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Abstract

One challenging problem with differentially private machine learning is privacy accounting. After
years of research, the community has successfully established tight privacy accounting methods for
differentially private stochastic gradient descent (DP-SGD). Despite these advances, tight bounds for
group privacy still remain elusive. Group privacy is an essential aspect of differential privacy that
enables many applications. In this work, we develop tight bounds on group privacy for DP-SGD.
In this work, we develop tight bounds on group privacy for DP-SGD. Our analysis uses a novel
technique to show “dominating pairs of distributions” explicitly tailored for the case of group privacy.
Our experiments show that our bounds are significantly better than previously known bounds in
certain regimes. Surprisingly, we find that group privacy is significantly affected by sub-sampling.
Two sets of hyper-parameters (sampling rate and noise) with the exact same (ϵ, δ) parameters can
have significantly different group privacy curves.

1 Introduction

The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm [1, 25] is the leading method
for training machine learning models and conducting a variety of optimization tasks with privacy
guarantees. A critical facet that enables DP-SGD for privacy is the notion of (tight) privacy accounting.
Privacy accounting addresses a fundamental question: What is the extent of privacy degradation when a
differential privacy-protected task is performed repetitively? Since the inception of differential privacy,
this question has been studied via “composition theorems” [8, 14]. Subsequent work has focused on tighter
composition for privacy, specifically within the framework of DP-SGD. Building upon the foundation laid
by Abadi et al. [1], furthered by the introduction of Rényi differential privacy (RDP) by Mironov [20],
and enhanced by recent research on the precise analysis of Gaussian differential privacy [7, 11, 29, 32],
we can now compute the privacy assurances of DP-SGD with high precision. This analysis has allowed
acceptable utility levels for various tasks while simultaneously offering substantial privacy guarantees.
Despite these advances, the domain of group privacy has not experienced equivalent progress. Group
privacy poses a different question: how does the privacy guarantee deteriorate when the concern is
about the impact on a group of examples, rather than individual ones? Intriguingly, we still lack better
group privacy bounds than the rudimentary black-box bounds that were first introduced with differential
privacy [8]. Thus, we ask: Can DP-SGD attain group privacy bounds superior to the black-box bounds
for any DP mechanism?

The question of group privacy is significant in various analytical contexts. For instance, group privacy
can prove beneficial in scenarios such as federated learning, where a user might contribute multiple data
points and we want a “user-level” privacy boundary [13]. Similarly, there might be situations where the
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Figure 1: Group composition for 10 steps of DP-SGD with noise multiplier 1.0, sampling rate 0.01, and
δ of 10−3. The privacy curve obtained by our bounds is much smoother. We use a large value for δ as
calculating the black box group privacy bound for small values of δ is computationally infeasible (unlike
our bound).

same or very similar examples are repeated within collected datasets [15]. As demonstrated in recent
studies on reconstruction attacks, these repeated points could be considerably more susceptible to privacy
breaches [5]. Group privacy bounds enable us to understand the degree of increased vulnerability when
examples are replicated. Another practical application of group privacy bounds arises in the context
of auditing differential privacy [12, 23, 26]. This process involves injecting a number of examples into
the training routine of a machine learning model using DP-SGD, with the aim of calculating a lower
limit on privacy and comparing it against the (potentially loose) guaranteed bound. Attaining tighter
constraints on group privacy thus helps narrow the gap between the guaranteed privacy levels and the
lower limit, facilitating more precise auditing. Last, group privacy bounds contribute to robustness
against poisoning attacks. It is well-known that DP affords some protection against manipulations in
the training dataset [18]. Enhanced group privacy bounds serve to improve these protections. Hence,
optimizing group privacy is not just a theoretical exercise but has profound implications for applications
in ML and privacy.

Our contributions: In this work, we provide tight group privacy bounds for DP-SGD. Our bounds
are based on our new “domination” theorem that shows the worst possible pair of distributions that
might occur while running DP-SGD on two k-neighboring databases. We consider this “domination”
result as our main technical contribution. Using the knowledge of worst-case distributions, we give
a Monte-Carlo approach to estimate the differential privacy bounds. Our experiments show that our
bounds can significantly outperform the previous (black-box) group privacy bounds. We also find a
surprising relation between sampling rate and group privacy: in a nutshell, as the sub-sampling rate
becomes smaller, the group privacy improves.

2 Preliminaries

We first define a notion of proximity for group privacy.

Definition 2.1 (k-neighboring) A pair of datasets (D,D′) are k-neighboring iff either (D′, D) are k-
neighboring or |D \D′| ≤ k and D′ \D = ∅. We use D ≈k D′ to denote that D and D′ are k-neighboring.
Note this is symmetric, i.e., D ≈k D′ ⇐⇒ D′ ≈k D.

Definition 2.2: A mechanism M is (ε, δ, k)-DP if for all k-neighboring datasets D and D′ we have
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∀S; Pr[M(D) ∈ S] ≤ eε Pr[M(D′)] + δ.

We also use a more fine-grained notion of privacy, f -DP.

Definition 2.3 (f-DP [7]) A mechanism M is (f, k)-DP if for all datasets D,D′ s.t. D ≈k D′:

∀S; Pr[M(D) ∈ S] ≤ 1− f(Pr[M(D′) ∈ S]).

Now we state the basic group privacy introduced by Dwork et al. [8]. We give a slightly improved
version of the bound, with an almost identical proof to that of [8].

Theorem 2.1 (Black-box group privacy [8]) If a mechanism is (ϵ, δ, 1)-DP, then it is also (kϵ, k ·
ekϵ−1
eϵ−1 · δ, k)-DP.

Proof: We prove this by induction. For k = 1, the statement is trivial. Now assume the statement
is correct for k − 1. Assume D′ = D ∪ {x1, . . . , xk}. Let D′′ = D ∪ {x1}. Now since (D,D′′) are
1-neighboring and (D′, D′′) are (k − 1)-neighboring. Therefore, by the fact that M is (ϵ, δ)-DP we have

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′′) ∈ S] + δ.

Also, by the induction hypothesis we have

Pr[M(D′′) ∈ S] ≤ e(k−1)ϵ · Pr[M(D′) ∈ S] +
e(k−1)ϵ − 1

eϵ − 1
δ.

Combining these two inequalities, we have

Pr[M(D) ∈ S] ≤ e(k−1)ϵ+ϵ Pr[M(D′) ∈ S] +

(
ekϵ − eϵ

eϵ − 1
+ 1

)
δ = ekϵ Pr[M(D′) ∈ S] +

ekϵ − 1

eϵ − 1
δ.

