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Letter from the Editor-in-Chief

Privacy in AI is having its “everything, everywhere” moment. It shows up in procurement checklists,
product reviews, incident postmortems, and policy debates, and it is often discussed with the urgency
of an existential risk and the practicality of a compliance chore. That contradiction is not a sign of
confusion so much as it is a sign that we are living through a transition. The tools and institutions
that once made privacy feel manageable were built for a world in which data use looked like a bounded
transaction: a service collected information, stored it, and used it for an identifiable purpose. In the
AI era, data does not merely support a service; it becomes part of a capability that can be reused,
repurposed, and redeployed, long after the original context has faded.

That is why it is becoming harder to believe in privacy as a moment—a notice, a click, a checkbox,
a clause. When people are asked to make meaningful decisions through low-signal interfaces, under time
pressure, in environments engineered for throughput rather than deliberation, “choice” starts to resemble
a ritual rather than an exercise of agency. Even when consent is present, it rarely carries predictive
power about what will happen next, because modern AI systems blur the lines between primary use and
secondary use. Data flows into pipelines; pipelines feed models; models are integrated into products;
products generate logs; logs become training material; and vendors, tools, and internal services become
links in a chain that few individuals can see, much less control.

The papers in this issue suggest a sturdier thesis: privacy in AI will be won or lost by infrastructure.
By “infrastructure,” I mean defaults that do not require constant vigilance from the individual, controls
that remain meaningful as systems scale and get outsourced, and accountability that follows data and
models across their lifecycle rather than concentrating at the moment of collection. The old world asked
whether privacy disclosures were complete and whether consent was obtained. The new world has to ask
whether the system is constructed so that restraint is the normal path, misuse is harder than proper use,
and the consequences of failure are detectable before they become irreversible.

One way to see the limits of the older framing is to notice how often privacy debates get stuck on
a narrow question: did the model memorize sensitive training examples, and can that information be
extracted? That question matters, but it is no longer the whole story. The paper Beyond Data Privacy:
New Privacy Risks for Large Language Models by Du et al, offers a useful reframing by widening the
threat model. In practice, privacy risk emerges not only from what was in the training set, but from
the way models are deployed, connected, and operated. Prompts and outputs may be logged. Retrieval
systems may introduce sensitive context. Tool integrations and plugins may route data to third parties.
An application can be carefully designed in one layer and quietly undermine privacy in another. The
most unsettling element of this expanded frame is that privacy harm can arise even when nothing is
“leaked” in the classic sense, because models can be used to infer, profile, and amplify invasive behavior.
In other words, the privacy story shifts from a single vulnerability to an exposure surface spanning the
full stack.

Once you accept that, another gap in conventional thinking becomes obvious. We often talk about
privacy as if it were mainly a question of who can see the data. Yet modern AI systems increasingly
depend on outsourced infrastructure, external platforms, and complex vendor ecosystems, and that
raises a second question that is just as fundamental: can we trust what computation happened, where,
and under what constraints? The paper Data Privacy and Computation Integrity in Machine Learning
Scenarios insists that privacy promises become brittle when integrity is treated as an afterthought. If
training, storage, or evaluation is delegated to an environment you do not fully control, the question
is not merely whether the data was protected in transit or at rest, but whether the computation was
performed correctly, completely, and in a way that can be audited. In real deployments, privacy failures
are often caused less by cinematic adversaries and more by mundane realities: misconfiguration, partial
failures, permissive logging, quiet pipeline drift, and vendor-side changes that are hard to observe from

1



the outside. Integrity mechanisms, verification patterns, and auditable controls do not make systems
perfect, but they shift privacy from hope to evidence. Privacy without integrity is a promise that survives
only in the best-case scenario.

If infrastructure is the right lens, then privacy by default must also be understood as a systems design
problem rather than an algorithmic checkbox. Federated learning, for instance, is frequently introduced
as a simple idea: keep data local and ship updates. But the paper Privacy-Preserving Federated Large
Language Models by Xu et al is valuable precisely because it refuses to sell simplicity. At the scale of
large language models, the tensions among privacy, utility, and efficiency are not abstract. If you push
too hard on privacy, performance may degrade or training may become unstable under heterogeneous
data. If you prioritize utility, you may invite leakage through updates. If you optimize for efficiency, you
may weaken the very redundancy and aggregation that make privacy protections workable. The paper
reads as an argument for intellectual honesty: privacy engineering is tradeoff engineering. The goal is
not to deny tradeoffs, but to make them explicit, measurable, and governable.

That idea – governable tradeoffs – is where “infrastructure” stops being a metaphor. Governance
requires enforcement. Enforcement requires permissioning. And permissioning, in large-scale AI
services, is inseparable from identity and access control. It is easy to categorize managed identities and
authorization systems as “security plumbing” and treat them as adjacent to privacy. In practice, they
are privacy. Access drift is a privacy leak. Ambiguous service identity is a privacy risk. Mis-scoped
tokens are privacy incidents waiting to happen. The paper Hyper-Scale Managed Identities and Access
Control, by Alagenchev et al, underscores how much modern systems depend on reliable identity, scalable
authorization, and strong assurance about who is calling what. In the AI era, where models become
shared services consumed by many clients, privacy cannot be protected if the system cannot express and
enforce who may use which model, with what data, under what constraints. The boundary between
privacy and security is not disappearing, but it is becoming increasingly artificial at the level where
systems actually fail.

Of course, infrastructure is not only about locks; it is also about measurement. What can be
observed can be governed, and what cannot be observed becomes a matter of trust. Yet measurement
is only as useful as the reality it reflects. Formal guarantees can be technically correct while socially
misleading if they are not aligned with how risk manifests in practice. Two contributions in this issue,
in different ways, press toward the same lesson: privacy claims must match real units of harm and real
deployment contexts. Mahloujifar et al, in Optimal Group Privacy for DP-SGD, push beyond the idea
that privacy is only about a single record. Many harms accrue at the level of groups, cohorts, households,
or communities; user participation itself can be sensitive; and correlated records can amplify exposure.
Meanwhile, Mokhtari et al, in Rethinking Benchmarks for Differentially Private Image Classification,
challenge the tendency to benchmark methods in settings that are convenient rather than representative
of privacy-critical domains. Benchmarks shape what we optimize, what we deploy, and what we celebrate.
If they fail to reflect the stakes and constraints of real-world settings, we risk building methods that
look strong on paper while leaving the highest-risk contexts underserved.

Stepping back, the connective tissue across these papers is not a single mechanism, but a shared
insistence that privacy must move upstream and become operational. The path forward is less about
asking individuals to shoulder the burden of prediction and vigilance, and more about building systems
in which restraint is the default behavior of the pipeline. It is less about treating compliance as a
final gate, and more about structuring interdisciplinary ownership so that privacy requirements shape
architecture choices early and remain meaningful as systems evolve. It is less about a narrow focus
on training data and more about end-to-end thinking that includes deployment realities, integrations,
logging, and misuse. It is less about privacy as a promise and more about privacy as an observable
property supported by integrity, identity, and measurement.

That framing also clarifies what progress should look like. Progress is a world in which collecting less
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is not an act of heroism, but the easiest path. It is a world in which provenance, retention, and purpose
are not buried in policy documents, but expressed in system behavior and enforced by controls. It is a
world in which outsourcing does not dissolve responsibility, because privacy and integrity constraints
survive across vendor boundaries. It is a world in which “privacy-preserving” is not a marketing adjective,
but a claim that can be scrutinized with shared benchmarks, realistic assumptions, and guarantees that
align with how harm is experienced.

The call to action, then, is not to wait for a single breakthrough. It is to build the missing
privacy supply chain. Researchers can prioritize work that is system-aware and deployment-relevant,
connecting formal guarantees to operational realities like identity, access control, logging, and outsourcing.
Practitioners can stop treating privacy as something to be validated late and instead embed it into data
pipelines, model lifecycle management, and continuous monitoring, with the same seriousness we apply
to reliability and safety. Institutions can push accountability upstream, encouraging norms that make
provenance, retention, and permissioning central rather than peripheral.

If we do that work, privacy in the AI era stops being a rear-guard action. It becomes a discipline of
construction: designing systems that can learn and serve at scale without turning personal data into a
permanent liability. The papers in this issue do not claim that future has arrived, but they make it
easier to see what it would take to build it. That is the real opportunity before us, and it is also the test
that will define what comes next.

Haixun Wang
EvenUp

3



Letter from the Special Issue Editor

The rapid advancement of Artificial Intelligence (AI) across diverse fields like healthcare, finance,
transportation, and entertainment hinges heavily on data engineering/science. This discipline plays a
crucial role in developing novel methods for collecting, storing, processing, and analyzing vast amounts
of data, often containing sensitive personal information. However, traditional approaches such as
access control and anonymization face significant challenges in handling sensitive data in the age of
AI. This special issue contributes to the critical discussion on privacy-preserving technologies for data
engineering/science in the age of AI and features the following seven articles.

1. Privacy, Policy, and Compliance in Yet Another ‘Age’: The Necessity of Interdisciplinary Col-
laboration for Artificial Intelligence Applications by Bailey Kacsmar. This article focuses on the
existing domains relevant to AI governance, such as privacy, policy, and compliance, and discusses
the challenges in different stages of AI and solutions that have been investigated.

2. Data Privacy and Computation Integrity in Machine Learning Scenarios: Some Issues and Ap-
proaches by De Capitani di Vimercati et al. While the previous paper shows the importance
of AI in different fields, this paper focuses on privacy and computation integrity issues arising
when data and machine learning models or tasks are shared with external parties. They develop
a target-aware data anonymization technique and a solution for generating a privacy-friendly
classifier that requires neither sensitive information nor information correlated with it for training
a high-accuracy classifier.

3. Beyond Data Privacy: New Privacy Risks for Large Language Models by Du et al. The previous
two papers set up the background for LLM in terms of their usages and privacy issues of ML.
This paper introduces critical privacy vulnerabilities, particularly during their deployment and
integration into applications. In the paper, rather than focusing on training-phase data privacy,
as most existing work does, the authors explore new risks, including data leakage and malicious
exfiltration enabled by LLM’ autonomous capabilities. To combat these threats, the paper provides
a systematic analysis of these emerging risks and calls for the development of broader, more robust
defense strategies.

4. Privacy-Preserving Federated Large Language Models: Techniques and Trade-offs by Xu et al.
Moving from the centralized LLM, this paper focuses on three specific challenges when combining
Federated Learning with LLM, that are maintaining model utility amid statistical and system
heterogeneity; ensuring efficiency by alleviating severe communication and computation bottlenecks;
and safeguarding privacy against powerful attacks.

The next three papers focus on specific techniques and advances for addressing various privacy
challenges, including access control and differential privacy.

5. Hyper-Scale Managed Identities and Access Control by Alagenchev et al. This paper further
discusses access control on large-scale settings and focuses on the limitations, such as scalability,
adaptability, and fine-grained, context-aware control, of existing access control techniques in
dynamic, distributed service-to-service architectures and presents the design and architecture of
Hyper-Scale Managed Identities (HSMIs) and their integration with decentralized access control
policies.

6. Optimal Group Privacy for DP-SGD by Mahloujifar et al. This paper addresses the long-standing
challenge of tight privacy accounting for group privacy in Differentially Private Stochastic Gradient
Descent (DP-SGD). While individual privacy bounds are well-established, group privacy—which
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protects sets of individuals rather than just one—has historically lacked precise bounds. The
researchers introduce a novel technique using “dominating pairs of distributions” to achieve tighter
group privacy guarantees. They also find that sub-sampling heavily influences group privacy,
meaning that two models with identical individual privacy parameters can have vastly different
levels of protection for groups depending on their specific hyperparameters.

7. Rethinking Benchmarks for Differentially Private Image Classification by Mokhtari et al. This
paper focuses on developing a benchmark to evaluate techniques for differentially private machine
learning in a variety of settings, including with and without additional data, in convex settings,
and on a variety of qualitatively different datasets; and creates a publicly available leaderboard for
the community to track progress in differentially private machine learning.

We would like to thank all the authors for their valuable contributions. We also thank Haixun Wang
for the opportunity to put together this special issue, and Jieming Shi for his help in its publication.

Shantanu Sharma1, Xi He2
1 New Jersey Institute of Technology, 2 University of Waterloo

5



Privacy, Policy, and Compliance in Yet Another ‘Age’:
The Necessity of Interdisciplinary Collaboration for Artificial

Intelligence Applications

Bailey Kacsmar
University of Alberta

kacsmar@ualberta.ca

Abstract

The advent of artificial intelligence (AI) interfaces that are accessible to the general populace,
in the form of large language model (LLM) chat bots, brought the field of AI to the forefront of
conversations on technology laws. These highly visible LLMs train on massive corpora of data from
across the internet, amplifying questions as to the privacy implications of AI and the challenges for
transparency, explainability, and auditing. While the recent proliferation of LLMs has increased
awareness of the use and misuse of far-reaching technologies, governance and privacy for AI must not
ignore past lessons on regulating technologies. With this work, we emphasize the existing domains
relevant to AI governance and argue that while there are challenges and nuances for privacy, policy,
and compliance in AI, it is generally still automation. Rather than focusing on specific algorithms,
data set sizes, or parameter settings, we put forth an organization of the different life-stages that an
AI deployment goes through as well as the lessons from relevant sub-fields. We highlight how focusing
on the impact and consequences, both intentional and unintentional, provides a better grounding
for domain experts and provides the path for connecting technical communities and governance
communities to make effective regulations and policies for AI.

1 Introduction

The “Internet Age”, “Digital Age”, or “Information Age”, depending on your terminology of choice, refers
to the time period of the mid-twentieth century and is largely associated with the impact of information
technology and computers on society [25–27]. There is no clear demarcation between the information
age and the recently termed “age of AI” corresponding to the rise in prevalence of artificial intelligence
(AI). However, we can largely attribute the prevalence of the phrase, “age of AI”, to the significant shift
in a specific sub-field AI, that of language modeling, between the years of 2019 and 2023. In particular,
the release of a chat interface from OpenAI in 2022 accelerated public facing systems explicitly marketed
as AI [97], such as AI chat bots incorporated into search engines [72] and social media platforms [15] as
well as chat bot specific platforms [38, 57, 114, 149].

Legal questions and consequences in regards to AI are both currently increasing at a notable rate. For
instance, proponent organizations for AI use in high-risk settings, like cognitive therapy, have persisted
despite persistent and tragic consequences [73, 89, 103]. Efforts towards adoption in high risk domains
have given rise to legal questions and legal actions. For example, there are ambiguities in regards to
whether therapy-style exchanges between a person and a chatbot will be held to the same standards
of protection requirements that an actual cognitive therapist would be held to. Despite such legal
questions, chatbots have already been put forth for use as a therapist [128]. There is also already a
record breaking large class action lawsuit for copyright violations against organizations which develop
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and release generative AI [10]. Further, AI apps have been displaying user interactions with the chatbot
that contained personal information such as both medical and legal topics [124]. Recognition of public
concern that has arisen from these instances and others has already influenced regulators in regards to
broader data protection regulations and privacy, such as in the case of the UK Commissioner’s Office
guidance about data collection and data transparency [17].

As public access to tools marketed as ‘AI’ increased rapidly, concerns about potential harms have
also increased, as seen in emergent regulations as well as in media articles and statements from advocacy
groups [13, 49, 50, 94, 104, 118]. The EU AI Act, which went into force in 2024, with full effect in
2027, was proposed in 2021 [49]. In mid-2025 a collection of organizations brought forth “The People’s
AI Action Plan” as a counter view to the Trump administration’s stance on AI policy [118]. The
people’s plan emphasizes that AI should be guided and regulated in ways that center social good,
public well-being, accountability, equality, and environmental preservation. Also in 2025, the G7 leaders
released a statement on AI in which they set out a human-centered view which advocates for many of
the same things of the people’s plan, such as considerations for energy demands, impact on majority
world countries, as well as impact on the workforce [54, 93]. As AI increases in use, mitigating harms
associated with it, specifically bias, surveillance, job loss, and misinformation require greater efforts from
appropriate governance [94, 104, 151].

Calls to action, from the public and relevant technical experts, in regards to AI regulation is
reminiscent of calls in prior “Ages" where concern for the harms from quick adoption of technology were
prevalent [75]. For instance, consider the industrial age and cloth-making. Those most impacted by new
machines for spinning and making cloth were the industry professionals in the textile industry. These
workers would become known as the Luddites for their objections to the factory model. Their concerns
echo the modern day in regards to job loss and injury from insufficient labor protections and lack of
safety standards which historically led to loss of life and major injuries for early-adopters of the new
technologies [102]. While the abysmal safety standards in the early factories are regarded in modern
times with great negativity, the consequences of these practices were not unknowable, even at the time.
We, in the current age, do not have to make these mistakes. Instead we can recognize the historical
patterns of fast adoption of technology leading to harms, whether it is cloth-making, automobiles, or
social media [75, 98, 140]. Specifically, we can initiate the development of what prerequisites are needed
to ensure an AI deployment can satisfy existing requirements for each application domain, and support
research and innovation efforts towards creating those prerequisites. We are not facing a challenge
of how to balance regulation and innovation, a not uncommon juxtaposition [61], rather we have the
opportunity for regulation to be used to guide innovations we otherwise would not recognize are needed.
In this work, we focus on a path towards identifying such innovations, that may address harms to social
and functional norms associated with privacy, including both technical solutions as well as policy and
compliance efforts.

Contributions. We emphasize that the literature on AI, governance, privacy, and their intersections is
vast. Significant bodies of work exist on protections of privacy in AI, largely focused on machine learning
(ML) [53, 117], on AI governance [2, 7, 96], and on communication and social implications of AI and
automation [12, 36, 77, 81, 109]. With this paper we do not aim to match the depth in each and every
one of these disciplines. Rather, we bring them together in this work to highlight the breadth of these
areas and how what is known relates to the field of AI, both in terms of possibilities and limitations. To
this end, we provide an overview of relevant subdomains including privacy, policy, compliance, and the
field of AI. We then walk through the stages of AI to illustrate where challenges exists, what solutions
have been investigated, and the different stakeholders and decisions they make throughout the stages of
an AI deployment.
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Organization. This paper is organized as follows. Section 2 contains an overview of the concept of
privacy and particular interpretations of privacy that intersect with the domain of AI. We discuss the
meaning of the terms policy and compliance in Section 3 with a focus on highlighting the differences
between how the term ‘policy’ is employed in computing science and engineering research in discussions
of regulatory measures and governance versus how policymakers and related decision makers use the
term policy. Section 4 is a review of how the term artificial intelligence has evolved over time, with a
focus on how the visibility of AI has changed over time. Finally, in Section 5 we present our discussion
of each of the above concepts throughout our structure of AI life stages where we discuss how at each
stage decisions are made that impact who an AI application impacts with consequences, where existing
technical mitigation strategies can be employed, and how these vectors relate to efforts to regulate AI
and evaluate AI applications for compliance.

2 Privacy

Conceptually, the notion of privacy is incredibly complex. It is influenced by societal and cultural norms,
as well as an individuals own understanding, preferences, and expectations in regards to having privacy.
Privacy, while complex, is also very intuitive and simple. While these may seem like contradictions,
the reality is that the simplicity corresponds to everyone having an intuitive notion, or mental model,
of what is meant when they hear privacy. For instance, we have insight into people’s mental models
of privacy for hundreds of participants across all ages from Oates et al., where their participants each
provided illustrations of what privacy meant to them, some of which were turtles, some locks, and
some bathrooms [110]. In terms of capturing the complexity of privacy, there have been many efforts
at formalizing privacy including Nissenbaum’s Contextual Integrity [106, 107], Westin’s categories of
privacy attitudes [87, 147], and Solove’s theory of privacy [132].

If we both generalize and simplify these theories of privacy, then we can takeaway that they each
formalize some notion of what is being protected and from who, and who gets to decide what is being
protected and from who. In the case of contextual integrity, this formalization is done via norms and
the appropriateness of information flows, where both norms and information flows have very particular
meanings within the theory of contextual integrity. For Westin’s categories of privacy attitudes the
formalization is done through illustrating what an individual would be willing to share and with who,
based upon what category of individual they are within the three categories of a privacy fundamentalist,
privacy pragmatist, or unconcerned. Finally, Solove’s taxonomy also captures what is being protected,
from who, and who gets to decide by synthesizing different notions of privacy and considering the
implications of different settings in terms of privacy. While each of these theories, and more [3, 120],
could be applied in depth to understanding and formalizing privacy in the context of AI, we focus on
the mitigating and protecting efforts, in particular ones that are reflected in proposed and existing
regulations. We discuss different approaches in the context of how they are framed as proxies for
privacy and the consequences of such framings. We emphasize that while we put forth each privacy
formalization in isolation, specifically data protection, consent, and quantifiable measures, none of these
will be sufficient on their own and we highlight weaknesses for each.

2.1 Data Protection as Privacy

Data protection is not necessarily privacy protection. However, there are both regulatory frameworks,
such as the European Union’s General Data Protection Regulation (GDPR) [142] and Canada’s Personal
Information Protection and Electronic Documents Act (PIPEDA) [113], as well as privacy enhancing
technologies, such as differential privacy [45], that work within a worldview where they prioritize
protecting data. The existence of data protection laws does not prevent the existence of additional
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privacy laws like in the EU [37]. However, even the existence of privacy focused regulations does not
prevent the usage of data protection regulations as a proxy for privacy protections. That is, systems,
both technical and regulatory, are formulated around the idea of data. Such protections may encompass
what is permissible in terms of how data is collected, how it is used, and how it is accessed. However,
in the most strict sense, this abstract notion does not necessarily capture the privacy implications, as
it does not have a formal connection to how the use or processing of the data impacts the subject of
that data. When we use the term data in computing science, engineering, and even within regulatory
documents, the term is a useful and convenient abstraction that captures the notion that there is some
form of information that is about something. In practice, that something the information is about, is
often a person, who is the subject of the data.

Definition 2.1 (Adapted from Def. 2 [76]) A data subject is an entity whose data, including infor-
mation about them or generated by their action or inaction, is present in the data set being computed over
(e.g., a training set for ML or statistical analysis) and the data describes the subject or their attributes.

Definition 2.2 (Adapted from Def. 3 [76]) A data owner is an entity that holds a dataset that is
being contributed to some data analysis (e.g, towards training a ML model or statistical analysis) which
is made up of data that originates from one or more data subjects and may or may not include the data
owner as one of the data subjects.

In the above two definitions, neither specifies what the data actually is nor its attributes. For
instance, whether the data is considered personally identifiable information (PII), pseudonymous, or
anonymous is a factor by some regulations for how it is treated [48, 113, 153]. However, the reality is
there is no consensus on a rigorous interpretation of these terms such that there are clear delineations as
to whether something is, for example, sufficiently anonymous. Different treatments of data based on
how it has been classified by regulations may also fail to capture how it might impact the subjects of
the data and whether they agreed for their data to be used in such cases. No matter how the data is
protected or perturbed, there is always something that is being learned from that data or the analysis
would not be done in the first place [153]. As demonstrated in a 2023 study from Kacsmar et al. [76]
the necessity of something being learned does not escape members of the populace, who in general are
the data subjects whose information is used in the analysis, as highlighted by a participant who stated
“At the end of the day, they’re still like learning specific things about me” (P7) [77].

When speaking of data and data analysis, not only is something necessarily being learned, but also
there are necessarily one or more parties that contribute to the analysis and correspondingly learn the
results of the analysis. Who these parties are, which of them learn the outputs of the analysis, and what
type of industry they are in; all impact the perceived acceptability for members of the populace [78].
Despite the impact of these factors, regulatory treatments of data as privacy protection and technical
protections of data to protect privacy are formulated and presented using the abstraction of “data”. Data
is what is being protected, and thus is what is being regulated, despite the issues associated with the
abstraction as stated by E.M. Renieris, that “Trying to regulate data as such is like trying to regulate
technology as if it has a common definition or clear contours-an exercise in futility” [123]. Certain
domains, in particular health data, are sometimes treated as special, with their own laws, beyond the
general concept of data [138]. However, despite additional protections being placed on certain types of
data in a particular jurisdiction, it is still possible for it to fall outside of the scope of the particular laws.
For instance, there are cases of health data falling outside of health focused regulations and leading to
cases where datasets with health information are being sold [115]. There are even specific cases where
the sold datasets include mental health conditions alongside demographic information of the person
or individual names and home regions [33]. Thus, the notion of data protection as privacy is lacking
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any human-centered considerations for privacy. One common way of incorporating a small amount of
human-centered consideration is via our next notion, using consent management as privacy.

2.2 “Consent” Management as Privacy

The plethora of opt-out, click-to-continue, consent windows that have become the norm in our society are
an example of consent management as privacy, and an illustration of its weaknesses [9]. Specifically, as
regulations required companies to communicate when they collect data, what data they collect, and what
they collect it for, these companies sent out updates to privacy policies, added cookie banners to their
web pages, and other such modifications as the strategy for being compliant with regulations through
a consent-based process [67, 112, 135]. However, while there are a multitude of prompts requesting
someone agree before they use a service or platform, it is a stretch to refer to the responses to these
prompts as consent. The privacy policies and cookie banners, written and provided by legal experts for
an organization, are provided to any person wanting to use the system as an all or nothing agreement.
If you want to file your taxes using a particular tax software, you are not provided with a way to do
so without agreeing to their policy. In short, these consent management strategies, such as privacy
policies can be considered an specific example of the general class termed contracts of adhesion [69, 82].
A class of contracts that are hardly read and may even include terms and conditions that should not
or cannot be enforced. Privacy policies are a core document used to convey how data is used and
collected by companies despite it being long established that these documents are hard to read and
rarely read [101, 111]. The inaccessible nature of privacy polices, and the inclusion of contentious terms,
is even reflected in a decision in Canadian privacy law. Specifically, in Canada (Privacy Commissioner)
v. Facebook, Inc. 2024 FCA 140, which decided Facebook failed to meaningfully get consent from its
users, it was stated that:

“Whether consent is meaningful takes into account all relevant contextual factors; the
demographics of the users, the nature of the information, the manner in which the user and
the holder of the information interact, whether the contract at issue is a one of adhesion,
the clarity and length of the contract and its terms and the nature of the default privacy
settings” [21].

The challenges associated with using “consent” as a proxy for privacy do not end at inscrutable and
lengthy privacy polices. We also have to account for how organizations have been found to use techniques
to manipulate people into selecting options that may not be in their best interest. These techniques
are broadly referred to as dark patterns and can be found in online shopping sites, mobile apps, and
digital interfaces more broadly [18, 63, 99]. This is not to say consent should not be considered. Rather
we mention both the issues with privacy policies and manipulative practices to highlight that while
systems “request” people indicate agreement to some practice, these people have other priorities beyond
reviewing privacy documents. Instead of expending time deciphering legal jargon, people are focused on
whatever primary task is associated with the software they are accessing. For instance, consider the
company Wealthsimple which purchased another company, SimpleTax [66]. Shortly after this purchase,
the prior promise from Simpletax that indicated they would never sell your data was removed, indicating
that going forward continuing to use the software to file taxes in the future would require agreeing to
their terms and conditions; which no longer promised not to sell your data. However, an individual
facing this update would have to decide to leave an ecosystem that they had previously been using for
the important task of completing their taxes. The question then becomes, is a person who continues to
file their taxes with this software actually consenting to the new terms and conditions, or are they just
trying to do what has to be done, and get their taxes in on time?

10



It may be tempting to evade this problem by stating that a person who chooses to use a platform
despite it lacking privacy protections is choosing to act against their own privacy interests. More extreme
arguments may take the form that regardless if a person claims to care about privacy, their actions
indicate that they do not hold such values. This framing, that people who act against their own privacy
interests, while they claim to care about privacy, is referred to as the privacy paradox [43, 85]. However,
this is an oversimplification of the reality people face. That is, we must consider the infeasibility of
being informed via privacy policies, the use of dark patterns, and that people have a different primary
task than preserving their privacy which all together means that while these people may act against
their own privacy interests, the reality is that it is incredibly hard for them to do otherwise [122]. The
natural followup to this conclusion is that since it is too difficult, essentially infeasible, for the populace
to preserve their own privacy interests, technologists and regulators must develop solutions to aid in
protecting these individuals privacy. Once such solutions emerge, we next must determine a way to
decide whether the solutions are sufficient and a way to test that sufficiency.

2.3 Quantifiable Measures as Privacy

Technologists, when making technical systems, develop quantifiable measures to evaluate their work.
Technical solutions for privacy have several measures that serve as proxies for how much privacy is lost
or the maximum amount of privacy that can be protected. For example, there are technical notions
of data anonymity, syntactic notions of privacy, which formalize a particular way of enforcing data
anonymity. These notions include k-anonymity [126, 127], ℓ-diversity [95], and t-closeness [90]. Consider
the following high-level formulations.

Definition 2.3: For k-anonymity [126, 127], there must be at least k records that match any subset of
potentially identifying values (quasi-identifiers) that are returned for a query on a given dataset.

Definition 2.4: Extending k-anonymity, ℓ-diversity [95] adds the requirement that for any sensitive
attribute, there should be at least ℓ distinct values represented in the returned response.

Definition 2.5: Once again extending the data protection notion, the property of t-closeness [90] adds
the requirement that the distribution of the sensitive attribute and the distribution of the whole data
sample should differ by no more than a threshold of t.

These three notions, which provide increasingly formal requirements for data protection, have their
uses, in particular for data analysis and data release. However, they do not lend themselves nicely to
privacy in AI systems. AI system do not have the same form of data release and thus cannot employ the
same protections as query-response based data releases.

In the case of AI the quantifiable notions of privacy employed are either semantic or empirical. The
prevalent semantic notion of privacy is differential privacy [45, 46], which can be applied to data directly
or to the output of a function. Since its formulation in 2006, variations on DP as well as particular
ways of applying DP to specific ML algorithms have been developed [53]. For reference, we include the
formulation of ϵ-Differential Privacy and discuss conceptually the privacy guarantees that it provides.

Definition 2.6: (ϵ-Differential Privacy [45]). A randomized mechanism M : D 7→ F provides ϵ-
differential privacy iff for all neighbouring inputs D, D′ ∈ D, ie., differing in one element, and all subsets
F ⊆ F ,

Pr[M(D) ∈ F ] ≤ eϵPr[M(D′) ∈ F ], where the probability space is M’s coin tosses.
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When used correctly, differential privacy (DP) can effectively protect against leaking information as
to the presence or absence of a data point in a calculation. The general idea is that when using DP, an
adversary observing a differentially private output of a mechanism is sufficiently unlikely to be able to
distinguish between a case where a data element was included in the dataset the mechanism computed
over versus a case where that same data element was not included in the dataset.

One way of measuring the success of this protection, outside of its theoretical guarantees, is through
an empirical measure of the effectiveness of an attack on a conventional ML model versus one trained
using DP [71, 74]. An attack where an adversary aims to determine whether a target data element was
included in the training dataset or not, is aiming to execute a membership inference (MI) attack [131].
Thus, through testing the attacks, we can generate a measure of information leakage both by evaluating
training time attacks and test-time attacks, the latter of which encompasses the area of inference attacks
and can be targeted at various deployed ML models [55, 68, 117]. Inference attacks executed by an
adversary may target leaking information about the training data as well as model parameters. Assessing
the success of inference attacks does not guarantee the non-existence of more sophisticated attacks where
additional information leakage may occur. However, by testing models for their susceptibility to known
inference attacks, we can get a measure of the minimum amount of privacy leakage that is occurring [92],
as long as awareness is maintained that there may be greater privacy leakage than can be assessed via
this evaluation. In summary, while quantifiable measures can give us guidelines to work towards, they
are not all encompassing and may be vulnerable to yet undiscovered privacy attacks. We also cannot
only focus on the risk of privacy attacks and must also maintain an awareness that although quantifiable
measures are useful to us as technologists, when measuring social or human-centered notions like privacy,
they will never be a perfect proxy. Thus, our measurements require careful evaluation, as with all the
prior privacy notions we discussed, to determine whether their protections are appropriate and sufficient
for any given deployment.

Privacy is a multifaceted concept. Even when focusing on AI, each of the different notions of
privacy need to be utilized collectively and in context for any technological deployment to include
appropriate consideration and protection of privacy.

3 Policy and Compliance

Policy and compliance are entwined within any effort to regulate technologies. Who contributes
to formulating regulations and policies impacts the identifications of potential harms and relevant
protections [7]. The breadth of expertise required is a factor for addressing challenges associated with
innovations on what are often already relatively novel technologies. To construct clear and meaningful
governance for AI, policymakers and technologists need to be able to use common language and definitions
for AI, for policy, and for harm [62, 86]. Otherwise, challenges will persist due to how each of these
parties may regard the consequences of violating societal norms and expectations like privacy [2].

3.1 The Meaning of Policy

Policy is a broad-reaching non-specific term used to capture a lot of different ways of documenting
expectations or requirements for individuals, groups, and governments. Policies can be written within a
company about both their internal practices and their external practices for employees and users of the
products or services they provide. Schools can write policies about expected behaviors and procedures
for students, instructors, and administrators. Finally, policy can also be used to refer to contracts,
regulations, and laws, including those from governments.
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Research in computing and engineering refer to recommendations for policy and policymakers
regularly, but generally neglect to distinguish between the different forms policy instruments can
take [60]. Consider, for example, the Government of Canada, which provides explanatory documents on
their website for “policies, directives, standards and guidelines” that capture what these terms mean within
the Canadian government [59]. The term policy in these documents refers to mandatory responsibilities
that face internally, meaning they apply to officials and deputy heads, with directives guiding how
these internal actors are to comply with policy. Less stringent documents include guidelines, which are
voluntary, providing advice and recommendations rather than requirements. Laws and legislation, and in
some jurisdictions also regulations, are what define protections for the citizens of a populace, via placing
requirements that apply to organizations and individuals within the legal jurisdiction. Overall, despite
how it is used within computing science, the term policy itself, does not necessarily correspond to a
regulation or legislation, though it may contribute to the development of such things.

Definition 3.1 ([59]) “A policy is a set of statements of principles, values, and intent that outlines
expectations and provides a basis for consistent decision-making and resource allocation in respect to a
specific issue”.

Mandatory policy instruments, which are enforced via laws and regulations, and more voluntary
policy instruments can have beneficial outcomes for the populace. Determining which type of policy
instrument is most appropriate is likely outside of the expertise of many technologists. However, by
communicating to ‘policymakers’ whether a given recommendation requires everyone partake in order to
have the desired outcomes or whether it is still beneficial when only a few organizations partake, is a
good starting point.

3.2 Compliance

The fundamental notion of compliance is for parties to follow the requirements of pertinent laws. Which
laws are pertinent is a question not just of the technology being used or the domain it is being used
in, but also a question of territorial reach. While some laws may apply, not just within their physical
jurisdictions, but also to citizens of its jurisdiction when they are outside of it, many laws are localized
within geographical borders [48, 142]. Data technologies, including internet services and AI, cross these
jurisdictional and geographical boundaries, as the use of such technologies and their corresponding
impacts on people are not bound within territories. This leads to courts making decisions as to which
jurisdictions’ laws are to be applied in the case of cross-jurisdictional cases [108].

Compliance requirements give rise to concerns about monetary cost as well as how to ensure systems
are auditable in a way that is transparent to the entities that enforce compliance [64, 129]. As new
requirements come into effect, companies need to take action, with actions corresponding to changes in
processes that can require additional infrastructure, training time of staff, and even just loss of efficiency
as employees adapt to the new processes. As a consequence of these, the actual actions a company takes
in their effort to be compliant may focus on following the exact letter of the law in a way that most
minimizes impact on the company’s status-quo. The ways companies act to comply with regulations
significantly impacts whether the regulations provide protections, in other words, whether the spirit of
the law holds up [9].

