.97 ± 0.12
CheXpert G/14 + L 81.76± 0.05 82.04 ± 0.14 81.9± 0.19
CheXpert G/14 + TLNN 81.8± 0.06 81.06± 0.04 81.03± 0.1
CheXpert G/14 (CLIPA)+ L 77.34± 1.1 80.34± 0.2 80.38 ± 1.5
CheXpert G/14 (CLIPA)+ TLNN 77.43± 0.7 80.5± 0.1 80.75 ± 0.18

CIFAR-10 (ACC) SN + CNN 68.96± 0.26 69.07± 0.2 69.16± 0.08
CIFAR-10 (ACC) B/16 + L 99.75(94.57) 99.76(94.68) 99.77(94.76)
CIFAR-10 (ACC) B/16 + TLNN 99.76(94.55) 99.78(94.75) 99.79(94.81)

Looking at Figure 4 for EyePACS, both CLIP ViT models show random performance in the zero-
shot setting, indicating no improvement from pretraining. Conversely, Wide-ResNet linear exhibits
a significant performance boost when transitioning from ScatterNet linear to Wide-ResNet linear,
maintaining its superiority across all ε values. Although we notice that as we move toward less private
regimes, the power of pre-trained ViT-G/14 becomes more evident, particularly from ε = 1 to ε = 3,
approaching the performance of Wide-ResNet linear. However, there remains a substantial gap between
fully fine-tuned Wide-ResNet and the other models, unlike CheXpert, suggesting that Wide-ResNet is
better suited for EyePACS.

Public pre-training data helps more with higher ε values We compare feature generation
methods in Figure 5 since, in all cases, there is a linear classifier on top of diverse feature extractors.
On CheXpert, linear fine-tuning with ScatterNet shows the best performance at ε = 1. However, as
ε increases, pretrained models, especially ViT-G/14, begin to outperform other methods significantly.
While full fine-tuning of CLIP has not been explored, a direct comparison of features shows ViT-G/14’s
superiority when ε is sufficiently large. As ε value increases further, ViT-G/14’s performance improves
notably, highlighting its strong pretrained performance under less stringent privacy constraints.

When comparing the best performance on CheXpert across our proposed methods, ScatterNet
achieves superior results compared to CLIP ViT models and Wide-ResNet on ε = 3, as shown in Figure
5. However, as ε values increase, pretrained models begin to perform better, and the performance gap
between ScatterNet and the other models widens.

For EyePACS, we don’t see the same pattern, likely because EyePACS is a much smaller dataset
(about one-sixth the size) and Scatter features have high dimensionality, making it hard to balance this
complexity with private training. We use ScatterNet linear as the baseline for the no pretraining regime
and compare it to other architectures’ linear fine-tuning for a fair comparison.
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Table 5: Test AUC for EyePACS at different epsilons. Baselines include ScatterNet (SN), WideResNet
(WRN) and CLIP models on datasets with different public data pre-training. The SOTA is due to [64].