And, this finishes the proof.
This group-privacy bound is tight when employed as a black-box. In other words, there exists a

mechanism M that is (ϵ, δ)-DP which enjoys the exact same group privacy bound as stated in the
theorem.

We also note that there is a previously-known black-box group privacy bound for f -DP.

Theorem 2.2 (Black-box group privacy for f-DP [7]) If a mechanism M is (f, 1)-DP, then for
all k ∈ N it is also (fk, k)-DP where

fk(x) = 1− (1− f)k(x).

One would expect that the group privacy based on f -DP to be much tighter than the black-box variant
for DP. This is simply because knowing that a mechanism is f -DP contains much more information
than knowing a mechanism is (ϵ, δ)-DP. However, as we will see in the later sections, this bound is also
sub-optimal when sub-sampling is employed. We reiterate that this bound is tight if the only information
that we have is the knowledge that the mechanism is f -DP. But when dealing with specific algorithms
(e.g., DP-SGD), we can use more information about the inner dynamics of the mechanism to achieve
better bounds. In this work, we try to improve these black-box bounds for a specific class of mechanisms:
the adaptive composition of multiple sub-sampled Gaussian mechanisms.

DP-SGD and Composition of sub-sampled Gaussian mechanisms. A Gaussian mechanism is
simply used to privately calculate the average of a function h over a dataset. By releasing the noisy
average 1

|D|
∑

x∈D h(x) +N (0, σ2), one would guarantee that the reported average satisfies differential
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Algorithm 1 DP-SGD
Require: Private dataset D, Loss function ℓ, Sampling rate p, number of steps n, noise multiplier σ,

clipping threshold c
1: Initialize a model θ.
2: for i← [1, . . . ,m] do
3: Sample a random batch B ⊆ D using Poisson sampling with probability of p.
4: g = 1

p·|D|
∑

x∈B
∆ℓ(θ,x)

max
(
c,∥∆ℓ(θ,x)∥

)
5: g̃ = g + c · N (0, σ2)
6: θ = update(θ, g̃)
7: end for
8: Output θ.

privacy so long as the function h has a bounded range. To further amplify privacy, we can sample
a random batch B ⊂ D using Poisson sampling and report the noisy average (noisy average should
be calculated without using the actual size of the batch; see Algorithm 1) over the batch. Then, one
can compose many of these mechanisms in an adaptive way and preserve differential privacy, thanks
to composition theorems. DP-SGD (Algorithm 1) [1, 25] is the most tangible instantiation of this
category of mechanisms and is used for many privacy preserving applications where we need to perform
optimization.

Our goal is to analyze the group privacy for DP-SGD. We need several definitions for the analysis.
The first is the notion of weighted total variation distance.

Definition 2.4 (Weighted total variation distance) The weighted variation distance between two
distributions X and Y with densities µ and ν for a weight a > 0 is:

TVa(X,Y ) =

∫
|µ(x)− a · ν(x)|dx.

We note that this notion is closely related to that of the Hockey-stick divergence [24] and trade-off
functions [7]. Hockey-stick divergence is the same integration with a difference that the integral is
only taken over the positive values. We prefer weighted TVD because it is more convenient to avoid
conditioning the integration. The next claim shows the relevance of the weighted total variation distance
in the DP context.

Proposition 2.2: Let (X,Y ) be a pair of random variables. Then for all S and ϵ > 0 we have,
Pr[X ∈ S] ≤ eϵ Pr[Y ∈ S] + 1

2(TVeϵ(X,Y ) + 1− eϵ).

Proof: Let S be an arbitrary set. Let µ and ν be the pdf of X,Y respectively. Let Gϵ = {x;µ(x)−
eϵν(x) ≥ 0.} and Ḡϵ = {x;µ(x)− eϵν(x) < 0.}

Pr[X ∈ S]− eϵ Pr[Y ∈ S] =

∫
S
µ(x)− eϵν(x) ≤

∫
Gϵ

µ(x)− eϵν(x).

Let δ =
∫
Gϵ

µ(x) − eϵν(x), we have
∫
Ḡϵ

µ(x) − eϵν(x) = 1 − eϵ − δ. We also have TVa(X,Y ) =∫
Gϵ

µ(x)−eϵν(x)−
∫
Ḡϵ

µ(x)−eϵν(x). Therefore TVa(X,Y ) = 2δ−1+eϵ. Therefore, δ = TVa(X,Y )+1−eϵ

2 .
Note that the above proposition is only stated in one direction. However, differential privacy

requires the upper bound to hold in both directions. Due to an interesting property of weighted total
variation distance, we can also bound the reverse direction without changing the order of distributions
in TV(X,Y ).
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Corollary 2.2.1: Let (X,Y ) be a pair of random variables. Then for all S and ϵ > 0 we have,

Pr[Y ∈ S] ≤ eϵ Pr[X ∈ S] + 1
2(e

ϵTVe−ϵ(X,Y ) + 1− eϵ).

Proof: Observe that TVa(Y,X) = aTV 1
a
(X,Y ). Now we use Proposition 2.2 with X and Y swapped,

and apply this observation to finish the proof.

In Section 4, where we explain how to calculate the optimal bounds, we will see why we are interested
in preserving the order of pairs. We next define dominating pairs of distributions, specific to the case of
group-privacy. This notion enables us to use a pair of distributions for privacy accounting and removes
the complexity of the choice of dataset.

Definition 2.5 (k-Dominating pair of distributions) A pair of distributions (X,Y ) dominates a
mechanism M if for any pair of k-neighboring datasets D ≈k D′ with |D| < |D′| and any a > 0 we have

TVa(X,Y ) ≥ TVa(M(D),M(D′)).

We say that (X,Y ) tightly dominate M if there are k-neighboring datasets (D,D′) such that M(D) ≡ X
and M(D′) ≡ Y .

Note that domination is defined in an asymmetric way. That is, we fix the order of datasets so that
D has fewer data points than D′. The following proposition shows the usefulness of dominating pairs
for privacy analysis of a mechanism. This proposition directly follows by applying Proposition 2.2 and
Corollary 2.2.1.

Proposition 2.2: A mechanism that is k dominated by (X,Y ) is (ϵ, δ, k)-DP for

δ = 1
2(max

(
TVeϵ(X,Y ), eϵTVe−ϵ(X,Y )

)
+ 1− eϵ)

Finally, we state the following lemma that shows we can obtain a dominating pair of distributions
for the composition of multiple mechanisms. This has been proved for the case of k = 1 in previous
work [7, 19, 32]. Here we omit the proof as it is exactly the same.