As companies enact their practices for emergent technologies or novel applications of existing
technologies, such as AI, it can become a competition to establish the best practices and standards that
may influence the development of formal laws and oversight. These proactive policies may be very sound,
however, focusing on them presumes that the organization is able to set aside its own business goals to
produce a beneficial policy that could be applicable more broadly; a perhaps unfair expectation to put
on companies’ teams [151]. Practices where an organization complies in this way, evading the spirit of
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the law, has been termed “avoision” by scholars [79, 137]. Yew et al. have already examined the potential
for avoision in the context of the EU AI Act where they identified behaviors which currently, plausibly,
and technically, comply with the act while leading to consequences that are contrary to the spirit of the
regulation [152]. Therefore, to ensure laws and policy maintain the important outcomes that motivated
their construction, we cannot understate the importance of including compliance considerations and
challenges across all stages of developing, deploying, and moderating AI.

Technologists use policy to refer to both mandatory and guiding responsibilities for private
and public organizations. Divergence in meaning when crossing communities causes issues on both
sides, whether it is how policy makers speak of AI or how AI experts speak of policy. These
misunderstandings only serve to escalate the issues in the already difficult domain of compliance.

4 Artificial Intelligence

The phrase artificial intelligence itself leads to confusion and misunderstandings about AI technologies’
capabilities. Ensuring accurate expectations of what a technology is and is not capable of, fostering
risk awareness, requires understanding mental models of the technology and its terminology [44]. The
literature for artificial intelligence suggests that how AI technologies are presented, including whether it
is referred to as machines, as tools, or as companions influences what human traits or mental capacities
are attributed to it by the populace [30].

4.1 Conceptual Terminology Over Time

General notions of automation and stories of thinking machines go back far in history, however, we see
the prominent emergence of the term artificial intelligence in the late 1950s, some time before the 1956
Dartmouth summer research project [35]. The focus of the 1956 conference was on intelligence and
articulating the concept of intelligence such that machines may simulate it. This theme, of understanding
intelligence and endeavoring to simulate it, remains prominent in the field of AI to this day. Modern
descriptions, such as what one finds in a textbook, refer to the field of AI as being “...concerned with
not just understanding but also building intelligent entities–machines that can compute how to act
effectively and safely in a wide variety of novel situations” [125]. While there are many notions and
definitions which are used to refer to the field of AI, what we ultimately see is a split where one camp
typically corresponds to “making machines think like humans” and the other “making machines act like
humans” [32]. Representatives of these camps are not limited to particular sub-domains of AI, rather
these views may be found across the areas, including natural language processing (NLP), computer
vision, and robotics.

Post-2022 is a world where generative AI, and in particular generative AI based chatbots have
become prolific and public facing. OpenAI, the organization that released ChatGPT to the world was
founded in 2015 with earlier forms of what came to be known as ChatGPT existing as early as 2018
with GPT-1; though it was far from what its successors would become [97]. Even when the advance to
GPT-3 occurred in 2022, visibility was still largely limited as it required API access and was primarily
only in the awareness of computing science experts and other technologists. In 2022 though, we see
the first user interface form of ChatGPT released to the broader populace. The result has been that
ChatGPT and the family of models associated with it known as large-language models (LLMs) have
in some ways become synonymous with the term AI itself. That is, as reflected on by Karen Hao in
regards to her reporting on the area,

14



“While ChatGPT and other so-called large language models or generative AI applications have
now taken the limelight, they are but one manifestation of AI, a manifestation that embodies
a particular and remarkable narrow view about the way the world is and the way it should
be” [65].

LLMs more broadly, becoming a center for the AI story is entwined with human perceptions of
machines and language, which has been around formally since 1955 when John McCarthy, Marvin L.
Minsky, Nathaniel Rochester, and Claude E. Shannon proposed a Dartmouth summer research project
on AI. In their proposal, they stated that “An attempt will be made to find how to make machines
use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and
improve themselves” [100]. Further elaborating on their intentions, they outlined seven aspects they
determined as the aspects of the “artificial intelligence problem”. Among these aspects, in fact the
second one, was the problem of how a computer could be programmed to use language. The justification
for this problem proposed that a lot of human thought consists of the manipulation of what could be
termed language. Thus, one might expect that the ability to acquire and use language would be a core
component to achieving machines that can address “problems now reserved for humans”, and be a way to
achieve “artificial intelligence”. All together, the field of AI has advanced much since its nascent naming.
However, while the public view of AI has been overrun with an awareness of LLMs, both LLMs and
other AI have a frequent reliance on ML.

4.2 Artificial Intelligence and Machine Learning

Oftentimes when researchers and technologists say AI what we are talking about is something that
uses ML. Modern chat-bots, as well as other modern AI systems, regularly employ ML to achieve the
desired functionality. ML is considered a subset of the AI field and the types of ML can be grouped into
supervised learning, unsupervised learning, and reinforcement learning [125]. The differences across these
types of ML include the goals of the system being produced as well as the way in which data needs to
be acquired and prepared for it to be useful to the system. In supervised learning, the goal is to produce
a model that is able to perform its task well, such as performing classification, on data it has not seen
before. Supervised learning requires training data to be prepared for it with true labels that correspond
to the values the model is trying to learn to apply to data. Unsupervised learning takes in training data
without labels with a goal of finding patterns that are understandable and of use to humans. Unlike
supervised learning, unsupervised learning does not require a corpus of pre-labeled data to train on.
Finally, in reinforcement learning the goal is to learn from interacting with an environment such that
the system learns a behavior in a way that supports some defined purpose within that environment.

Whether something is AI or ML or even which specific algorithm it uses is not a core issue for this
work. However, in the case of policy and compliance there are distinctions associated with the algorithms
in use that are of significant importance. For example, different algorithmic approaches, all of which
fall under the umbrella of AI, can be either probabilistic or deterministic which has implications for
testing, auditing, and transparency. Similarly, model explainability, and whether a model is more or less
explainable does not correspond to a particular type of ML. However, some ML algorithms are easier to
explain, such as decision trees, whereas others are generally more difficult, such as neural networks [91].
For instance, consider one of the first chat-bots, namely Eliza, which employs rule based systems where
outputs are determined via a combination of pattern matching and preset scripts [144, 145]. Possible
outputs from Eliza for any given prompt from a user is bounded, as it only outputs things from whatever
its current script is set as. While the script can be updated or replaced, ultimately it is possible to
reasonably trace why an output was produced. In contrast to this, recent chatbots like DeepSeek [38],
Grok [149], ChatGPT [114], and Google Gemini [57] employ large neural networks each of which have
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been trained on a large corpus. All together, the amount of data, the parameters and layers of the
neural network, along with the different ways the organizations behind these AI models have constructed
their output filtration and access controls leads to systems that are infeasible to trace or explain. These
chatbots, which are leaders in being hard to explain, are now being deployed en-masse towards having
them used in nearly every application one could imagine.

4.3 The Visibility of Artificial Intelligence in Applications

Applications of AI prior to 2022 were largely not marketed as AI to the users of those applications.
However, in our post-2022 era, this has completely changed, largely due to the impact of advancements
in AI for language, a domain much more accessible, and thus much more marketable to the public than
other domains for AI. The goals of language models include both recognition of speech and recognition
of text. What is meant by recognition determines a lot. Recognition includes speech-to-text, translation
between languages, and predictive text, the last of which is colloquially referred to as auto-complete, an
application for AI that has been in wide use, first in web browsers and then in phones, since the early
2000s [56]. AI has also been widely used in recommender systems such as for media consumption on
Netflix [4, 14] and YouTube [34], in spam filtration systems [23], in translation [148], in voice assistants
like Siri [22], and in fraud detection [8, 105]. Not all AI applications require sophisticated black-box-esque
neural networks. Rather, simpler techniques, including linear regression, are also quite effective, including
for tasks such as predicting changes in housing markets [19, 24]. Random forest, XGBoost and neural
networks, have been employed in efforts for wild fire predictions, further emphasizing that the technical
sophistication of the algorithm is not a sole predictor of how useful it is for a task [41]. Even in the case
of video games, where there is a greater awareness that AI may be used, the AI includes programmatic
solutions in addition to more complex supervised learning, unsupervised learning, and reinforcement
learning approaches [150].

(a) DeepSeek (b) Grok (c) ChatGPT (d) Google Gemini

Figure 1: The Google Play store page for the first four results for AI assistant apps on the Google app
store as displayed on September 13, 2025.

Notably, the AI in these applications is “hidden” in that it is working in the back-end of the systems.
For example the users who access their emails or use their credit cards have no need nor explicit
information that the spam folder is produced with the help of AI, or that the flag on their credit card
that had a suspicious transaction uses AI. The details of such workings, or even that these systems use
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AI at all, stayed with those who made the systems, audited the systems, or otherwise contributed to
their production. Those whose primary interactions were based on some other task, such as checking
email, did not need nor care to know the details of the automation techniques aiding in their day-to-day
interactions. These pre-2022 examples highlight the prolific, but less visible AI of the time.

Post-2022, we see a surge in visibility of AI. Advancement towards producing machines that manipulate
language formed through a series of evolutions as to what is the best technique for natural language
processing (NLP). These evolutions include, among others, how to process the text by breaking it
into parts or n-grams [31], transfer learning [70], and the ‘T’ in GPT, transformers [141]. After these
advancements came forth, we see the transition to AI assistants, AI chatbots, and marketing that uses
the term AI. For example, in the Google Play store as of September 13, 2025, there are AI assistants
from both long established technology companies as well as more recent ones, which explicitly market
their app as “AI”, “Intelligent”, and “the smartest”. We include for reference the app pages of the first
four AI assistants shown on our app store in Figure 1. Further demonstrating the extensive way AI has
become part of the status-quo in terms of public expectations for technologies, there are even emerging
directives from governments on how to adopt AI into their processes [58, 61], a call towards adoption
that was not explicit in the regular use of AI predating this point and time.

AI, as with any other technology, cannot be treated as a monolith, nor can it be treated it as a
unique innovation that eludes existing regulatory norms on automation. While LLMs have been in
the forefront of conversations, AI is a broad field itself with a breadth of applications, each of which
have domain-specific norms and standards associated with them throughout any development and
deployment.

5 Structuring Life Stages for AI Applications to Identify Privacy
Vectors

To determine when and how to use AI, one approach is to consider what the specific technical imple-
mentation is, the consequences of its use, and who is impacted by it [96]. In this section we articulate
pertinent life stages of AI applications. These stages are identified in part, though consideration for
the data science life-cycle. Our stages are formulated to reflect how the processes have changed with
advancements of AI as well as to be structured in ways that correspond to policy, regulation, and
compliance. Thus our stages deviate from the data science life-cycle. Finally, our stages support the
identification of where human actions and decisions are made as well as where technological protections
can be implemented when evaluating or assessing novel AI applications.

5.1 Data Science Life-Cycle

The term data science broadly refers to an area of analysis which employs statistics, algorithms, and
related processes over data sets to extract useful insights. The data science life-cycle as presented by
Kelleher and Tierney [80] originates with the CRISP-DM cycle from Chapman et al. [28]. Note there is
not just one representation of the cycle, but the CRISP-DM cycle does capture the information relevant
to our discussion. The data science cycle allows for moving back and forth between stages, with the
stages being defined as ‘business understanding’, ‘data understanding’, ‘modeling’, ‘evaluation’, and
finally ‘deployment’. Overall the idea of the data science life cycle is that the likely starting point
corresponds to identifying some project objectives and requirements that can be addressed via analysis.
Once the project problem is identified, it is now time to collect, clean and prepare, and gain familiarity
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with the data for the analysis. The modeling techniques stage could use any type of analysis methods
from basic regression through to complex ML techniques depending on the project goal. Once the
appropriate modeling technique is identified, it is only a matter of testing and verifying it before finally
deploying it to be used for its intended task. We will now use this underlying structure to formulate AI
life stages.

Figure 2: We depict AI application “life” stages of particular relevance for our discussion of privacy,
policy, and compliance. These stages span pre-development through to instances where the AI is retired
from use. Note that despite our numerical ordering, the process can flow back and forth between stages.

5.2 AI Life Stages

Consider the synthesis of the privacy theories from Section 2 and our claim that the core idea is to
define what is being protected, from who, and who gets to decide. Now, by applying this formulation
to AI, we can identify the relevant details for each portion of our privacy description. First, in terms
of what is being protected, we can formulate it as protecting the training data, protecting the model,
protecting the inferences or outputs from the model, and protecting the people impacted by the system
at any stage in the AI development process. Second, in terms of who we need to protect against, we
may be protecting against the entity that collected all the data (the data owner), those who are the
subjects of the data (data subject), individuals within an organization that is involved at any step of
the AI process, and even those who just are using the AI system that is produced. Finally, who gets to
decide is a reoccurring question across every step of the process. While we can argue that those most
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impacted should be the ones that make the decision, the reality is that when these decisions are being
made, it can be very far away from those impacted by these decisions. Additionally, those making the
decisions, whether company employees or government actors, are powerful and distanced from the people
impacted. These decision will also require interdisciplinary expertise to ensure accurate consideration
for the functionality of AI as well as the standards within the deployment domain [136]. Through our
partitioning of the life stages, we are able to capture the different points in time that people are effected
versus when they may actually have any power to intercede on their own behalf or on behalf of others.
We provide a visual overview of our AI application life-stages as Figure 2.

5.3 Problem Space Selection

Within our life stages figure, we include problem space selection as a literal gray area. Whether the
problem space is identified prior to data collection, after data collection, or even after the development
of an AI tool, at some point it all comes back to what is the domain and what does it mean to address
problems within it. This particular component, while not necessarily a stage itself, is perhaps one of the
most critical parts of the AI life-stages. This “stage” is when we can stipulate correctness. For example,
before we can measure what “accuracy” is achieved, we need to first ensure that what we have trained
the model to assess as being “correct” is actually correct for that application. Furthermore, we may need
to account for whether or not the domain has stable or evolving notions of correctness. In the case of
fields like medicine or dentistry where practices are continuously advancing or in criminal justice systems
where we know historical issues exist, we know that we do not want to mirror the past’s standards of
correctness [139].

For example, if a classification reflects past ways of referring to someone or something, which are
now considered slurs, the model may still probabilistically report that past term since there are a greater
number of examples where that was the answer. Reflecting the past probabilistically, whether our
social or scientific past, is a risk that may be acceptable for some settings, but certainly not when
deploying to any high-impact domains like education or health. In the case of LLMs, they are inherently
probabilistic. That is to say, you can give them the same prompt and they could give different outputs.
Therefore, LLMs may largely be inappropriate for domains where their probabilistic nature cannot
meet the standards of practice for that industry. However, in order to determine that, we cannot make
an assessment based on the insights from only technologists, but rather we must engage with domain
experts.

5.4 AI Life Stage: Pre-Development

From Daily Life to Data. Throughout any given day, data is generated by our actions and
engagements with technology. Every time we access our emails, browse web pages, get captured by video
recording doorbells, data is being generated and collected about us. Our day-to-day actions produce
immeasurable quantities of data. We define the pre-development stage to capture the reality that there
are components within the AI life cycle, in particular in relation to data, that may occur well before any
consideration or speculation for using AI.

Consider, for example, two “classic” datasets within the field of AI, the Enron dataset and Ima-
geNet [39, 84]. ImageNet came to be through collecting billions of photos from web pages, video clips,
and Google’s image search database. All of these images had been captured and then shared on the
internet by people who had no way of anticipating their images would then be taken in the future,
collected together with other images, and labeled by other people to produce a dataset that would then
be used to train and evaluate an unknowable multitude of ML models and image analysis algorithms [39].
Similarly, the employees of Enron could not have anticipated their regular email communications would
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come to be the Enron dataset, a corpus of text that exists due to a fraud investigation which seized
the emails of employees as part of the investigation and then released all the emails to the public. The
result was a dataset of communications that has been used by countless researchers in natural language
processing [84].

For both the Enron emails and the images within ImageNet, the origin is human actions or
communication of information. Whether it was taking a photo and sharing it on the internet, sending
an email to a spouse, or to a colleague, all of it was captured by researchers and made into datasets.
These two datasets, which receive prolific usage, not only did not get consent from the data-subjects, the
humans who this data came from, but at the time these people could not even have anticipated their
data would be used in this way. Further, we may attempt to argue that such data scraping practices
would not be compliant with current regulations. However, the current lawsuit against a company for
scraping and utilizing data they gathered from the internet [10] suggests that the practice persists. Data
is still being treated as something to be collected for use as a resource to exact value from regardless of
the data origins and despite awareness of the financial and personal consequences faced by those whom
the data originated with. The extraction and exploitation of our data is so prolific we cannot even begin
to understand it with every app we use, every online banking transaction, every credit card purchase,
and essentially every action we take connecting back to a digital representation that goes into datasets
we know nothing of. Even going so far as data being collected by organizations we have never interacted
with such as when data brokers procure data from both public and private sources [20].

From Data to Datasets. After the data was collected, before ImageNet could become what it is
today, it first needed to have the mass collection of images be assigned labels, a task that would be
relegated to a labor force from across the world which would do the task for low pay through the use of
Amazon’s Mechanical Turk [5]. The practice of having large scale distributed workforces annotate data
quickly and cheaply has become the status-quo in modern day [12, 65, 119]. While the mass collection
and annotation of data has become typical, that does not mean overcoming the issues associated with
these practices are not the subject of investigation. Attempts have been made to move away from a
reliance on large datasets and mitigate the impact they have on people’s privacy. For instance, in an
effort to go beyond traditional anonymization techniques (recall Section 2.3) the use of synthetic data
has been considered. Synthetic data may be generated from sensitive data or from rules and statistics.
However, so far synthetic data has not found much success at privacy protection and has not proven
better than using traditional anonymization techniques, which themselves are not ideal for training
AI [134]. Alternative approaches target the other side of the issue, focusing on transparency and consent,
through efforts to formulate how data donation could work [143]. Having a data donation style strategy
to address to issues within the pre-development life-stage, while potentially very beneficial, will require
a complete overhaul in current practices, re-centering decisions to align with those whom provide the
data and those impacted by it.

The people from whom data originates are generally far removed from the decision makers.
That is, those impacted are not the same as those who make decisions about data. While data
protection laws address some issues, what has become increasingly clear with AI is that the continual
treatment of data as something to be possessed or exploited only serves to increase potential harms
by distancing these practices from their impact on individuals and society.
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5.5 AI Life Stage: Development

The development life stage encompasses the aspects of an AI application that are typically determined
by technologists, such as algorithmic techniques, parameter configurations, and testing procedures. This
includes considering measures for privacy leakage from models via empirical measures of the effectiveness
of attacks [71, 74, 92]. However, there are many factors that impact how successful attacks are such as
memorization of training data, which is, as one may expect, bad for privacy [133]. However, memorization
is not just a bad side effect of the AI training process, but also an important property that corresponds
to good performance on data outside of the training sets [51].

This leaves other specialists, who are AI practitioners rather than privacy attack researchers, without
clear measures to evaluate against. Despite this, the software developers and engineers are the technical
practitioners who code and configure the AI for a system, including the privacy considerations. These
considerations can include protecting the data used to train the model as well as protecting against
unauthorized access or use of the model. When developing an AI application that requires protecting
training data, there are many technical innovations to aid in protecting privacy when training models,
including: secure aggregation, differentially private stochastic gradient descent, and differentially private
empirical risk minimization among others [1, 16, 29, 42, 53, 116, 130]. However, identifying what the
appropriate technique is to use, or even whether there is an appropriate technique is not necessarily
within the expertise of the practitioners, and thus there is a need for relevant education, developer
tools, and process-oriented support to help practitioners prevent privacy harms being embedded in their
deployments [88].

The technical details, such as the algorithmic techniques and configurations, are determined by
technologists within the development stage. However, whether those configurations are appropriate,
and how to determine their appropriateness for an application requires insight from outside of the
development stage, where domain experts can define what requirements the application has to fulfill
and their feasibility.

5.6 AI Life Stage: Post-Development

The post-development stage considers the human decisions and actions that impact the consequences
and benefits associated with the development of an AI application. After an AI application has been
developed for some domain or task, we typically expect it will be deployed. Once the AI system is out
in the world, it will either be in a state of active use or it will be retired and withdrawn from use.

First, consider an AI system that is in active use. In this case, maintenance, accounting for changes
in what is required from the model, and communicating to those who use the model will require human
intervention. Communication is of particular importance, as how people perceive a technology influences
their trust in it as much or more than the reality of what the technology can achieve [11, 52, 83, 145].
Mismatched expectations between technological reality and marketing correspond to skewed mental
models of AI functionality. Overconfidence in what LLM’s can actually do led to a model being used to
replace the jobs of people who were staff and volunteers at the National Eating Disorder Association’s
helpline, at least until the chat bot Tessa had to be removed from use [146]. The chatbot was removed,
as it could not actually provide the aid required. This means that people were not acquiring correct
mental health resources or appropriate conversational support. Rather, there was an instance where
someone who was asking for advice while in eating disorder recovery and the chatbot instead gave
information that was essentially suggesting how to continue having an eating disorder. Therefore, the
over automation of critical support systems in our society is only leading to greater social and physical
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failings for the people who depend on these systems.
Even when an AI application has been retired from use, or removed from use after causing harms like

the Tessa chatbot, the impacts of the application can still remain. Consequences from the prior use of
an algorithmic deployment, such as an AI application, remain and influence individuals and institutions.
This lingering influence is termed an algorithmic imprints by Upol et al. who illustrate its effect in their
analysis of an incident of algorithmic deployment on students around the world, focusing on students in
Bangladesh [47]. The algorithmic standardization of the results of the General Certificate of Education
(GCE) Advanced (A) Level exams in 2020 turned out to be critically flawed and biased, negatively
impacting university admissions for students across the world who had taken the exam that year [47, 121].
While the exam grades were ultimately retracted and revised to not use the flawed algorithmic approach,
the efforts of the teachers that had to prepare documents and the experience of those students does
not go away. Finally, this deployment was inflicted on teachers and students globally by the Office of
Qualifications and Exam Regulations in the UK, required significant time investment from the teachers
beyond their normal role, and disregarded students preparation efforts. In this particular story, protests
and media coverage along with large scale push back eventually corresponded to the retraction of the
algorithmic scores, but the power to decide to deploy it and to retract it still remained with the Office
of Qualifications and Exam Regulations and not with the students and teachers impacted by it.

There is significant disparity in terms of power as well as pertinent expertise among: those who
the data came from, those who decide to use the data for their chosen purpose, those who decide
what measure of truth to apply to the data, and those who the resulting AI impacts. Therefore, we
must consider whether there should be a way to preserve the right to refuse to participate or be
classified by AI.

6 Conclusion

Our understanding of what AI means has changed overtime, as has how we use the term data. The
meaning of data changed quickly, but now so too have the consequences of data, such that data
protection alone cannot solve the issues of human privacy in our current society. We can make better
systems, but even good systems can cause harm without consideration for the full picture of who they
impact. The reality is that AI systems necessarily reflect a snapshot in time, the time at which these
labels or these notions of correctness were established. Changing these over time requires additional
training or additional processes to account for the fact that these models will necessarily not reflect new
understandings or new notions of what is acceptable.

Therefore, to advance towards resolving problems at the intersection of AI, privacy, policy, and
compliance, we do not need yet another generalized framework or guideline. Even as early as 2021 there
were more than 170 guidelines and frameworks in the broad area of responsible and trustworthy AI,
including guidelines that synthesized collections of guidelines [6, 40]. Rather, we need to recognize the
importance of domain expertise, specifically the expertise required to execute the tasks in the settings
where AI applications are being proposed. This means that therapists’ expertise should determine the
viability of any proposed use of AI in the therapy domain. Dentists should determine the viability of any
proposed use of AI in dentistry. Teachers should determine the viability of any proposed use of AI as an
educator. This is not to state that these experts should speak on how to implement the AI or whether
AI can achieve the standards they identify, but that they are the only ones who can properly determine
what a fail state would be for any form of automation working within their area. This is the lesson we
can learn from the past ages of industry, we do not need to repeat the mistakes of the past where
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“...workers are time and again ignored by regulators and governments in favor of entrepreneurs
and their technologies of disruption” [102].

To determine what needs to be developed, the technical feasibility of AI, and the appropriate legal
consequences of using AI within a particular domain, the fail states must be determine by domain
experts. Correspondingly, policy for AI must be guided by domain experts, and when privacy is a factor,
privacy experts must contribute as well. We cannot rely on the technology organizations or service
providing companies developing AI applications to identify consequences for applications. We must
have domain experts collectively work together with law-makers and technologists if we are to develop
technology-agnostic requirements on what matters in that domain, what failures cannot happen, and
what it means for automation to work correctly.
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Abstract

The increasing popularity of artificial intelligence and the wide adoption of machine learning has
raised new privacy and security issues. Indeed, the massive amount of data on which AI and ML rely
can include sensitive or company-confidential information. To enable the wide distribution of trained
models as a service to interested final users, as well as the adoption of external parties for training
models (e.g., to leverage the flexibility and economies of scale offered by cloud solutions), data need
to be adequately protected. Also, the correctness and completeness of computations (e.g., for running
or training models) delegated to external parties need to be guaranteed. In this paper, we consider
some privacy and computation integrity issues arising when data and machine learning models or
tasks are shared with external parties, together with possible solutions and research directions.

1 Introduction

The growing adoption of machine learning in our daily lives brings several advantages, such as better
decision making and faster problem solving. Machine learning applications rely on the availability of
massive amounts of data, together with powerful and efficient computational infrastructures and services
used to train models and support increasingly complex analytics tasks. In many scenarios, these data
can be provided by different owners, and often contain personal, sensitive, or company-confidential
information that cannot be freely shared without proper protection. It is therefore important to ensure
that both data confidentiality and privacy of data subjects (i.e., the entities to whom the data refer,
such as users or organizations) are adequately protected throughout these data-sharing and analysis
processes. Furthermore, privacy risks are not limited to data. When trained models are shared with
external parties (e.g., for testing the performance of the model), they may also leak sensitive information
about the data used for training. Although the protection of the confidentiality and privacy of data,
models, and users is extremely important, this is not sufficient to guarantee that machine learning
applications operate correctly, especially when the data sharing and preparation, model training, or
inference phase of the machine learning life cycle is delegated to external providers.

Existing solutions for protecting confidentiality when sharing training datasets with external parties
(e.g., [6, 7]) are based on cryptographic techniques such as homomorphic encryption that, together with
secure multi-party computation, can be used to protect the dataset while used to train a machine learning
model. More recent solutions combine cryptographic techniques with, for example, differential privacy,
hardware-based trusted execution environments, or secure aggregation protocols used in federated
learning (e.g., [12, 27]). Alternative solutions aim to avoid sharing real data by releasing synthetic data,
that is, artificially generated data that preserve the statistical properties of the original data (e.g., [8]).
While promising, these solutions based on synthetic data do not guarantee full protection (e.g., [2]).
Training data can also be subject to attacks aimed at degrading the resulting model or altering its
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behavior. One of the well-known threats is data poisoning that happens when an adversary intentionally
injects, modifies, or manipulates data in the training dataset. Existing solutions aim at detecting and
removing poisoning samples or to make learning algorithms more robust (e.g., [5, 25]). The privacy of
data subjects represented in training datasets released to third parties is instead protected through the
application of anonymization techniques such as k-anonymity [23] or differential privacy [14] and their
variations. Although these techniques help to preserve privacy, they often reduce the accuracy of the
resulting machine learning models (e.g., [24]). One of the main challenges is therefore to balance privacy
and utility with respect to the analytical task for which the data will be used (e.g., [4, 9, 17]). Public or
outsourced models are instead vulnerable to different types of inference attacks, such as membership
inference, attribute inference, model inversion, and property inferences as well as model extraction
attacks, which allow adversaries to reconstruct an equivalent model (i.e., a model that provides nearly the
same results as the original model) and exploit it for further privacy violations (e.g., [22]). Periodic model
updates (e.g., incremental learning) can also disclose changes in the underlying data such as the addition
or removal of data subjects in unlearning settings. In addition to protecting the privacy of data subjects
in the training dataset, also the sensitive information that users provide when using the model need
to be protected. Indeed, a privacy-friendly model should not require users to disclose (either releasing
directly or exposing indirectly) sensitive information. All these privacy and confidentiality issues become
particularly significant in emerging collaborative learning scenarios (e.g., federated learning), where data
are not centralized but remain distributed among multiple clients (e.g., [1, 15, 26]). In this context, the
clients exchange only model updates (e.g., the gradients or parameter modifications computed during
the training performed by the participants). These updates, however, can be exploited for inferring, for
example, information about the underlying data (e.g., [12, 27]).

While one may assume an overall proper behavior, the use of external providers in the machine
learning life cycle is clearly vulnerable to possible misbehavior by them, which can either be sloppy in
their operation, or - even worse - intentionally misbehave, and therefore opportunistic in their responses.
Since users as well as organizations are increasing their dependency on data and on the results of
machine learning and data analytics tasks for their daily operations, data and computation integrity
is paramount. Guaranteeing integrity means that techniques should be adopted to discover possible
misbehavior that tampered with data or results of computations. When training datasets are stored and
managed by external providers, it is necessary to ensure that no unauthorized modification occur (e.g.,
data poisoning). When prediction computations are outsourced, users should be able to verify that the
results returned by the external provider are both correct and complete. Incorrect or incomplete results
may arise from laziness, misconfiguration, or malicious tampering. Ensuring integrity therefore requires
solutions that allow data owners and users to assess the integrity of every computation performed by
the service provider (e.g., [10]).

To concretely analyze and discuss possible solutions to the confidentiality, privacy, and integrity
issues discussed above, we focus on the classification problem since it is at the basis of a wide range of
real-world applications (e.g., medical diagnosis, fraud and anomaly detection in financial systems, and
spam filtering, just to name a few). Data classification is the process of training a machine learning
model that is used for predicting the correct label of a given input data. The model learns patterns from
a labeled training dataset (i.e., a dataset where each piece of information is associated with the correct
label), and then uses this model to make predictions on new, unseen data. In the remainder of this paper,
we address some data privacy, confidentiality, and integrity issues that can arise in the machine learning
life cycle. Specifically, at data sharing and preparation time, we focus on the problem of protecting the
privacy of data subjects while preserving the utility of the data for the downstream classification task
(Section 2). We describe TA_DA, a target-aware data anonymization technique that allows data owners
to contribute with their data to a classification task, anonymizing their data while maintaining utility
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Gender Age Smoker Disease Risk
t1 F 65 former emphysema yes
t2 M 54 never cirrhosis no
t3 F 61 current bronchitis yes
t4 M 72 never cirrhosis no
t5 F 35 former arthritis no
t6 M 68 former bronchitis yes
t7 M 64 never diabetes no
t8 F 15 never asthma no
t9 F 39 never osteoporosis no
t10 M 29 never celiac no
t11 M 33 never arthritis no
t12 F 54 current bronchitis yes
t13 F 75 former bronchitis yes

Figure 1: An example of dataset including information about a sample of people

for the downstream task. At the model training time, we focus on the problem of minimizing leakage
of sensitive information from the training data used for building a model made publicly accessible as
well as from data of users interacting with the model. We describe PriSM, a solution for generating a
privacy-friendly classifier that requires neither sensitive information nor information correlated with
it for training a high accuracy classifier (Section 3). Finally, we address the problem of ensuring data
and computation integrity by enabling the detection of incorrect or incomplete results returned by
external providers (Section 4). We describe sentinels and twins that span all three phases of the machine
learning data life cycle. In the following, we assume that the training dataset is a relational table R
characterized by a set {a1, . . . , an, s, l} of attributes, where s is sensitive and l is the label attribute.
Figure 1 illustrates a running example showing a dataset collecting information about chronic disease
and smoking habits of a sample of people. In particular, the relation keeps track, for each subject, of
their gender (attribute Gender), age (attribute Age), smoking habits (attribute Smoker with values
current, former, or never), chronic disease (attribute Disease), and risk of suffering from a Chronic
Obstructive Pulmonary Disease (binary attribute Risk). Attribute Disease is considered sensitive,
while Risk is the label attribute.

2 Target-aware anonymization

When data owners contribute their datasets to collaborative data analytics and machine learning tasks
for training more comprehensive and accurate models, their datasets could be revealed to both the
party in charge of the training phase and to other contributors. To provide protection to such datasets,
solutions based on noise injection (e.g., differential privacy [14]) or on generalization and suppression
(e.g., k-anonymity [23]) can be used. While noise injection may significantly distort the data and can
compromise the quality of the downstream analysis, generalization preserves the truthfulness of the
data. However, generalization needs to be applied with care as it inevitably causes information loss,
which can reduce the accuracy of downstream analytical task, especially when applied on attributes that
are good predictors of the classification label. Based on this observation, TA_DA (Target-Aware Data
Anonymization) [4, 9] relies on generalization for protecting (i.e., anonymizing with k-anonymity [23]
and ℓ-diversity [19]) data, while preserving as much as possible the utility of the protected data for the
downstream collaborative analytics.