Public data Model Test AUC (%)
ε = 1 ε = 3 ε = 5 ε = 8 ε =∞

None SN + L 59.77± 0.35 61.92± 0.16 62.32± 0.37 62.5± 0.28 69.70± 0.11
None SN + CNN 63.73± 0.11 66.36± 0.17 66.59± 0.43 67.37± 0.27 69.28± 0.20
None WRN-16-4+L 61.57± 0.02 63.29± 0.04 63.7± 0.04 63.95± 0.04 67.74± 0.01
None WRN (Scratch) 55.45± 0.18 56.53± 0.08 57.14± 0.34 57.65± 0.22 61.97± 0.09
IN-32 WRN + Linear 67.73± 0.15 68.68± 0.05 68.91± 0.10 69.10± 0.03 73.21± 0.09
IN-32 WRN (Full) 69.34± 1.09 79.21± 0.83 79.84± 0.27 80.78± 0.38 83.61± 0.03
WIT B/16 + Linear 63.9± 0.04 65.44± 0.04 66.1± 0.05 66.6± 0.12 69.93± 0.01
WIT B/16 + TLNN 65.12± 0.04 67.89± 0.06 69.22± 0.1 69.84± 0.02 70.54± 0.01
LAION G/14 + Linear 63.42± 0.17 66.54± 0.04 68.07± 0.2 69.03± 0.06 69.88± 0.2
LAION G/14 + TLNN 65.47± 0.02 70.30± 0.13 71.74± 0.3 72.3± 0.19 73.36± 0.15
DataComp1B G/14(CLIPA) + Linear 63.42± 0.06 63.88± 0.08 63.8± 0.12 64.33± 0.32 70.87± 0.01
DataComp1B G/14(CLIPA) + TLNN 64.41± 1.00 64.9± 0.20 65.07± 0.26 65.67± 0.08 75.42± 0.08
IN-1K SOTA - - - - 95.1

As illustrated in Figure 5, increasing the ε value amplifies ViT-G/14’s performance advantage over
the ScatterNet baseline, widening the gap. However, we do not observe any significant changes in
ViT-B/16 and Wide-ResNet linear. ViT-B/16 appears to perform poorly regardless of privacy settings.
On the other hand, Wide-ResNet linear consistently maintains a significant gap between its linear model
and ScatterNet. This can be explained by the fact that Wide-ResNet linear can already achieve high
AUC in the ε = 1 case, leaving little room for improvement.

The fact that Wide-ResNet maintains its advantage from the start is not surprising, given that as
discussed earlier, the pre-trained model seems to help with EyePACS the most. However, ViT-G/14’s
performance improves more as the ε value increases. The detailed numbers for this experiment are
provided in Table 5 and Table 6.

Progress on CIFAR10 does not translate to progress on benchmark datasets Looking at
Figure 4, we notice that ViT-G/14 achieves an astonishing 99.75% zero-shot accuracy on CIFAR-10.
In stark contrast, the same model’s zero-shot performance on CheXpert and EyePACS is significantly
lower, with AUC scores of 59.11% and 50.73%, respectively—the latter essentially equating to random
guessing. Additionally, Wide-ResNet achieves 94.7% accuracy on CIFAR-10 at ε = 1, yet only 78.52%
and 71.00% AUC on CheXpert and EyePACS, respectively.

Upon reviewing the ablation experiments in section 5.2, it becomes evident that the techniques
beneficial for CIFAR-10 do not necessarily yield similar advantages for EyePACS and CheXpert datasets.
The patterns observed in CIFAR-10 did not replicate in these medical image datasets, and notably,
performance on CheXpert and EyePACS showed inconsistency.

Additionally, we observe that incorporating synthetic data as demonstrated by Tang et al. [60], leads
to SOTA performance on CIFAR-10 without pretraining. However, in our experiments, ScatterNet
outperforms [60]’s approach on CheXpert, whereas on EyePACS, Tang et al. achieve better results.

6 Related Work

Several works have evaluated the privacy-utility tradeoffs for DPML algorithms [35, 36, 73]. Jayaraman
et al. [36] explored the impact of various variants of DP for ML algorithms. They explored the privacy
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Table 6: Test AUC for CheXpert at different epsilons. Baselines include ScatterNet (SN), WideResNet
(WRN) and CLIP models on datasets with different public data pre-training. The SOTA is from
[7](Private) and [70](Non-Private).