Lemma 2.2: If a series of mechanisms M1, . . . ,Mn are k-dominated by pairs of distributions (X1, Y1),
. . . , (Xn, Yn) then the adaptive composition of Mi’s is k-dominated by

(X1 × · · · ×Xn, Y1 × · · · × Yn)

where × is the product operation between distributions.

3 Optimal group privacy bounds

Next, we demonstrate a tightly k-dominating pair of distribution for a single step of DP-SGD. Note
that, by Lemma 2.2, this will give us a tight dominating pair for multiple steps of DP-SGD as well. We
first define two notions that abstract two properties of Gaussian mechanism which we need to prove our
result.

Definition 3.1 (Compatible distributions) We call a triplet of distributions (X,Y, Z) with densities
νX , νY , and νZ compatible iff there exists an increasing and continuous transition function g, with
g(0) = 0 and limt→∞ g(t) =∞ such that νY (x)

νX(x) ≥ r if and only if we have νZ(x)
νX(x) ≥ g(r).
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Definition 3.2 (System of nice distributions) Let Y = {Y1, . . . ,Yk} be a collection of sets of dis-
tributions and let X be a distribution. (X,Y) form a system of nice distributions if the following
conditions hold:

1. For each Yi there exists Y ∗
i ∈ Yi such that
∀a > 0, ∀Yi ∈ Yi;TVa(X,Yi) ≤ TVa(X,Y ∗

i ).

2. for all i < j ∈ [k] the triplet (X,Y ∗
i , Y

∗
j ) is compatible.

We now state a lemma that shows when we can get a dominating pair for a mixture of multiple
mechanisms. For ease of readability, proofs for most claims in this Section are deferred to Appendix A.

Lemma 3.0: Let Y = {Y1, . . . ,Yk} be a collection of sets of distributions. Assume that (X,Y) form a
system of nice distributions. Let p1, . . . , pk ∈ [0, 1] with p1 + . . . , pk = 1. Let Y = p1 · Y1 + · · ·+ pk · Yk
be an arbitrary mixture of distributions with Yi ∈ Yi. Let Y ∗ = p1 · Y ∗

1 + · · ·+ pk · Y ∗
k . We have

TVa(X,Y ) ≤ TVa(X,Y ∗).

This Lemma, which is the key lemma for proving our result, helps us to reduce the complexity owing
to the mixture distribution. By knowing the worst-case in each set of distributions, we can identify
the worst-case for the mixture as well. Now we turn our attention to the specific case of the Gaussian
mechanism and show how to use Lemma 3.0 to obtain the dominating pair. We first show an intuitive
result that TVa between pairs of isotropic Gaussians is an increasing function of the distance between
them.

Proposition 3.0: Let X ≡ N (u1, σ
2 · Id) and Y ≡ N (u2, σ

2 · Id). Then, for any a ∈ R+, TVa(X,Y )
is only a function of ∥u1 − u2∥2 and σ2. Moreover this function is monotonically increasing with respect
to ∥u1 − u2∥2. That is, for any a ≥ ∥u1 − u2∥2 we have

TVa(X,Y ) ≤ TVa(N (0, σ2),N (a, σ2)).

Now, we show that a triplet of isotropic Gaussians with collinear means are compatible.

Proposition 3.0: Let µ ∈ Rd, c ∈ R+ X = N (0d, σ2 · Id), Y = (µ, σ2 · Id) and Z = (c ·µ, σ2 · Id). Then
(X,Y, Z) are compatible.

Finally, we show that collections of sets of isotropic Gaussians, where each set is restricted to have a
mean within a ball, form a system of nice distributions.

Proposition 3.0: Let X = N (0d, σ2 · Id) be isotropic Gaussian centered at zero. Also, for j ∈ [k] let
Yj = {N (µ, σ2 · Id); ∥µ∥ ≤ rj} for some rj ∈ R+ and let Y = {Y1, . . . ,Yk}. Then (X,Y) forms a nice
system of distributions.

Finally, we put things together to prove the following:

Theorem 3.1 (Main result) Let M be one step of DP-SGD with sub-sampling rate p and clipping
threshold 1 and noise σ. Then M is k-dominated by (X,Y ) where

X = N (0, σ2) and Y = N (B(k, p), σ2)
where B(k, p) is the binomial distribution.

Before proving this theorem we state the following corollary that shows how this extends to multiple
steps.

114



Corollary 3.1.1: DP-SGD with T -steps, noise multiplier σ and sub-sampling rate p is (ϵ, δ, k)-DP, for
an arbitrary ϵ ∈ [0, 1], k ∈ [N ] with

δ = 1
2 max

(
TVeϵ(X,Y ), eϵTVe−ϵ(X,Y )

)
+ 1− eϵ,

and X = N (0T , σ2) and Y = N (B(k, p)T , σ2).

Proof: From Theorem 3.1 we know that N (0, σ2),N (B(k, p), σ2) form a dominating pair for a single
step of DP-SGD with aforementioned hyperparameters. Then using Lemma 2.2 we obtain that the pair
(X,Y ), for X and Y as stated in the theorem, form a k-dominating pair for all T steps of DP-SGD.
Therefore, using Proposition 2.2 we finish the proof.
Proof:[Proof of Theorem 3.1] Let us fix D and D′ = D ∪ {x1, . . . , xk}. Assume we fix the randomness
of sub-sampling on all points in D (e.g., assume all of examples in D are sampled). Then, conditioned
on this sampling s, the distribution M(D)|s is a Gaussian centered at some µ0. On the other hand,
M(D′)|s is a mixture of Gaussians where the center is determined by the choice of sub-sampling on
{x1, . . . , xk}. So we can characterize M(D′) as a mixture of Gaussians with probability weights ps′ ,
and means µ0 + µs′ , and with standard deviations σ2. That is, M(D′) =

∑
s′∈{0,1}k ps′ · N (µ0 + µs′ , σ

2)
(note that here the outer sum operator denotes the mixture of distributions). We are interested in
upper-bounding TVa(M(D)|s,M(D′)|s). Since µ0 is present in the mean of both M(D) and M(D′)
we can ignore it and upper bound TVa(N (0, σ2),

∑
s′ ps′N (µs′ , σ

2). We know that for all s′, the norm
∥µs′∥ is bounded by |s′|1 because the clipping threshold is 1. In other words, N (µs′ , σ

2) ∈ Y|s′|1 where
Y|s′|1 is defined as in Proposition 3.0. Now, using Proposition 3.0, we know that the (X,Y) form a
system of nice distributions. Therefore, by Lemma 3.0, and the fact that for each Yi, the distribution
Y ∗
i = N (i, σ2) incurs the greatest TVa(X,Y ∗

i ) (according to Proposition 3.0), we have

TVa(M(D)|s,M(D′)|s) ≤ TVa(N (0, σ2),
∑

ps′N (|s′|1, σ2)).