Anonymization with k-anonymity and ℓ-diversity operates by generalizing the values of the quasi-
identifier attributes (i.e., attributes that, in combination, could be used to reconstruct the identity of
data subjects through linking with external data sources) in the training dataset R in such a way that
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each combination of generalized quasi-identifier values appears at least k times in the released dataset,
and each group of tuples sharing the same generalized quasi-identifier contains at least ℓ well-represented
(e.g., distinct) values for the sensitive attribute. Given a dataset R and privacy parameters k and ℓ,
different generalization strategies can enforce k-anonymity and ℓ-diversity. Among all the solutions
guaranteeing k-anonymity and ℓ-diversity, TA_DA aims at computing the one that preserves as much
as possible those attributes on which the label attribute depend more, favoring generalization on the
other attributes of the quasi-identifier. For instance, with reference to the example in Figure 1 where
the quasi-identifier includes attributes Gender and Age, TA_DA would prefer a solution generalizing
attribute Gender if Risk highly depends on Age. To achieve this goal, TA_DA operates in two steps
(see Figure 2): target-aware partitioning , which partitions the tuples in R in groups according to the
downstream classification task while satisfying k-anonymity and ℓ-diversity; and group anonymization,
which anonymizes each partition generated by the previous step.
Target-aware partitioning. The goal of this phase is to partition tuples in the training dataset in such
a way that each group includes tuples with similar values for the attributes in the quasi-identifier that are
the best predictors of the label attribute (i.e., the attributes on which the label attribute value depends
more). The intuition is that keeping in the same group tuples with similar values for an attribute limits
the amount of generalization needed on it for achieving k-anonymity. The problem is that the best
predictors of the label attribute are not known and must be learned from the dataset itself. TA_DA
learns predictors and partitions the dataset according to their values by building a (k, ℓ)-compliant
decision tree for the label attribute. A (k, ℓ)-compliant decision tree is a decision tree [16] having leaf
nodes including at least k tuples with at least ℓ different values for the sensitive attribute. TA_DA
builds a (k, ℓ)-compliant decision tree considering only quasi-identifying attributes for split operations.
Other attributes, including the sensitive attribute are not considered. The sensitive attribute is not
considered because there is the need to ensure diversity of its values in each generalized group. Other
attributes are not affected by generalization, and therefore the anonymization process has no impact
on them. Starting from the original training dataset, which corresponds to the root node, TA_DA
recursively splits the dataset according to the values of a quasi-identifier attribute, generating children
nodes. The split attribute, and its values used for partitioning tuples, is selected to maximize the quality
of the decision tree (e.g., maximize information gain to have uniform labels in the leaf nodes), provided
the resulting nodes guarantee that the tree is (k, ℓ)-compliant. The recursive split terminates when a
stopping condition is satisfied (e.g., uniform values for the label in leaf nodes) or when any split would
result in a decision tree that is not (k, ℓ)-compliant. By construction, the split attributes are those on
which the label attribute depends more and each group contains tuples with similar values for these
attributes, since the tuples in a node satisfy the same decision rule (i.e., the same set of conditions
defined over the split attributes along the path from the root to the node). Figure 3 illustrates an
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Gender Age Smoker Disease Risk
t1 F 65 former emphysema yes
t2 M 54 never cirrhosis no
t3 F 61 current bronchitis yes
t4 M 72 never cirrhosis no
t5 F 35 former arthritis no
t6 M 68 former bronchitis yes
t7 M 64 never diabetes no
t8 F 15 never ashma no
t9 F 39 never osteoporosis no
t10 M 29 never celiac no
t11 M 33 never arthritis no
t12 F 54 current bronchitis yes
t13 F 75 former bronchitis yes

Gender Age Smoker Disease Risk
t5 F 35 former arthritis no
t8 F 15 never ashma no
t9 F 39 never osteoporosis no
t10 M 29 never celiac no
t11 M 33 never arthritis no

Gender Age Smoker Disease Risk
t1 F 65 former emphysema yes
t2 M 54 never cirrhosis no
t3 F 61 current bronchitis yes
t4 M 72 never cirrhosis no
t6 M 68 former bronchitis yes
t7 M 64 never diabetes no
t12 F 54 current bronchitis yes
t13 F 75 former bronchitis yes

Gender Age Smoker Disease Risk
t1 F 65 former emphysema yes
t3 F 61 current bronchitis yes
t12 F 54 current bronchitis yes
t13 F 75 former bronchitis yes

Gender Age Smoker Disease Risk
t2 M 54 never cirrhosis no
t4 M 72 never cirrhosis no
t6 M 68 former bronchitis yes
t7 M 64 never diabetes no

< 40 ≥ 40

F M

Figure 3: An example of (2,2)-compliant decision tree built over the relation in Figure 1

example of (2,2)-compliant decision tree built over the relation in Figure 1 and considering attributes
Gender and Age in the quasi-identifier. The root node corresponds to the whole dataset that is split
over attribute Age on condition < 40 (≥ 40, resp.), obtaining two partitions. For the first partition of
tuples, representing patients with Age< 40, the process stops since all the tuples in the group have the
same value for label attribute Risk. For the second, representing patients with age Age≥ 40, there
is a further split on attribute Gender. The partitioning process then stops, since there are no other
attributes in the quasi-identifier that could be used for further splitting the two leaf nodes. In the figure,
attributes with gray values are those that cannot be used for splitting, and the attribute with a light
blue background (gray in b/w printout) is, at each level, the one on which a further split is performed.
The resulting decision tree is (2, 2)-compliant since each leaf node includes at least two tuples and has
at least two different values for the sensitive attribute Disease.
Group anonymization. The goal of this phase is to independently anonymize each group of tuples
corresponding to the leaf nodes of the (k, ℓ)-compliant decision tree computed in the previous phase.
Intuitively, by generalizing each leaf node in a (k, ℓ)-compliant decision tree, the resulting dataset would
be k-anonymous and ℓ-diverse. While any anonymization algorithm can be used for this second phase,
TA_DA relies on Mondrian [18]. Mondrian has the advantage of leveraging a multi-dimensional spatial
representation of the dataset similarly to the approach of construction of the (k, ℓ)-compliant decision
tree. Each tuple is modeled as a point in a multi-dimensional space having a dimension for each attribute
in the quasi-identifier. Mondrian recursively splits the multi-dimensional space in two partitions, in
such a way that each partition includes at least k tuples with at least ℓ different values for the sensitive
attribute. This process terminates when any further split would generate subspaces with less than k
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Gender Age Smoker Disease Risk
t5 F 35 former arthritis no
t8 F 15 never asthma no
t9 F 39 never osteoporosis no
t10 M 29 never celiac no
t11 M 33 never arthritis no

15 29 33 35 39

M

F
t8

t10 t11

t5 t9

Age

Gender Gender Age Smoker Disease Risk
t5 F [15-39] former arthritis no
t8 F [15-39] never ashma no
t9 F [15-39] never osteoporosis no
t10 M [29-33] never celiac no
t11 M [29-33] never arthritis no

(a) (b) (c)

Gender Age Smoker Disease Risk
t2 M 54 never cirrhosis no
t4 M 72 never cirrhosis no
t6 M 68 former bronchitis yes
t7 M 64 never diabetes no

54 64 68 72

M

F

t2 t7 t6 t4

Age

Gender Gender Age Smoker Disease Risk
t2 M [54-64] never cirrhosis no
t7 M [54-64] never diabetes no
t4 M [68-72] never cirrhosis no
t6 M [68-72] former bronchitis yes

(d) (e) (f)

Figure 4: Anonymization of the first (a-c) and third (d-f) leaf nodes of the (2,2)-compliant decision tree
shown in Figure 3

Gender Age Smoker Disease Risk
t1 F [54-75] former emphysema yes
t3 F [54-75] current bronchitis yes
t12 F [54-75] current bronchitis yes
t13 F [54-75] former bronchitis yes
t2 M [54-64] never cirrhosis no
t7 M [54-64] never diabetes no
t4 M [68-72] never cirrhosis no
t6 M [68-72] former bronchitis yes
t5 F [15-39] former arthritis no
t8 F [15-39] never ashma no
t9 F [15-39] never osteoporosis no
t10 M [29-33] never celiac no
t11 M [29-33] never arthritis no

Figure 5: An example of (2,2)-anonymous version of the relation in Figure 1

tuples or less than ℓ different values for the sensitive attribute. For all the tuples in each sub-space,
the values of the attributes in the quasi-identifier are generalized to the same combination of values,
thus guaranteeing that all the generalized tuples in the subspace are indistinguishable according to
the quasi-identifier. The anonymized version of the dataset R is then obtained through the union of
the anonymized groups of tuples corresponding to the leaves of the (k, l)-compliant decision tree. For
instance, with reference to the (2,2)-compliant decision tree in Figure 3, the first leaf node includes five
tuples and Mondrian performs a split over attribute Gender producing two groups on which attribute
Age is then generalized. Similarly, for the third leaf node, Mondrian performs a split on attribute
Age, producing two groups of tuples, in which attribute Age is then generalized. For the second
leaf, Mondrian cannot perform a split on the attribute Age (which is the only attribute with different
values for the tuples in the group), since the result would violate ℓ-diversity. Figure 4 illustrates the
tuples in the first and third leaf nodes of the tree, their spatial representation, and the corresponding
(2,2)-anonymous version. Figure 5 illustrates the resulting generalized table after the partitioning and
the group anonymization described.
Summary and other issues. Combining target-aware partitioning with group anonymization, TA_DA
enforces anonymization taking into consideration the downstream classification task. Indeed, TA_DA
identifies and limits the amount of generalization on quasi-identifier attributes on which the label
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Figure 6: Overall working of PriSM

attribute depends more, thus producing a generalized table that satisfies k-anonymity and ℓ-diversity
and that also preserves utility for data classification. Hence, a classifier trained over data anonymized
using TA_DA can provide higher accuracy compared to a classifier trained over data anonymized with a
classical (non target-aware) anonymization algorithm, as also demonstrated by the experimental analysis
in [4]. Note that, besides classification, TA_DA can be used for clustering (a non-supervised learning
task [21]) as downstream analytics. To this purpose, the target-aware partitioning phase needs to be
revised to group tuples according to the same strategy adopted by clustering (e.g., minimize intra-cluster
distance or similarity), while at the same time guaranteeing k-anonymity and ℓ-diversity. Besides the
consideration of different downstream analytics, TA_DA could be extended to consider different privacy
definitions, like differential privacy, with the goal of limiting noise and driving its injection based on the
downstream machine learning task.

3 Privacy-friendly training

Allowing users (beyond the data or model owners) to rely on machine learning models trained using
large and valuable data collections represents a clear advantage, especially for those who would not
have the resources for collecting data and/or training models. However, this increased accessibility to
machine learning models also increases the risk of exposing sensitive data in the training dataset. As
a matter of fact, even if the training dataset is not released, its content might partially be exposed
if the model is publicly released, or even through its simple use (e.g., observing the behavior of the
model and its output). To address this challenge, we illustrate PriSM (Privacy-friendly Support vector
Machine) [3], which aims at building a privacy-preserving classifier that guarantees protection of the
sensitive attributes in the training dataset. For enabling final users to take advantage of machine learning
models, while protecting the data used for training, PriSM removes from the training dataset not only
sensitive attributes but also those (combination of) attributes that could indirectly expose them (e.g.,
through inferences). This strategy has a twofold advantage as it protects the sensitive information in the
training dataset as well as the privacy of the users, who would not need to disclose sensitive information
for obtaining predictions from the model. Intuitively, if an attribute is not considered in training, it will
not be used (and therefore asked) for prediction. Given attributes (or sets thereof) that are considered
sensitive, PriSM operates in two steps (Figure 6): it first identifies (sets of) other attributes that could
leak the sensitive attribute values, and then trains the classifier in such a way to protect the sensitive
attribute while limiting the impact on the accuracy of the model.
Sensitive correlation discovery. The goal of the first phase is to identify sets of attributes that could
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leak the values of the sensitive attribute. A sensitive correlation is a set X of non-label attributes (i.e.,
X ⊂ R \ {l}, with l the label attribute) that can be used to predict the sensitive attribute ∈ R (i.e.,
the values of s can be inferred from the values of the attributes in X and knowing X could lead to
knowledge also of s). For instance, in the dataset in Figure 1, Age and Smoker can be used to infer (or
reduce the uncertainty about) sensitive attribute Disease. Intuitively, a correlation between a set X
of attributes and a sensitive attribute can be assessed by training a classifier that uses the sensitive
attribute as target. A set X is a sensitive correlation if the classifier achieves a prediction accuracy for s
higher than a predefined threshold. Since this approach is impractical in real-world scenarios, PriSM
uses a correlation coefficient as a proxy for such evaluation. If the coefficient is greater than a given
threshold, the correlation is considered sensitive and must be protected. Aimed at limiting information
loss and at maximizing classification precision, PriSM distinguishes critical values from non-critical
values in the domain of the sensitive attribute (e.g., a critical value for the attribute Disease could be
emphysema, while a non-critical one could be flu), and considers sensitive only those correlations that
can be exploited to infer critical values. As a matter of fact, not all values of the sensitive attribute are
critical, and focusing only on the critical ones allows PriSM to be more precise in identifying sensitive
correlations, excluding from consideration those correlations that are not considered sensitive, and hence
possibly improve accuracy in classification. PriSM verifies the ability to leverage non-sensitive attributes
to predict each critical value individually (assuming each value to represent a different class) as well as
the set of all critical values together (assuming a binary classifier distinguishing critical from non-critical
values), to better capture different sensitive correlations. Indeed, correlations discovered considering each
critical value singularly taken may not be discovered when the critical values are considered together
and vice versa. To identify attribute sets that could leak critical values of the sensitive attribute,
PriSM leverages the natural monotonicity of sensitive correlations. If a subset X of attributes leaks
the sensitive attribute, then any superset of X should be excluded from training, as it could expose
the sensitive attribute. PriSM therefore examines subsets of non-sensitive (and non-label) attributes in
R ordered by increasing cardinality, omitting any superset of already identified sensitive correlations.
As an example, consider the dataset in Figure 1. PriSM first evaluates the correlation between each
single attribute and the sensitive attribute Disease. Suppose that Smoker permits to infer critical
values of Disease, while Age and Gender do not. In the second iteration, PriSM then checks only the
correlation between the pair of attributes Age and Gender since all pairs including Smoker, although
sensitive, are implicitly represented by the singleton sensitive correlation involving Smoker.
Classifier training. The goal of this second phase is to train a classifier that excludes from training the
sensitive attribute as well as any sensitive correlation that could leak its critical values, while maximizing
the predictive accuracy of the model. To this purpose, PriSM selects a subset of attributes in R to be
used for training while ensuring that, for each sensitive correlation, at least one attribute involved in that
correlation is excluded. PriSM extends classical Support Vector Machine (SVM) classifier, proposing an
approach that aims at minimizing misclassification while excluding the sensitive attribute and at least
one attribute from each sensitive correlation identified in the first phase. In addition, PriSM follows
a parsimony principle, aimed at using at most a predefined number of attributes as predictors. This
constraint has two advantages: it reduces the disclosure of unnecessary attributes and improves the
efficiency of the training process.
Summary and other issues. Excluding the sensitive attribute and sensitive correlations from training,
PriSM provides a privacy-preserving classifier able to protect the privacy of data subjects represented
in the training dataset, as well as final users who do not need to release their potentially sensitive
information for obtaining a prediction. While imposing constraints on the attributes to be used for
training, PriSM maintains high accuracy in predicting the correct value for the label attribute target
of the classification task, as demonstrated by experimental results on both real-world and synthetic
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datasets [3]. Besides maintaining high accuracy in classification, PriSM is also characterized by a limited
performance overhead in training a privacy-preserving classifier compared to a traditional classifier. It is
interesting to note that, although PriSM has been specifically designed to define privacy-preserving SVM
classifiers, the identification of sensitive correlations is independent of the underlying classifier. The first
phase of the approach identifies sensitive correlations analyzing the dataset, independently from the
specific classifier for which such dataset will be used. The first phase of the approach can then be used
in combination with any classification model (e.g., non-linear or non-binary classifiers), as well as with
any other machine learning model. The working of the classification/machine learning approach then
needs to be revised for excluding from training the sensitive attribute as well as sensitive correlation
maintaining, at the same time, high accuracy of prediction results.

4 Probabilistic integrity controls

Delegating the training or deployment of a machine learning model to an external party (e.g., a
computational provider or a set of workers), for cost efficiency or to enable access to a wider set of
final users, introduces potential risks to the correctness and completeness of the resulting computations.
Indeed, workers may be lazy or malicious and partially or entirely omit the computation, returning
an empty or randomly generated result. Lazy workers omit computations for economic reasons, with
the goal of saving on computational resources elaborating a subset of the tuples in the input dataset
while being payed for the elaboration of the whole dataset. Malicious workers instead intentionally
misbehave, partially omitting the computation or returning incorrect result on purpose (e.g., to influence
decision making processes). Integrity verification techniques verify the correctness, completeness, and
freshness of computation results. Correctness refers to the verification that the computation has been
executed in accordance with the algorithm defined by the data owner. Completeness ensures that the
computation has been executed over the entire dataset, with no tuples omitted. Freshness consists of
verifying that the computation has been performed over the most recent version of the dataset. Integrity
verification techniques fall into two main categories: deterministic approaches, providing integrity
guarantees with full confidence, and probabilistic approaches, providing such guarantees with a certain
degree of confidence [11].

Deterministic techniques associate each computation result with a Verification Object (VO), which
enables the recipient to verify the integrity of the returned result. The VO is constructed using an
authenticated data structure (e.g., a Merkle hash tree or a skip list [13, 20]) built by the data owner
over the dataset. The recipient of a computation then uses the VO, possibly together with information
provided by the data owner, to verify the integrity of the result. Deterministic techniques provide full
confidence in the integrity of computation results defined over the attribute(s) on which the authenticated
data structure is built, but they do not offer guarantees for computations involving other attributes.

Probabilistic techniques provide probabilistic integrity guarantees, meaning that they provide, with
a probabilistic degree of confidence, guarantee of a computation result to satisfy integrity property when
passing integrity checks. These techniques are typically based on the injection of control tuples into the
dataset. Their main advantage with respect to deterministic techniques is their broader applicability, as
they are not restricted to computations defined over specific attributes. However, the integrity guarantee
remains probabilistic because an integrity violation can be detected only if it affects the injected control
tuples.

Probabilistic techniques are based on the injection of fake tuples (sentinels) with known results, or
on the replication of a subset of the tuples (twins) in the dataset. A sentinel is a tuple generated by
the client with known computation result: a result different from the expected one signals an integrity
violation. Sentinels should be indistinguishable from genuine tuples, to prevent workers from selectively
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Figure 7: Sentinels and twins for integrity verification

processing them while omitting non-sentinel tuples. A twin is a tuple assigned to multiple workers:
inconsistency in the results of twins signals an integrity violation. Twins are allocated to different
workers to prevent them from detecting control tuples and selectively omitting their processing, while
returning a coordinated result, to bypass integrity verification checks.

To assess the effectiveness of the combined adoption of sentinels and twins, several aspects must
be investigated: How should sentinels be distributed among classes? Is it preferable to employ more
twin pairs or more replicas of the same job? How many sentinels and twins are required to achieve
a given integrity guarantee? In the following, we provide an answer to these questions, based on the
analysis in [10]. Figure 7 illustrates the considered scenario, characterized by a client distributing
classification jobs (i.e., the computation of the class associated with each tuple in the dataset) to a set of
workers. In the figure, control jobs are circled, with twin pairs characterized by the same symbol. When
omitting a classification job, a worker can return a random result (i.e., a randomly extracted a class), or
opportunistically select the class that maximizes the probability of the omission to go undetected. In the
following, we will refer to a worker omitting jobs as a lazy worker and, taking a safe approach, assume
that lazy workers return an opportunistic answer for omitted jobs. We do not distinguish between lazy
and malicious workers as the impact on integrity guarantees provided by sentinels and twins is the same
for any omission, independently from the reason why the classification job has been omitted.
Distribution of sentinels in classes. To maximize the effectiveness of sentinels, it is important to
properly tune their distribution in classes and their allocation to workers. The client has full control over
how sentinels are distributed in the classes, since these jobs are generated ad hoc. Although the client
may choose to take the distribution of the original dataset into account when distributing sentinels in
classes, their effectiveness is maximized when they are uniformly distributed, that is, when injecting the
same number of sentinels in each class. Otherwise, a lazy worker could exploit knowledge of the input
data distribution in its opportunistic behavior. If sentinels are distributed according to genuine data
distribution, by returning the most frequent class for each omitted classification job a lazy worker would
correctly guess the sentinel’s expected class for a high percentage (frequency of the most frequent class)
of sentinels. Consider, as an example, a data distribution following Zipf’s law with α = 1 (Figure 8(a)),
the injection of sentinels according to the same distribution as the data would result in 48% of them
with label c1 (see Figure 8(b), reporting sentinels added to each class on top of the corresponding bar).
A lazy worker returning c1 as a default value for omitted jobs would correctly guess almost half of the
sentinels. Similarly, if the client distributes sentinels according to the normalized inverse of the input
distribution, a lazy worker could simply return the least frequent class (D in the above example, see
Figure 8(c)) for every omitted job, again correctly guessing the correct result of a high percentage of
sentinels (48% in the example above). In contrast, when sentinels are uniformly distributed, lazy workers
cannot leverage any knowledge of class frequencies to reduce the risk of the client detecting omissions.
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Figure 8: An example of probability mass function following a Zipf’s law with α = 1 (a) and sentinels
distributed according to the data distribution (b), the normalized inverse data distribution (c), and
uniformly (d)
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Figure 9: Probability that omissions go undetected using only twins and varying the number of twin
pairs and the number of replicas (a), using only twins and varying the percentage of omissions (b), using
sentinels and twins varying the frequency of the most frequent class (c)

With reference to the example above, a uniform distribution would result in distributing 25% of the
sentinels in each class (Figure 8(d)), with therefore 25% probability for the lazy worker of correctly
guessing omitted sentinels, independently from the data distribution.
Twin pairs vs replicas. Each job can be replicated multiple times, with each replica allocated to a
different worker. Considering a fixed budget that the client can spend for integrity verification, it is
worth noting that managing twins in pairs is substantially more effective, in terms of probability of
detecting omission, than producing many replicas of the same classification job. In other words, it is
preferable to generate a single additional copy for a larger number of different classification jobs rather
than replicating one job many times. This is mainly due to the fact that the client cannot control the
distribution of twins into classes, as jobs to be twinned are randomly extracted from the input dataset.
Twins are naturally distributed according to the same distribution as the input dataset. Assuming lazy
workers to return, for omitted jobs, the most frequent class (which minimizes classification error), the
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probability of a lazy worker of correctly guessing all the replicas of a classification job is the probability
of such a class. Therefore, investing all the budget replicating a single job is less effective than replicating
different jobs. Indeed, especially if the original data distribution is very unbalanced, the probability for
lazy workers of correctly guessing omitted replicas is very high. This behavior is confirmed in Figure
9(a), which reports the probability that an omission (50 omitted jobs by 49 workers out of 100 lazy
workers) goes undetected as a function of either the number of distinct replicated jobs (continuous blue
curve with triangles) or the number of replicas of a single job (dashed orange curve with circles). As
visible from the figure, the probability of undetected omissions rapidly approaches zero as the number of
replicated jobs increases, whereas it remains significantly higher (never going below the frequency of the
most frequent class) when increasing the number of replicas for a single replicated job.
Sentinels and twins balance. Given a budget (in terms of additional jobs) for integrity verification,
it is necessary to balance the adoption of sentinels and twins aiming at maximizing the probability of
detecting omissions by workers. While in general twins are roughly twice as effective as sentinels (with
one additional job, the client controls the behavior or two workers), a few sentinels are necessary to
avoid extreme omissions to go undetected. As a matter of fact, the effectiveness of twins decreases
in case of extreme omissions. Intuitively, if both the workers omitting the two replicas of a same job
return the most frequent class, the omission goes undetected (the results are coherent, even if wrong).
Then, if a large majority of workers omit their jobs, the probability of passing twins control is high,
even when injecting a large number of twins. Figure 9(b) illustrates the probability of an omission
to go undetected varying the percentage of omitted jobs, assuming to twin 5% of the jobs and that
all workers are lazy. As visible from the figure, the probability quickly decreases when the percentage
of omissions becomes non negligible, but it increases when the percentage of omissions becomes close
to 1. Therefore, a few sentinels are always necessary to prevent extreme omissions to go undetected.
The preference between the adoption of sentinels only or twins (with a few sentinels), based on their
effectiveness, depends on the distribution in classes of the input dataset. More specifically, sentinels are
preferred if Pmax > 0.5 · (1 + c), with Pmax the probability of the most frequent class and c the number
of classes. If the data distribution is highly unbalanced, sentinels are more effective as the most effective
strategy for the lazy worker (i.e., return the most frequent class for omitted jobs) implies a correct guess
of the job result. Note that this threshold provides a nice and easy to use indication for the client. Once
defined which between twins and sentinels is better to use, the client can size the number of control
jobs based on either the client’s budget or the threshold of probability of omissions going undetected.
Figure 9(c) illustrates the probability of an omission to go undetected when using only sentinels (dashed
blue line with bullets) and when using only twins (continuous pink line with triangles), varying the
probability Pmax of the most frequent class, assuming 10 workers, 4 of which are lazy and considering
a probability of omitting jobs of 20%. As visible from the figure, the probability of omissions to go
undetected is lower when using twins if Pmax is small, it is lower when using sentinels when Pmax grows.
Summary and other issues. While the results illustrated above permit to reason about the distribution
of sentinels and twins among workers to verify their behavior, they are based on the assumption that (lazy)
workers do not collude to maximize their probability of going undetected when omitting classification
jobs. Colluding workers can indeed identify twin pairs assigned to them and hence return a coherent
result, thus passing twin integrity check. In scenarios where workers can collude, twins need to be
distributed in such a way to minimize the probability that a job and its replica are both allocated
to colluding workers. Alternatively, twin jobs should be generated in such a way to make twin pairs
unrecognizable as such. We also note that sentinels and twins have been primarily designed to verify
precise computations (i.e., deterministic jobs, like the run of an algorithm), while real world scenarios
need to account for computations characterized by an acceptable (limited) amount of errors.
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5 Conclusions

We discussed some privacy and integrity issues that arise when external, potentially untrusted, parties
are involved in machine learning tasks (e.g., for training or deploying a machine learning model). In
fact, when releasing data to external parties for training models or releasing models for external use, it
is crucial to maintain confidentiality of potentially sensitive or company-confidential information and
to protect the privacy of the data subjects represented in the dataset or of the users interacting with
the deployed model. Furthermore, if the party responsible for training or executing the model behaves
lazily or maliciously, the resulting computation may be incomplete or incorrect, with potentially severe
integrity issues. To address these concerns, we discussed solutions for constructing privacy-preserving
machine learning models that preserve high utility. In addition, we presented mechanisms for verifying
the correctness and completeness of results returned by potentially untrusted parties. The solutions
discussed provide a foundation for designing privacy-aware and integrity-preserving machine learning
techniques in (distributed) environments.
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Abstract

Large Language Models (LLMs) have achieved remarkable progress in natural language under-
standing, reasoning, and autonomous decision-making. However, these advancements have also come
with significant privacy concerns. While significant research has focused on mitigating the data
privacy risks of LLMs during various stages of model training, less attention has been paid to new
threats emerging from their deployment. The integration of LLMs into widely used applications
and the weaponization of their autonomous abilities have created new privacy vulnerabilities. These
vulnerabilities provide opportunities for both inadvertent data leakage and malicious exfiltration from
LLM-powered systems. Additionally, adversaries can exploit these systems to launch sophisticated,
large-scale privacy attacks, threatening not only individual privacy but also financial security and
societal trust. In this paper, we systematically examine these emerging privacy risks of LLMs.
We also discuss potential mitigation strategies and call for the research community to broaden its
focus beyond data privacy risks, developing new defenses to address the evolving threats posed by
increasingly powerful LLMs and LLM-powered systems.

1 Introduction

Recent advancements in deep learning, particularly in natural language processing, have led to the
development of large language models (LLMs). Over the past few years, LLMs have demonstrated
impressive capabilities in understanding and generating human language. These models are rapidly
growing in size and effectiveness, yielding breakthroughs and attracting increasing research and social
attention. Beyond natural language understanding, their emergent abilities [173] have enabled them to
achieve unparalleled performance on complex tasks. As a result, LLMs are no longer standalone models
but are increasingly integrated as core decision-making components in larger systems, such as interactive
chatbots [14, 127, 186] and autonomous agents [132, 144, 187].

However, this rapid development comes with growing concerns about its privacy implications. As
a primary source of privacy risk, LLMs are trained on vast, internet-scale corpora that often contain
sensitive personal information and copyrighted content. These data privacy risks are amplified when
models are fine-tuned on private, proprietary datasets. Studies [32, 107, 109] have shown that LLMs
can memorize and inadvertently leak training data across various model learning stages, raising issues
related to training data extraction [25], copyright infringement [172], and test set contamination [129].

Beyond the risks of training data leakage, privacy threats also emerge from the integration of LLMs
into larger, more complex systems, which we refer to as LLM-powered systems. These systems, especially
those that use LLMs as decision-making engines in agent-based applications [36, 169], introduce new
vulnerabilities and expand the potential attack surface for privacy violations. For instance, a user may
share personal information with an LLM-based chatbot in order to receive personalized responses or
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Figure 1: Illustrations of different types of privacy risks posed by large language models.

suggestions. However, this information could be exfiltrated through side channels [23] or unintentionally
disclosed by the model itself [158]. Such risks are not inherent to the LLM alone but emerge from the
architecture of interactions between users, models, and other system components. As LLM-powered
applications become increasingly widespread in both daily life and professional domains, these privacy
risks become more prominent and urgent.

A third category of privacy threats arises from the advanced reasoning and autonomous decision-
making capabilities of LLMs, which create new opportunities for malicious exploitation. These capabilities
enable adversaries to automate sophisticated attacks at unprecedented scale and speed, substantially
lowering the barrier to entry for cyberattacks. For instance, an attacker could instruct an LLM to
infer sensitive attributes, such as a user’s demographics, from their public online posts, leading to
de-anonymization and other severe cybercrimes [49, 101]. Similarly, LLMs can be leveraged to launch
large-scale, highly personalized social engineering campaigns, resulting in significant financial and societal
consequences [106].

Positioning and Contribution Existing research has predominantly focused on training data privacy
issues of LLMs. In contrast, less attention has been paid to the privacy threats posed by LLM-powered
systems and the malicious use of LLMs. The privacy risks arising from LLM-powered systems and their
malicious use represent a paradigm shift. These risks are not rooted in sensitive training data, but in the
increasingly powerful autonomy of LLMs. As a result, existing data privacy frameworks may not always
be well-suited to analyze or mitigate these emerging threats. This paper aims to bridge this gap by
providing a comprehensive study of the new threat landscape introduced by LLMs. We systematically
examine the privacy risks that arise from these models and their applications, and discuss potential
mitigation strategies, calling for research efforts and greater public awareness to address these emerging
privacy challenges.

Related Work Several studies [48, 94, 96, 99, 153, 176] have surveyed the data privacy risks of LLMs
and explored mitigation strategies, However, these studies do not cover the emerging privacy threats
posed by the increasing integration of LLM-powered systems and the potential malicious use of LLMs,
which we identify as critical new privacy risks. Another line of research [18, 30, 97, 180] has examined
the privacy implications of LLMs during user interactions. Our work builds on and extends these prior
studies, providing a systematic and comprehensive analysis of the privacy risks posed by LLMs.

Roadmap In Section 2, we introduce the necessary background on LLMs and their key developmental
trends. In Section 3, we discuss the primary data privacy risks associated with LLMs at different stages
of training. In Section 4, we analyze the privacy threats of LLM-powered systems and discuss potential
mitigations. In Section 5, we examine the privacy threats arising from the malicious use of LLMs.
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Finally, we conclude and discuss future directions in Section 8.

2 Background on Large Language Models

A language model (LM) is a type of machine learning model for natural language processing. In general,
an LM estimates the generative likelihood of sequences of words by predicting the probabilities of future
or missing tokens1. In recent years, large language models (LLMs), trained on massive datasets for
token prediction, have achieved unprecedented performance across a wide range of applications [205].
The scaling of these models has also unlocked remarkable emergent abilities not present in their smaller
counterparts [173], including in-context learning [45], analogical reasoning [171], and the capacity to
power autonomous agents [44].

With the rapid development of LLMs, LLM agents have emerged and become increasingly popular.
These are intelligent entities powered by LLMs that are capable of autonomously carrying out complex
tasks—such as conducting in-depth research or managing computer operations—while adapting to
specific user needs [169]. This shift represents not only a major technological advancement but also a
reimagining of human–machine interaction. Their impressive capabilities have already been applied in a
wide range of domains, from chatbots [1] to professional tools like programming assistants [36].

Trends on LLMs Despite these advancements, the rapid evolution of LLMs also introduces new
privacy risks. We identify three key trends that are closely related to growing privacy challenges:

• Trained on Sensitive Data. LLMs are trained on vast amounts of diverse data, which may include
sensitive or copyrighted information. Moreover, the advanced capabilities of these models also
enable them to access and utilize sensitive data through fine-tuning or in-context learning, especially
when building proprietary models or personalized LLM-based applications [203]. This further
increases the potential privacy risk of sensitive data that is trained on LLMs.

• Incorporating into Popular Applications. LLMs are increasingly embedded into core components of
widely used software and professional tools. For example, they serve critical roles in domains such
as code generation for software development, document analysis in legal and medical contexts, and
as reasoning engines for autonomous agents that interact with external systems and platforms. As
LLMs become ubiquitous in these daily applications, the surface area for privacy risks expands
significantly, as adversaries can exploit these models in a wide range of sensitive contexts.

• Growing Capability and Accessibility. LLMs are rapidly evolving beyond text-only capabilities.
Recent advances in vision-language models (VLMs) enable multimodal reasoning over both text
and images [128, 162]. At the same time, access to powerful commercial and open-source models
has become dramatically easier and much more affordable [108]. This combination of greater
capability and accessibility empowers adversaries, giving them opportunities to exploit these
advanced, autonomous systems to perform privacy-infringing attacks.

Taken together, these trends create a new privacy landscape that both amplifies data privacy concerns
and introduces new privacy threats. The following sections will analyze these risks in detail, exploring
their implications and potential mitigation strategies.

3 Data Privacy Risks in LLMs

LLMs themselves pose a significant privacy risk, as they, like other machine learning models, have been
shown to memorize elements of their training data [22, 25]. These data privacy risks can arise at multiple

1A token refers to the smallest semantic unit processed by the model, which can be a character, subword, or word.
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stages of the model learning process. From a parametric training perspective, LLMs typically undergo
both a large-scale pre-training stage and subsequent fine-tuning stages. While LLMs are pre-trained and
fine-tuned on massive corpora, and most state-of-the-art systems [14, 19, 53, 127, 186] do not disclose the
provenance of their training data, concerns regarding potential privacy breaches have become increasingly
pronounced. Moreover, due to their generative nature, LLMs support in-context learning, which provides
a simple yet powerful mechanism for adapting inference behavior without modifying model parameters.
These unique characteristics not only enhance the utility of LLMs but also broaden the avenues through
which sensitive information may be exposed. In the following discussion, we examine two of the most
prominent privacy threats to LLMs, membership inference and training data extraction, along with their
privacy implications and potential enhancements.

3.1 Membership Inference Attack

Closely connected with Differential Privacy (DP) [54, 95], Membership Inference Attack (MIA) [152] has
become a widely adopted approach for privacy auditing of machine learning (ML) models [119, 157]. MIA
assesses how much a trained ML model reveals about its training data by determining whether specific
query instances (or documents) were included in the dataset. In the context of LLMs, membership
inference attacks have been applied at different stages to explore the privacy risk.

• Pre-training Stage. Early studies [110, 150, 181, 201] propose various membership signals that are
derived from LLM’s outputs to distinguish members from non-members. However, subsequent
studies [111, 197] have identified fundamental flaws in the evaluation methodologies of prior
studies. Particularly, the use of temporal data to separate members from non-members introduces
subtle distributional shifts between the two groups, resulting in unreliable attack performance
that does not accurately reflect true privacy leakage. Under more rigorous setups, existing
MIAs [27, 37, 83, 198] perform no better than random guessing when targeting pre-training data
of LLMs. This ineffectiveness is largely due to the fact that each data point is typically used only
once during pre-training [118, 166], and the vast diversity of training corpora further dilutes the
influence of a single example [51, 68].

• Fine-tuned Stage. Following the pre-training stage, the fine-tuning stage requires substantially
fewer resources and focuses on adapting pre-trained models to domain-specific downstream tasks.
However, fine-tuning datasets frequently contain personally identifiable information (PII) [32], copy-
righted material [103], or sensitive organizational data [11]. MIAs against fine-tuned LLMs leverage
techniques such as prompt calibration [61], hypothesis testing [113], and ensemble methods [199].
Moreover, recent work [58] has shown that human preference data used for alignment tuning (via
Direct Preference Optimization (DPO) [185]) is also vulnerable to MIAs. Compared to attacks on
pre-trained LLMs, MIAs against fine-tuned models are markedly more effective. This increased
vulnerability arises because fine-tuning datasets are considerably smaller, and fine-tuning often
involves multiple training epochs. These factors increase the model’s memorization of sensitive
data, posing heightened privacy threats in fine-tuned LLMs.

• In-context Learning Stage. Fine-tuning LLMs for specific domains involves non-trivial computation
via parameter updates. In-Context Learning (ICL) [45] has emerged as a popular, more efficient
adaptation paradigm, as it does not require modifying model parameters. In ICL, private data
are provided as demonstrations within the prompt itself to guide the model’s inference for a
specific task. These demonstrations can be manually prepared [19] or dynamically retrieved from
a private knowledge base using Retrieval-Augmented Generation (RAG) systems [15, 93, 151].
The vulnerability of ICL to MIAs has been explored using methods such as prompt injection [13],
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analysis of semantic similarity [59], or measuring contextual influence [59]. Since ICL relies on
only a few demonstration examples, each one has a significant impact on the model’s output and
performance, making these attacks highly effective at identifying private data.