Public data Model Test AUC (%)
ε = 1 ε = 3 ε = 5 ε = 8 ε =∞

None SN + CNN 78.16± 0.22 79.15± 0.26 79.16± 0.18 79.68± 0.04 80.65± 0.12
None SN + Linear 77.43± 0.15 77.95± 0.31 78.18± 0.09 78.30± 0.06 78.94± 0.13
None WRN-16-4+L 76.81± 0.02 77.15± 0.05 77.19± 0.05 77.25± 0.01 77.49± 0.03
None WRN (Scratch) 76.9± 0.02 77.8± 0.04 77.89± 0.05 78.68± 0.10 87.31± 0.07
IN-32 WRN + Linear 74.95± 0.15 75.29± 0.07 75.31± 0.08 75.52± 0.16 75.91± 0.08
IN-32 WRN (Full) 78.46± 0.07 79.40± 1.57 80.98± 0.42 82.62± 0.94 87.62± 0.09
WIT B/16 + Linear 75.03± 0.03 76.05± 0.19 76.29± 0.06 76.88± 0.12 76.89± 0.01
WIT B/16 + TLNN 77.28± 0.19 78.21± 0.07 78.33± 0.04 78.54± 0.06 78.56± 0.01
LAION G/14 + Linear 77.28± 0.19 79.32± 0.08 80.02± 0.12 80.42± 0.05 80.48± 0.02
LAION G/14 + TLNN 80.63± 0.4 81.80± 0.06 82.25± 0.02 82.27± 0.0.4 82.28± 0.01
DataComp1B G/14(CLIPA) + Linear 71.45± 0.27 72.39± 0.07 72.98± 0.38 72.37± 0.41 78.35± 1.3
DataComp1B G/14(CLIPA) + TLNN 77.3± 0.60 77.65± 0.89 77.67± 0.25 77.51± 0.85 80.62± 0.06
IN-21K SOTA 86.3 - - 89.2 -
IN-1K SOTA - - - - 93 7

leakage concerning the privacy parameter ϵ for the same algorithm. The work of Zhao et al. [73] and
Jarin et al. [35] similarly study the privacy-utility tradeoffs for different DP ML algorithms and evaluate
them against membership inference attacks. There have also been some attempts at benchmarking
DP algorithms [27, 61, 65]. Tao et al. [61] and Gong et al. [27] benchmark different synthetic data
generation algorithms for tabular data and image data respectively. The work of Wei et al. [65] is
closest to our work, where they benchmark different DPML algorithms on standard ML datasets such as
MNIST/CIFAR-10 and comment on the effects of improvements made in DPML literature. In our work,
we take a different stance than them and propose a new benchmark based on privacy-critical medical
datasets. Compared to their work, we also experimented with more established architectures based on
various techniques, such as Scatternets and CLIP-based models.

7 Future Work

While our work focused on image classification, future research should explore benchmarks in other
areas such as Natural Language Understanding and Generation. In addition, to ensure fair comparisons,
future work could investigate the use of more advanced model architectures. For instance, experiments
using the NFNet-F7 [11] model pre-trained on ImageNet-1K could be compared with our Wide-ResNet
experiments.

Future research should also extend to a wider range of datasets, both within and beyond the medical
domain. This exploration will help in understanding the generalizability of DP ML techniques and
identifying domain-specific challenges.

The continued maintenance and updating of the leaderboard we have established will be crucial for
tracking long-term progress in the field and identifying emerging trends or breakthroughs. This ongoing
effort will provide valuable insights into the evolution of DP ML techniques over time.
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8 Conclusion

We suggest a number of standardized settings for benchmarking DP image classification, particularly
with a focus on privacy-critical domains such as medical images. We also provide a leaderboard to
help track progress on image classification benchmarks. In our experimental investigation, we find that
several of the techniques which have enjoyed great success for DP ML are not universally effective across
datasets and architectures, and furthermore that progress on standard benchmarks like CIFAR-10 do
not transfer to medical images. Of course, it is hard and rare to design universally effective techniques.
Indeed, our experiments are for a limited number of datasets and a limited number of architectures, so it
is impossible to make a conclusion broad enough to encompass the entire field of DP image classification.
However, it is clear that present work leaves the door open for new ideas and techniques that push the
envelope on private image classification in these settings.
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