Now observe that
∑

ps′N (|s′|1, σ2) is the same distribution as N (B(k, p), σ2). This concludes the
proof for a fixed choice of sub-sampling s. Finally, note that fixing the sub-sampling is without loss of
generality because we have TVa(p1X1 + p2X2, p1Y1 + p2Y2) ≤ p1TVa(X1, Y1) + p2TVa(X2, Y2) for any
X1, X2, Y1 and Y2.

Remark 1 (Tightness of our bound) When we say our bound is tight, we mean that there are
instantiations of DP-SGD that will exactly incur the same privacy loss as our theorem predicts. Namely,
if one runs the auditing attacks to verify DP [23] for these instantiations, the difference between the
empirical lower bounds and theoretical upper bounds should be negligible. We also note that the bound
of Theorem 3.1 is only tight in the setting where we release all the intermediate steps of DP-SGD. We
do not make any claims about the tightness of our bound when we only release the final model (i.e., the
weighted sum of all the intermediate gradients) and leave this as an open question. In fact, to the best of
our knowledge, it is not understood if the best existing analysis of DP-SGD (PRV accounting and MC
accounting [11, 29]) achieve tight bounds even for groups of size 1, when we only release the final model.

Comparison with group privacy through f-DP. The seminal work of Dong et al. [7] defines the
notion of f -DP and its special case, GDP. A mechanism M is f -DP if for all neighboring datasets the
trade-off function between M(D) and M(D′) is greater than f on all points. This notion contains more
information than DP (or RDP) as it embeds the entire privacy curve. The authors propose a simple group
privacy bound; a mechanism that is f -DP, will be 1− (1− f)k-DP for groups of size k, where (1− f)k

denotes the k-fold composition of the function 1−f . The authors rightfully claim that this group privacy
bound cannot be generally improved because it is tight for the pure Gaussian mechanism. However, there
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are three main issues with using these group privacy bounds for the sub-sampled Gaussian mechanisms:
(1) The bound is not necessarily tight for the case of sub-sampling. (2) Calculating the bounds needs
estimation of the entire trade-off function (for extremely small values) which is computationally inefficient.
(3) The estimation error of the trade-off function grows exponentially with the number of compositions.
On the contrary, our domination result avoids all this issues and enables us to calculate tight group
privacy bounds for DP-SGD. Although calculating the f -DP based group privacy bound is infeasible, we
can still analytically show that our bound is better. The following proposition formalizes this statement.

Proposition 3.1 (f-DP group privacy) Let f be the optimal trade-off function for T -steps of DP-
SGD with noise multiplier σ > 0 and sampling rate p < 1. Then (ϵ, δ) parameters obtained by group
privacy for groups of size k > 1 through black-box f -DP group privacy bounds of Theorem 2.2 is strictly
worse than that of Theorem 3.1.

But the crux of the proof lies in the fact that the trade-off function is always convex and the black-box
bound will perform operations that involve f(p ·X1 + (1− p) ·X2), while the white box bounds will
leverage the knowledge of sub-sampling and achieves p ·f(X1)+(1−p) ·f(X2). This effect will compound
over multiple iterations and as long as the sub-sampling rate is below 1, and the group size is larger
than one, our bound will be strictly better.

4 Calculating the bound using Monte Carlo approximation

In this section we describe our algorithm for calculating the bound of Corollary 3.1.1. Note that the
bound described there does not have a closed form and we need to approximate it. Previous work has
explored various ways to calculate these type of bound using Monte Carlo approximation [19, 29] and
numerical methods [9, 11, 32]. However, we still need to devise a new method for calculating our bound
because previous methods are not general enough to cover the calculation of our bounds out of the box.
In this work, we focus on the Monte-Carlo methods for calculating our bound.

Recall that the bound of Corollary 3.1.1 shows how to calculate δ at a given ϵ and the formula
involves calculating TVa(X,Y ) for a pair of distributions X,Y . The procedure for calculating this
weighted total variation distance uses two key observations. This first observation is that the formula for
calculating the weighted total variation distance can be converted into an expectation form as follows:

TVa(X,Y ) =

∫
|νX(x)− aνY (x)|dx

= 2

∫
max

(
νX(x)− aνY (x), 0

)
dx+ a− 1

= 2Ex∼X

[
max

(
1− a

νY (x)

νX(x)
, 0
)]

+ a− 1

Our second observation is that we can efficiently sample points from X and we can also calculate the
ratio between νY and νX at any given point x. This is simply by calculating the ratio at each coordinate
using the binomial weights and then multiplying all the ratios in different coordinates. Hence, we can
use a simple Monte-Carlo approach to approximate this quantity. Algorithm 1 shows our procedure for
Monte-Carlo approximation of the δ for a given ϵ.

In a nutshell, the algorithm samples m points x1, . . . , xm from X. Then it calculates the ratio
ri = eϵ ·νY (xi)/νX(xi) for all xi. We can do this in n steps by calculating the ratio for each dimension and
then multiplying them. Calculating the ratio for a dimension takes time O(k) because the distribution
for each dimension is a mixture of k distributions. Note that the algorithm would calculate both
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TVeϵ(X,Y ) and TVe−ϵ(X,Y ) at the same run. This is because of Corollary 3.1.1 that requires both of
these quantities to calculate the δ. The running time of this algorithm is O(knm) and the accuracy of
approximation δ improves with the number of samples. The following Proposition shows the dependence
between the accuracy and number of samples.