Growing Threats While current MIAs have been effective at assessing privacy risks for fine-tuned
and in-context data in LLMs, they have shown limited success against pre-trained models. However, this
does not mean that pre-trained models are free from privacy risks. Two emerging research directions
make MIAs more powerful, presenting a growing threat to the privacy of pre-training data. The first
direction shifts the focus from analyzing individual data instances to examining larger collections of
data. Recent studies [107] show that instead of detecting membership at the sentence level, aggregating
membership signals across multiple sentences within a document can reliably reveal whether that dataset
was included in training. This has been extended to paragraphs and entire collections, showing that
these larger structures are also vulnerable to MIAs [138]. The second direction involves more advanced
and computationally intensive attacks. Recent research [65] shows that training hundreds of shadow
models [152] to exploit behavioral discrepancies can significantly enhance MIA effectiveness. These
stronger attacks, building on prior successes against classifiers [21, 194], further elevate the risks to
pre-trained data privacy. Together, these emerging research trends indicate that future improvements in
MIAs could amplify the privacy risks of pre-trained LLMs.

Privacy Implications Effective MIAs on LLMs have serious trustworthy risks, such as the leakage of
copyrighted content [52, 172] or test set contamination from evaluation benchmarks [129]. Moreover,
MIAs can serve as a fundamental building block for more sophisticated attacks, such as training data
extraction [25, 26], or as a core component in data auditing systems [74, 96, 107]. The issue is also
highly relevant to recent ongoing lawsuits alleging unauthorized data use in model training, such as The
New York Times vs. OpenAI [136], Getty Images vs. Stability AI[39] and Doe vs. GitHub[57].

Potential Mitigation Strategies Machine learning with differential privacy (DP-SGD [8] and PATE [131])
is an effective defense mechanism against privacy attacks, including MIAs. Studies [98, 135, 191] have
applied DP-SGD to fine-tune LLMs on sensitive domains, which may degrade model utility under
reasonable privacy budgets. For in-context learning scenarios, various DP-based techniques have been
proposed, such as differential private prompt tuning [50, 70] and differential private synthetic text
generation [161, 179]. In addition to the theoretical privacy guarantees that DP offers, many empirical
privacy methods [71, 199] have shown effectiveness against MIAs. For example, LoRA [71], a widely used
efficient fine-tuning method for LLMs, demonstrates better privacy preservation than full fine-tuning.
However, these empirical defenses may be compromised when facing stronger MIAs [65], and there
remains a notable trade-off between privacy and utility, especially for pre-trained LLMs.

3.2 Training Data Extraction

Training data extraction refers to the risk of partially or fully reconstructing samples from the training
dataset by interacting with a trained LLM [22, 25, 78, 122, 146]. This threat goes beyond merely
identifying whether a particular instance was part of the training set (as in membership inference); it
involves recovering the training data itself, posing a more severe privacy threat. Similar to MIAs, data
extraction attacks have been studied at various stages of the LLM training pipeline:

• Pre-training Stage. Research has shown that large amounts of data can be extracted from GPT-
2 [140] by repeatedly querying it with different prompt prefixes [25]. Additionally, studies [84, 105]
have demonstrated that LLMs can unintentionally leak personally identifiable information (PII),
such as a person’s full name, address, and phone number. More recently, studies [66] have used
a probabilistic extraction approach to successfully recover pieces of copyrighted content, such as
excerpts from books, from open-weight models.
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• Fine-tuned Stage. Unlike the pre-training stage, where most data extraction attacks are conducted
in a black-box setting, data extraction during fine-tuning often assumes that both the original
and fine-tuned model weights are publicly available. For example, the popular reasoning model
DeepSeek-R1 [43] is trained from DeepSeek-Base [42], both of which have open weights; however,
the data used to train R1 has not been made public. Recent studies [116] propose efficient data
selection strategies that can identify potential training data from a large data pool by matching the
gradients from the base model to the fine-tuned model, demonstrating the feasibility of extracting
fine-tuning data.

• In-context Learning Stage. Studies have shown that it is possible to recover the prompt used for
in-context learning via model inversion [117] or prompt stealing [147, 160]. The privacy risks are
heightened when using Retrieval-Augmented Generation (RAG) systems for LLMs, where attackers
try to extract text data from a private database of RAG models through black-box access. Various
attacks have been proposed to extract data from RAG systems, including adversarial prompt
injection [75, 139, 170], agent-based attacks [81], and backdoor attacks [134].

Different approaches have been proposed to evaluate the effectiveness of data extraction attacks. The
most widely used metric is eidetic memorization (or verbatim extraction) [25] and its variations [22, 78,
82, 164, 196]. This metric requires the model to reproduce the memorized data exactly when given an
appropriate prompt. To relax this strict requirement, other studies propose approximate memorization
metrics [78, 82], which measure the string or semantic similarity between the model’s output and the
training data as memorization efficacy.

Privacy Implications Data extraction from LLMs raises serious privacy and copyright concerns.
Extraction not only produces a “copy” of training data but also reveals that a model has memorized
such data internally. This evidence is central to ongoing legal debates about whether training an LLM
on copyrighted material constitutes fair use. Furthermore, it poses a significant risk to the personal
or proprietary data used in LLM-based applications such as RAG systems, underscoring the profound
privacy challenges in deploying LLMs.

Growing Threats Recent studies [34, 66] highlight that since LLMs are probabilistic, the memorization
should be assessed probabilistically. These studies introduce probabilistic discoverable extraction [66],
which quantifies the likelihood that a model, under a given decoding scheme, will reproduce a verbatim
target suffix when prompted with a specific prefix. This approach not only refines the understanding of
memorization in LLMs but also shows how easily certain pieces of data can be extracted from these
models. Further research [33] argues that measuring memorization solely by average extraction rates is
insufficient. Instead, it should focus on identifying specific pieces of copyrighted or private text that
are most likely to be memorized by the model. By enhancing extraction methods and pinpointing
highly memorized fragments, these approaches increase the efficacy of data extraction, highlighting the
potential for more targeted privacy violations.

4 Privacy Risks in LLM-Powered Systems

The integration of LLMs as core components in larger, complex systems introduces new vectors for
privacy risks. For example, LLM-based chatbots, such as ChatGPT [127] and Claude [14], have become
the primary interface through which users interact with LLMs. In these interactions, users often share
personal narratives and sensitive details to seek advice or obtain personalized responses. This turns their
conversation histories into a rich repository of private information, including personal preferences, habits,
and even users’ secrets [18, 85, 114]. Like other computer systems, these applications are vulnerable
to side-channel attacks, where adversaries exploit indirect information leaks from the system to steal
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data. Furthermore, the unique features of LLM-based applications, such as reasoning and memory
mechanisms, provide additional attack surfaces. Below, we detail two prominent threats associated with
LLM-powered systems: side channel attacks and information exfiltration.

4.1 Side Channel Attacks

Side-channel attacks [3, 40, 92] exploit indirect leakage of information through system behaviors such as
timing, memory usage, and input/output patterns. These attacks can be especially severe in the context
of LLM-based chatbots, which contain vast amounts of users’ private conversation histories. Existing
side-channel attacks against LLM-based chatbots can be categorized into three different types:

• Inference Timing Attacks. Inference timing attacks target the time it takes for an LLM to
generate a response. To improve inference efficiency, modern LLMs are often optimized using
data-dependent inference techniques, such as speculative decoding [112, 159], where a smaller,
faster “draft” model predicts multiple future tokens, and the larger, main model verifies them in a
single step. However, these optimizations introduce new vulnerabilities, as demonstrated in recent
work [23, 155, 175, 193]. Specifically, the vulnerability arises from the number of drafted tokens
that the main model accepts. If many tokens are accepted, the response is faster; if most are
rejected, the system slows down. This acceptance rate depends on the predictability of the text.
Attackers can craft specific inputs to measure these timing differences and infer the predictability
of a user’s hidden conversation history. By analyzing these server response time patterns, attackers
can infer the topic or even specific characteristics of a user’s private conversations without ever
seeing the actual content.

• Cache Timing Attacks. Cache timing attacks exploit variations in how data is stored and accessed
in a system’s memory. In the context of LLM-based chatbots, inference services deployed on cloud
resources need to handle a high volume of real-time requests while maintaining high throughput
and low latency. One common optimization technique is prompt caching [137], where the attention
key-value (KV) cache is reused across requests. In this method, the KV cache for a prompt is
stored, and if a subsequent prompt shares a matching prefix with a cached prompt, the cached KV
data for the prefix can be quickly retrieved. This results in faster processing times, specifically
reducing the time to generate the first response token. However, the use of prompt caching
introduces observable variations in response times based on the private input. When a prompt
matches a cached prefix, the response is faster due to the cache hit, whereas non-matching prompts
result in slower response times. By analyzing these timing differences, the attacker can learn the
prefixes of other users’ private inputs, potentially allowing them to identify or reconstruct the
victim’s entire prompt with high confidence [63, 156, 178, 208].

• Keylogging Attacks. Remote keylogging attacks focus on capturing the keystrokes entered by users
during their interactions with chatbots. Unlike traditional keyloggers that require local access to
the user’s device, recent attacks [177] show it is possible to conduct this remotely by analyzing the
timing and length of network packets exchanged between the user and the chatbot. By observing
patterns in the size and timing of these encrypted packets, attackers can infer the length of the
tokens being transmitted. Leveraging the predictable structure of language, these patterns can be
used to reconstruct a user’s input without any access to their device.

Privacy Implications Side-channel attacks exploit indirect signals such as inference latency, cache
behavior, and packet length to infer sensitive attributes, without requiring the adversary to compromise
the chatbot or the user directly. This makes them especially dangerous, as private information can be
extracted passively, often without the awareness of either party.
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4.2 Information Exfiltration

Information exfiltration refers to the unauthorized transfer of sensitive data from one context to another.
In LLM-based (agent) applications, this occurs when attackers steal private information either through
unintended leakage by the model itself or by maliciously manipulating the system to reveal user data,
opening a new and highly exploitable attack surface [200]. We categorize existing approaches to
information exfiltration into the following major categories.

• Unintended Disclosure. LLMs often lack awareness of privacy norms and the contextual boundaries
of information flows [124]. As a result, they may inadvertently disclose sensitive information to
inappropriate recipients. An LLM agent involved in a multi-round conversation may unintentionally
repeat or expose previously shared user information, even when it is contextually irrelevant [38,
115, 148, 204]. For instance, it is undesirable for an LLM assistant to reveal that “John is talking
to a few companies about switching jobs” while drafting an email to John’s current manager,
particularly without his consent. This risk increases when LLMs are tasked with complex operations
that involve integrating multiple sources of user data, such as combining financial, location, and
preference information for personalized recommendations [148]. LLMs struggle to track which
information is appropriate to share, which makes these disclosures particularly insidious.

• Leakage During Model Reasoning. Recent advances in reasoning techniques encourage LLMs
to generate explicit “thinking traces” or intermediate reasoning steps before producing final
answers [154, 189]. While this improves task performance, studies show that reasoning traces
themselves may leak sensitive user data, either accidentally or via targeted prompt injections [62].
For instance, a model assisting with medical scheduling could inadvertently include a patient’s
health condition in its hidden reasoning, which may later surface in outputs. This creates a difficult
trade-off: increasing computational effort can make an agent’s final answer more cautious, but it
also encourages more verbose reasoning, thereby enlarging the attack surface.

• Memory Leakage. To improve personalization, many commercial LLM-powered chatbots, such
as ChatGPT [127] and Gemini [162], have introduced long-term memory features that persist
user information across sessions. These memories may include personal details such as location,
occupation, or user preferences, stored explicitly in textual form to improve future responses.
While convenient, such memory is highly sensitive and attractive to adversaries. Recent studies
demonstrate that attackers can exfiltrate this data via carefully designed prompt injection at-
tacks [133, 145]. For example, malicious content embedded in a piece of code or blog post could
instruct LLM to reveal stored user memories, potentially encoding them into hidden channels
(e.g., URLs or snippets of code) or misleading agents to perform actions like visiting websites that
acquire user information, transferring the data to a remote adversary.

• Insecure Tool Usage. Tools refer to functions that LLM-based agents use to interact with external
data or perform actions that modify the environment, such as writing files, clicking links on web
pages, or generating and executing code. While the open-source community has made significant
strides in developing secure Model Context Protocols (MCP) to ensure consistent and secure
interactions with external data, these tools still pose substantial privacy risks. A recent study [35]
demonstrated that MCP servers could be exploited as trojans to compromise user privacy. For
example, a malicious weather MCP server, disguised as benign functionality, exploited legitimate
banking tools to discover and extract user account balances. Although many vulnerabilities have
been recognized [55, 88, 182], the increasing capabilities of agents with more tools at their disposal
may lead to more potential privacy vulnerabilities.
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• Compromised Execution Environment. The agent’s execution environment can also be manipulated
to exfiltrate sensitive information. For example, browser-based agents are highly susceptible to
malicious prompt injections embedded in web pages [29, 100] or triggered by pop-ups [202], leading
to the leakage of private user data. A recent study [87] further emphasizes that agents performing
GUI-based tasks are particularly vulnerable, due to the misalignment between LLM behavior in
conversational settings and their behavior in agent-based, browser-use contexts.

• Leakge via Share Link. Users may share their conversations with a chatbot (ChatGPT) through
a built-in “Share” button on commercial chatbot platforms, allowing only those with the link to
access the conversation. However, it has been shown [6] that these links can be discovered through
search engines (Google Search). This can unintentionally expose users’ conversation histories to
the public. Furthermore, deleting a conversation from your ChatGPT history does not remove the
public share link or prevent it from appearing in search engine results. Recognizing the potential
for privacy breaches, OpenAI has addressed this issue by providing users with the option to control
whether their chats are visible in search engine results, offering more control over users’ privacy.

Privacy Implications Information exfiltration can occur even without the presence of an active
attacker and can be unintentionally exposed through a model’s internal reasoning traces or persistent
memory. In this way, features originally intended to improve functionality (tool usage and share links),
transparency (reasoning), and personalization (memory) become high-value attack surfaces. The ultimate
consequence is a profound erosion of user trust, as interacting with a seemingly helpful LLM agent
creates a persistent, exploitable record of their most sensitive information.

Vulnerability Detection and Mitigation Strategies To counter the threat of information exfiltration,
research efforts are focused on both detecting vulnerabilities and developing active defenses. On the
detection front, some works measure an LLM’s capacity for privacy reasoning in ambiguous contexts
to identify risks of unintended information disclosure [149, 190]. Another approach [16, 206] examines
whether agents interacting with web interfaces adhere to the principle of data minimization, introducing
benchmarks to systematically evaluate their compliance. In parallel, other efforts aim to build direct
defenses against malicious attacks. This includes designing robust countermeasures for prompt injection
attacks, which are a primary vector for information exfiltration [41, 168]. Despite these advancements, a
comprehensive mitigation strategy capable of defending against the full spectrum of emerging exfiltration
threats remains an open challenge [67, 200].

5 Privacy Risks from Malicious Use of LLMs

The increasingly impressive capabilities of LLMs have demonstrated remarkable potential across diverse
fields, such as software engineering [187], human behavior simulation [132], and even assisting scientific
discovery [17]. However, this progress presents a dual-use dilemma, as the very capabilities driving these
innovations can also be misused for malicious purposes [24, 28, 56, 91, 183]. Specifically, LLMs amplify
the risk of privacy violations in two ways:

• Scaling Sophisticated Attacks. LLMs can automate and execute privacy attacks that were previously
prohibitive due to their complexity or high cost. By either assisting human adversaries or operating
independently, they can enable privacy breaches at an unprecedented scale.

• Democratizing Attack Capabilities. LLMs lower the barrier for malicious actors by making powerful
attack tools accessible to people with little to no expertise. This “democratization” allows individuals
with limited knowledge to launch attacks that previously required specialized skills.
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In this section, we introduce two emerging privacy risks of the malicious use of LLMs: automated
profile inference and automated social engineering.

5.1 Automated Profile Inference

Individuals constantly generate digital footprints through their online activities, encompassing activities
from social media comments and posts to shared photos and videos. While some of this data is inherently
private (browse history), a vast amount of these activities (posts and comments) is publicly accessible.
However, the public availability of this information does not eliminate privacy risks. An adversary can
aggregate these seemingly innocuous public activities to construct a detailed personal profile, a process
known as profiling [20, 47]. For instance, analyzing a Reddit user’s most frequented subreddits could
reveal their hobbies, while geotags in posted images could disclose their travel patterns or home location.
Profiling is widely recognized as a privacy violation by legitimate privacy frameworks like GDPR[142],
CCPA [126], and HIPAA [9].

Profiling based on unstructured and noisy data requires significant expertise and is considered
too resource-intensive for large-scale privacy breaches [46]. The emergence of LLMs fundamentally
alters this landscape. By leveraging their sophisticated understanding and reasoning capabilities, LLMs
can automate the inference process, systematically analyzing vast digital footprints to infer sensitive
attributes with minimal human intervention. This automation dramatically amplifies the threat, enabling
profiling attacks at an unprecedented scale. A growing body of work has demonstrated the feasibility
of LLM-driven profiling attacks [49, 158, 165]. In the following, we categorize these attacks along two
primary axes: (i) the data modality they target and (ii) their level of automation.

Profiling Across Data Modalities With the increasing capabilities of LLMs in understanding different
data modalities, various profiling attacks have been proposed by analyzing a user’s activities across
multiple types of data:

• Profiling from Textual Activities. Early LLM-based profiling attack [158] assumes that an adversary
can access and scrape the public activities (posts and comments) of a pseudonymous user from the
Internet. The adversary then instructs LLMs with prompts to infer predefined sensitive attributes
(eight types of PIIs), within these textual activities. The results showed that powerful models like
GPT-4 [127] can achieve performance comparable to human analysts, even when the humans have
the advantage of accessing additional contextual information, which LLMs do not have.

• Profiling from Visual Activities. With the rise of Vision-Language Models (VLMs) [128, 162],
research has expanded to include profiling from images and videos, which are ubiquitous on social
media platforms like TikTok and Instagram. Specifically, one study [165] designed carefully crafted
prompts using chain-of-thought reasoning [174] and automated zooming techniques to direct
VLMs to focus on potentially sensitive details in the photos, thus enhancing privacy-infringing
inferences. Another significant privacy risk arises from directly inferring a user’s possible geo-
location from their pictures [73, 80, 102, 188]. Research has shown that VLMs can outperform
even the professional human players in GeoGuessr [2], which raises serious concerns regarding
geographic privacy. However, these models are not infallible; they often exhibit significant regional
biases, such as a tendency to over-predict well-known landmarks or locations heavily represented
in their training data [73].

Different Levels of Automation in Profiling The privacy risks associated with the malicious use
of LLMs depend heavily on the degree of automation involved in the attack. A highly automated
and practical attack poses a much greater real-world privacy threat, as it reduces the need for human

56



adversaries, making it more cost-efficient and scalable. We categorize existing approaches into two types:
semi-automated and fully automated, depending on their level of automation:

• Semi-Automated Profiling. The majority of current research falls into this category, where the core
inference task is automated, but significant human effort is still required for data preparation and
defining attack objectives. These systems are powerful in controlled settings but face two major
limitations in real-world scenarios: (i) Reliance on curated data. Many studies [104, 158, 165, 188]
focus on clean, curated textual or image data that is deliberately designed to contain sensitive
information, allowing LLMs and VLMs to infer personal attributes. However, in real-world
scenarios, user activities are typically noisy and may not be directly related to personal attributes.
As a result, the performance of these semi-automated methods would likely degrade significantly
when faced with raw, unfiltered activities. (ii) Predefined attribute targets. These attacks are
typically configured to search for a fixed set of sensitive attributes (age, gender, location), which
assumes the adversary already knows what to profile from users. However, in the real world,
adversaries do not always know what sensitive attributes are present in a user’s activities. This
lack of predefined knowledge prevents the attacker from designing specific strategies to target
particular attributes, further limiting the applicability of such attacks.

• Fully-Automated Profiling. To address the limitations of previous approaches, recent work has
focused on developing end-to-end automated profiling systems. One example is AutoProfiler [49],
an agent-based profiling framework that automatically scrapes, collects, and analyzes potentially
sensitive activities from raw, noisy user data. By coordinating with four specialized LLM agents,
AutoProfiler fully automates the process of inferring sensitive attributes. This eliminates the
need for background knowledge or profiling expertise, making it highly scalable and suitable for
deployment on web-scale platforms. Despite its weaker assumptions, the results show that the
inferred attributes extend beyond PIIs, uncovering significant amounts of sensitive information.
The move toward full automation has profound implications. It means that adversaries no longer
need specialized expertise or prior knowledge to launch sophisticated, large-scale profiling attacks.

Privacy Implications Automated profiling inference can result in serious privacy breaches. One of
the most well-known risks is de-anonymization [120, 121]. Study [49] shows that some Reddit users can
be de-anonymized by inferring personal attributes from their public activities and comparing these with
publicly available profiles, such as LinkedIn. The risk of de-anonymization increases when adversaries gain
access to multiple profile databases or cross-reference a user’s activities to construct more comprehensive
profiles. In addition, sensitive information extracted from these online activities can also be exploited
for severe cybercrimes like doxing and cyberbullying. We refer to [46, 49] for a deeper discussion of the
consequences of exposing sensitive personal data.

Growing Threats Existing attacks exploit the in-context learning (ICL) capability of off-the-shelf
LLMs to perform profiling tasks. While this approach is highly efficient and accessible, its performance
could be suboptimal, as these models are not specifically designed for profiling. For example, studies show
that even state-of-the-art VLMs are outperformed in geo-location identification tasks by PIGEON [64], an
image model purpose-built for geolocation. This trend suggests that adversaries may design specialized
profiling models that surpass generic LLMs, thereby enhancing attack effectiveness and posing even
more severe privacy risks.

Challenges in Evaluation While various methodologies have been proposed to assess the profiling
abilities of LLMs [49, 73, 158, 183], there is still no widely acknowledged benchmark to comprehensively
evaluate the associated privacy risks. This issue partially stems from a fundamental ethical dilemma:
creating a robust benchmark would require a large dataset of real users’ activities with labeled, sensitive,
ground-truth attributes. To address this, some researchers have proposed using synthetic datasets
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generated by LLM agents [79, 192]. However, the behaviors and data produced by these agents may
not accurately reflect the complexities of real human activity, limiting their validity and reliability [49].
In addition, evaluation becomes more complex for fully automated systems that perform open-ended
inference without predefined attribute targets. Forcing the model to choose from a candidate list
simplifies evaluation but fails to measure the model’s true, unconstrained inference capabilities. Therefore,
evaluating the profiling abilities of LLMs remains an open question. Designing effective evaluation
approaches is a critical step toward understanding and mitigating these emerging privacy threats.

5.2 Automated Social Engineering

A social engineering attack exploits the psychological manipulation of human behavior to extract sensitive
information, gain access to personal devices, share credentials, or perform other malicious activities
that compromise digital security [125]. There are different types of social engineering, such as phishing,
vishing, pretexting, and baiting. Over the past decades, social engineering attacks have resulted in
numerous incidents, causing severe financial losses and privacy breaches [60, 123]. Most social engineering
attacks follow four main stages [141]: (i) Investigation. The attacker gathers information about the
target, often from public social media, job platforms, and online sources, to identify vulnerabilities. (ii)
Planning. Based on the gathered information, the attacker develops a strategy, selecting tactics like
phishing or impersonation to exploit weaknesses. (iii) Contact. The attacker establishes trust with
the target, persuading them to take harmful actions such as clicking a malicious link or disclosing
sensitive information. (iv) Execution. The attacker extracts sensitive data, installs malware, or otherwise
compromises the target’s system.

Social engineering attacks typically required significant human effort and expertise, and their success
rates were often limited by defense mechanisms and human vigilance. For example, phishing emails
could be easily recognized by telltale signs like grammatical errors or implausible scenarios [89]. However,
the advent of LLMs has introduced a new dimension to social engineering threats, which we refer to as
automated social engineering. Unlike traditional methods, LLM-driven attacks can be personalized and
executed at scale. These models can automate and enhance all four major stages of a social engineering
attack, increasing both effectiveness and efficiency, as detailed below.

Automated Investigation The purpose of this phase is to gather sufficient information about a target
to personalize the attack and make it more convincing [123]. Adversaries may directly employ automated
profiling strategies (as described in the previous section) to collect personal information. In addition,
they may launch proactive information-gathering attempts by manipulating LLM-based chatbots to elicit
sensitive details. In such scenarios, a chatbot convinces the user that certain personal information is
required to complete a task. Because users often perceive LLMs as helpful assistants, they may willingly
provide sensitive details, believing them to be necessary [12, 86, 90, 195]. Attackers can exploit this trust
by embedding hidden, privacy-invasive prompts into a chatbot’s behavior [158]. For example, a chatbot
tasked with creating a travel itinerary might subtly request additional personal details—such as financial
information or contact numbers—under the guise of improving the service. The risk is further amplified
in multi-agent LLM systems, where multiple agents collaborate by asking for complementary pieces of
information and together constructing a detailed personal profile of the victim [209]. These LLM-based
information collection strategies dramatically reduce the cost and time required for reconnaissance while
producing highly detailed and actionable intelligence about targets.

LLM-Aided Planning In this stage, LLMs could serve as powerful reasoning and analysis engines
to help attackers design persuasive attack strategies. Specifically, LLMs can (i) propose tailored
attack vectors—such as spear-phishing campaigns or impersonation scenarios, (ii) generate dialogue
templates to sustain orchestrated interactions that gradually build trust [163], and (iii) dynamically
adapt strategies, for example by suggesting follow-up messages when a target hesitates or fails to respond.
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This capability transforms attack planning from a manual, experience-driven art into an automated
process. Sophisticated, customized attack blueprints can be generated in minutes, removing the need for
an experienced human attacker.

LLM-Enhanced Contact LLMs can be exploited not only to enhance interactions through existing
contact channels but also to create entirely new avenues for reaching targets.

First, LLMs enhance traditional methods like phishing by generating persuasive, context-aware
emails with remarkable speed. Studies show an LLM could draft a highly convincing spear-phishing email
in just five minutes, a task that takes a human team several hours [31, 76, 77]. LLMs can also sustain
convincing, real-time conversations that gradually build trust. When paired with generative deepfake
technologies for images, video, or audio, impersonations become nearly indistinguishable from legitimate
contacts [10, 89, 167]. This allows a single attacker to maintain persistent, personalized engagement
across multiple platforms and scale their outreach to thousands of potential victims simultaneously.

Second, LLMs open new avenues for attack by exploiting the growing use of chatbots for emotional and
psychological support [72, 207]. In this scenario, attackers deploy malicious chatbots that impersonate
trusted friends or companions to establish a deep emotional connection with a victim. The proliferation
of third-party platforms like the OpenAI GPT Store [4] and FlowGPT [5] makes it easy to distribute
these deceptive chatbots to a wide audience. Once an emotional connection is established, adversaries can
manipulate victims into disclosing sensitive information, transferring money under fraudulent pretenses,
or even engaging in harmful behaviors [7].

LLM-Aided Execution Once trust is established and sensitive data is obtained, LLMs can assist
attackers in carrying out malicious actions. These include: (i) leveraging stolen credentials to gain
unauthorized access to systems [184], (ii) automating financial fraud, such as wire transfer scams [106],
and (iii) orchestrating follow-on attacks, including malware distribution or pivoting to additional targets
within a compromised network [143]. By reducing the need for manual effort, LLMs enable end-to-end,
scalable, and highly sophisticated attack pipelines.

Privacy and Security Implications Automated social engineering represents a multifaceted threat to
both privacy and security. It dramatically increases the risk of large-scale data leakage and financial
loss. Attackers can harvest sensitive personal information, financial details, and corporate credentials
with unprecedented efficiency [76]. The real-world consequences are staggering; in one recent incident,
fraudsters used a combination of phishing and video-based deepfake impersonation to deceive an employee
into authorizing a fraudulent $25 million transfer [106]. Beyond financial loss, certain strategies exploit
users’ trust or emotional reliance, inflicting psychological harm that can result in profound emotional
distress. Thus, automated social engineering not only increases the efficiency of attacks but also expands
the pool of potential victims, thereby amplifying the societal impact of privacy breaches.

Growing Threats With the rapid development of LLMs, automated social engineering attacks
may become even more sophisticated and hard to detect. Multi-modal LLMs, for example, can
generate coordinated text, audio, and video content to produce highly immersive impersonations
that are nearly indistinguishable from authentic human interactions. Another concern lies in the
emergence of autonomous agents capable of orchestrating end-to-end attack campaigns. Such agents
could handle reconnaissance, planning, multi-turn conversations, and final exploitation without any
human oversight [89]. These advancements suggest that future LLM-driven social engineering would
progress beyond opportunistic scams toward coordinated, persistent, and large-scale operations capable
of evading even advanced detection and defense systems.

Vulnerability Detection and Mitigation Strategies Several studies have examined the capabilities of
LLMs in conducting social engineering and their impact on human users [69, 101, 184]. For example,
a recent work [130] proposed embedding trigger–tag associations into vanilla LLMs through various
insertion strategies. When the model is instructed to generate phishing emails, detectable tags are
inserted into the output, enabling more effective detection of LLM-generated phishing content. However,
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such safety enhancements for LLMs are limited in their real-world applicability. Adversaries can easily
bypass them by locally deploying open-source and unconstrained LLMs without these safeguards. Thus,
the challenge extends beyond detecting LLM-generated social engineering content to also identifying
autonomous malicious activities carried out by LLM agents.

6 Conclusion

The rapid development and integration of LLMs into digital infrastructure and daily life have introduced
a new frontier of privacy risks. In this paper, we systematically examined emerging threats of LLMs
across three dimensions: (i) data privacy risks across various learning stages of LLMs; (ii) privacy risks
in LLM-powered applications, including side channels and information exfiltration; and (iii) malicious
use of LLMs, such as automated profiling and social engineering. We then discuss the real-world privacy
implications of these threats and highlight the limitations of existing mitigation strategies. This paper
helps to illuminate the privacy risks introduced by LLMs and advocates for greater social awareness
of these challenges. We also call for research efforts that broaden their focus beyond data privacy and
design new defenses to address these privacy threats.
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Abstract
The remarkable capabilities of Large Language Models (LLMs) rely on massive, diverse datasets.

This dependence creates a fundamental tension in privacy-sensitive domains such as healthcare and
finance, where data is siloed and tightly regulated. Federated Learning (FL) offers a privacy-by-
design approach that enables collaborative fine-tuning of foundation models on decentralized data.
However, combining FL with LLMs—forming Federated LLMs (FedLLMs)—introduces a critical
utility–efficiency–privacy trilemma. This study systematically analyzes this trilemma by outlining
three core challenges: (1) maintaining model utility amid statistical and system heterogeneity; (2)
ensuring efficiency by alleviating severe communication and computation bottlenecks, even with
Parameter-Efficient Fine-Tuning (PEFT); and (3) safeguarding privacy against powerful attacks. We
formalize these interrelated challenges, examine their trade-offs, review existing defense mechanisms
and optimization strategies, and conclude by outlining key open issues and future research directions.

1 Introduction

The remarkable capabilities of large language models (LLMs) have transformed natural language
processing, yet their efficacy fundamentally depends on access to massive, diverse training datasets. This
dependence creates a critical tension in high-impact domains, such as healthcare, finance, and enterprises,
where the most valuable data remain highly privacy-sensitive and organizationally siloed. Simultaneously,
emerging and fast-evolving regulatory frameworks, including the General Data Protection Regulation
(GDPR), the Health Insurance Portability and Accountability Act (HIPAA), and the European Union
Artificial Intelligence Act (EU AI Act), impose stringent data protection and privacy requirements,
making traditional centralized training increasingly untenable.

In response, federated learning (FL) addresses the challenges faced by centralized training by enabling
collaborative training without a need to bring all raw data in one place, allowing multiple parties to
jointly train a shared global model while keeping data localized [10]. The central principle of FL is data
minimization. Under this principle, only model updates traverse the network, thereby establishing a
privacy-by-design architecture better aligned with regulatory data protection and privacy requirements.
The convergence of FL with LLMs represents the emerging frontier of privacy-preserving artificial
intelligence (AI). Given the prohibitive cost of training billion-parameter models from scratch, we
focus on federated fine-tuning of pre-trained foundation models that use distributed private datasets.
Large-scale FL deployments, including Google’s Gboard with differentially private learning [15] and
the SWIFT consortium for cross-border fraud detection [7], indicate operational feasibility at scale. As
shown in Figure 1, the current design space of federated LLMs still faces three key challenges: utility,
efficiency, and privacy.
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Figure 1: Key Challenges in Privacy-Preserving Federated Large Language Models

Utility Challenge. Federated LLM deployments span cross-device and cross-silo contexts, with
pronounced data and model heterogeneity. FedLLM-Bench shows that client sampling strongly affects
convergence, with importance-weighted sampling requiring about 2.3× fewer rounds than random
sampling [5]. Under a pre-trained global model, utility should be evaluated along two dimensions:
aggregation utility, ensuring heterogeneity-aware participation and update fusion, and continual learning
utility, which focuses on improving the global model without catastrophic forgetting amid shifting
client distributions. Routine data operations such as profiling, schema harmonization, quality control,
and maintaining consistent tokenization, vocabulary, and encoding across nodes remain essential for
preserving semantic coherence.
Efficiency Challenge. Billion-parameter LLMs induce extreme communication pressure. For example,
transmitting full GPT-3 gradients (175B parameters [14]) at FP32 is roughly 700 GB per client per
round, rendering naive federated training infeasible. Parameter-Efficient Fine-Tuning (PEFT) provides
a practical route: DoRA [2] and VeRA [3] approach full-tuning performance with approximately 100×
fewer trainable parameters, and prompt engineering can further reduce on-device computation and
communication. Yet these choices introduce new concerns, including guarantees on convergence under
non-independent and non-identically distributed (non-IID) client updates and the way PEFT modules
interact with privacy amplification and compression.
Privacy Challenge. Although FL keeps raw data local, model updates can leak sensitive information.
The DAGER attack [4] demonstrates exact gradient inversion for LLMs, reconstructing training sequences
with ROUGE > 0.99 for batches up to 128 tokens. Such near-perfect reconstruction necessitates stronger
protection; however, differential privacy may reduce accuracy due to noise injection, whereas crypto-
graphic methods often impose substantial computational overhead. In multi-jurisdictional deployments,
designers must also reconcile heterogeneous regulations while maintaining data sovereignty, which further
constrains feasible mechanisms and the design of secure aggregation and auditing pipelines.

This comprehensive study provides a systematic analysis of techniques to navigate these challenges.
We first delineate three core difficulties in federated LLMs, as reflected in Figure 1(b)–(d): Aggregation
Utility in Heterogeneous Settings; Federated Client-Efficient Training of LLMs, and Privacy Attacks
and Defense Mechanisms. Next, we formalize the utility–efficiency–privacy trilemma that is related to
these challenges, specifying threat models, deployment assumptions (cross-device and cross-silo), and
evaluation metrics that will guide the subsequent discussion. Finally, we discuss open challenges and
future directions.
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Table 1: List of abbreviations for partial terms.

Abbreviation Full Term

CCPA California Consumer Privacy Act
CKKS Cheon–Kim–Kim–Song (approximate homomorphic encryption scheme)
DP Differential Privacy
DP-SGD Differentially Private Stochastic Gradient Descent
GDPR General Data Protection Regulation
HIPAA Health Insurance Portability and Accountability Act
LoRA Low-Rank Adaptation
PEFT Parameter-Efficient Fine-Tuning
PIPL Personal Information Protection Law (China)
RAG Retrieval-Augmented Generation
ROUGE Recall-Oriented Understudy for Gisting Evaluation
SGX (Intel) Software Guard Extensions
SWIFT Society for Worldwide Interbank Financial Telecommunication

2 Aggregation Utility in Heterogeneous Settings

In federated LLMs, aggregation utility reflects accuracy, stability, and fairness across clients, depending
on how heterogeneity is represented and reconciled [5]. In cross-device deployments, strict limits on
memory, computation, and bandwidth lead to model heterogeneity[1, 28]. In cross-silo collaborations,
differing objectives, label spaces, and domains create data heterogeneity[16, 18].

2.1 Cross-Device Model Heterogeneity and Utility-Oriented Aggregation

Cross-device FL operate under uneven device memory, compute throughput, and network quality.
Clients may load different subsets of the model, employ mixed precision, or attach lightweight adaptation
modules, which breaks the assumption that every participant optimizes an identical parameterization.
Benchmark and toolkit studies in federated LLM fine-tuning show that naive aggregation under such
heterogeneity degrades convergence and yields uneven user quality [5]. Open implementations also
document mixed local configurations that complicate server-side fusion [1].

The first family of approaches includes those that align parameters before averaging so that the server
only fuses structurally compatible updates. When a device trains only a subset of layers, selective or
masked aggregation updates those layers while leaving absent components unchanged [6]. When clients
expose compact modules such as low-rank adapters, server-side merging that preserves the intended
subspace geometry improves stability compared to element-wise averaging [16]. These choices reduce
undesirable interference between clients that optimize different slices of the model thereby protecting
aggregation utility.

The second family of approaches includes those that are architecture agnostic and rely on distillation
to bridge model mismatches. Each client, regardless of backbone or head configuration, produces
predictions on a proxy or public corpus. The server distills these signals into a shared student that
captures improvements discovered on heterogeneous devices [29]. In cross-device deployments, this
reduces payload size, removes strict layer alignment, and remains robust under device churn. Toolkits
that support both parameter aggregation and prediction distillation demonstrate that these paths can
be combined within one workflow [6].

Personalization improves perceived utility without fragmenting the deployable model. A shared
representation is maintained at the server, while devices attach small local heads or adapters that encode
preferences and context [27]. Evidence from federated LLM toolchains shows that this separation reduces
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cross-device update conflicts and improves user-level metrics across wide variation in hardware and
availability [1].

In short, structure-aware averaging, architecture-agnostic distillation, and lightweight personalization
form a complementary toolkit for cross-device FedLLMs. These methods enhance average accuracy,
stabilize convergence, and reduce performance degradation on under-resourced clients by aligning
aggregation with each device’s training capabilities.

2.2 Cross-Silo Data Heterogeneity and Utility-Oriented Aggregation

Cross-silo FL approaches connect institutions or organizations that pursue different objectives and curate
domain-specific datasets. Partnering institutions may use labels following distinct taxonomies, optimize
different task mixes, or operate under diverse risk considerations and compliance requirements. If the
server aggregates updates without accounting for these differences, the global model can drift toward
the majority objective and underperform on minority tasks. Evidence from federated LLM benchmarks
shows that utility is sensitive to participation policies and weighting under such heterogeneity, and that
naive averaging widens performance gaps across silos [5].

Data-aware aggregation aligns each silo’s contribution with relevance to the shared objective.
Importance-weighted participation reduces the rounds needed to reach target quality when some
participants provide more informative gradients for the current global state [5]. In multilingual settings,
clustering institutions by linguistic proximity and aggregating within clusters before global fusion
preserves domain signal and lifts perplexity and accuracy, especially for low-resource groups [34]. In
multimodal collaborations, separating client-agnostic knowledge from client-specific signals and distilling
them into a shared student can help stabiliz training when distributions differ substantially [35].

Personalization further raises perceived utility while maintaining a single deployable backbone. A
practical design keeps a shared representation at the server and allows silos to attach small local heads
or adapters that encode institutional constraints and preferences [27]. Recent work for federated LLM
tooling have shown that this separation reduces inter-silo conflict during aggregation and improves
user-level metrics because global updates carry a common structure while local components handle
idiosyncrasies [6].

Optimization and sampling policies are key issues when participation in FL training is intermittent
and objectives differ. Proximal regularization reduces client drift under objective mismatch [23]. Control
variates reduce variance in aggregated updates and enhance stability under uneven connectivity [24].
Adaptive server optimizers help maintain steady progress with non-IID updates [25]. Normalizing local
steps improves fairness when silos contribute different amounts of work per round [26]. Priority-based
client-selection accelerates convergence to target quality and complements the aggregation strategies
above [5].

Overall, cross-silo aggregation that accounts for data heterogeneity, combined with personalization
and principled optimization and sampling, expands the utility frontier. The global model benefits from
shared structure while each institution retains control over local adaptations that reflect task priorities
and regulatory context.

2.3 Utility-Oriented Continual Global Learning under Joint Model and Data Het-
erogeneity

Federated LLMs begin from a strong pre-trained global model rather than random initialization. This
starting point creates a utility risk: if collaborative updates erode base capabilities, usefulness declines for
all participants. Measurable catastrophic forgetting appears during continual adaptation and manifests
as losses on previously mastered domains after task- or domain-specific tuning [43]. Privacy-compatible
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rehearsal methods further confirm the phenomenon and propose mitigations [44]. Therefore, continual
global learning is essential to preserve and expand utility as new sites, skills, and distributions enter the
federation.

Joint heterogeneity arises because devices expose different trainable slices while institutions contribute
data with divergent label spaces and objectives. Layered aggregation improves utility when it respects
both dimensions. Within groups that share similar adapter layouts, structure-preserving fusion of
low-rank updates avoids distortions caused by element-wise averaging [16]. Across groups that differ
by language or domain, cluster-wise aggregation retains local signal before global fusion and benefits
minority clients [34]. Benchmarks that vary participation and task composition report high sensitivity
of utility to these choices [5].

Continual learning mechanisms should be integrated with aggregation strategies to prevent regression
of the shared model. Weight consolidation protects parameters important for earlier skills and reduces
interference during new updates [30]. Federated transfer decomposes knowledge into global and task-
specific components so that the server accumulates stable competence while clients keep sparse local
parameters [33]. Tooling that supports selective synchronization and modular adapters enables lifecycle
operations such as freezing, merging, or retiring client-side modules without destabilizing the shared
backbone [6].

When original data cannot be retained, synthetic rehearsal generated by the model can maintain
earlier capabilities with low leakage. Yet, it requires careful filtering and scheduling to avoid drift [44].
The broader literature warns that uncontrolled reliance on model-generated data may degrade generality,
which motivates audits and curriculum policies for any replay pipeline [45]. In a federated context, these
safeguards should be coupled with per-skill evaluation so that global updates are admitted only when
they do not reduce established competencies [5].

Based on the above discussion, we can see that a utility-oriented approach can align aggregation
with model slices and data groups, protect previously acquired skills through consolidation or parameter
isolation, and maintain them with privacy-compatible rehearsal and module lifecycle management.

3 Federated Client-Efficient Training of LLMs

LLM capability rises predictably with increases in parameters, data, and compute, as captured by
empirical scaling laws. Compute-optimal analyses further show that sufficiently trained smaller models
can outperform under-trained larger models, although the capability still lies at the scael of billion
parameter. In a federated setting, transmitting and updating all weights at these scales is impractical
and increases bandwidth and memory costs, which degrades training efficiency [14]. In this section, we
therefore focuse on parameter-efficient adaptation as the organizing principle. Clients learn compact
adjustments on top of frozen backbones and keep base weights in a compressed form so that the device
and network constraints are met while task quality is maintained [12]. In the remainder of this section,
we examine federated specializations of these adaptations, introduce randomized or compressed update
schemes that further reduce traffic, and outline alternatives that avoid weight updates through retrieval,
prompting, and agent coordination [9].

3.1 Federated Specializations of PEFT: Methods and Evidence

A growing body of work tailors PEFT to the specifics of FL optimization, with the goal of reducing
communication and memory footprints while keeping round time stable under data and model variation
and under intermittent participation. These specializations differ in how they partition knowledge
between global and client-specific components and in how they regularize the server-side fusion of
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client updates. The resulting designs are attractive for production because they align with governance
requirements that discourage wholesale model sharing.

FedTune provides a systematic comparison of prompt-, adapter-, and bias-level tuning for pre-trained
Transformers in FL settings[22]. It reports fast convergence with substantially reduced communication
and, in many cases, performance surpassing local-only baselines, indicating that cross-client collaboration
remains effective even when only a tiny subset of parameters is updated.

For multilingual FLs, FedLFC freezes the backbone and trains Low-Rank Adaptation (LoRA)
modules per language family, then aggregates at the family level to reflect linguistic proximity [34].
This design improves perplexity and accuracy—especially for low-resource languages—while keeping
the adapter budget small and respecting language-specific heterogeneity. Family-wise structuring also
reduces negative interference during aggregation and facilitates controlled personalization at deployment
time without retraining the backbone.

In multi-modal heterogeneous scenarios, FedDAT introduces a dual-adapter teacher with mutual
knowledge distillation; here, a global adapter captures client-agnostic information, while a local adapter
encodes client-specific signals [35]. Separating these roles stabilizes aggregation and improves results on
vision–language benchmarks compared with centralized PEFT-to-FL pipelines, suggesting that adapter
topology is as important as adapter size. The formulation naturally extends to other cross-modality or
cross-domain FL setting where shared and private factors must be disentangled.

Beyond module choice, aggregating PEFT parameters requires care to avoid structural drift. FLoRA
addresses inconsistencies in naive averaging of LoRA factors by preserving their intended low-rank
structure during fusion, yielding consistent quality gains across client–server compositions [16]. At
the system layer, SLORA exploits structured sharing across layers to further reduce trainable budgets
without sacrificing accuracy, which is useful when client memory ceilings bind participation. Together,
these results indicate that PEFT is not only communication-efficient but also amenable to FL-aware
rules that directly prioritize global utility under heterogeneous clients.

3.2 Randomization and Compression for Communication Efficiency

Randomized and compressed updates offer an orthogonal means to reduce communication overhead,
and they can be layered over adapter- or LoRA-based clients without changing learning objectives. The
central idea is to approximate dense updates with sketches or quantized representations that preserve
informative directions for aggregation, while variance control and bias correction restore convergence
guarantees. This family of methods is particularly an attractive option when bandwidth fluctuates or
when client links are asymmetric across rounds.

Ferret, proposed in [36], performs a first-order full-parameter tuning with low-dimensional projections
and shared randomness to reconstruct updates at the server. By decoupling local optimization from
transmitted dimensionality, Ferret combines the benefits of full parameter training with communication
comparable to compressed methods, and it exhibits favorable convergence relative to zeroth-order
alternatives. The projection–reconstruction pipeline also interacts well with straggler mitigation because
it decimates payloads without altering local objectives, thereby keeping device-side software simple.

Classical quantization and error-feedback mechanisms further lower bandwidth and correct compres-
sion bias. QSGD quantizes gradients under variance control [37]. EF SGD feeds back the compression
error to recover the trajectory of the uncompressed method [38]. In heterogeneous deployments, combin-
ing PEFT with randomized projections yields additive gains. Clients keep tiny trainable modules and
transmit sketched deltas when links are constrained, while the server aggregates in a manner consistent
with reliability and fairness policies.
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3.3 Alternatives to Weight Updates: RAG, Prompts, and Agents

Some alternative approaches to improving FL efficiency is to avoid gradient updates altogether. These
approaches leverage local data and global coordination while keeping base model weights fixed [9, 12],
which aligns with privacy and governance constraints in both cross-device and cross-silo settings [11, 19].
They are particularly attractive when regulatory or operational constraints limit the sharing of model
parameters, even in modified form.

Retrieval-Augmented Generation (RAG) maintains private corpora locally and coordinates retrieval
over distributed indices, after which a frozen LLM conditions on retrieved evidence for generation [39].
Synchronization shifts from heavyweight deltas to lightweight retrieval statistics and index metadata,
reducing update traffic and simplifying audits because content remains under local control. In practice,
FL can align retrieval strategies with local curation standards, seamlessly integrating with evaluation
protocols that prioritize accuracy and source attribution.

Prompt-based collaboration includes exchanging soft prompts or prefixes rather than gradients,
yielding huge communication savings and natural personalization under tenant or domain structure [40,
41]. Prompts can be shared, clustered, or composed to reflect organizational boundaries without
modifying backbone weights, and they can be rotated or gated to manage risk. Because prompts are
small, they are amenable to secure aggregation and differential privacy, which further broadens the set
of compliant deployment regimes.

Agent orchestration frameworks coordinate tool use, retrieval, and prompting policies across sites,
leveraging local data without weight updates and facilitating policy-compliant workflows [42]. By
turning adaptation into planning and tool selection rather than gradient descent, agents avoid heavy
synchronization while still exploiting situational context and institutional knowledge. In hybrid pipelines,
agents can call RAG for evidence, choose prompts for control, and fall back to PEFT only when sustained
drift necessitates weight changes.

Overall, these alternatives coexist with parameter-efficient adaptation and randomized compression
to enlarge the feasible region of FedLLM design. By reducing or eliminating gradient traffic, they
broaden participation, lower costs, and sustain utility under heterogeneous constraints, while leaving
room for targeted weight updates when enduring domain shifts demand persistent changes.

4 Privacy Attacks and Defense Mechanisms

Understanding adversarial capabilities against FedLLM systems is crucial for designing effective defenses
and ensuring realistic privacy guarantees. Recent studies have revealed advanced attack vectors that
can extract sensitive information from model updates in FL process, highlighting the need for thorough
analysis of attack methods, success conditions, and layered defense strategies.

4.1 Gradient Inversion Attacks: From Theory to Practice

Gradient inversion attacks pose one of the most serious threat to privacy in federated learning, as they
can reconstruct the entire training dataset from observed gradients. These attacks rely on the fact
that gradients encode rich information about the data that produced them. For a neural network with
parameters θ and loss function ℓ, the gradient g = ∇θℓ(θ;x) is a deterministic function of both the
parameters and the input data x. Under sufficient constraints, this relationship can be inverted to
recover x from g.

Traditional gradient inversion methods frame reconstruction as an optimization problem: find an
input x̂ that minimizes ∥∇θℓ(θ; x̂)− g∥2. Early works have demonstrated successful reconstructions for
simple networks and small batches but have struggled with the high-dimensional, discrete nature of
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language data. The non-convex optimization landscape and the discrete token space of language models
pose fundamental challenges, limiting reconstruction accuracy to semantic similarity rather than exact
recovery.

The DAGER (Differentially Private Aggregated Gradient Extraction with Restoration) method [4]
marks a major breakthrough in gradient inversion. DAGER achieves exact reconstruction of training
sequences—recovering text with ROUGE-1 and ROUGE-2 scores above 0.99—for batch sizes up to
128 tokens. The implications for federated learning are severe. An honest-but-curious server observing
gradient updates can reconstruct entire training texts, including medical records, financial documents, or
private communications. The attack remains effective even when gradients are aggregated over multiple
training steps, provided the batch size stays within feasible limits. Moreover, DAGER shows resilience
to common defenses: gradient clipping only slightly reduces reconstruction quality, while compression
techniques such as top-k sparsification offer limited protection unless applied aggressively [4].

4.2 Membership and Property Inference in FL Settings

While gradient inversion attacks aim to reconstruct specific training examples, membership and property
inference attacks target different forms of privacy leakage that can be equally harmful in practice.

Membership inference attacks determine whether particular data points were used during training
without necessarily reconstructing their content. In FL settings, these attacks exploit the distributed
nature of learning to achieve higher success rates than those on centralized models. FedMIA [8] leverages
the “all for one” principle inherent in federated learning: each client’s update encodes information about
all its local training samples simultaneously. By analyzing how model updates affect predictions on
candidate data points across multiple rounds, FedMIA achieves 63–68% attack success rates compared
with 45–52% for similar centralized attacks.

The attack methodology integrates multiple signals to improve inference accuracy. Temporal analysis
tracks how prediction confidence on target examples evolves, with members typically showing steadily
increasing confidence. Update correlation analysis measures alignment between model updates and
gradients computed on target examples, with stronger correlations indicating membership. Influence
estimation assesses how removing hypothetical examples would alter model updates, based on the insight
that true members measurably influence parameter changes. Combined through ensemble methods,
these signals enable robust membership detection even when individual indicators are noisy.

Property inference attacks extract statistical characteristics of training datasets rather than details
about specific samples. In FL settings, such attacks can expose sensitive information about participating
institutions/clients. A hospital’s model updates might reveal unusual disease prevalence patterns,
demographic distributions, or treatment protocols that constitute valuable competitive intelligence;
financial institutions’ updates could disclose customer segment traits, risk profiles, or business strategies
embedded in their data.

FL setting paradoxically makes property inference both easier and harder than centralized training
does. The isolation of client updates provides clearer signals about individual dataset properties since
they are not diluted by mixing with others’ data. However, limited visibility—observing only periodic
model updates instead of continuous dynamics—reduces available information for adversaries. Recent
studies show that sophisticated attackers can overcome this constraint by correlating observations across
rounds and exploiting the temporal consistency of dataset properties[8, 15].

4.3 Multi-Layered Defense Strategies

Defending against this range of attacks requires comprehensive strategies that integrate multiple
protection mechanisms, each addressing distinct threat vectors while collectively providing defense-in-
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depth.
Differential privacy offers the strongest theoretical safeguard against inference attacks by ensuring

that model updates reveal only limited information about the training data. DP-SGD’s noise injection
fundamentally restricts what adversaries can learn, with formal guarantees that hold regardless of their
capabilities or auxiliary knowledge. Empirical results show that applying differential privacy with ϵ = 1.0
reduces DAGER’s reconstruction quality from ROUGE > 0.99 to ROUGE < 0.3, effectively preventing
meaningful text recovery. Similarly, differential privacy provides provable bounds on membership inference
advantage, limiting adversarial success to near-random levels under reasonable privacy parameters.

However, differential privacy alone is insufficient. It does not protect against Byzantine attacks
where malicious clients craft updates exploiting the noise distribution. Moreover, strong differential
privacy often incurs unacceptable utility loss for some applications, making complementary defenses
necessary to achieve practical protection with lower performance costs.

Secure aggregation protocols defend against server-side threats by ensuring servers see only aggre-
gated updates rather than individual contributions. Cryptographic secure aggregation [11] uses secret
sharing or homomorphic encryption to compute aggregates without exposing individual model updates.
This approach strongly protects against honest-but-curious servers attempting gradient inversion or
membership inference on single clients. However, its benefits diminish when few clients are aggregated
since limited aggregation yields minimal privacy amplification. Additionally, secure aggregation cannot
prevent malicious clients from analyzing the global model to infer information about others.

The most effective defense strategy combines multiple mechanisms targeting different threats. A
robust configuration might use LoRA for parameter efficiency (reducing attack surface), DP-SGD with a
moderate privacy budget for inference resistance, secure aggregation to hide individual updates from
the server, robust aggregation to filter Byzantine inputs, and gradient compression to limit information
leakage. While no single method provides complete protection against all attacks, this layered approach
substantially increases the attack difficulty while preserving practical utility and efficiency.

5 The Privacy-Utility-Efficiency Trilemma

The techniques surveyed in previous sections do not operate independently but rather interact within
a complex optimization landscape characterized by fundamental trade-offs that constrain achievable
system configurations. Understanding these trade-offs through the lens of a privacy-utility-efficiency
trilemma provides essential guidance for practical privacy-preserving FedLLM system design and helps
explain why no single solution dominates across all deployment scenarios.

5.1 Mathematical Formalization and Constraint Analysis

The privacy–utility–efficiency trilemma can be formally defined by three interdependent metrics that
together determine the feasible operating region of PP-FedLLM systems. The privacy level P measures
protection against information leakage, quantified by the differential privacy parameter ϵ (where smaller
values indicate stronger privacy) or by cryptographic security parameters in encryption-based methods.
Model utility U reflects the performance of the trained model, typically evaluated using task-specific
metrics such as accuracy, F1 score, or perplexity on held-out test sets. System efficiency E represents
computational and communication costs, measured by training time, number of communication rounds,
bandwidth usage, or total computational operations.

The trilemma manifests as fundamental constraints on the achievable region in (P,U , E) space. These
constraints arise from information-theoretic limits, computational complexity barriers, and statistical
requirements that cannot be overcome through engineering alone.
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Figure 2: The illustration of privacy-utility-efficiency trilemma in privacy-preserving federated LLM.

The privacy-utility trade-off reflects an information-theoretic reality: protecting privacy requires
limiting information flow about training data, but model learning fundamentally requires extracting
information from that same data. Differential privacy makes this trade-off explicit through noise injection
that provides privacy at the cost of accuracy. The privacy–efficiency trade-off arises from the computa-
tional complexity of privacy-preserving mechanisms. For example, homomorphic encryption perfectly
preserves utility—the encrypted computation yields the same results as plaintext computation—but
incurs a 50–300% computational overhead and a 70–200% increase in communication due to larger
ciphertexts [46]. Cryptographic theory establishes fundamental lower bounds indicating that these
overheads cannot be fully eliminated, only reduced through improved implementations [47].

The utility–efficiency trade-off is most evident in the choice between full fine-tuning and parameter-
efficient methods. Full fine-tuning offers optimal task adaptation but requires updating and transmitting
all model parameters, whereas PEFT methods such as LoRA achieve 95–98% of full fine-tuning
performance while using 100–1000 times fewer parameters.

5.2 Empirical Characterization Through Systematic Evaluation

Recent systematic evaluations provide quantitative characterization of these trade-offs in practical
systems. The FedLLM-Bench evaluation [5] tests configurations across the trilemma space, revealing
consistent patterns that guides system design. Their experiments with LoRA (rank 8) on a 7B parameter
model demonstrate that this configuration achieves 96.3% of full fine-tuning performance while reducing
communication cost by 267 times and computation cost by 4.7 times. This highly favorable utility-
efficiency trade-off that is primarily the reason for LoRA’s widespread adoption. Adding differential
privacy with ϵ = 4.0 to this LoRA-based system reduces accuracy by an additional 4.2% while providing
formal privacy guarantees, illustrating how privacy protection compounds with efficiency optimizations
to impact utility. Applying selective homomorphic encryption to the most sensitive 10% of LoRA
parameters adds 38% communication overhead and 42% computation time while maintaining perfect
utility for those protected parameters.

These empirical observations show that the trade-offs are neither linear nor independent. Privacy
mechanisms interact with efficiency optimizations in complex ways: the utility loss from differential
privacy is amplified when paired with aggressive parameter reduction, as the smaller parameter space
offers less redundancy to absorb noise. Conversely, cryptographic methods that preserve utility become
more practical when combined with PEFT, since the reduced parameter count keeps encryption overhead
manageable. Understanding these interactions is essential for effectively navigating the trilemma.
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5.3 Hybrid Solutions: Synergistic Combinations for Practical Deployment

The most successful practical deployments employ hybrid solutions that combine multiple techniques
synergistically to achieve favorable positions within the trilemma space. These combinations leverage
the strengths of different approaches while mitigating their individual weaknesses through careful system
design.

PEFT serves as the foundational enabler for most hybrid solutions, dramatically improving the
efficiency baseline creating headroom for adding privacy protections. The combination of LoRA with
differential privacy exemplifies this synergy. LoRA’s parameter reduction from 7 billion to 21 million
parameters (for a 7B model with rank 8) not only reduces communication cost by 333 times but also
fundamentally changes how employing differential privacy affects the model. The DP noise added to
protect privacy has smaller impact on a lower-dimensional parameter space, as the relative signal-to-noise
ratio improves. Empirical studies show that LoRA with ϵ = 1.0 differential privacy achieves accuracy
within 5% of non-private full fine-tuning, whereas applying the same privacy budget to full fine-tuning
degrades accuracy by 12-15%. This dramatic difference demonstrates how efficiency optimizations can
indirectly improve the privacy-utility trade-off.

5.4 Application-Driven Trade-off Navigation

Optimal navigation of the trilemma depends heavily on application-specific requirements, threat models,
and deployment constraints. Different domains emphasize different aspects of the trilemma, resulting in
distinct solution strategies.

Healthcare applications operating under strict regulations such as HIPAA typically prioritize privacy
above all else. A multi-hospital consortium analyzing electronic health records may accept significant
utility loss to ensure strong privacy guarantees. Efficiency takes a back seat to meeting privacy
requirements, though PEFT remains crucial for practical deployment.

Financial fraud detection systems face a different set of constraints, in which both false negatives
(missed fraud) and false positives (legitimate transactions flagged as fraudulent) incur substantial costs.
These systems prioritize utility while maintaining sufficient privacy protection against realistic threats.
The Swift consortium’s use of cryptographic safeguards for highly sensitive features combined with
moderate differential privacy for others reflects this balance [7].

Enterprise knowledge management systems encounter yet another trade-off landscape. When
deploying federated RAG across corporate departments, the main concern often lies in preserving
departmental autonomy and intellectual property rather than individual privacy. Such systems may rely
on trusted execution environments (TEE) that offer strong practical protection with minimal overhead,
accepting the trust assumptions inherent in hardware-based security.

6 Open Challenges and Future Directions

Despite remarkable progress in making FedLLMs practical, fundamental challenges remain that will
determine whether federated learning achieves its potential as a transformative paradigm for privacy-
preserving AI or remains limited to specialized applications.

6.1 Foundational Challenges Across Three Dimensions

Deploying FedLLMs involves three interrelated challenges that define the technical landscape of this
survey: maintaining utility amid statistical and system heterogeneity, ensuring efficiency under tight
communication and computation constraints, and preserving privacy against advanced inference and
reconstruction attacks.
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6.1.1 Utility: Statistical and System Heterogeneity

Real-world federated networks exhibit significant statistical heterogeneity that violates the Independent
and Identically Distributed (IID) assumption of classical learning [18, 21]. In healthcare, institutions
serving different populations adopt distinct treatment patterns and documentation practices. In finance,
regional regulations and local payment behaviors lead to divergent transaction distributions. This
non-IID structure drives client gradients in conflicting directions, slowing convergence and causing
uneven model quality across cohorts. FedLLM Bench reports that vanilla FedAvg may require two
to three times more rounds to reach a target accuracy under realistic heterogeneity than under IID
conditions, and that performance disparities across client groups persist even after convergence [5].
More research is needed to develop heterogeneity-aware aggregation and fairness-aware objectives for
FedLLMs, and to standardize non-IID benchmarks with group-level reporting and convergence criteria.

This necessitates more targeted research into advanced heterogeneity-aware aggregation techniques
to combat gradient divergence and stabilize convergence. Future work should also design robust
fairness-oriented objectives—such as optimizing worst-case client performance or deploying personalized
models—to address disparities in model quality. Moreover, there is an urgent need to standardize
non-IID benchmarks that realistically capture data skew and to establish group-level metrics for properly
evaluating algorithmic fairness and robustness.

System heterogeneity amplifies these effects [28]. Clients vary in memory, compute power, network
bandwidth, and availability. Cross-device deployments must accommodate everything from high-end
smartphones with neural processing units to entry-level devices with limited memory. Network quality
ranges from gigabit fiber to intermittent 3G connections, leading to significant differences in latency
and reliability. Synchronous aggregation that waits for all selected clients can be delayed by stragglers,
extending round time. Asynchronous aggregation reduces waiting but introduces staleness when slower
clients train on outdated parameters. Both approaches require designs that stabilize optimization under
delayed or partially aligned updates [20]. More research is needed on staleness-robust asynchronous
methods with convergence guarantees under bounded delay, and on adaptive client selection/model
sizing that respects device and network constraints.

Future research should develop communication-efficient, staleness-robust asynchronous methods that
offer formal convergence guarantees under bounded update delays. This includes exploring adaptive
client selection strategies that prioritize available clients without introducing bias and dynamically
adjusting model components or quantization to accommodate heterogeneous device constraints. Such
system-aware techniques are crucial for stabilizing optimization and mitigating the effects of stragglers
and partial client participation.

6.1.2 Efficiency: Communication and Computational Bottlenecks

At modern LLM scales, communication and memory dominate the costs in federated settings. Trans-
mitting full updates for GPT-3 with 175 billion parameters at FP32 requires about 700 GB per client
per round, and even FP16 still needs around 350 GB—far beyond typical network capacities [14].
Computation is similarly limiting: fine-tuning LLaMA2 70B demands roughly 512 GB of GPU memory
for standard training with the Adam optimizer, accounting for weights, gradients, optimizer states, and
activations [13]. Most edge participants cannot host such models, motivating approaches that reduce
bytes per round and device memory while maintaining stable training.

Extending from adaptation to foundation model pretraining further amplifies these constraints.
Photon demonstrates feasibility for 7B-parameter models across sixteen high-performance computing
centers, but scaling to 100B and beyond requires orders of magnitude more tokens and wall-clock time.
Autoregressive dependencies restrict parallelism, while heterogeneous pretraining corpora increase opti-
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mization drift among participants. Promising directions include hierarchical federation with intra-cluster
optimization, bounded staleness asynchrony to handle stragglers, curriculum-style token scheduling by
domain or quality, and phase-aware privacy budgets during early training. These remain open challenges
that need to be addressed to ensure that federated pretraining at a foundation model is practical for
deployment at scale.

6.1.3 Privacy: Threats and Adaptive Adversaries

Keeping data local does not prevent information leakage from model updates. Membership inference
attacks, which determine whether a record was used in training, become stronger because each client
update reflects many local examples. FedMIA reports success rates of 63–68% under realistic conditions
[8]. Gradient inversion attacks pose an even greater threat. DAGER reconstructs LLM training sequences
with ROUGE scores above 0.99 for batches of up to 128 tokens by searching the discrete token space [4].
These findings show that data localization alone cannot ensure privacy.

Noise-based defenses such as Differential Privacy (DP) are not a cure-all and can introduce new
attack surfaces. Adversaries may shift from direct gradient inspection to exploiting side-channel
vulnerabilities—like timing variations or resource usage patterns—or use active probing to maximize
information leakage within a fixed privacy budget. Advanced threat models also include colluding clients
and Sybil attacks, which can evade basic anomaly detection and amplify targeted or poisoning attacks.
Effective mitigation therefore requires a defense-in-depth strategy that combines training-time privacy
accounting with strong system-level hardening. This holistic approach should establish a hardware-rooted
chain of trust to ensure platform integrity through remote attestation. Key defensive measures should
be applied throughout the pipeline: traffic shaping and batched reporting to mask timing side channels;
robust aggregation protocols with gradient clipping and cross-client correlation checks; and identity
management via public key infrastructure (PKI) to enforce rate limits and defend against Sybils. These
controls should be unified under a secure aggregation framework that enables auditable, per-round
privacy accounting.

This highlights several critical research needs: (i) developing end-to-end privacy guarantees that cover
the full pipeline—from data collection and training to aggregation and inference logging—is essential to
meet regulatory compliance with auditable accounting; (ii) integrated objectives that jointly optimize
privacy with security and fairness are required, particularly when facing heterogeneous clients and
adversaries (iii) new machine unlearning protocols suitable for federated and DP-constrained settings are
necessary to address the "right-to-be-forgotten" and facilitate data-correction requests without costly
full retraining [48].

6.2 Data Engineering Challenges in Federated LLM

While most existing research on federated LLMs focuses on training algorithms and privacy mechanisms,
the data engineering pipeline poses equally critical yet underexplored challenges [17, 18]. Unlike
centralized machine learning, where data scientists can directly inspect, clean, and preprocess data,
federated settings impose fundamental constraints that complicate traditional data engineering practices.

6.2.1 Data Quality Assessment Without Centralization

In traditional centralized ML pipelines, data quality assessment is performed through exploratory data
analysis, profiling, and visualization of the entire dataset. However, in privacy-preserving FL, the
orchestrating server cannot directly access raw data, making it impossible to assess data quality through
conventional means. This creates several critical challenges:
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Distributed Data Profiling. Without centralized access, evaluating data quality metrics—such as
missing value rates, class distributions, feature correlations, and outliers—requires privacy-preserving
distributed algorithms [17]. Recent research has proposed differentially private data profiling methods,
but the added noise can obscure real data quality issues. For example, a hospital with systematically
miscoded diagnoses might go unnoticed if privacy noise hides the anomalous patterns.
Heterogeneous Data Schemas. Real-world federated deployments often involve participants with
heterogeneous data schemas, especially in healthcare, where institutions use different Electronic Health
Record (EHR) systems. Even when training on the same task (e.g., clinical note classification), hospitals
may differ in field names, coding systems (ICD-9 vs. ICD-10), and data granularity. Automated schema
matching and harmonization in federated settings remain open challenges, as current solutions either
demand extensive manual alignment or cause information loss.
Data Drift Detection. In production federated systems, data distributions at client nodes can shift
over time due to changing user behavior, seasonal effects, or systematic changes in data collection
practices. Detecting such concept drift without centralizing data requires new distributed monitoring
methods. For LLMs in particular, vocabulary drift—such as the emergence of new terms and evolving
language usage—introduces additional challenges that existing federated learning frameworks do not
adequately address.

6.2.2 Data Governance and Compliance

The decentralized nature of federated learning introduces complex data governance challenges that go
beyond technical privacy mechanisms [19]. Each participating organization must maintain sovereignty
over its data while contributing to a collaborative model, requiring new governance frameworks that
balance autonomy with coordination.
Multi-Jurisdictional Compliance. Federated LLM deployments across multiple countries must
navigate a complex landscape of data protection laws, including the GDPR (Europe), CCPA (California),
PIPL (China), and HIPAA (healthcare). Each jurisdiction imposes distinct requirements for data
localization, consent management, and breach notification. For instance, the GDPR’s right to erasure
(“right to be forgotten”) poses technical challenges in federated settings: if a user requests deletion of
their data, how can we ensure their contribution is removed from a model trained across hundreds of
devices? Current federated unlearning methods remain immature and computationally costly.
Data Lineage and Provenance Tracking. In regulated industries, maintaining detailed records of
data lineage—tracking how data moves through ML pipelines and influences model predictions—is often
a compliance requirement. In FL settings, this task becomes far more complex: the global model results
from aggregated updates across multiple sources, each with its own preprocessing pipeline and data
quality controls. Blockchain-based methods have been proposed to establish immutable audit trails for
FL training, but they introduce additional computational overhead and privacy risks, as even encrypted
metadata can reveal participation patterns.
Dynamic Participant Management. Deployable FL systems must manage participants joining,
leaving, or being excluded for poor data quality or malicious behavior. This requires governance
mechanisms to (1) assess new participants’ data quality and security practices, (2) fairly attribute credit
for model improvements among contributors, and (3) manage intellectual property rights in the jointly
trained model. Multidisciplinary approaches to address these challenges. Existing frameworks offer
limited support for these governance processes, especially when determining fair compensation in cases
where participants contribute varying amounts or qualities of data.
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6.2.3 Real-Time Federated Learning and Streaming Data

Most existing federated LLM studies assume static datasets and batch training. However, many
real-world applications—such as mobile keyboard prediction, content recommendation, and real-time
fraud detection—demand continuous learning from streaming data [20, 21]. This creates several data
engineering challenges:
Online Data Preprocessing. Traditional ML pipelines perform extensive data preprocessing (tok-
enization, normalization, feature engineering) as a separate batch step before training. In FL settings
that need to use streaming data, preprocessing must occur online at each client [6], requiring careful
coordination to maintain consistency. For LLMs, this involves keeping tokenizer vocabularies syn-
chronized as new terms appear, handling out-of-vocabulary words, and determining when to update
preprocessing pipelines without disrupting existing models. Further research is needed to develop
lightweight on-device tokenization algorithms and decentralized vocabulary synchronization protocols
that are communication-efficient and resilient to network dropouts.
Temporal Data Alignment. In cross-device FL (e.g., training across millions of mobile phones),
devices may go offline for long periods, causing temporal misalignment where some clients train on
outdated data while others use fresh data [20]. For time-sensitive tasks such as news classification or
trend detection, this temporal skew can severely degrade model performance. Designing aggregation
algorithms that appropriately weight contributions by data freshness remains an open challenge [21].
This requires research into novel staleness-aware aggregation functions that explicitly model temporal
dependencies and can dynamically discount or re-weight client updates based on their data timestamps.
Incremental Model Updates. Streaming data demands incremental model updates instead of full
retraining. For LLMs, this is especially difficult due to catastrophic forgetting—the tendency of neural
networks to lose previously learned knowledge when exposed to new data [43]. Federated continual
learning must balance plasticity (learning new information) and stability (preserving prior knowledge)
across distributed nodes while maintaining privacy guarantees. A key research and development challenge
is to develop federated continual learning (FCL) strategies—such as parameter isolation or rehearsal-based
methods—that prevent catastrophic forgetting while preserving privacy and minimizing communication
overhead.