Algorithm 2 Compute δ group privacy
Require: Sampling rate p, group size k, number of compositions n, noise multiplier σ, privacy parameter

ϵ, number of samples for mean estimation m
1: function gaussian_pdf(x, σ)

2: return e−
x2

2σ2

3: end function
4:
5: function binom_mixture_pdf((x, k, σ, p))
6: p← 0
7: for j ← 0 to k do
8: pj ← gaussian_pdf(x− j, σ)
9: p← p+ pj × binom_coefficient(j, k, p)

10: end for
11: return p
12: end function
13:
14: δ1 ← 0
15: δ2 ← 1− eϵ

16: for i← 1 to m do
17: r1 ← eϵ

18: r2 ← e−ϵ

19: for j ← 1 to n do
20: x ∼ N (0, σ2)
21: ν ← binom_mixture_pdf(x, k, σ, p)
22: µ← gaussian_pdf(x, σ)
23: r1 ← r1 × ν

µ
24: r2 ← r2 × ν

µ
25: end for
26: δ1 ← δ1 +

max(1−r1,0)
m

27:
28: δ2 ← δ2 + eϵ · max(1−r2,0)

m
29: end for
30: output max(δ1, δ2)

Proposition 4.0: Let M be the composition of n sub-sampled gaussian mechanisms with sampling
rate p and noise multiplier σ. Let δ be the output of Algorithm 2 ran on these parameters, with m

samples at a given ϵ. Then the mechanism M is (ϵ, δ + γ, k)-DP, with probability at least e1−2e−2mγ2 ,
where the probability is taken over the randomness of Algorithm 2.

Proof: Note that Algorithm 2 is essentially finding the mean of the random variable max
(
1− a νY (x)

νX(x) , 0
)

with m samples. This random variable is always between 0 and 1. Using a Chernoff-Hoefding bound, we
conclude that the mean estimation has error more than γe−ϵ with probability at most p1 = 2e−2me−2ϵγ2 .
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Figure 2: Group composition for 20 steps of DP-SGD with noise multiplier 1.0, sampling rate 0.01. In
two of experiments we fix ϵ = 2.0 and calculate the δ. In the other two experiments we grow ϵ linearly
and set it to (group size)× 0.5. Surprisingly, in these experiments δ does not increase much, despite the
exponential dependence of δ on the group size in the black box bound.

Therefore, the error of calculating δ2 is at most γ with probability at least 1−p1. The error of calculating
δ1 is also at most γ with probability at least 1− 2e−2mγ2 . Therefore, the error of max(δ1, δ) is at most
γ with probability at least 1− 2e−2me−2ϵγ2 − 2e−2mγ2

. We remark that it is possible to approximate δ
with more advanced Monte-Carlo techniques run with fewer samples, similar to what is done in [29].
However, for the purpose of this work, simple Monte-Carlo suffices. One might wonder if we can perform
numerical accounting instead of Monte-Carlo. We currently believe that this would be possible for group
privacy but it requires a non-black-box view of our proof. We leave this as an interesting open question.

5 Experiments

In this section we describe our experimental setup. We use a range of hyperparameters and group
sizes to calculate the group privacy bound. We calculate the group privacy using Algorithm 2. In all
experiments, we set m (number of trials) large enough so that with probability at least .99 the error of
estimate is at most 1%. Since Algorithm 2 is designed to calculate δ at a given ϵ, we sometimes need to
perform a search over ϵ that would give us the desired δ. For the experiments that require calculating ϵ
at a given δ, we perform binary search to find the right ϵ.

Comparing with the black-box bound: First we compare our bound with the black-box bound
of Theorem 2.1. In this experiment, we fix δ and aim at achieving (ϵ, δ = 10−3, k) group privacy for
different groups sizes k. We use 10 steps of sub-sampled Gaussian mechanism with sampling probability
p = 0.01 and noise multiplier σ = 1.0. Figure 1 shows that our bound can significantly outperform the
black-box bound. The growth in ϵ with group size is much closer to linear than what the black-box
bound predicts.

Note that for the black-box group privacy, the δ term grows exponentially with the group size. This
means we need to calculate the ϵ for a very small value of δ′ to be able to get δ < 10−5 after applying
the group privacy bound. That is why in Figure 1, we chose δ = 10−3. In contrast, for our bounds
there is no such issue and we can calculate ϵ for small values of δ. To illustrate this, we perform another
experiment where we fix ϵ and show the growth of δ with ϵ. For this experiment, we use 20 steps of
Gaussian mechanism with noise multiplier σ = 2.0 and sampling rate p = 0.01.

The results in Figure 2 (Blue curves) shows that the δ term grows really fast when we grow the
group size, both for our bound and the black-box bound. To show the significance of the improvement
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Figure 3: We change sampling rate and corresponding σ to ensure (1.0, 10−5)-DP when applied for 100
steps. The group privacy is much more graceful for smaller sampling.

in δ, we plot another curve, where we grow ϵ together with group in a linear way. Specifically, we set
ϵ = k × 0.5 where k is the group size. The red curves in Figure 1 shows the comparison of our bound
with the black box in this setting. As expected, in the black-box setting the δ still grows exponentially
with linearly growing ϵ but the δ calculated using our bound is almost constant.

This experiment suggests a nice approximation of group privacy for sub-sampled Gaussian mechanism
with very small sub-sampling rates. In particular, the ϵ seem to grow almost linearly with the group size
while keeping the δ constant. Although this does not constitute a privacy guarantee, it is still a good
rule of thumb.

Role of sub-sampling rate and step size on group privacy: To better understand the role of
sub-sampling on group privacy, we perform experiments by simultaneously varying the sub-sampling
rate and noise multiplier so that the (ϵ, δ) terms remain constant (1.0, 10−5) (for groups of size 1). Then
we calculate the optimal group privacy for each of these settings and compare the curves. Figures 3
show the resulting ϵ and δ terms respectively. In these experiments, we fix the number of steps to 100
and vary the sub-sampling rate to be one of [0.001, 0.01, 0.1, 1.0]. Then we find the σ that will satisfy
(1.0, 10−5, 1)-DP for each sub-sampling value. We then grow the group size for each sub-sampling rate
and report the δ at a fixed ϵ in the top figure. We also report ϵ at a fixed δ in the bottom figure.

Our results show that sub-sampling can significantly change the group privacy profile. Lower sub-
sampling rates lead to a more graceful degradation of privacy due to group size. We find the effect of
sub-sampling on group privacy quite surprising. Note that the black-box group privacy would predict the
exact same privacy curve in all scenarios. This finding might suggest an argument for using smaller batch
sizes when doing private optimization. Although previous work [6, 27] suggest that larger batch size is
better for the trade-off between accuracy and privacy, that dynamic might change if one is interested in
the privacy for larger groups.