6.3 Future Directions

Federated Data Marketplaces. One promising research direction is to design innovative economic
mechanisms and technical infrastructure for federated data marketplaces to enable future data economy
where participants can discover collaboration opportunities, negotiate data-sharing terms, and receive
fair compensation for their contributions. This involves addressing technical challenges (e.g., privacy-
preserving dataset search, contribution valuation) and creating governance structures that incentivize
high-quality and trustworthy participation.
Adaptive Preprocessing Pipelines. Complementary to this, developing adaptive preprocessing
techniques that automatically adjust to heterogeneous data distributions and evolving characteristics
in FL settings is crucial. This includes automated feature engineering, dynamic tokenizer updates for
LLMs, and context-aware normalization strategies that respect local data properties while maintaining
global consistency.
Privacy-Preserving Data Quality Tools. To support both the economic models of data marketplaces
and the technical demands of adaptive pipelines, there is a significant need to develop privacy-preserving
versions of standard data engineering tools (profilers, validators, schema matchers) with formal privacy
guarantees. This research must extend beyond purely technical solutions—such as differentially private
exploratory data analysis or secure multi-party computation for joint schema inference—to also address
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critical human factors. This includes designing usable interfaces and auditable governance workflows
that build trust and incentivize high-quality, trustworthy participation from data providers.
Standardization and Interoperability. Significant effort is also needed to establish standardized
interfaces and protocols for federated data engineering, similar to how the OMOP Common Data Model
standardizes clinical data. This includes standardized APIs for data quality reporting, common metadata
schemas for describing federated datasets, and interoperable governance frameworks that span multiple
organizations and jurisdictions.

Addressing these challenges represents critical research opportunities that could greatly accelerate
the real-world deployment of privacy-preserving federated LLMs.

7 Conclusion

The convergence of LLMs and FL provides a crucial pathway to unlock the value of decentralized
data in privacy-sensitive domains such as healthcare and finance. This paper presents a systematic
analysis of the fundamental utility–efficiency–privacy trilemma inherent in designing Federated LLM
(FedLLM) systems. We outline key challenges, including managing statistical heterogeneity, mitigating
communication bottlenecks, and defending against advanced privacy attacks such as gradient inversion.
By analyzing these trade-offs, reviewing existing techniques, and exploring practical applications, we
highlight that no single solution suffices. Instead, effective and resilient FedLLM deployment requires
a comprehensive and integrated approach. Addressing open research directions—such as developing
heterogeneity-aware aggregation methods, robust privacy accounting frameworks, and standardized
data engineering practices—is essential for the continued trustworthy and effective advancement of this
transformative technology.
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Abstract
Modern distributed systems demand scalable, low-latency, and flexible authorization, yet conven-

tional directory-based Identity and Role-Based Access Control (RBAC) frameworks remain overly
centralized and inflexible, falling short of the requirements posed by dynamic, distributed service-to-
service (S2S) architectures. These legacy models lack the scalability, adaptability, and fine-grained,
context-aware control essential for decentralized authentication and authorization at hyper-scale.
This paper presents the design and architecture of Hyper-Scale Managed Identities (HSMIs) and
their integration with decentralized access control policies. We analyze the limitations of traditional
identity models and outline the HSMI architecture, including processes for attestation, credential
issuance, binding, and the enforcement of access control policies. In addition, we introduce Attested
Credential Release and its associated security guarantees. The structure of authorization tokens is
presented, emphasizing their role in enabling hyper-scale, ultra-low latency scenarios. Further, we
detail a capability-based authorization model that utilizes authorization tokens, attribute tokens,
and namespacing to facilitate decentralized, high-performance access control.

1 Introduction

Internal services within cloud platforms require secure, reliable mechanisms to communicate with each
other. For example, within Azure, data services such as Azure SQL [19] must interact with Azure
Storage [20] to manage database files. Although both components belong to the same provider and
operate within a shared trust boundary, robust authentication between services remains essential. This
necessity stems from the principle that, even in integrated environments, each service must safeguard
against lateral compromise should a breach occur elsewhere. Consequently, cloud architectures typically
avoid distinguishing between first-party and third-party callers, instead enforcing authentication to
ensure that vulnerabilities in one service do not proliferate across the platform.

The authentication model within cloud services reflects the complexity of their internal structure.
Rather than treating a service as a monolithic entity, authentication is applied at the data-plane level:
individual SQL instances and Storage containers each authenticate independently. With millions of
such instances and containers operating simultaneously in large-scale environments, establishing and
maintaining secure authentication relationships presents significant challenges. One commonly employed
approach is the use of Shared Access Signatures (SAS) [17], whereby the Storage service uses account-
specific keys to derive container-level SAS credentials. The many-to-many mapping between SQL
instances and storage containers, necessitate millions of unique SAS credentials distributed across the
platform. To mitigate risks, storage access keys are regularly rotated, and SAS credentials regenerated;
however, this practice creates substantial operational overhead and places significant demands on the
Storage service itself.

Reliance on static access keys for authentication, while straightforward, introduces limitations in
both security and scalability. Static credentials behave like passwords—susceptible to theft, reuse, and
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misuse—and pose ongoing security risks due to the challenges of managing and rotating them effectively.
To address these issues, cloud platforms have adopted mechanisms such as Managed Identities(MIs)
[14]. Under this model, a central authentication service—Microsoft Entra [18] (formerly Azure Active
Directory), for instance, issues identities to individual service instances. These identities are then used
to obtain short-lived access tokens, which replace static keys and offer enhanced security thanks to their
limited validity. By shifting the authentication burden to a centralized authority, the MI model reduces
operational complexity for service teams and mitigates the risks associated with static credentials.

Despite the advantages of Managed Identities, this approach is not without its own scalability
challenges. The central authentication service must maintain an extensive directory of service identities,
effectively representing a closed world of continuously changing authenticating entities. As the number
of service instances scales into the billions, directory management becomes increasingly difficult, and
practical limitations emerge. Furthermore, the certificate-based process for establishing MIs retains some
of the operational drawbacks seen in access key rotation, such as management overhead and scheduling
for periodic renewal.

In response to these persistent challenges, we propose a novel authentication method designed
to enhance both security and scalability. Our approach reimagines service authentication by basing
it on the health of the hosting Virtual Machine [21] (VM), leveraging hardware roots of trust such
as Trusted Execution Environments [16] (TEEs)—for example, Trusted Platform Module (TPMs) or
enclaves—to attest to VM integrity. Rather than verifying identities against a directory, the central
authentication service validates health reports signed by keys rooted in the TEE, rendering the process
stateless and highly scalable. This technique not only mitigates the risks associated with static secrets
and directory-based bottlenecks but also introduces a dynamic, context-aware security posture. We
illustrate the improvement in security posture through an example. In the previous approaches discussed
above, suppose a malicious actor compromises a cloud VM, for instance, by installing malware on the
VM. The malware would be potentially undetected at least until all secrets on the VM are rotated—this
could mean days or weeks of compromise. In contrast, with the dynamic approach based on secure
booting, the presence of the malware would be measured by the TPM and hence fail an attestation
check, reducing the period of compromise.

The authenticating party (SQL in the above example) also needs the right permissions to access
resources (Storage in the above example). Hence, there is the need to solve an authorization problem
based on the same stateless infrastructure. As an example, data services like Azure SQL manage data
across millions of storage accounts, with each individual storage account capable of hosting thousands of
containers. Given that data service instances (for example, SQL instances) maintain complex many-
to-many relationships with storage containers to optimize both resource utilization and packing, the
volume of mappings between SQL instances and storage containers increases substantially. Modelling
this authorization pattern through centralized directory services for resolution would necessitate billions
of role assignments per subscription and surpass the practical limits for both role assignment storage and
evaluation. We also describe our Attribute Based Access Control solution to the authorization problem.

The proposed architecture involves calling multiple components, which on the face of it, poses a
performance challenge, since calling multiple components in the data path is expensive. However, we
use the notion of tokens and prefetching to ensure that the data path in the hot case does not call all
components. This allows us to approach our goal of sub-millisecond latencies in the 99th percentile
(P99), which is comparable to the SAS and MSI methods described above. Therefore, the improved
security and scalability of HSMI does not carry a performance price.

Azure is currently piloting this technology in production, with plans for broad deployment across its
ecosystem. We believe this evolution marks a significant step forward for service-to-service authentication
in cloud environments, setting a new standard for secure and scalable operations.
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2 Background and Terminology

2.1 Microsoft Entra

Microsoft Entra [18] (formerly Azure Active Directory) is a family of identity and network access
products. It lets organizations implement a security strategy and create a trust fabric that verifies
identities, validates access conditions, checks permissions, encrypts connection channels, and monitors
for compromise.

2.2 Azure SQL

Azure SQL [19] is a Platform as a Service (PaaS) offering built upon the SQL Server engine, hosted
on Azure Service Fabric. This architecture features separated compute and storage layers, with Azure
Storage used for the persistence of database files, such as log (ldf) and data (mdf) files. The service
incorporates a control plane, hereafter referred to as the SQL Control Plane, which oversees the lifecycle
management of various databases. Additionally, the service comprises a data plane, representing the
sqlservr.exe processes running on compute nodes within the Service Fabric cluster. In this context, the
term ‘SQL Instance’ denotes a single sqlservr.exe process. Although the Azure SQL service supports
multiple storage configurations, the approach discussed in this paper is exemplified by a SQL database
that utilizes Azure Blob Storage containers to host its data. Azure SQL runs on Azure Service Fabric
[22], Microsoft’s distributed systems platform for deploying and managing microservices and containers
across a cluster of machines. In this context, a cluster is the overall set of machines that run Service
Fabric, while a node refers to an individual compute unit (typically a virtual machine in Azure) within
that cluster.

2.3 Managed Identities (MI)

Azure provides automatically managed identities [14] that can be assigned to compute resources such
as Virtual Machines, Virtual Machine Scale Sets, Azure Kubernetes Service clusters, or supported
application hosting platforms. These identities allow services to authenticate to Azure resources without
the need for developers to provision or manage secrets, credentials, certificates, or keys, thereby reducing
the risk of credential exposure and simplifying secure communication between services.

2.4 SPIFFE (Secure Production Identity Framework for Everyone)

An open-source framework [10], the Secure Production Identity Framework for Everyone (SPIFFE),
provides a standard for securely issuing and managing identities for services in a cloud-native or
distributed system to enable secure service-to-service authentication and workload identity across
heterogeneous environments. A SPIFFE ID is a unique identity assigned to a workload (e.g., a service
or process). A SPIFFE Verifiable Identity Document (SVID) is the cryptographic credential—typically
an X.509 certificate or JWT—that proves possession of a SPIFFE ID and is used by workloads to
authenticate to each other securely.

2.5 Hyper-Scale Managed Identities (HSMIs)

A novel identity framework designed for cloud-native environments that decouples identity from cen-
tralized directories and leverages hardware attestation for scalable authentication. Each HSMI is
uniquely identified by its SPIFFE identifier and we use the verb ‘SPIFFE identifier’ or ‘HSMI identifier’
interchangeably in this paper.
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2.6 Trusted Execution Environments (TEEs)

A Trusted Execution Environment [16] is a segregated area of memory and CPU that’s protected from
the rest of the CPU by using encryption. Any code outside that environment can’t read or tamper with
the data in the TEE. Authorized code can manipulate the data inside the TEE.

2.7 Resource Management Authorities (RMAs)

Resource Management Authorities (RMA)s are compute orchestration engines such as Kubernetes
and Service Fabric, a commonly used orchestration engine within Azure. Typically, RMAs manage
VM capacity by bundling them into clusters. Within each cluster, a process or container running
the application (SQL in our example) is launched. RMAs attest to a centralized credential authority
regarding the validity of the resources they manage. Consequently, the credential authority issues
HSMI credentials. Traditionally, identity providers (IdPs) issue identity tokens for entities within their
administrative domain; however, in this model, the resource providers do not issue identity tokens
themselves. Instead, responsibility for token issuance is delegated to a centralized service, which retains
control over the signing keys trusted by the broader application ecosystem. Thus, these resource
providers manage the lifecycle of the resources under their supervision and are referred to as Resource
Management Authorities (RMAs) to distinguish them from traditional IdPs. RMAs assign identifiers to
each application instance. Resource identifiers follow a hierarchical format compatible with SPIFFE
standards, with each identifier prefixed by the RMA’s reserved namespace. Notably, scaling the RMAs
to handle the number of resources they manage is a non-optional requirement. Furthermore, RMAs
possess an intimate awareness of partitioning opportunities and constraints that their topology may
impose, which is often more nuanced than the topology managed by Microsoft Entra. The hierarchical
structure encodes resource-specific metadata, thereby enabling logical segmentation of the resource
domain into distinct security zones. In addition, it facilitates efficient bulk operations such as credential
and token revocation.
spiffe://<internal-prefix>/s/10ef5b45-a7e5-4f96-9d11-90e8b5e06a87/rg/test-eus-rg/sf/test-eus-cluster

/7af6ddcc-8407-427d-ac61-5a47a0ea8e00/SqlApplicationType/SqlApplicationName

In the above example, let’s consider a SQL instance (process) running on an Azure Service Fabric
(RMA) cluster, the resource identifier encodes the subscription ‘10ef5b45-a7e5-4f96-9d11-90e8b5e06a87’,
the resource group ‘test-eus-rg’ and the cluster ‘test-eus-cluster’, followed by a unique identifier of
the cluster i.e. ‘7af6ddcc-8407-427d-ac61-5a47a0ea8e00’. These values represent the service fabric
cluster where this SQL instance is being hosted. The next two values ‘SqlApplicationType’ and
‘SqlApplicationName’ encode the SQL instance and represent the sqlservr.exe process running on the
compute instance. This resource identifier uniquely identifies an HSMI.

2.8 Attribute-Based Access Control (ABAC)

An access control model that evaluates permissions based on attributes of the subject, resource, and
environment, enabling more flexible and context-aware authorization decisions [15]. There are three types
of attributes we highlight—Principal Attributes, Resource Attributes and Environmental Attributes. In
a distributed setting, Principal Attributes describe the identity which is requesting access e.g., tenant,
environment or service role. In our approach, HSMI principals are directory-less, and hence, we describe
principal attributes with an attribute token bound to particular HSMI. We introduce this in Section 2.11.
Environmental Attributes represent the contextual information about the access request e.g. time of
day, IP address, device posture etc. Lastly, Resource Attributes are associated with the resource which
is being accessed e.g. Azure SQL might access Azure Storage as a resource and resource attribute in
this flow could be Storage Blob Container Metadata—a key value pair that stores properties of the
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container. As an example, let’s consider the storage account container ‘mycontainer’ in the storage
account ‘mystorageaccount’, and that the container hosts data for a SQL Server, managed by SQL
Control Plane, with a server identifier ‘b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d’. The resource attributes,
stored in the metadata can be—attribute key:readAccessGroups and attribute value: b3f2c9d4-8a7e-
4f1a-9d3b-7e6c2a1f5e8d. This example is for illustration and we explain how to interpret and use these
values in Section 3.

2.9 Attribute Authority

The Attribute Authority manages and issues cryptographically signed attribute tokens that bind attribute
values to their respective HSMI instances. Attribute tokens are signed by a trusted central signing
authority, ensuring that attribute modifications are prevented even in the event of a compromised HSMI
instance. Authorized control planes, such as the SQL control plane, that manages the lifecycle of SQL
databases running on hosting platforms or RMAs like Service Fabric, possess the ability to request
attribute tokens for HSMI identities under their management from the attribute authority. Management
of the attribute authority service is conducted by the authorization authority, guaranteeing consistency
and robust security.

2.10 Attribute Namespace

Hyperscale identity systems require a decentralized approach to attribute management to avoid bottle-
necks and single points of failure. To facilitate this, the Attribute Authority employs a namespacing
model that enables decentralized attribute management by control planes. The control plane owns the
attribute names and is responsible for defining the association between attributes and HSMI identities.
Each attribute is uniquely identified within a namespace owned by the control plane. This design
supports horizontal scaling and reduces state management overhead while maintaining clear ownership
boundaries. Namespace ownership is non-transferable and ensures that only authorized control planes
can attest to attributes within their designated scope. An example of a namespace owned by the SQL
Control Plane in East US region, for principal attributes assigned to SQL databases in that region
is—Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus

2.11 Attribute Tokens

Attribute tokens encapsulate principal attributes—such as tenant, environment, and service role—in a
cryptographically signed format. Issued by the Attribute Authority, these tokens function as inputs to
Attribute-Based Access Control (ABAC) systems. Unlike traditional Microsoft Entra directory-based
group memberships, attribute tokens are both portable and verifiable. The Attribute Authority addresses
a fundamental challenge presented by directory-less identity architectures: securely binding attributes
to HSMI principals that lack directory representation. As HSMIs do not inherently support principal
attributes necessary for ABAC grouping, the Attribute Authority furnishes a secure mechanism for
delegating attribute association to authorized control planes, while preserving robust cryptographic
security guarantees. The format of such an attribute token is:

1 {
2 "sub": "<HSMI_ID>",
3 "xms_attr": {
4 "Microsoft.AttributeAttestation/AttributeNamespaces/{namespace}/Attributes/{attribute1}": <

Value1>,
5 "Microsoft.AttributeAttestation/AttributeNamespaces/{namespace}/Attributes/{attribute2}": <

Value2>,
6 },
7 "xms_acb": "<ACB_value_to_bind_to_auth_token>",
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8 }

Let’s consider the same example as Section 2.8, a SQL Server, managed by SQL Control Plane, with
a server identifier ‘b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d’. This SQL Server will host multiple SQL
instances in the data plane scattered across various Compute Nodes and Azure Service Fabric clusters.
We take the example of a single instance named ‘SqlApplicationName’, also referred in Section 2.7.
The below attribute token encodes namespaced attributes assigned to the HSMI for this instance. The
‘sub’ claim identifies the HSMI, and ‘xms_attr’ claim holds namespaced attribute key-value pairs. This
attribute value helps SQL Control plane maintain a logical grouping over all the SQL Instances hosted on
various RMAs. We further explain how to interpret these values in Section 3 and Section 5. Additionally,
we explain the ‘xms_acb’ claim in Section 6.1.

1 {
2 "sub": "<internal-prefix>/s/10ef5b45-a7e5-4f96-9d11-90e8b5e06a87/rg/test-eus-rg/sf/test-eus-

cluster/7af6ddcc-8407-427d-ac61-5a47a0ea8e00/SqlApplicationType/SqlApplicationName",
3 "xms_attr": {
4 "Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus/Attributes/readAccessGroups": "

b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d",
5 },
6 "xms_acb": "<ACB_value_to_bind_to_auth_token>",
7 }

2.12 Policy Decision Point - Remote (PDP-R)

A distributed authorization service that evaluates access policies and issues capability tokens based on
principal attributes and resource permissions. It is designed to evaluate access control decisions remotely,
rather than locally within the resource itself.

3 Architecture Overview

To understand the architecture of HSMIs, we consider an example flow of the Azure SQL service
provisioning a database. In contemporary platforms such as Microsoft Azure, services like Azure SQL
Database interact directly with Azure Storage to manage data and log files, thus ensuring transactional
consistency and enabling crash recovery in the event that the compute VM crashes, without replication.
Authentication is enforced at the data-plane, with each SQL instance and storage container handling
authentication and authorization autonomously. SQL service instances are instantiated by the Data
Control Plane on a hosting platform such as Service Fabric (the Resource Management Authority or
RMA). Logical grouping of SQL instances is orchestrated at the server level, with each group distinguished
by a unique serverId, typically in GUID format. These instances may operate across multiple clusters or
migrate between them, while storage containers are shared among instances that belong to the same
logical server group. In this example, access control can leverage the serverId as an attribute, linking
instances and containers within the same group.

As seen in Figure 1, the process commences with the regional SQL Control Plane claiming an
attribute namespace by interfacing with the Attribute Authority. For example a regional SQL Control
Plane in East US might claim the namespace Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus.
Once this namespace is registered, only the originating control plane is authorized to obtain attributes
from it, thereby establishing strict authorization boundaries. Storage subscriptions are maintained by
the control plane, which provisions a conditional role assignment on each such subscription—only those
identities possessing attributes from a specific namespace are permitted access to storage containers
tagged with matching metadata attributes within a subscription scope. This configuration is a necessary
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Figure 1: Example End-to-End Flow

precursor for SQL instances to access storage resources based on attributes. An example of such a role
assignment, further described in Section 6 is—

1 {
2 "Id": "b69889ff-3281-4ffa-8f75-6d7bd3be6616",
3 "RoleDefinitionId": "ba92f5b42d11453da403e96b0029c9fe",
4 "PrincipalId": "00000000-0000-0000-0000-000000000000",
5 "Scope": "/subscriptions/f984cbdd-9e7e-4b97-9744-5c5d9295e332",
6 "Condition": "@Principal[Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus/attributes/

readAccessGroups] ForAnyOfAnyValues:StringEqualsIgnoreCase SplitString{@Resource[Microsoft.
Storage/storageAccounts/blobServices/containers/metadata:readAccessGroups]}"

7 }

Upon initiation of database creation, the SQL Control Plane instructs the Resource Management
Authority (RMA), Service Fabric, to create a new SQL instance, marking eligibility for Hyperscale
Managed Identity (HSMI). The RMA delegates provisioning to the compute instance, which then
acquires a credential for the newly created HSMI—cryptographically bound to the resource instance. We
explain credential issuance in Section 4. After acquiring the credentials, the compute instance returns
an HSMI identifier back to SQL Control Plane—
spiffe://<internal-prefix>/s/10ef5b45-a7e5-4f96-9d11-90e8b5e06a87/rg/test-eus-rg/sf/test-eus-cluster

/7af6ddcc-8407-427d-ac61-5a47a0ea8e00/SqlApplicationType/SqlApplicationName

In the example above, the identifier encodes the subscription ‘10ef5b45-a7e5-4f96-9d11-90e8b5e06a87’,
the resource group ‘test-eus-rg’ and cluster name ‘test-eus-cluster’, followed by a unique identifier of
the cluster i.e. ‘7af6ddcc-8407-427d-ac61-5a47a0ea8e00’. These values represent the service fabric
cluster where this SQL instance is being hosted. The next two values ‘SqlApplicationType’ and
‘SqlApplicationName’ encode the SQL instance and represent the sqlservr.exe process running on the
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compute instance. Subsequent to instance provisioning, the SQL Control Plane designates appropriate
storage containers for the instance and marks their metadata with the ‘serverId’ attribute, thus enabling
access for all instances within the same logical grouping. As an example let’s consider a new SQL
database ‘testdb’ being provisioned in a server ‘testsvr’, and SQL control plane identifies ‘testsvr’ with
a GUID ‘b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d’. SQL Control Plane will update designate a storage
account (e.g. ‘myaccount’) and container (e.g. ‘mycontainer’) and update the container’s metadata—
PUT https://mystorageaccount.blob.core.windows.net/mycontainer?comp=metadata
x-ms-meta-readAccessGroups: b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d

The next operational step involves obtaining an encrypted attribute token from the Attribute
Authority within the established namespace, embedding the same serverId. An example of such an
attribute token is—

1 {
2 "sub": "<internal-prefix>/s/10ef5b45-a7e5-4f96-9d11-90e8b5e06a87/rg/test-eus-rg/sf/test-eus-

cluster/7af6ddcc-8407-427d-ac61-5a47a0ea8e00/SqlApplicationType/SqlApplicationName",
3 "xms_attr": {
4 "Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus/Attributes/readAccessGroups": "

b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d",
5 },
6 ...
7 }

This token is securely stored in a key-value repository accessible by the SQL instance. During
the database bootstrapping phase, the SQL instance utilizes its primary credential and the attribute
token to request an authentication token from Microsoft Entra. We describe this authentication token
flow with the primary credential and attributes in Section 5. The SQL instance subsequently calls
the Authorization Service and Policy Decision Point (PDP) to retrieve a capability token containing
precomputed authorization decisions. We describe the capability token based authorization model further
in Section 4. Armed with authentication and authorization tokens, the SQL instance is authorized to
interact with storage to retrieve or update data files as required. Note that for illustration we use the
example of ‘Read’ permissions, and the same principle can be applied to ‘Write’ permissions.

4 Primary Credential Issuance

The credentialing process begins when a resource owner initiates the creation of a resource and designates
it as eligible for HSMI identity. At this stage, the RMA assigns an HSMI identifier to the resource and
records it within its internal registry. Credential issuance then produces artifacts—such as JWTs [12],
X.509 certificates [13], and SPIFFE SVIDs [10]—that are cryptographically tied to a specific attested
resource instance. Attestation serves as a key security primitive in the credential issuance lifecycle, acting
as the mechanism by which the integrity of a compute instance is verified. During startup, the virtual
Trusted Platform Module, or vTPM, records cryptographic measurements of the firmware, bootloader,
operating system kernel, and critical system configuration into Platform Configuration Registers. These
measurements are digitally signed using a hardware-backed root of trust, producing attestation evidence
that is then submitted to the Microsoft Azure Attestation service. The attestation service maintains
minimal policy state, which defines the expected secure configuration of the virtual machine, including
legitimate software versions, enabled code integrity checks, and secure boot settings. The service verifies
that the measurements conform to this policy and, if so, issues a signed attestation token.

As seen in Figure 2, upon resource creation, the RMA, assigns the compute resource a compute unit
ID and an access ID. In step 2, a per-boot proof-of-possession (PoP) key is generated within protected
memory. In step 4, an attestation token is retrieved from a trusted attestation provider by providing
an attestation evidence. This attestation token is cryptographically bound to the per-boot key. This
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Figure 2: Credential Issuance Flow

token, along with the PoP public key, is returned to the Compute Instance in step 5. Reboots require
re-attestation. Steps 2 and 4 occur within a protected execution environment (e.g., a secure enclave)
during the resource’s bootstrap phase. In step 8, the RMA verifies that the attestation token and the
compute unit identifier (e.g., VMID or equivalent) correspond to a trusted resource in its registry and
then requests a primary credential from the credential authority on behalf of the resource. This request
includes the attestation bundle (comprising tokens from various attestation providers), the device binding
key, a Certificate Signing Request (CSR) the resource creation timestamp, and two identifiers: (1) the
HSMI ID and (2) a platform-specific resource ID. Both identifiers are included to maintain compatibility
with existing access control policies. If either identifier changes, the RMA must issue a new assertion
and request a new primary credential. Authorization assignments tied to the old identifier are migrated
to the new one using a three-step process: (1) create new, (2) inherit from old, and (3) deprecate old.
Upon successful validation of the RMA’s assertion, the attestation tokens, and the namespace ownership
of the HSMI, the identity authority issues a primary credential (e.g., JWT [12], X.509 [13], SPIFFE
SVID [10]) that is cryptographically bound to the resource. This credential includes the finalized HSMI
ID and the resource creation timestamp. In step 10, the primary credential is returned to the resource,
which can then use it along with the proof of possession (PoP) of the binding key—to request access
tokens from the credential authority.

5 Authentication

Once a resource has obtained its primary credential, it can request access tokens from the credential
authority to authenticate to other services. These access tokens must be bound to the compute instance
to ensure highest level of security is maintained. In Figure 3, Step 1, the compute instance uses the
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Figure 3: Token Issuance and Usage Flow

bound credential obtained in the previous step for acquiring a bound authentication token. Microsoft
Entra token issuance service validates the credential and Proof-of-Possession of the private key used to
obtain the primary credential. Once all the necessary validations are done, Microsoft Entra returns a
bound token to the compute instance. In step 3, the compute instance uses this bound token to access
the target audience i.e. Azure Storage.

As described in Section 2.11, the SQL control plane requests a signed attribute token from the
Attribute Authority for a given HSMI and its associated attributes. The Attribute Authority validates
that the SQL control plane possesses appropriate access rights, subsequently generating and returning a
cryptographically signed attribute token containing the HSMI ID and requested attributes. This token
is stored by the SQL instance for use in subsequent authentication requests. In the authentication
token request to Microsoft Entra, the SQL instance provides the signed attribute token; Microsoft Entra
verifies the signature and federates the attributes as claims in the resultant authentication token. This
mechanism securely binds principal attributes to the authentication context. HMSIs can obtain attribute
tokens from many attribute authorities and present them to Entra ID in a single authentication request.
The resulting authentication token contains all attributes, segregated by their respective attribute
authority.

In the example below we illustrate an authentication token obtained for the example HSMI described
in Section 3. The claims ‘cnf’ and ‘xms_tbflags’ are used for token binding, and the ‘xms_attr’ claim
encodes the principal attributes within the authentication token. We explain the ‘xms_acb’ claim in
Section 6.1.

1 {
2 "sub": "<internal-prefix>/s/10ef5b45-a7e5-4f96-9d11-90e8b5e06a87/rg/test-eus-rg/sf/test-eus-

cluster/7af6ddcc-8407-427d-ac61-5a47a0ea8e00/SqlApplicationType/SqlApplicationName",
3 "cnf": {
4 "x5t#S256": "<hash_of_the_credential>"
5 },
6 "xms_tbflags":"1",
7 "xms_attr": {
8 "<encoded_attribute_authority_identifier>":
9 {

10 "Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus/Attributes/readAccessGroups": "
b3f2c9d4-8a7e-4f1a-9d3b-7e6c2a1f5e8d",

11 }
12 },
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13 "xms_acb": "<ACB_value_to_bind_to_auth_token>",
14 ...
15 }

6 Authorization

We leverage Capability tokens that encapsulate pre-evaluated access rights in a signed, portable format,
issued by authorization systems and authenticated by a trusted authority (e.g., Microsoft Entra). The
token is carried by the accessing identity and presented to resource providers as part of access requests.
Resource providers validate the token and authorize requests according to the client’s request and
the access rights delineated within the token. This approach eliminates the need for runtime policy
fetching and evaluation, thereby facilitating strong caching affinity—a feature that remains challenging
in distributed systems. This model delegates policy evaluation to the token issuer, allowing the resource
to validate and enforce permissions without runtime policy loading and checks.

Figure 4: Combined Authorization Flow

Partial evaluation is a concept discussed in [11]. Resource attributes, along with certain environment
attributes, may not be accessible at the time of capability token issuance. Consequently, the authorization
service may be unable to fully evaluate all ABAC policies during issuance if such policies rely on
unavailable attributes. To address these cases, the authorization service provides support for partial
evaluation of ABAC policies where feasible, while retaining any remaining policies for deferred evaluation
upon subsequent token requests. These partially evaluated policies are stored within the capability
token. The resource owner bears responsibility for furnishing the relevant attributes and conducting
the secondary evaluation of the deferred policies from the token, thereby ensuring that all necessary
attributes are present and verified prior to granting access.

In the proposed ABAC model, a single role assignment, for each permission, added at a pre-defined
scope encodes the policy such that only the identities possessing principal attributes from a specific
namespace are permitted access to resources tagged with matching resource attributes. In the example
below we illustrate the role assignment for the scenario described in Section 3, the ‘Blob Container
Read’ role, identified by ‘ba92f5b42d11453da403e96b0029c9fe’ is granted to all principals i.e. represented
by the universal identifier ‘00000000-0000-0000-0000-000000000000’. This assignment is scoped within
the subscription ‘f984cbdd-9e7e-4b97-9744-5c5d9295e332’, along with an ABAC condition. The ABAC
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condition ensures that HSMIs possessing a Principal attribute value for the key ‘readAccessGroups’,
under the ‘SqlEus’ namespace, owned by SQL Control Plane, are authorized to read Storage containers
provided that the Resource Attribute i.e. container metadata value for the same key matches.

1 {
2 "Id": "b69889ff-3281-4ffa-8f75-6d7bd3be6616",
3 "RoleDefinitionId": "ba92f5b42d11453da403e96b0029c9fe",
4 "PrincipalId": "00000000-0000-0000-0000-000000000000",
5 "Scope": "/subscriptions/f984cbdd-9e7e-4b97-9744-5c5d9295e332",
6 "Condition": "@Principal[Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus/attributes/

readAccessGroups] ForAnyOfAnyValues:StringEqualsIgnoreCase SplitString{@Resource[Microsoft.
Storage/storageAccounts/blobServices/containers/metadata:readAccessGroups]}"

7 }

Using the authentication token with federated attributes, the SQL instance requests a capability
token from the authorization service for specific target storage resources. The authorization service
performs authorization evaluation using PDP-R, considering both the principal attributes and target
resource permissions. Upon successful evaluation, the authorization service returns a signed capability
token containing pre-evaluated access decisions for the requested resource-action pairs. The claims in
the capability token include—the identity performing the action (e.g. HSMI identifier), the targeted
resource scope (e.g. Storage Account Container), and the permissions specifying which actions such
e.g. Read or Write are authorized. An illustrative example of a capability token for the scenario
described in Section 3 is provided below, where ‘sub’ claim identifies the HSMI, and ‘xms_authz’ claim
encodes precomputed decisions for the ‘Blob Container Read’ permissions in the subscription scope
‘a7c23d70-ffbd-4e6e-eee2-fc18f9518db2’. The claim ‘ac’ refers to ‘access check’ and the claim ‘c’ refers to
‘condition’.