We also provide further experiments in Appendix B to demonstrate the role of sub-sampling rate
at larger scale. We vary the sub-sampling rate and number of steps and observe that the role of
sub-sampling diminishes as the number of steps increases. We believe this is mainly because of the
behavior of the dominating pairs of distribution for sub-sampled Gaussian mechanism in the limit. We
know that these dominating pairs behave similar to the dominating pairs of Gaussian distributions as
the number of steps increase [28].
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6 Applications and Implications

In this section, we present some of the application and implications of our bounds. Further exploration
of these applications is left for future work.

Unit of Privacy: A challenging limitation of DP is that it requires a unit of privacy. The notion
of neighboring dataset determines the smallest unit that we would want to protect privacy for. The
work of Brown et al. [4] identifies this as one of the main challenges in employing DP for training
language models. They question whether we should use words, sentences, paragraphs, documents, or
even users as units of privacy. A simple solution to this issue would be to use the smallest unit of
privacy imaginable and then apply group privacy to obtain the privacy bounds for larger units. However,
the black-box group privacy bounds extremely degrade the privacy parameters, leading to meaningless
privacy guarantees for larger privacy units. Our work can change this view and help with selecting small
units of privacy, e.g., words or sentences.

Our group privacy bounds are also helpful for calculating user-level privacy [10, 16, 30], in settings
that data is collected from multiple users, in a potentially heterogeneous way. In fact, using our
general framework of Lemma 3.0, one can obtain even tighter bounds for groups/users that have certain
properties. For example, if the gradients in a group are all orthogonal (e.g., they are examples from
different classes in a logistic regression setting),

√
B(k, p) would replace B(k, p) in Theorem 3.1.

Robustness and DP: A large body of work has focused on the study of connections between robustness
and DP [17, 21, 31]. Using DP-SGD for training a machine learning model would prevent a training-time
attacker (a.k.a. poisoning attack) from changing the behavior of the trained model significantly. The
reason relies on the fact that DP would limit the influence of each individual example on the output
model. Hence, an adversary who can change a small fraction of the training data will not be able to
change the distribution of the trained model more than a certain amount, determined by DP parameters.
The (certified) robustness of the final model is determined by applying group privacy bounds, for the
groups sizes that are equal to the number of points the adversary can add to the training set. Our
improved group privacy bounds can improve the provable consequences of using DP-SGD for certified
robustness.

Privacy auditing: A challenge with differential privacy is that verifying its correct implementation is
difficult. Recent work has focused on this issue of “privacy auditing” by leveraging attacks that would
fail when differential privacy is correctly deployed [12, 22, 26]. Specifically, one would run a membership
inference attack to assert the correct implementation of DP; if membership inference succeeds with
more than certain probability, then the implementation must be incorrect. We believe our optimal
group privacy bounds can add more options for privacy auditing. Instead of individual membership
inference attacks, we can focus on group membership inference attacks to verify the correctness of DP
implementation. For example, in the context of generative models, it is observed that repetition of single
point in the training set can significantly increase its chances of getting regurgitated [5]. In light of our
group privacy bounds, an adversary that can distinguish between a model that is trained with 10 copies
of a single sample from another model that is not trained on that specific sample, can be used to audit
privacy tightly.

Fairness, accuracy, and privacy: Finally, we believe our group privacy bounds can explain some
of the observations made about the accuracy and fairness of predictions in private models [2, 3]. Our
optimal bounds on group privacy would imply that small groups will have a smaller effect on the
models behavior than what was previously thought. This could lead to models that are unfair to small
sub-populations. This effect can be exacerbated with certain hyperparameters (e.g. subsampling rate)
that will make group privacy stronger. This shows that the choice of hyperparameters should not be
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only influenced by the accuracy-privacy trade-off. There could be different hyperparameters that lead to
exact same privacy and accuracy while showing different fairness of the model.
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A Deferred proofs

A.1 Proof of Lemma 3.0

Proof: We know that (X,Y ∗
1 , Y

∗
i ) are compatible for all i ∈ [k]. Let gi be the corresponding transition

function (see Definition 3.1). Note that g1 is the identity function. Let t be constants in [0, 1] such that
the following holds: ∑

i∈[k]

api
gi(ap1/t)

= 1.

Note that this t exists because f(t) =
∑

i∈[k]
api

gi(ap1/t)
is an increasing and continuous function in t with

limt→∞ =∞ and limt→0 f(t) = 0. Therefore, there should exist a value of t that makes f(t) = 1. Now
define ti =

api
gi(ap1/t)

. We are going to use these values to break up the integration. We have,

TVa(X,Y ) =

∫
|νX(x)− aνY (x)|dx

=

∫
|νX(x)− a

(∑
i∈[k]

pi · νYi(x)
)
|dx

=

∫
|(t1 + · · ·+ tk) · νX(x)− a

(∑
i∈[k]

pi · νYi(x)
)
|dx

≤
∫ (∑

i∈[k]

|ti · νX(x)− api · νYi(x)|
)
dx

=
∑
i∈[k]

∫
|ti · νX(x)− api · νYi(x)|dx

=
∑
i∈[k]

ti ·TV api
ti

(X,Yi)

=
∑
i∈[k]

ti ·TVgi(
ap1
t

)(X,Yi)

≤
∑
i∈[k]

tiTVgi(
ap1
t

)(X,Y ∗
i )

Now we have multiple integrations on the absolute values and we need to move back to a single integration.
This is where the reason behind the choice of ti becomes clear. Let

si(x) = sign(νX(x)− gi(ap1/t)νY ∗
i
(x)).

Based on the definition of gi in Definition 3.1 we have

∀i ∈ [k], ∀x; si(x) = s1(x).

Using this, based on the fact that ti > 0 we can conclude that

∀j,∀x; sign
(∑

i∈[k]

ti
(
νX(x)− gi(ap1/t)νY ∗

i
(x)
))

= sj(x). (1)
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Now continuing our calculation of TVa we have

TVa(X,Y ) ≤
∑
i∈[k]

ti ·TVgi(
ap1
t

)(X,Y ∗
i )

=
∑
i∈[k]

∫
ti|νX(x)− gi(

ap1
t

) · νY ∗
i
(x)|dx

=

∫ (∑
i∈[k]

ti|νX(x)− gi(
ap1
t

) · νY ∗
i
(x)|

)
dx

=

∫ (∑
i∈[k]

ti · si(x) ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
))

dx

=

∫
sign

(∑
i∈[k]

ti ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
))
·
(∑

i∈[k]

ti ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
))

dx

=

∫ ∣∣∣∑
i∈[k]

ti ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
)∣∣∣dx

=

∫ ∣∣∣νX(x)−
∑
i∈[k]

ti · gi(
ap1
t

) · νY ∗
i
(x)
)∣∣∣dx

=

∫ ∣∣∣νX(x)−
∑
i∈[k]

api · νY ∗
i
(x)
)∣∣∣dx

= TVa(X, p1 · Y ∗
1 + · · ·+ pk · Y ∗

k ).