1 {
2 "sub": "<internal-prefix>/s/10ef5b45-a7e5-4f96-9d11-90e8b5e06a87/rg/test-eus-rg/sf/test-eus-

cluster/7af6ddcc-8407-427d-ac61-5a47a0ea8e00/SqlApplicationType/SqlApplicationName",
3 "xms_acb": "<ACB_value_to_bind_to_auth_token>",
4 "xms_authz": {
5 "ac":{
6 "/subscriptions/a7c23d70-ffbd-4e6e-eee2-fc18f9518db2":{
7 "Microsoft.Storage/storageAccounts/blobServices/containers/blobs/read":{
8 "ac":[{
9 "c":"@Principal[Microsoft.AttributeAttestation/AttributeNamespaces/SqlEus/

attributes/readAccessGroups] ForAnyOfAnyValues:StringEqualsIgnoreCase
SplitString{@Resource[Microsoft.Storage/storageAccounts/blobServices/containers
/metadata:readAccessGroups]}",

10 }]
11 ...
12 }

The SQL Instance presents both the authentication token and capability token when accessing
Azure Storage resources. The storage service validates both tokens and performs authorization based
on the pre-evaluated permissions in the capability token. All tokens are cryptographically bound. The
xms_acb claim ensures that all tokens are bound to the same authentication context. The capability
token includes the xms_acb claim from the original authentication token, ensuring that leaked capability
tokens cannot be used by unauthorized identities. This claim is further described in Section 6.1

6.1 Authorization Token Binding for Context Integrity

In distributed identity and access management systems, authorization token binding is essential for
maintaining the integrity and contextual consistency of security tokens. This mechanism mitigates token
mix-up attacks, where tokens intended for one context are erroneously or maliciously reused elsewhere.
Token binding associates each token with a unique representation of its authorization context, ensuring
validity strictly within the intended scope. Authorization and attribute tokens encapsulate claims about
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a principal and its context, including client identity, IP address, cryptographic keys, identity type, roles,
and external attributes. Without effective binding, tokens are vulnerable to substitution, resulting
in potential unauthorized access. The Authorization Context Binding (ACB) claim i.e. ‘xms_acb’
addresses this by uniquely identifying the token’s context. The ACB is computed as a cryptographic digest
(e.g., SHA-256) over a normalized, serialized dictionary of context claims, ensuring consistency despite
application-specific configurations. The ACB is embedded in authentication tokens and propagated to
attribute and authorization tokens. Resources validate incoming requests by confirming matched ACB
values across authentication and authorization tokens; mismatched or absent ACB values result in access
denial. This process enforces context-specific token usage and supports independent refresh operations for
authentication and authorization tokens. This mechanism enhances security by maintaining contextual
integrity, enabling flexible token lifecycles, and providing strong guarantees against token misuse. The
ACB claim is designed to be unique per principal and context, stable across token expirations, consistent
for different audiences, and applicable across authentication, attribute, and authorization tokens, thereby
facilitating secure token chaining.

7 Performance

Large data services such as Azure SQL are highly sensitive to I/O performance, especially during database
recovery, failover, and cold start operations, where increased I/O latency can impact system reliability.
The design described above involves calling multiple services. A straightforward implementation that
calls all components every single time would significantly increase the latency of the service-to-service
call. However, while multiple components are logically involved, the hot path does not call most of them.
In the SQL-Storage example used above, the calls to the various components result in authentication and
authorization tokens that are available to the SQL resource. Once the tokens are fetched, the data path
involves SQL presenting the tokens to Storage, which redeems them efficiently. Current performance
targets set the 99th percentile (P99) hot I/O path latency at 1 millisecond, which is comparable to the
SAS and MSI methods described in Section 1; in particular, the improved security and scalability of
HSMI does not carry a performance price. Experimental results for the described scenario, without
token binding, show a P99 latency that is close to our target. Ongoing architectural improvements aim
to reach the sub-millisecond P99 target.

The tokens, once fetched, have a Time-To-Live (TTL) in the order of hours. In order to avoid
latencies when tokens expire, they are refreshed in the background at half their TTL, ensuring valid
tokens are always available and minimizing latency spikes during critical operations. Capability tokens
also prefetch most authorization decisions, enabling Azure Storage to process remaining authorization
logic with minimal delay.

8 Related Work

Our work builds upon a rich body of research and industry practices in capability-based authorization
and identity management. Several prior efforts have explored these concepts in depth. For instance,
Li et al. extend OAuth to support enforcement of permission sequences and contextual constraints
in distributed systems [3]. Alphabet’s Fuchsia operating system adopts a capability-based model to
govern inter-component permissions [4], and as of August 2021, it has been deployed across all Nest
Hub devices [5]. Amazon Web Services offers a related mechanism through its session token model [6],
though it is tailored to specific services like S3. In contrast, our approach generalizes the concept to
support broader, cross-service scenarios. Similarly, the shift toward managed identities as a replacement
for secrets and service accounts is gaining momentum across all major cloud providers [8], [7]. This
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trend includes the adoption of hierarchical identity frameworks such as SPIFFE [10], which simplify
permission management and delegation workflows [9]. What sets our work apart is the integration of
these ideas into a unified model that treats attestation as a first-class primitive. By addressing the
scalability and operational challenges of identity and authorization in cloud-native environments, our
solution delivers a robust, extensible foundation for secure access control in modern distributed systems.

9 Conclusion

HSMIs and capability-based authorization tokens provide a scalable, secure, and flexible foundation for
access control in cloud-native environments. By decoupling identity from directories and leveraging
attestation and token binding, HSMIs address the limitations of traditional models and enable new
scenarios in distributed systems.The capability-based authorization model, augmented with attribute
tokens and namespacing, offers a scalable, flexible, and performant alternative to RBAC for modern
distributed systems. By supporting decentralized, low-latency access control, this model is particularly
well-suited for S2S scenarios. As enterprises adopt dynamic, federated architectures, this approach
provides a strong foundation for secure and efficient authorization.
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Optimal Group Privacy for DP-SGD

Saeed Mahloujifar∗ Alexandre Sablayrolles† Graham Cormode‡ Somesh Jha§

Abstract

One challenging problem with differentially private machine learning is privacy accounting. After
years of research, the community has successfully established tight privacy accounting methods for
differentially private stochastic gradient descent (DP-SGD). Despite these advances, tight bounds for
group privacy still remain elusive. Group privacy is an essential aspect of differential privacy that
enables many applications. In this work, we develop tight bounds on group privacy for DP-SGD.
In this work, we develop tight bounds on group privacy for DP-SGD. Our analysis uses a novel
technique to show “dominating pairs of distributions” explicitly tailored for the case of group privacy.
Our experiments show that our bounds are significantly better than previously known bounds in
certain regimes. Surprisingly, we find that group privacy is significantly affected by sub-sampling.
Two sets of hyper-parameters (sampling rate and noise) with the exact same (ϵ, δ) parameters can
have significantly different group privacy curves.

1 Introduction

The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm [1, 25] is the leading method
for training machine learning models and conducting a variety of optimization tasks with privacy
guarantees. A critical facet that enables DP-SGD for privacy is the notion of (tight) privacy accounting.
Privacy accounting addresses a fundamental question: What is the extent of privacy degradation when a
differential privacy-protected task is performed repetitively? Since the inception of differential privacy,
this question has been studied via “composition theorems” [8, 14]. Subsequent work has focused on tighter
composition for privacy, specifically within the framework of DP-SGD. Building upon the foundation laid
by Abadi et al. [1], furthered by the introduction of Rényi differential privacy (RDP) by Mironov [20],
and enhanced by recent research on the precise analysis of Gaussian differential privacy [7, 11, 29, 32],
we can now compute the privacy assurances of DP-SGD with high precision. This analysis has allowed
acceptable utility levels for various tasks while simultaneously offering substantial privacy guarantees.
Despite these advances, the domain of group privacy has not experienced equivalent progress. Group
privacy poses a different question: how does the privacy guarantee deteriorate when the concern is
about the impact on a group of examples, rather than individual ones? Intriguingly, we still lack better
group privacy bounds than the rudimentary black-box bounds that were first introduced with differential
privacy [8]. Thus, we ask: Can DP-SGD attain group privacy bounds superior to the black-box bounds
for any DP mechanism?

The question of group privacy is significant in various analytical contexts. For instance, group privacy
can prove beneficial in scenarios such as federated learning, where a user might contribute multiple data
points and we want a “user-level” privacy boundary [13]. Similarly, there might be situations where the
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Figure 1: Group composition for 10 steps of DP-SGD with noise multiplier 1.0, sampling rate 0.01, and
δ of 10−3. The privacy curve obtained by our bounds is much smoother. We use a large value for δ as
calculating the black box group privacy bound for small values of δ is computationally infeasible (unlike
our bound).

same or very similar examples are repeated within collected datasets [15]. As demonstrated in recent
studies on reconstruction attacks, these repeated points could be considerably more susceptible to privacy
breaches [5]. Group privacy bounds enable us to understand the degree of increased vulnerability when
examples are replicated. Another practical application of group privacy bounds arises in the context
of auditing differential privacy [12, 23, 26]. This process involves injecting a number of examples into
the training routine of a machine learning model using DP-SGD, with the aim of calculating a lower
limit on privacy and comparing it against the (potentially loose) guaranteed bound. Attaining tighter
constraints on group privacy thus helps narrow the gap between the guaranteed privacy levels and the
lower limit, facilitating more precise auditing. Last, group privacy bounds contribute to robustness
against poisoning attacks. It is well-known that DP affords some protection against manipulations in
the training dataset [18]. Enhanced group privacy bounds serve to improve these protections. Hence,
optimizing group privacy is not just a theoretical exercise but has profound implications for applications
in ML and privacy.

Our contributions: In this work, we provide tight group privacy bounds for DP-SGD. Our bounds
are based on our new “domination” theorem that shows the worst possible pair of distributions that
might occur while running DP-SGD on two k-neighboring databases. We consider this “domination”
result as our main technical contribution. Using the knowledge of worst-case distributions, we give
a Monte-Carlo approach to estimate the differential privacy bounds. Our experiments show that our
bounds can significantly outperform the previous (black-box) group privacy bounds. We also find a
surprising relation between sampling rate and group privacy: in a nutshell, as the sub-sampling rate
becomes smaller, the group privacy improves.

2 Preliminaries

We first define a notion of proximity for group privacy.

Definition 2.1 (k-neighboring) A pair of datasets (D,D′) are k-neighboring iff either (D′, D) are k-
neighboring or |D \D′| ≤ k and D′ \D = ∅. We use D ≈k D′ to denote that D and D′ are k-neighboring.
Note this is symmetric, i.e., D ≈k D′ ⇐⇒ D′ ≈k D.

Definition 2.2: A mechanism M is (ε, δ, k)-DP if for all k-neighboring datasets D and D′ we have
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∀S; Pr[M(D) ∈ S] ≤ eε Pr[M(D′)] + δ.

We also use a more fine-grained notion of privacy, f -DP.

Definition 2.3 (f-DP [7]) A mechanism M is (f, k)-DP if for all datasets D,D′ s.t. D ≈k D′:

∀S; Pr[M(D) ∈ S] ≤ 1− f(Pr[M(D′) ∈ S]).

Now we state the basic group privacy introduced by Dwork et al. [8]. We give a slightly improved
version of the bound, with an almost identical proof to that of [8].

Theorem 2.1 (Black-box group privacy [8]) If a mechanism is (ϵ, δ, 1)-DP, then it is also (kϵ, k ·
ekϵ−1
eϵ−1 · δ, k)-DP.

Proof: We prove this by induction. For k = 1, the statement is trivial. Now assume the statement
is correct for k − 1. Assume D′ = D ∪ {x1, . . . , xk}. Let D′′ = D ∪ {x1}. Now since (D,D′′) are
1-neighboring and (D′, D′′) are (k − 1)-neighboring. Therefore, by the fact that M is (ϵ, δ)-DP we have

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′′) ∈ S] + δ.

Also, by the induction hypothesis we have

Pr[M(D′′) ∈ S] ≤ e(k−1)ϵ · Pr[M(D′) ∈ S] +
e(k−1)ϵ − 1

eϵ − 1
δ.

Combining these two inequalities, we have

Pr[M(D) ∈ S] ≤ e(k−1)ϵ+ϵ Pr[M(D′) ∈ S] +

(
ekϵ − eϵ

eϵ − 1
+ 1

)
δ = ekϵ Pr[M(D′) ∈ S] +

ekϵ − 1

eϵ − 1
δ.

And, this finishes the proof.
This group-privacy bound is tight when employed as a black-box. In other words, there exists a

mechanism M that is (ϵ, δ)-DP which enjoys the exact same group privacy bound as stated in the
theorem.

We also note that there is a previously-known black-box group privacy bound for f -DP.

Theorem 2.2 (Black-box group privacy for f-DP [7]) If a mechanism M is (f, 1)-DP, then for
all k ∈ N it is also (fk, k)-DP where

fk(x) = 1− (1− f)k(x).

One would expect that the group privacy based on f -DP to be much tighter than the black-box variant
for DP. This is simply because knowing that a mechanism is f -DP contains much more information
than knowing a mechanism is (ϵ, δ)-DP. However, as we will see in the later sections, this bound is also
sub-optimal when sub-sampling is employed. We reiterate that this bound is tight if the only information
that we have is the knowledge that the mechanism is f -DP. But when dealing with specific algorithms
(e.g., DP-SGD), we can use more information about the inner dynamics of the mechanism to achieve
better bounds. In this work, we try to improve these black-box bounds for a specific class of mechanisms:
the adaptive composition of multiple sub-sampled Gaussian mechanisms.

DP-SGD and Composition of sub-sampled Gaussian mechanisms. A Gaussian mechanism is
simply used to privately calculate the average of a function h over a dataset. By releasing the noisy
average 1

|D|
∑

x∈D h(x) +N (0, σ2), one would guarantee that the reported average satisfies differential
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Algorithm 1 DP-SGD
Require: Private dataset D, Loss function ℓ, Sampling rate p, number of steps n, noise multiplier σ,

clipping threshold c
1: Initialize a model θ.
2: for i← [1, . . . ,m] do
3: Sample a random batch B ⊆ D using Poisson sampling with probability of p.
4: g = 1

p·|D|
∑

x∈B
∆ℓ(θ,x)

max
(
c,∥∆ℓ(θ,x)∥

)
5: g̃ = g + c · N (0, σ2)
6: θ = update(θ, g̃)
7: end for
8: Output θ.

privacy so long as the function h has a bounded range. To further amplify privacy, we can sample
a random batch B ⊂ D using Poisson sampling and report the noisy average (noisy average should
be calculated without using the actual size of the batch; see Algorithm 1) over the batch. Then, one
can compose many of these mechanisms in an adaptive way and preserve differential privacy, thanks
to composition theorems. DP-SGD (Algorithm 1) [1, 25] is the most tangible instantiation of this
category of mechanisms and is used for many privacy preserving applications where we need to perform
optimization.

Our goal is to analyze the group privacy for DP-SGD. We need several definitions for the analysis.
The first is the notion of weighted total variation distance.

Definition 2.4 (Weighted total variation distance) The weighted variation distance between two
distributions X and Y with densities µ and ν for a weight a > 0 is:

TVa(X,Y ) =

∫
|µ(x)− a · ν(x)|dx.

We note that this notion is closely related to that of the Hockey-stick divergence [24] and trade-off
functions [7]. Hockey-stick divergence is the same integration with a difference that the integral is
only taken over the positive values. We prefer weighted TVD because it is more convenient to avoid
conditioning the integration. The next claim shows the relevance of the weighted total variation distance
in the DP context.

Proposition 2.2: Let (X,Y ) be a pair of random variables. Then for all S and ϵ > 0 we have,
Pr[X ∈ S] ≤ eϵ Pr[Y ∈ S] + 1

2(TVeϵ(X,Y ) + 1− eϵ).

Proof: Let S be an arbitrary set. Let µ and ν be the pdf of X,Y respectively. Let Gϵ = {x;µ(x)−
eϵν(x) ≥ 0.} and Ḡϵ = {x;µ(x)− eϵν(x) < 0.}

Pr[X ∈ S]− eϵ Pr[Y ∈ S] =

∫
S
µ(x)− eϵν(x) ≤

∫
Gϵ

µ(x)− eϵν(x).

Let δ =
∫
Gϵ

µ(x) − eϵν(x), we have
∫
Ḡϵ

µ(x) − eϵν(x) = 1 − eϵ − δ. We also have TVa(X,Y ) =∫
Gϵ

µ(x)−eϵν(x)−
∫
Ḡϵ

µ(x)−eϵν(x). Therefore TVa(X,Y ) = 2δ−1+eϵ. Therefore, δ = TVa(X,Y )+1−eϵ

2 .
Note that the above proposition is only stated in one direction. However, differential privacy

requires the upper bound to hold in both directions. Due to an interesting property of weighted total
variation distance, we can also bound the reverse direction without changing the order of distributions
in TV(X,Y ).
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Corollary 2.2.1: Let (X,Y ) be a pair of random variables. Then for all S and ϵ > 0 we have,

Pr[Y ∈ S] ≤ eϵ Pr[X ∈ S] + 1
2(e

ϵTVe−ϵ(X,Y ) + 1− eϵ).

Proof: Observe that TVa(Y,X) = aTV 1
a
(X,Y ). Now we use Proposition 2.2 with X and Y swapped,

and apply this observation to finish the proof.

In Section 4, where we explain how to calculate the optimal bounds, we will see why we are interested
in preserving the order of pairs. We next define dominating pairs of distributions, specific to the case of
group-privacy. This notion enables us to use a pair of distributions for privacy accounting and removes
the complexity of the choice of dataset.

Definition 2.5 (k-Dominating pair of distributions) A pair of distributions (X,Y ) dominates a
mechanism M if for any pair of k-neighboring datasets D ≈k D′ with |D| < |D′| and any a > 0 we have

TVa(X,Y ) ≥ TVa(M(D),M(D′)).

We say that (X,Y ) tightly dominate M if there are k-neighboring datasets (D,D′) such that M(D) ≡ X
and M(D′) ≡ Y .

Note that domination is defined in an asymmetric way. That is, we fix the order of datasets so that
D has fewer data points than D′. The following proposition shows the usefulness of dominating pairs
for privacy analysis of a mechanism. This proposition directly follows by applying Proposition 2.2 and
Corollary 2.2.1.

Proposition 2.2: A mechanism that is k dominated by (X,Y ) is (ϵ, δ, k)-DP for

δ = 1
2(max

(
TVeϵ(X,Y ), eϵTVe−ϵ(X,Y )

)
+ 1− eϵ)

Finally, we state the following lemma that shows we can obtain a dominating pair of distributions
for the composition of multiple mechanisms. This has been proved for the case of k = 1 in previous
work [7, 19, 32]. Here we omit the proof as it is exactly the same.

Lemma 2.2: If a series of mechanisms M1, . . . ,Mn are k-dominated by pairs of distributions (X1, Y1),
. . . , (Xn, Yn) then the adaptive composition of Mi’s is k-dominated by

(X1 × · · · ×Xn, Y1 × · · · × Yn)

where × is the product operation between distributions.

3 Optimal group privacy bounds

Next, we demonstrate a tightly k-dominating pair of distribution for a single step of DP-SGD. Note
that, by Lemma 2.2, this will give us a tight dominating pair for multiple steps of DP-SGD as well. We
first define two notions that abstract two properties of Gaussian mechanism which we need to prove our
result.

Definition 3.1 (Compatible distributions) We call a triplet of distributions (X,Y, Z) with densities
νX , νY , and νZ compatible iff there exists an increasing and continuous transition function g, with
g(0) = 0 and limt→∞ g(t) =∞ such that νY (x)

νX(x) ≥ r if and only if we have νZ(x)
νX(x) ≥ g(r).
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Definition 3.2 (System of nice distributions) Let Y = {Y1, . . . ,Yk} be a collection of sets of dis-
tributions and let X be a distribution. (X,Y) form a system of nice distributions if the following
conditions hold:

1. For each Yi there exists Y ∗
i ∈ Yi such that
∀a > 0, ∀Yi ∈ Yi;TVa(X,Yi) ≤ TVa(X,Y ∗

i ).

2. for all i < j ∈ [k] the triplet (X,Y ∗
i , Y

∗
j ) is compatible.

We now state a lemma that shows when we can get a dominating pair for a mixture of multiple
mechanisms. For ease of readability, proofs for most claims in this Section are deferred to Appendix A.

Lemma 3.0: Let Y = {Y1, . . . ,Yk} be a collection of sets of distributions. Assume that (X,Y) form a
system of nice distributions. Let p1, . . . , pk ∈ [0, 1] with p1 + . . . , pk = 1. Let Y = p1 · Y1 + · · ·+ pk · Yk
be an arbitrary mixture of distributions with Yi ∈ Yi. Let Y ∗ = p1 · Y ∗

1 + · · ·+ pk · Y ∗
k . We have

TVa(X,Y ) ≤ TVa(X,Y ∗).

This Lemma, which is the key lemma for proving our result, helps us to reduce the complexity owing
to the mixture distribution. By knowing the worst-case in each set of distributions, we can identify
the worst-case for the mixture as well. Now we turn our attention to the specific case of the Gaussian
mechanism and show how to use Lemma 3.0 to obtain the dominating pair. We first show an intuitive
result that TVa between pairs of isotropic Gaussians is an increasing function of the distance between
them.

Proposition 3.0: Let X ≡ N (u1, σ
2 · Id) and Y ≡ N (u2, σ

2 · Id). Then, for any a ∈ R+, TVa(X,Y )
is only a function of ∥u1 − u2∥2 and σ2. Moreover this function is monotonically increasing with respect
to ∥u1 − u2∥2. That is, for any a ≥ ∥u1 − u2∥2 we have

TVa(X,Y ) ≤ TVa(N (0, σ2),N (a, σ2)).

Now, we show that a triplet of isotropic Gaussians with collinear means are compatible.

Proposition 3.0: Let µ ∈ Rd, c ∈ R+ X = N (0d, σ2 · Id), Y = (µ, σ2 · Id) and Z = (c ·µ, σ2 · Id). Then
(X,Y, Z) are compatible.

Finally, we show that collections of sets of isotropic Gaussians, where each set is restricted to have a
mean within a ball, form a system of nice distributions.

Proposition 3.0: Let X = N (0d, σ2 · Id) be isotropic Gaussian centered at zero. Also, for j ∈ [k] let
Yj = {N (µ, σ2 · Id); ∥µ∥ ≤ rj} for some rj ∈ R+ and let Y = {Y1, . . . ,Yk}. Then (X,Y) forms a nice
system of distributions.

Finally, we put things together to prove the following:

Theorem 3.1 (Main result) Let M be one step of DP-SGD with sub-sampling rate p and clipping
threshold 1 and noise σ. Then M is k-dominated by (X,Y ) where

X = N (0, σ2) and Y = N (B(k, p), σ2)
where B(k, p) is the binomial distribution.

Before proving this theorem we state the following corollary that shows how this extends to multiple
steps.

114



Corollary 3.1.1: DP-SGD with T -steps, noise multiplier σ and sub-sampling rate p is (ϵ, δ, k)-DP, for
an arbitrary ϵ ∈ [0, 1], k ∈ [N ] with

δ = 1
2 max

(
TVeϵ(X,Y ), eϵTVe−ϵ(X,Y )

)
+ 1− eϵ,

and X = N (0T , σ2) and Y = N (B(k, p)T , σ2).

Proof: From Theorem 3.1 we know that N (0, σ2),N (B(k, p), σ2) form a dominating pair for a single
step of DP-SGD with aforementioned hyperparameters. Then using Lemma 2.2 we obtain that the pair
(X,Y ), for X and Y as stated in the theorem, form a k-dominating pair for all T steps of DP-SGD.
Therefore, using Proposition 2.2 we finish the proof.
Proof:[Proof of Theorem 3.1] Let us fix D and D′ = D ∪ {x1, . . . , xk}. Assume we fix the randomness
of sub-sampling on all points in D (e.g., assume all of examples in D are sampled). Then, conditioned
on this sampling s, the distribution M(D)|s is a Gaussian centered at some µ0. On the other hand,
M(D′)|s is a mixture of Gaussians where the center is determined by the choice of sub-sampling on
{x1, . . . , xk}. So we can characterize M(D′) as a mixture of Gaussians with probability weights ps′ ,
and means µ0 + µs′ , and with standard deviations σ2. That is, M(D′) =

∑
s′∈{0,1}k ps′ · N (µ0 + µs′ , σ

2)
(note that here the outer sum operator denotes the mixture of distributions). We are interested in
upper-bounding TVa(M(D)|s,M(D′)|s). Since µ0 is present in the mean of both M(D) and M(D′)
we can ignore it and upper bound TVa(N (0, σ2),

∑
s′ ps′N (µs′ , σ

2). We know that for all s′, the norm
∥µs′∥ is bounded by |s′|1 because the clipping threshold is 1. In other words, N (µs′ , σ

2) ∈ Y|s′|1 where
Y|s′|1 is defined as in Proposition 3.0. Now, using Proposition 3.0, we know that the (X,Y) form a
system of nice distributions. Therefore, by Lemma 3.0, and the fact that for each Yi, the distribution
Y ∗
i = N (i, σ2) incurs the greatest TVa(X,Y ∗

i ) (according to Proposition 3.0), we have

TVa(M(D)|s,M(D′)|s) ≤ TVa(N (0, σ2),
∑

ps′N (|s′|1, σ2)).

Now observe that
∑

ps′N (|s′|1, σ2) is the same distribution as N (B(k, p), σ2). This concludes the
proof for a fixed choice of sub-sampling s. Finally, note that fixing the sub-sampling is without loss of
generality because we have TVa(p1X1 + p2X2, p1Y1 + p2Y2) ≤ p1TVa(X1, Y1) + p2TVa(X2, Y2) for any
X1, X2, Y1 and Y2.

Remark 1 (Tightness of our bound) When we say our bound is tight, we mean that there are
instantiations of DP-SGD that will exactly incur the same privacy loss as our theorem predicts. Namely,
if one runs the auditing attacks to verify DP [23] for these instantiations, the difference between the
empirical lower bounds and theoretical upper bounds should be negligible. We also note that the bound
of Theorem 3.1 is only tight in the setting where we release all the intermediate steps of DP-SGD. We
do not make any claims about the tightness of our bound when we only release the final model (i.e., the
weighted sum of all the intermediate gradients) and leave this as an open question. In fact, to the best of
our knowledge, it is not understood if the best existing analysis of DP-SGD (PRV accounting and MC
accounting [11, 29]) achieve tight bounds even for groups of size 1, when we only release the final model.

Comparison with group privacy through f-DP. The seminal work of Dong et al. [7] defines the
notion of f -DP and its special case, GDP. A mechanism M is f -DP if for all neighboring datasets the
trade-off function between M(D) and M(D′) is greater than f on all points. This notion contains more
information than DP (or RDP) as it embeds the entire privacy curve. The authors propose a simple group
privacy bound; a mechanism that is f -DP, will be 1− (1− f)k-DP for groups of size k, where (1− f)k

denotes the k-fold composition of the function 1−f . The authors rightfully claim that this group privacy
bound cannot be generally improved because it is tight for the pure Gaussian mechanism. However, there
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are three main issues with using these group privacy bounds for the sub-sampled Gaussian mechanisms:
(1) The bound is not necessarily tight for the case of sub-sampling. (2) Calculating the bounds needs
estimation of the entire trade-off function (for extremely small values) which is computationally inefficient.
(3) The estimation error of the trade-off function grows exponentially with the number of compositions.
On the contrary, our domination result avoids all this issues and enables us to calculate tight group
privacy bounds for DP-SGD. Although calculating the f -DP based group privacy bound is infeasible, we
can still analytically show that our bound is better. The following proposition formalizes this statement.

Proposition 3.1 (f-DP group privacy) Let f be the optimal trade-off function for T -steps of DP-
SGD with noise multiplier σ > 0 and sampling rate p < 1. Then (ϵ, δ) parameters obtained by group
privacy for groups of size k > 1 through black-box f -DP group privacy bounds of Theorem 2.2 is strictly
worse than that of Theorem 3.1.

But the crux of the proof lies in the fact that the trade-off function is always convex and the black-box
bound will perform operations that involve f(p ·X1 + (1− p) ·X2), while the white box bounds will
leverage the knowledge of sub-sampling and achieves p ·f(X1)+(1−p) ·f(X2). This effect will compound
over multiple iterations and as long as the sub-sampling rate is below 1, and the group size is larger
than one, our bound will be strictly better.

4 Calculating the bound using Monte Carlo approximation

In this section we describe our algorithm for calculating the bound of Corollary 3.1.1. Note that the
bound described there does not have a closed form and we need to approximate it. Previous work has
explored various ways to calculate these type of bound using Monte Carlo approximation [19, 29] and
numerical methods [9, 11, 32]. However, we still need to devise a new method for calculating our bound
because previous methods are not general enough to cover the calculation of our bounds out of the box.
In this work, we focus on the Monte-Carlo methods for calculating our bound.

Recall that the bound of Corollary 3.1.1 shows how to calculate δ at a given ϵ and the formula
involves calculating TVa(X,Y ) for a pair of distributions X,Y . The procedure for calculating this
weighted total variation distance uses two key observations. This first observation is that the formula for
calculating the weighted total variation distance can be converted into an expectation form as follows:

TVa(X,Y ) =

∫
|νX(x)− aνY (x)|dx

= 2

∫
max

(
νX(x)− aνY (x), 0

)
dx+ a− 1

= 2Ex∼X

[
max

(
1− a

νY (x)

νX(x)
, 0
)]

+ a− 1

Our second observation is that we can efficiently sample points from X and we can also calculate the
ratio between νY and νX at any given point x. This is simply by calculating the ratio at each coordinate
using the binomial weights and then multiplying all the ratios in different coordinates. Hence, we can
use a simple Monte-Carlo approach to approximate this quantity. Algorithm 1 shows our procedure for
Monte-Carlo approximation of the δ for a given ϵ.

In a nutshell, the algorithm samples m points x1, . . . , xm from X. Then it calculates the ratio
ri = eϵ ·νY (xi)/νX(xi) for all xi. We can do this in n steps by calculating the ratio for each dimension and
then multiplying them. Calculating the ratio for a dimension takes time O(k) because the distribution
for each dimension is a mixture of k distributions. Note that the algorithm would calculate both
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TVeϵ(X,Y ) and TVe−ϵ(X,Y ) at the same run. This is because of Corollary 3.1.1 that requires both of
these quantities to calculate the δ. The running time of this algorithm is O(knm) and the accuracy of
approximation δ improves with the number of samples. The following Proposition shows the dependence
between the accuracy and number of samples.

Algorithm 2 Compute δ group privacy
Require: Sampling rate p, group size k, number of compositions n, noise multiplier σ, privacy parameter

ϵ, number of samples for mean estimation m
1: function gaussian_pdf(x, σ)

2: return e−
x2

2σ2

3: end function
4:
5: function binom_mixture_pdf((x, k, σ, p))
6: p← 0
7: for j ← 0 to k do
8: pj ← gaussian_pdf(x− j, σ)
9: p← p+ pj × binom_coefficient(j, k, p)

10: end for
11: return p
12: end function
13:
14: δ1 ← 0
15: δ2 ← 1− eϵ

16: for i← 1 to m do
17: r1 ← eϵ

18: r2 ← e−ϵ

19: for j ← 1 to n do
20: x ∼ N (0, σ2)
21: ν ← binom_mixture_pdf(x, k, σ, p)
22: µ← gaussian_pdf(x, σ)
23: r1 ← r1 × ν

µ
24: r2 ← r2 × ν

µ
25: end for
26: δ1 ← δ1 +

max(1−r1,0)
m

27:
28: δ2 ← δ2 + eϵ · max(1−r2,0)

m
29: end for
30: output max(δ1, δ2)

Proposition 4.0: Let M be the composition of n sub-sampled gaussian mechanisms with sampling
rate p and noise multiplier σ. Let δ be the output of Algorithm 2 ran on these parameters, with m

samples at a given ϵ. Then the mechanism M is (ϵ, δ + γ, k)-DP, with probability at least e1−2e−2mγ2 ,
where the probability is taken over the randomness of Algorithm 2.

Proof: Note that Algorithm 2 is essentially finding the mean of the random variable max
(
1− a νY (x)

νX(x) , 0
)

with m samples. This random variable is always between 0 and 1. Using a Chernoff-Hoefding bound, we
conclude that the mean estimation has error more than γe−ϵ with probability at most p1 = 2e−2me−2ϵγ2 .
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Figure 2: Group composition for 20 steps of DP-SGD with noise multiplier 1.0, sampling rate 0.01. In
two of experiments we fix ϵ = 2.0 and calculate the δ. In the other two experiments we grow ϵ linearly
and set it to (group size)× 0.5. Surprisingly, in these experiments δ does not increase much, despite the
exponential dependence of δ on the group size in the black box bound.

Therefore, the error of calculating δ2 is at most γ with probability at least 1−p1. The error of calculating
δ1 is also at most γ with probability at least 1− 2e−2mγ2 . Therefore, the error of max(δ1, δ) is at most
γ with probability at least 1− 2e−2me−2ϵγ2 − 2e−2mγ2

. We remark that it is possible to approximate δ
with more advanced Monte-Carlo techniques run with fewer samples, similar to what is done in [29].
However, for the purpose of this work, simple Monte-Carlo suffices. One might wonder if we can perform
numerical accounting instead of Monte-Carlo. We currently believe that this would be possible for group
privacy but it requires a non-black-box view of our proof. We leave this as an interesting open question.

5 Experiments

In this section we describe our experimental setup. We use a range of hyperparameters and group
sizes to calculate the group privacy bound. We calculate the group privacy using Algorithm 2. In all
experiments, we set m (number of trials) large enough so that with probability at least .99 the error of
estimate is at most 1%. Since Algorithm 2 is designed to calculate δ at a given ϵ, we sometimes need to
perform a search over ϵ that would give us the desired δ. For the experiments that require calculating ϵ
at a given δ, we perform binary search to find the right ϵ.

Comparing with the black-box bound: First we compare our bound with the black-box bound
of Theorem 2.1. In this experiment, we fix δ and aim at achieving (ϵ, δ = 10−3, k) group privacy for
different groups sizes k. We use 10 steps of sub-sampled Gaussian mechanism with sampling probability
p = 0.01 and noise multiplier σ = 1.0. Figure 1 shows that our bound can significantly outperform the
black-box bound. The growth in ϵ with group size is much closer to linear than what the black-box
bound predicts.

Note that for the black-box group privacy, the δ term grows exponentially with the group size. This
means we need to calculate the ϵ for a very small value of δ′ to be able to get δ < 10−5 after applying
the group privacy bound. That is why in Figure 1, we chose δ = 10−3. In contrast, for our bounds
there is no such issue and we can calculate ϵ for small values of δ. To illustrate this, we perform another
experiment where we fix ϵ and show the growth of δ with ϵ. For this experiment, we use 20 steps of
Gaussian mechanism with noise multiplier σ = 2.0 and sampling rate p = 0.01.

The results in Figure 2 (Blue curves) shows that the δ term grows really fast when we grow the
group size, both for our bound and the black-box bound. To show the significance of the improvement
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Figure 3: We change sampling rate and corresponding σ to ensure (1.0, 10−5)-DP when applied for 100
steps. The group privacy is much more graceful for smaller sampling.

in δ, we plot another curve, where we grow ϵ together with group in a linear way. Specifically, we set
ϵ = k × 0.5 where k is the group size. The red curves in Figure 1 shows the comparison of our bound
with the black box in this setting. As expected, in the black-box setting the δ still grows exponentially
with linearly growing ϵ but the δ calculated using our bound is almost constant.

This experiment suggests a nice approximation of group privacy for sub-sampled Gaussian mechanism
with very small sub-sampling rates. In particular, the ϵ seem to grow almost linearly with the group size
while keeping the δ constant. Although this does not constitute a privacy guarantee, it is still a good
rule of thumb.

Role of sub-sampling rate and step size on group privacy: To better understand the role of
sub-sampling on group privacy, we perform experiments by simultaneously varying the sub-sampling
rate and noise multiplier so that the (ϵ, δ) terms remain constant (1.0, 10−5) (for groups of size 1). Then
we calculate the optimal group privacy for each of these settings and compare the curves. Figures 3
show the resulting ϵ and δ terms respectively. In these experiments, we fix the number of steps to 100
and vary the sub-sampling rate to be one of [0.001, 0.01, 0.1, 1.0]. Then we find the σ that will satisfy
(1.0, 10−5, 1)-DP for each sub-sampling value. We then grow the group size for each sub-sampling rate
and report the δ at a fixed ϵ in the top figure. We also report ϵ at a fixed δ in the bottom figure.