And this finishes the proof.

A.2 Proof of Proposition 3.0

Proof: The first part follows by the symmetry of isotropic Gaussian. For the second part (monotonicity)
we use the definition of TVa. Without loss of generality we can assume a ∈ [0, 1] as otherwise we
can work with TVa(P,Q)/a = TV1/a(Q,P ). Let r = ∥u1 − u2∥2. We can show that the derivative of
the integral is always positive. In the following calculations, we use c1, c2, c3 and c4 to denote positive
constants that are independent of r.

First note that x∗ = r2−2σ2 ln(a)
2r is a middle point where e−

x2

2σ2 − ae−
(x−r)2

2σ2 goes from positive to
negative as x increases. By our assumption that a ∈ [0, 1], we have that x∗ > 0. Recalling that
erf(z) = 2√

π

∫ z
0 exp(−t2)dt, and that erf(∞) = 1 so that (by symmetry) 2√

π

∫ 0
−∞ exp(−t2)dt = 1, we can
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write

TVa(P,Q) = c1

(∫ ∞

−∞

∣∣∣∣e− x2

2σ2 − ae−
(x−r)2

2σ2

∣∣∣∣ dx)
By breaking the integral in an intermediate point we have

= c1

(∫ x∗

−∞
e−

x2

2σ2 − ae−
(x−r)2

2σ2 +

∫ ∞

x∗
ae−

(x−r)2

2σ2 − e−
x2

2σ2

)
By replacing the integrals with the CDF of Gaussian distribution we have

= c1

(
1 + erf

(
x∗/
√
2σ
)
− aerf((x∗ − r)/

√
2σ)
)

+
(
a(1− erf

(
(x∗ − r)/

√
2σ
)
+ (1− erf

(
x∗/
√
2σ
))

= c2

(
erf

(
r2 − ln(a)σ2

2
√
2σr

)
+ 1− aerf

(
−r2 − ln(a)σ2

2
√
2σr

)
− a

)
.

Now, let f1(r) = erf
(
r2−ln(a)σ2

2
√
2σr

)
and f2(r) = −aerf

(
−r2−ln(a)σ2

2
√
2σr

)
. Taking the derivative with respect

to r we have

∂f1
∂r

= c3

(
1

2
√
2σ

+
ln(a)σ

2
√
2r2

)
e
−
(

r2−ln(a)σ2

2
√
2σr

)2

∂f2
∂r

= c3a

(
1

2
√
2σ
− ln(a)σ

2
√
2r2

)
e
−
(

−r2−ln(a)σ2

2
√
2σr

)2

Now note that we have e
−
(

r2−ln(a)σ2

2
√
2σr

)2

= a1/2 · e
−
(

−r2−ln(a)σ2

2
√
2σr

)2

. Therefore, we have

c4
∂TVa

∂r
= e

−
(

−r2−ln(a)σ2

2
√
2σr

)2

·
(
1 +
√
a

2
√
2σ

+
ln(a) (

√
a− 1)σ

2
√
2r2

)
.

Now since a ∈ [0, 1], we have ln(a) ≤ 0 and
√
a− 1 < 0, which means the term 1+

√
a

2
√
2σ

+ ln(a)(
√
a−1)σ

2
√
2r2

is
positive. This implies that the whole gradient is positive.

A.3 Proof of Proposition 3.0

Proof: We have

νY (x)/νX(x) = e
∥x∥2−∥x−µ∥2

2σ2 and νZ(x)/νX(x) = e
∥x∥2−∥x−c·µ∥2

2σ2 .

For all x we have

∥x− c · µ∥2 − ∥x∥2 =
d∑

i=1

c2µ2
i − 2cµi · xi =

( d∑
i=1

c2 − cµ2
i

)
+ c
(∑

µ2
i − 2µi · xi

)
= (c2 − c)∥µ∥+ c(∥x− µ∥2 − ∥x∥2).

Therefore, if νY (x)
νx(x)

> r then we have ∥x∥2 − ∥x − µ∥2 > 2σ2 · ln(r), which implies ∥x∥2 − ∥x −
µ∥2 > 2c · σ2 · ln(r) + (c − c2)∥µ∥, which in turn implies νz(x)

ν(x) > ec·ln(r)+(c−c2)∥µ∥2 . Now observe that

g(r) = ec·ln(r)+(c−c2)∥µ∥2 is an increasing and continuous function of r. Also observe that all the steps we
took are reversible, therefore we have νY (x)/νX(x) > r if and only if νZ(x)/νX(x) > g(r).
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A.4 Proof of Propostion 3.0

Proof: Let µ ∈ Rd be an arbitrary unit vector with ∥µ∥ = 1. By the symmetry of Gaussians, we
know that for any constant c ∈ R+ we have TVa(N (0d, σ2 · Id), Let µ ∈ Rd be an arbitrary unit
vector with ∥µ∥ = 1. Again by the symmetry of Gaussians, we know that for any constant c ∈ R+

we have TVa(N (0d, σ2 · Id), Let µ ∈ Rd be an arbitrary unit vector with ∥µ∥ = 1. Let us define
Y ∗
j = N (rj · µ, σ2 · Id). By Lemma 3.0 we know that for all Yj ∈ Yj we have

TVa(X,Yj) ≤ TVa(X,Y ∗
j ).

On the other hand, by Proposition 3.0 we know that for all j, j′ ∈ [k], the triplet (X,Y ∗
j , Y

∗
j′) are

compatible. Hence, (X,Y) form a nice system of distributions.

A.5 Proof of Proposition 3.1

Proof: Let fσ,p be the trade-off function associated with a single step of the sub-sampled Gaussian
mechanism with noise σ. When p = 1.0 we simply write fσ. We also define f̄(x) = 1− f(x). We have,

f̄p,σ(α) = (1− p) · α+ p · (f̄σ(α))

Now consider applying this function twice, we have

f̄p,σ(f̄p,σ(α)) = (1− p)f̄σ,p(α) + pf̄σ(f̄p,σ(α))

= (1− p)2(α) + p(1− p)f̄σ(α) + pf̄σ
(
(1− p)α+ pf̄σ(α)

)
.

We know that trade-off functions are convex, so using Jensen’s inequality we have,

f̄p,σ(f̄p,σ(α)) ≥ (1− p)2(α) + 2p(1− p)f̄σ(α) + (1− p)2f̄σ
(
f̄σ(α)

)
(2)

= (1− p)2α+ 2p(1− p)f̄σ(α) + p2f̄σ/2(α) (3)

Now let µ ≡ N (0, σ) and ν ≡ (1− p)2N (0, σ)+ 2p(1− p)N (1, σ)+ p2N (2, σ). The trade-off function
between µ and ν is equal to

1− T (µ, ν)(α) = (1− p)2α+ 2p(1− p) · fσ(α) + p2fσ/2(α),

which is equal to the right hand side of Equation 2. Using a simple induction, we can show that for all
k, defining µ = N (0, σ) and ν = N (B(k, p), σ), we can show that the trade-off function between µ and
ν is always dominated by the function fk

σ,p. Also note that this domination is strict as long as k > 1 and
0 < p < 1. This shows that for a single step of DP-SGD, our group privacy bound is strictly better than
what is entailed by applying the trade-off function recursively. For more than one step, we can simply
use Lemma 2.2 and show that our bound is strictly better for many steps of DP-SGD as well.
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B Extra experiments

B.1 Growth of group privacy with step size

In this section, we demonstrate the growth of group privacy parameters with the step size. In each plot,
we fix the sampling rate and noise parameters and calculate the group privacy at various step sizes. In
general, we observe that the growth of group privacy is faster in the smaller iterations, but it becomes
slower as the number of steps further increase.
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Figure 1: Noise Multiplier=10.00, Sampling rate=0.01.
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Figure 2: Noise Multiplier=15.00, Sampling rate=0.01.
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Figure 3: Noise Multiplier=20.00, Sampling rate=0.01.
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Figure 4: Noise Multiplier=25.00, Sampling rate=0.01.
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Figure 5: Noise Multiplier=5.00, Sampling rate=0.10.
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Figure 6: Noise Multiplier=10.00, Sampling rate=0.10.
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Figure 7: Noise Multiplier=15.00, Sampling rate=0.10.
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Figure 8: Noise Multiplier=20.00, Sampling rate=0.10.
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Figure 9: Noise Multiplier=25.00, Sampling rate=0.10.
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Figure 10: Noise Multiplier=5.00, Sampling rate=0.20.
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Figure 11: Noise Multiplier=10.00, Sampling rate=0.20.
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Figure 12: Noise Multiplier=15.00, Sampling rate=0.20.
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Figure 13: Noise Multiplier=20.00, Sampling rate=0.20.
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Figure 14: Noise Multiplier=25.00, Sampling rate=0.20.
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Figure 15: Noise Multiplier=5.00, Sampling rate=0.30.
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Figure 16: Noise Multiplier=10.00, Sampling rate=0.30.
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Figure 17: Noise Multiplier=15.00, Sampling rate=0.30.

0 250 500 750 1000 1250 1500 1750 2000

Steps

0

20

40

60

80
Group size = 1
Group size = 5
Group size = 10
Group size = 15
Group size = 20

Figure 18: Noise Multiplier=20.00, Sampling rate=0.30.
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Figure 19: Noise Multiplier=25.00, Sampling rate=0.30.
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Figure 20: Noise Multiplier=5.00, Sampling rate=0.40.
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Figure 21: Noise Multiplier=10.00, Sampling rate=0.40.
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Figure 22: Noise Multiplier=15.00, Sampling rate=0.40.
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Figure 23: Noise Multiplier=20.00, Sampling rate=0.40.
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Figure 24: Noise Multiplier=25.00, Sampling rate=0.40.
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Figure 25: Noise Multiplier=5.00, Sampling rate=0.50.
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Figure 26: Noise Multiplier=10.00, Sampling rate=0.50.
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Figure 27: Noise Multiplier=15.00, Sampling rate=0.50.
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Figure 28: Noise Multiplier=20.00, Sampling rate=0.50.
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Figure 29: Noise Multiplier=25.00, Sampling rate=0.50.
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Figure 30: Noise Multiplier=5.00, Sampling rate=1.00.
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Figure 31: Noise Multiplier=10.00, Sampling rate=1.00.
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Figure 32: Noise Multiplier=15.00, Sampling rate=1.00.
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Figure 33: Noise Multiplier=20.00, Sampling rate=1.00.
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Figure 34: Noise Multiplier=25.00, Sampling rate=1.00.
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Figure 35: Noise Multiplier=5.00, Sampling rate=0.01.
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B.2 Effect of sub-sampling rate on group privacy at various step sizes

In this section, we demonstrate the effect of sub-sampling rate on the group privacy. In the following
plots, we set the step size to a fixed value T . We also fix a list of of sampling rates {pi}i∈[10]. For each
sampling rate, we carefully select a σi so that the privacy cost of performing T steps with sampling
rate pi at noise σi is exactly the same. Then we calculate the group privacy for all these settings and
compare them. Our initial experiments suggested that decreasing the sampling rate will improve group
privacy. We ablate this with various step sizes. We try to perform this ablation by plotting figures for
a various step sizes. We observe that the effect of sub-sampling rate on group privacy is much more
pronounced at smaller step sizes.
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Figure 36: Steps=500.
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Figure 37: Steps=1000.
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Figure 38: Steps=1500.
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Figure 39: Steps=2000.
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Figure 40: Steps=2500.
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Figure 41: Steps=300.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Group size

0

10

20

30

40

      

 Noise=1.00,  Sampling rate = 0.01
 Noise=3.28,  Sampling rate = 0.05
 Noise=6.33,  Sampling rate = 0.10
 Noise=9.42,  Sampling rate = 0.15
 Noise=12.51,  Sampling rate = 0.20
 Noise=15.60,  Sampling rate = 0.25
 Noise=18.69,  Sampling rate = 0.30
 Noise=21.82,  Sampling rate = 0.35
 Noise=25.02,  Sampling rate = 0.40
 Noise=28.00,  Sampling rate = 0.45
 Noise=31.13,  Sampling rate = 0.50

Figure 42: Steps=350.
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Figure 43: Steps=400.
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Figure 44: Steps=450.
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Figure 45: Steps=50.
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Figure 47: Steps=150.
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Figure 48: Steps=200.
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Figure 49: Steps=250.
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