Our results show that sub-sampling can significantly change the group privacy profile. Lower sub-
sampling rates lead to a more graceful degradation of privacy due to group size. We find the effect of
sub-sampling on group privacy quite surprising. Note that the black-box group privacy would predict the
exact same privacy curve in all scenarios. This finding might suggest an argument for using smaller batch
sizes when doing private optimization. Although previous work [6, 27] suggest that larger batch size is
better for the trade-off between accuracy and privacy, that dynamic might change if one is interested in
the privacy for larger groups.

We also provide further experiments in Appendix B to demonstrate the role of sub-sampling rate
at larger scale. We vary the sub-sampling rate and number of steps and observe that the role of
sub-sampling diminishes as the number of steps increases. We believe this is mainly because of the
behavior of the dominating pairs of distribution for sub-sampled Gaussian mechanism in the limit. We
know that these dominating pairs behave similar to the dominating pairs of Gaussian distributions as
the number of steps increase [28].
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6 Applications and Implications

In this section, we present some of the application and implications of our bounds. Further exploration
of these applications is left for future work.

Unit of Privacy: A challenging limitation of DP is that it requires a unit of privacy. The notion
of neighboring dataset determines the smallest unit that we would want to protect privacy for. The
work of Brown et al. [4] identifies this as one of the main challenges in employing DP for training
language models. They question whether we should use words, sentences, paragraphs, documents, or
even users as units of privacy. A simple solution to this issue would be to use the smallest unit of
privacy imaginable and then apply group privacy to obtain the privacy bounds for larger units. However,
the black-box group privacy bounds extremely degrade the privacy parameters, leading to meaningless
privacy guarantees for larger privacy units. Our work can change this view and help with selecting small
units of privacy, e.g., words or sentences.

Our group privacy bounds are also helpful for calculating user-level privacy [10, 16, 30], in settings
that data is collected from multiple users, in a potentially heterogeneous way. In fact, using our
general framework of Lemma 3.0, one can obtain even tighter bounds for groups/users that have certain
properties. For example, if the gradients in a group are all orthogonal (e.g., they are examples from
different classes in a logistic regression setting),

√
B(k, p) would replace B(k, p) in Theorem 3.1.

Robustness and DP: A large body of work has focused on the study of connections between robustness
and DP [17, 21, 31]. Using DP-SGD for training a machine learning model would prevent a training-time
attacker (a.k.a. poisoning attack) from changing the behavior of the trained model significantly. The
reason relies on the fact that DP would limit the influence of each individual example on the output
model. Hence, an adversary who can change a small fraction of the training data will not be able to
change the distribution of the trained model more than a certain amount, determined by DP parameters.
The (certified) robustness of the final model is determined by applying group privacy bounds, for the
groups sizes that are equal to the number of points the adversary can add to the training set. Our
improved group privacy bounds can improve the provable consequences of using DP-SGD for certified
robustness.

Privacy auditing: A challenge with differential privacy is that verifying its correct implementation is
difficult. Recent work has focused on this issue of “privacy auditing” by leveraging attacks that would
fail when differential privacy is correctly deployed [12, 22, 26]. Specifically, one would run a membership
inference attack to assert the correct implementation of DP; if membership inference succeeds with
more than certain probability, then the implementation must be incorrect. We believe our optimal
group privacy bounds can add more options for privacy auditing. Instead of individual membership
inference attacks, we can focus on group membership inference attacks to verify the correctness of DP
implementation. For example, in the context of generative models, it is observed that repetition of single
point in the training set can significantly increase its chances of getting regurgitated [5]. In light of our
group privacy bounds, an adversary that can distinguish between a model that is trained with 10 copies
of a single sample from another model that is not trained on that specific sample, can be used to audit
privacy tightly.

Fairness, accuracy, and privacy: Finally, we believe our group privacy bounds can explain some
of the observations made about the accuracy and fairness of predictions in private models [2, 3]. Our
optimal bounds on group privacy would imply that small groups will have a smaller effect on the
models behavior than what was previously thought. This could lead to models that are unfair to small
sub-populations. This effect can be exacerbated with certain hyperparameters (e.g. subsampling rate)
that will make group privacy stronger. This shows that the choice of hyperparameters should not be
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only influenced by the accuracy-privacy trade-off. There could be different hyperparameters that lead to
exact same privacy and accuracy while showing different fairness of the model.
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A Deferred proofs

A.1 Proof of Lemma 3.0

Proof: We know that (X,Y ∗
1 , Y

∗
i ) are compatible for all i ∈ [k]. Let gi be the corresponding transition

function (see Definition 3.1). Note that g1 is the identity function. Let t be constants in [0, 1] such that
the following holds: ∑

i∈[k]

api
gi(ap1/t)

= 1.

Note that this t exists because f(t) =
∑

i∈[k]
api

gi(ap1/t)
is an increasing and continuous function in t with

limt→∞ =∞ and limt→0 f(t) = 0. Therefore, there should exist a value of t that makes f(t) = 1. Now
define ti =

api
gi(ap1/t)

. We are going to use these values to break up the integration. We have,

TVa(X,Y ) =

∫
|νX(x)− aνY (x)|dx

=

∫
|νX(x)− a

(∑
i∈[k]

pi · νYi(x)
)
|dx

=

∫
|(t1 + · · ·+ tk) · νX(x)− a

(∑
i∈[k]

pi · νYi(x)
)
|dx

≤
∫ (∑

i∈[k]

|ti · νX(x)− api · νYi(x)|
)
dx

=
∑
i∈[k]

∫
|ti · νX(x)− api · νYi(x)|dx

=
∑
i∈[k]

ti ·TV api
ti

(X,Yi)

=
∑
i∈[k]

ti ·TVgi(
ap1
t

)(X,Yi)

≤
∑
i∈[k]

tiTVgi(
ap1
t

)(X,Y ∗
i )

Now we have multiple integrations on the absolute values and we need to move back to a single integration.
This is where the reason behind the choice of ti becomes clear. Let

si(x) = sign(νX(x)− gi(ap1/t)νY ∗
i
(x)).

Based on the definition of gi in Definition 3.1 we have

∀i ∈ [k], ∀x; si(x) = s1(x).

Using this, based on the fact that ti > 0 we can conclude that

∀j,∀x; sign
(∑

i∈[k]

ti
(
νX(x)− gi(ap1/t)νY ∗

i
(x)
))

= sj(x). (1)
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Now continuing our calculation of TVa we have

TVa(X,Y ) ≤
∑
i∈[k]

ti ·TVgi(
ap1
t

)(X,Y ∗
i )

=
∑
i∈[k]

∫
ti|νX(x)− gi(

ap1
t

) · νY ∗
i
(x)|dx

=

∫ (∑
i∈[k]

ti|νX(x)− gi(
ap1
t

) · νY ∗
i
(x)|

)
dx

=

∫ (∑
i∈[k]

ti · si(x) ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
))

dx

=

∫
sign

(∑
i∈[k]

ti ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
))
·
(∑

i∈[k]

ti ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
))

dx

=

∫ ∣∣∣∑
i∈[k]

ti ·
(
νX(x)− gi(

ap1
t

) · νY ∗
i
(x)
)∣∣∣dx

=

∫ ∣∣∣νX(x)−
∑
i∈[k]

ti · gi(
ap1
t

) · νY ∗
i
(x)
)∣∣∣dx

=

∫ ∣∣∣νX(x)−
∑
i∈[k]

api · νY ∗
i
(x)
)∣∣∣dx

= TVa(X, p1 · Y ∗
1 + · · ·+ pk · Y ∗

k ).

And this finishes the proof.

A.2 Proof of Proposition 3.0

Proof: The first part follows by the symmetry of isotropic Gaussian. For the second part (monotonicity)
we use the definition of TVa. Without loss of generality we can assume a ∈ [0, 1] as otherwise we
can work with TVa(P,Q)/a = TV1/a(Q,P ). Let r = ∥u1 − u2∥2. We can show that the derivative of
the integral is always positive. In the following calculations, we use c1, c2, c3 and c4 to denote positive
constants that are independent of r.

First note that x∗ = r2−2σ2 ln(a)
2r is a middle point where e−

x2

2σ2 − ae−
(x−r)2

2σ2 goes from positive to
negative as x increases. By our assumption that a ∈ [0, 1], we have that x∗ > 0. Recalling that
erf(z) = 2√

π

∫ z
0 exp(−t2)dt, and that erf(∞) = 1 so that (by symmetry) 2√

π

∫ 0
−∞ exp(−t2)dt = 1, we can
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write

TVa(P,Q) = c1

(∫ ∞

−∞

∣∣∣∣e− x2

2σ2 − ae−
(x−r)2

2σ2

∣∣∣∣ dx)
By breaking the integral in an intermediate point we have

= c1

(∫ x∗

−∞
e−

x2

2σ2 − ae−
(x−r)2

2σ2 +

∫ ∞

x∗
ae−

(x−r)2

2σ2 − e−
x2

2σ2

)
By replacing the integrals with the CDF of Gaussian distribution we have

= c1

(
1 + erf

(
x∗/
√
2σ
)
− aerf((x∗ − r)/

√
2σ)
)

+
(
a(1− erf

(
(x∗ − r)/

√
2σ
)
+ (1− erf

(
x∗/
√
2σ
))

= c2

(
erf

(
r2 − ln(a)σ2

2
√
2σr

)
+ 1− aerf

(
−r2 − ln(a)σ2

2
√
2σr

)
− a

)
.

Now, let f1(r) = erf
(
r2−ln(a)σ2

2
√
2σr

)
and f2(r) = −aerf

(
−r2−ln(a)σ2

2
√
2σr

)
. Taking the derivative with respect

to r we have

∂f1
∂r

= c3

(
1

2
√
2σ

+
ln(a)σ

2
√
2r2

)
e
−
(

r2−ln(a)σ2

2
√
2σr

)2

∂f2
∂r

= c3a

(
1

2
√
2σ
− ln(a)σ

2
√
2r2

)
e
−
(

−r2−ln(a)σ2

2
√
2σr

)2

Now note that we have e
−
(

r2−ln(a)σ2

2
√
2σr

)2

= a1/2 · e
−
(

−r2−ln(a)σ2

2
√
2σr

)2

. Therefore, we have

c4
∂TVa

∂r
= e

−
(

−r2−ln(a)σ2

2
√
2σr

)2

·
(
1 +
√
a

2
√
2σ

+
ln(a) (

√
a− 1)σ

2
√
2r2

)
.

Now since a ∈ [0, 1], we have ln(a) ≤ 0 and
√
a− 1 < 0, which means the term 1+

√
a

2
√
2σ

+ ln(a)(
√
a−1)σ

2
√
2r2

is
positive. This implies that the whole gradient is positive.

A.3 Proof of Proposition 3.0

Proof: We have

νY (x)/νX(x) = e
∥x∥2−∥x−µ∥2

2σ2 and νZ(x)/νX(x) = e
∥x∥2−∥x−c·µ∥2

2σ2 .

For all x we have

∥x− c · µ∥2 − ∥x∥2 =
d∑

i=1

c2µ2
i − 2cµi · xi =

( d∑
i=1

c2 − cµ2
i

)
+ c
(∑

µ2
i − 2µi · xi

)
= (c2 − c)∥µ∥+ c(∥x− µ∥2 − ∥x∥2).

Therefore, if νY (x)
νx(x)

> r then we have ∥x∥2 − ∥x − µ∥2 > 2σ2 · ln(r), which implies ∥x∥2 − ∥x −
µ∥2 > 2c · σ2 · ln(r) + (c − c2)∥µ∥, which in turn implies νz(x)

ν(x) > ec·ln(r)+(c−c2)∥µ∥2 . Now observe that

g(r) = ec·ln(r)+(c−c2)∥µ∥2 is an increasing and continuous function of r. Also observe that all the steps we
took are reversible, therefore we have νY (x)/νX(x) > r if and only if νZ(x)/νX(x) > g(r).
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A.4 Proof of Propostion 3.0

Proof: Let µ ∈ Rd be an arbitrary unit vector with ∥µ∥ = 1. By the symmetry of Gaussians, we
know that for any constant c ∈ R+ we have TVa(N (0d, σ2 · Id), Let µ ∈ Rd be an arbitrary unit
vector with ∥µ∥ = 1. Again by the symmetry of Gaussians, we know that for any constant c ∈ R+

we have TVa(N (0d, σ2 · Id), Let µ ∈ Rd be an arbitrary unit vector with ∥µ∥ = 1. Let us define
Y ∗
j = N (rj · µ, σ2 · Id). By Lemma 3.0 we know that for all Yj ∈ Yj we have

TVa(X,Yj) ≤ TVa(X,Y ∗
j ).

On the other hand, by Proposition 3.0 we know that for all j, j′ ∈ [k], the triplet (X,Y ∗
j , Y

∗
j′) are

compatible. Hence, (X,Y) form a nice system of distributions.

A.5 Proof of Proposition 3.1

Proof: Let fσ,p be the trade-off function associated with a single step of the sub-sampled Gaussian
mechanism with noise σ. When p = 1.0 we simply write fσ. We also define f̄(x) = 1− f(x). We have,

f̄p,σ(α) = (1− p) · α+ p · (f̄σ(α))

Now consider applying this function twice, we have

f̄p,σ(f̄p,σ(α)) = (1− p)f̄σ,p(α) + pf̄σ(f̄p,σ(α))

= (1− p)2(α) + p(1− p)f̄σ(α) + pf̄σ
(
(1− p)α+ pf̄σ(α)

)
.

We know that trade-off functions are convex, so using Jensen’s inequality we have,

f̄p,σ(f̄p,σ(α)) ≥ (1− p)2(α) + 2p(1− p)f̄σ(α) + (1− p)2f̄σ
(
f̄σ(α)

)
(2)

= (1− p)2α+ 2p(1− p)f̄σ(α) + p2f̄σ/2(α) (3)

Now let µ ≡ N (0, σ) and ν ≡ (1− p)2N (0, σ)+ 2p(1− p)N (1, σ)+ p2N (2, σ). The trade-off function
between µ and ν is equal to

1− T (µ, ν)(α) = (1− p)2α+ 2p(1− p) · fσ(α) + p2fσ/2(α),

which is equal to the right hand side of Equation 2. Using a simple induction, we can show that for all
k, defining µ = N (0, σ) and ν = N (B(k, p), σ), we can show that the trade-off function between µ and
ν is always dominated by the function fk

σ,p. Also note that this domination is strict as long as k > 1 and
0 < p < 1. This shows that for a single step of DP-SGD, our group privacy bound is strictly better than
what is entailed by applying the trade-off function recursively. For more than one step, we can simply
use Lemma 2.2 and show that our bound is strictly better for many steps of DP-SGD as well.
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B Extra experiments

B.1 Growth of group privacy with step size

In this section, we demonstrate the growth of group privacy parameters with the step size. In each plot,
we fix the sampling rate and noise parameters and calculate the group privacy at various step sizes. In
general, we observe that the growth of group privacy is faster in the smaller iterations, but it becomes
slower as the number of steps further increase.
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Figure 1: Noise Multiplier=10.00, Sampling rate=0.01.
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Figure 2: Noise Multiplier=15.00, Sampling rate=0.01.
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Figure 3: Noise Multiplier=20.00, Sampling rate=0.01.
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Figure 4: Noise Multiplier=25.00, Sampling rate=0.01.
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Figure 5: Noise Multiplier=5.00, Sampling rate=0.10.
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Figure 6: Noise Multiplier=10.00, Sampling rate=0.10.
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Figure 7: Noise Multiplier=15.00, Sampling rate=0.10.
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Figure 8: Noise Multiplier=20.00, Sampling rate=0.10.
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Figure 9: Noise Multiplier=25.00, Sampling rate=0.10.
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Figure 10: Noise Multiplier=5.00, Sampling rate=0.20.

0 250 500 750 1000 1250 1500 1750 2000

Steps

0

20

40

60

80

Group size = 1
Group size = 5
Group size = 10
Group size = 15
Group size = 20

Figure 11: Noise Multiplier=10.00, Sampling rate=0.20.
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Figure 12: Noise Multiplier=15.00, Sampling rate=0.20.
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Figure 13: Noise Multiplier=20.00, Sampling rate=0.20.
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Figure 14: Noise Multiplier=25.00, Sampling rate=0.20.

0 250 500 750 1000 1250 1500 1750 2000

Steps

0

20

40

60

80
Group size = 1
Group size = 5
Group size = 10
Group size = 15
Group size = 20

Figure 15: Noise Multiplier=5.00, Sampling rate=0.30.
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Figure 16: Noise Multiplier=10.00, Sampling rate=0.30.
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Figure 17: Noise Multiplier=15.00, Sampling rate=0.30.
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Figure 18: Noise Multiplier=20.00, Sampling rate=0.30.
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Figure 19: Noise Multiplier=25.00, Sampling rate=0.30.
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Figure 20: Noise Multiplier=5.00, Sampling rate=0.40.
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Figure 21: Noise Multiplier=10.00, Sampling rate=0.40.
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Figure 22: Noise Multiplier=15.00, Sampling rate=0.40.
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Figure 23: Noise Multiplier=20.00, Sampling rate=0.40.
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Figure 24: Noise Multiplier=25.00, Sampling rate=0.40.
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Figure 25: Noise Multiplier=5.00, Sampling rate=0.50.
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Figure 26: Noise Multiplier=10.00, Sampling rate=0.50.

0 250 500 750 1000 1250 1500 1750 2000

Steps

0

20

40

60

80
Group size = 1
Group size = 5
Group size = 10
Group size = 15
Group size = 20

Figure 27: Noise Multiplier=15.00, Sampling rate=0.50.
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Figure 28: Noise Multiplier=20.00, Sampling rate=0.50.
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Figure 29: Noise Multiplier=25.00, Sampling rate=0.50.
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Figure 30: Noise Multiplier=5.00, Sampling rate=1.00.
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Figure 31: Noise Multiplier=10.00, Sampling rate=1.00.
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Figure 32: Noise Multiplier=15.00, Sampling rate=1.00.

132



0 250 500 750 1000 1250 1500 1750 2000

Steps

0

20

40

60

80

Group size = 1
Group size = 5
Group size = 10
Group size = 15
Group size = 20

Figure 33: Noise Multiplier=20.00, Sampling rate=1.00.
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Figure 34: Noise Multiplier=25.00, Sampling rate=1.00.
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Figure 35: Noise Multiplier=5.00, Sampling rate=0.01.
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B.2 Effect of sub-sampling rate on group privacy at various step sizes

In this section, we demonstrate the effect of sub-sampling rate on the group privacy. In the following
plots, we set the step size to a fixed value T . We also fix a list of of sampling rates {pi}i∈[10]. For each
sampling rate, we carefully select a σi so that the privacy cost of performing T steps with sampling
rate pi at noise σi is exactly the same. Then we calculate the group privacy for all these settings and
compare them. Our initial experiments suggested that decreasing the sampling rate will improve group
privacy. We ablate this with various step sizes. We try to perform this ablation by plotting figures for
a various step sizes. We observe that the effect of sub-sampling rate on group privacy is much more
pronounced at smaller step sizes.
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Figure 36: Steps=500.
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Figure 37: Steps=1000.
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Figure 38: Steps=1500.
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Figure 39: Steps=2000.
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Figure 40: Steps=2500.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Group size

0

5

10

15

20

25

30

35

40

      

 Noise=1.00,  Sampling rate = 0.01
 Noise=3.21,  Sampling rate = 0.05
 Noise=6.22,  Sampling rate = 0.10
 Noise=9.31,  Sampling rate = 0.15
 Noise=12.28,  Sampling rate = 0.20
 Noise=15.34,  Sampling rate = 0.25
 Noise=18.35,  Sampling rate = 0.30
 Noise=21.97,  Sampling rate = 0.35
 Noise=24.41,  Sampling rate = 0.40
 Noise=27.47,  Sampling rate = 0.45
 Noise=30.52,  Sampling rate = 0.50

Figure 41: Steps=300.
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Figure 42: Steps=350.
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Figure 43: Steps=400.
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Figure 44: Steps=450.
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Figure 45: Steps=50.
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136



Rethinking Benchmarks for Differentially Private Image Classification∗

Sabrina Mokhtari
University of Waterloo

s4mokhtari@uwaterloo.ca

Sara Kodeiri
University of Waterloo

skodeiri@uwaterloo.ca

Shubhankar Mohapatra
University of Waterloo

s3mohapa@uwaterloo.ca

Florian Tramèr
ETH Zürich

florian.tramer@inf.ethz.ch

Gautam Kamath
University of Waterloo
g@csail.mit.edu

Abstract

We revisit benchmarks for differentially private image classification. We suggest a comprehensive
set of benchmarks, allowing researchers to evaluate techniques for differentially private machine
learning in a variety of settings, including with and without additional data, in convex settings,
and on a variety of qualitatively different datasets. We further test established techniques on these
benchmarks in order to see which ideas remain effective in different settings. Finally, we create a
publicly available leader board for the community to track progress in differentially private machine
learning.

1 Introduction

Machine learning (ML) models have been repeatedly demonstrated to leak sensitive information pertaining
to their training data. These issues manifest through a number of different types of attacks, including
membership inference [31, 56], model inversion [26], and even training data extraction [13, 14, 57]. This
can be problematic if the training data contains privacy-sensitive information belonging to people. To
alleviate such concerns, a popular solution is differential privacy (DP) [23]. DP is a rigorous notion of
individual data privacy, which can be used to mask the presence or absence of any single training data
point when observing a trained model. In particular, training a model with DP provably prevents all
the aforementioned attacks.

The past decade has seen significant effort and success in training ML models with DP, including image
classifiers [1, 18, 48, 62], large language models [2, 44, 69], and other generative models [6, 8, 12, 20, 29, 67].
However, in a recent position paper, Tramèr, Kamath, and Carlini critique a number of trends in DP
ML [63]. Most pertinent to our work, they question whether benchmarks used in DP ML are truly
measuring progress in the field, specifically in the context of DP image classification, which will be our
focus. The most common benchmark datasets used in DP image classification include MNIST [43],

∗Authors SMok, SK, and SMoh have equal contributions and are listed alphabetically in order of first name. Authors
FT and GK are listed in reverse alphabetical order.
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CIFAR-10 [41], and ImageNet [19]. While significant progress has been made on each, TKC question
whether this progress generalizes to privacy-sensitive settings where DP may be deployed. For example,
CIFAR-10 and ImageNet are both composed primarily of natural images of everyday objects. While
these datasets indeed have some privacy concerns [9], it is less clear whether they resemble domains
where DP is of high practical concern, such as, e.g., medical images. Since, informally speaking, medical
images appear to qualitatively differ from those in the aforementioned datasets, it is unclear whether
techniques previously established to be effective remain so in these settings. This question is even more
pronounced when models are pre-trained on public data (i.e., supplementary data which is not subject
to any privacy constraints), a popular trend in private ML. In such settings, the chosen “public” datasets
are often visually similar to the private ones – as a representative example, [18] treat ImageNet as public
and privately fine-tune on CIFAR-10. On the other hand, for domains such as medical images, private
images may be specialized and ill-represented in public pre-training datasets. Finally, further muddying
the waters is the fact that results on these benchmark datasets are often reported for incomparable
settings, in particular, with vastly differing public pre-training datasets. Overall, these issues make it
difficult to isolate which ideas and techniques are truly effective in privacy-critical settings.

Our contributions are as follows:

• We propose standardized benchmark datasets and evaluation settings to measure progress in DP
image classification, with a particular focus on privacy-sensitive domains;

• We release a public leaderboard for DP ML, for the community to track improvements on these
benchmarks;

• We evaluate previously established techniques for DP image classification across a variety of
settings to see which are and are not broadly effective.

2 Preliminaries

We recall the celebrated notion of differential privacy.

Definition 1 ([22, 23]) An algorithm M : X n → Y is (ε, δ)-differentially private if, for all neighboring
datasets (i.e., datasets that differ in exactly one entry) X and X ′ and all events S ⊆ Y, we have that
Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ.

DP is a quantitative definition of individual data privacy. The privacy cost is measured by the parameters
(ϵ, δ), also called the privacy budget. Smaller values of ϵ correspond to stricter privacy guarantees, and it
is standard in the literature to set δ ≪ 1

n , where n is the size of the database. Complex DP algorithms
can be built from the basic algorithms following two important properties of differential privacy: 1)
Post-processing states that for any function g defined over the output of the mechanismM, ifM satisfies
(ϵ, δ)-DP, so does g(M); 2) Basic composition states that if for each i ∈ [k], mechanism Mi satisfies
(ϵi, δi)-DP, then a mechanism sequentially applyingM1,M2, . . . ,Mk satisfies (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

Given a function f : D → Rd, the Gaussian mechanism adds noise drawn from a normal distri-
bution N (0, S2

fσ
2) to each dimension of the output, where Sf is the ℓ2-sensitivity of f , defined as

Sf = maxD,D′differ in a row ∥f(D) − f(D′)∥2. For ϵ ∈ (0, 1), if σ ≥
√

2 ln(1.25/δ)/ϵ, then the Gaussian
mechanism satisfies (ϵ, δ)-DP.

We focus on training ML models subject to DP, which (due to its post-processing property) allows
the trained model to be publicly released without further privacy concerns. The most popular method
for DP training of ML models is differentially private stochastic gradient descent (DPSGD) [1, 5, 58].
In contrast to non-private SGD where batches are sliced from the training dataset, DPSGD at each
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iteration works by sampling “lots” from the training with probability L/n, where L is the (expected)
lot size and n is the total data size. A set of queries are computed over those samples. These queries
include gradient computation, updates to batch normalization, or accuracy metric calculations. As there
is no a priori bound on these query outputs, the sensitivity Sf is set by clipping the maximum ℓ2 norm
of the gradient to a user-defined parameter C. The gradient of each point is then noised and published.
All DP optimizers follow the same framework in which they take steps on the computed noisy gradient
as in its non-private counterpart. The privacy cost of the whole training procedure is calculated using
privacy accounting techniques. We discuss the specifics of DPSGD for our experiments in Section 3.

3 Benchmark design

In this section, we report our specific prescriptions for benchmarks, including datasets, parameters, and
best practices, in a variety of settings, in order to standardize and (ideally) propel progress in DP image
classification in privacy-critical settings. We note that we (intentionally) do not introduce any new
datasets, and instead appeal to existing ones. This is because using established datasets allows for easier
comparisons between the private and non-private setting, and introducing an entirely new dataset would
serve no benefit for our setting.

Datasets We prescribe using the following two medical image datasets (which have been commonly
used in other areas of machine learning) as benchmarks for DP ML: a) CheXpert [33], a chest X-ray
dataset; and b) EyePACS [25], a diabetic retinopathy dataset. These datasets are primarily chosen due
their privacy-critical domain. We hope that progress on these benchmarks would align with progress
(i.e., increased utility) on truly private tasks in such settings. Secondarily, we choose these datasets due
to diversity in their sizes, balance of classes, and in the case of CheXpert, for inclusion of a multilabel
dataset. Further description of these datasets and justification of these choices appears in Section 4. In
addition, we recommend continuing to use CIFAR-10 [41] and ImageNet [19] as benchmarks for training
DP ML models from scratch, without any pretraining data. Indeed, keeping the caveats of [63] in mind,
the popularity of these datasets still allows for direct comparison of accuracy on these tasks, and thus to
track “how far behind” DP ML is behind the non-private setting.

Public datasets One of the most successful ways to improve the utility of DP ML has been pre-training
the model on “public” data (i.e., data free of any privacy constraints). As discussed by [63], the size and
nature of the pre-training data can dramatically affect the downstream utility of a privately fine-tuned
model. Therefore, for fair comparison between different techniques, we prescribe tracking progress with
the following datasets treated as public: a) no public data, for the “purest” measure of progress in DP
ML; b) ImageNet-1K, perhaps the most commonly used large image classification dataset c) LAION-2B,
due to it being the pre-training data for OpenCLIP’s ViT-G/14 (representing the common use-case of
privately fine-tuning a pre-trained CLIP model), and d) “anything goes.” To elaborate on the last of
these, we use “anything goes” to refer to the case when public pre-training data is unrestricted (barring
data-leakage-like considerations where the private dataset contaminates the public one): it may include
large-scale Internet datasets, additional domain-specific data, etc. As mentioned before, results in this
category may not be directly comparable with each other. Nonetheless, they serve as a measure of
absolute progress on a benchmark.

Privacy parameters It is not clear how to compare results on DP image classification at varying
levels of the privacy parameters ε and δ. For example, is 90% accuracy at ε = 1 better or worse than 95%
at ε = 2? We propose fixing the value of ε to be 1, 3, 5 and 8 to facilitate direct comparisons between
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results. This set of ε covers both high and low privacy regimes across the range usually considered in
DP ML. We additionally propose fixing δ to to be the largest power of 10 that is at most the inverse of
the training set size (consistent with previous parameter settings), though in many parameter regimes, δ
can be dramatically increased or decreased with minor effect on the value of ε.

Privacy accounting. Every DP algorithm is associated with a proof of privacy, which provides
an upper bound on the value of ε and δ. For DPSGD, this is generally automated using “privacy
accountants,” which take as input various hyperparameters and δ, and outputs the value of ε. Over time,
improved accounting methods have given increasingly tight analyses, culminating in “exact” privacy
accounting techniques [1, 28, 40, 45, 46]. However, as highlighted by some recent works [17, 42, 51],
simply using a tighter accountant may give the illusion of an improved result, even if the training
procedure is identical. Therefore, we recommend that the privacy accounting method (or, if not using
DPSGD, the specific proof followed) is reported in order to keep track of such discrepancies (ideally, all
future DPSGD works ought to use exact privacy accountants).

Applicable techniques. The most popular algorithm for DP ML is DPSGD [1, 5, 58], in part due to
its flexibility: it can be used to privately train any differentiable model, even non-convex ones. Other
methods, such as objective perturbation [15, 34, 38, 54], are usually applicable only to convex models.
Consequently, in addition to several non-convex settings, we suggest some standardized convex settings
so that a wider variety of methods may be compared and evaluated. We recommend linear probe
(i.e., logistic regression) on a) Wide ResNet-28-10 pre-trained on ImageNet-1K;1 and b) OpenCLIP’s
ViT-G/14 pre-trained on LAION-2B.

“Anything goes” zero-shot Parallel to the literature on DP ML, the general ML community has
studied the challenging “zero-shot” setting, in which goal is to correctly classify a test image without
seeing a single image in its training set. Naturally, this requires large-scale public pre-training to achieve
acceptable results. In terms of DP, this corresponds to ε = 0 but with “anything goes” pre-training
(described above). We suggest tracking the current SOTA for such settings, as a) they serve as an
important measure of absolute progress on benchmarks; and b) it is otherwise easy to report a DP
result with “anything goes” public data and ε > 0 as SOTA, despite being already dominated by existing
zero-shot results.

Overall, we remind that our community’s goal ought not be to get the highest numbers on these
specific datasets, but instead to improve our techniques and understanding of DP image classification for
settings that may generalize to those used in practice. We thus focus on a breadth of settings to hopefully
cover a range of conditions in which DP classifiers may be deployed. Even if a model can achieve high
utility on a benchmark in the “anything goes” zero-shot setting, this does not mean the problem is
necessarily “solved.” For instance, due to legal, ethical, computational, or safety reasons, depending on
the specific setting, it may not be possible to use large, uncurated public datasets for pre-training in a
real-world deployment. Therefore, we consider all settings outlined above to be of potential practical or
technical interest, and do not identify any of them as “canonical” or more important than another.

3.1 Leaderboard

Tracking progress on benchmark datasets via leaderboards is an established practice in (non-private)
ML.2 This is not yet the case for DP ML: a broad and up-to-date knowledge of the literature is required

1Inspired by [18]. While they release their weights in JAX, we release comparable PyTorch weights with the code
https://github.com/mshubhankar/DP-Benchmarks.

2See, e.g., https://paperswithcode.com/sota
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to keep track of the latest results, making entering the field especially challenging and intimidating
for newcomers. As one of our contributions, we alleviate this issue by creating and maintaining a
leaderboard for DP ML.3

Due to the particulars of the DP setting, it is unnatural to simply incorporate results into an existing
leaderboard for the non-private setting. Specifically, beyond just the specific dataset, a leaderboard
for DP ML would need to track many of the considerations already discussed, including the privacy
parameters (ε, δ), which privacy accountant was used, and which public datasets were used. Another
difference from the non-private setting is the issue of correctness. For a proposed algorithm, the DP
guarantees must be mathematically proven, and a claimed result could be false if there is a bug in
the proof. This is in addition to existing concerns from the non-private setting on whether results are
independently reproducible or not. However, since it is notoriously easy to have bugs in a proof of DP,
we incorporate a verification system to our leaderboard. By default, all results are unverified when
added. However, anyone is able to submit a pull request to our GitHub to verify that they reproduced
the result, and believe correctness of the privacy proof (if applicable).

At present, our leaderboard focuses exclusively on DP image classification (as does this paper),
though it may be extended to other problems (e.g., DP natural language understanding or generation).

(a) EyePACS (b) CheXpert (c) CIFAR-10 (d) ImageNet

Figure 1: EyePACS and CheXpert qualitatively look different than common benchmark datasets such
as CIFAR-10 and ImageNet.

4 Datasets and Architectures

Here, we describe the relevant datasets and architectures, which are later explored in the experiment
section.4

4.1 Overview of datasets

CheXpert The CheXpert dataset [33] has 224,316 chest X-ray images of size 390×320 from 64,540
patients. Images may have multiple labels, where the possible labels correspond to five pathology classes:
‘Cardiomegaly’, ‘Edema’, ‘Consolidation’, ‘Atelectasis’, and ‘Pleural Effusion’. In our work, following
prior state-of-the-art training, we re-scale all images to size 224×224 and augment the dataset using
random affine transformations [70, 71].

EyePACS Kaggle EyePACS [25] contains retinal images of diverse populations with various degrees
of diabetic retinopathy (DR). Each image is classified into one of five classes depending on the severity
of the disease. The classification task is diagnostic of DR, as measured on a scale from 0 (no DR) to 4
(severe DR). The training set consists of 35,126 and the test set contains 53,576 color eye fundus images.

3Our leaderboard is available at https://private-machinelearning.github.io/
4Any omitted hyperparameter or architectural details appear in the code repository

https://github.com/mshubhankar/DP-Benchmarks
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To speak to these particular dataset selections: as mentioned before, we chose medical images to
address a privacy-critical setting where DP may be deployed. Within this area, chest X-rays and fundus
images are two of the most common domains, so we chose one of the most popular datasets from
each of these domains. Additionally, we took guidance from [53], which also focuses on medical image
classification, and studies CheXpert and a Google-proprietary DR dataset. While there are several
public fundus photography datasets, most of them are very small (< 100 images) and thus not settings
we would expect DP to function well: EyePACS is the most popular one of an acceptable size.

4.2 Overview of architectures and techniques

ScatterNets ScatterNets [47] (SN) are convolutional neural networks (CNNs) that utilize pre-defined
wavelets for their architecture and filters. In other words, the features are “hand-crafted” rather than
learned from data, and thus use neither public nor private data. Tramèr and Boneh [62] employ this
architecture for DP image classification, using DPSGD to train either linear or convolutional layers
acting on these features, and demonstrate compelling results on MNIST and CIFAR-10, particularly for
small values of ε. We exclusively use ScatterNets without any public data.

Wide-ResNets The Wide-ResNet [72] (WRN) is a variant of the ResNet[30] that reduces issues of
vanishing and exploding gradients by making the model wider instead of deeper. De et al. [18] use them
to reach DP SOTA in multiple settings on CIFAR-10. They consider both DP training from scratch, and
DP fine-tuning after being (publicly) pre-trained on ImageNet-1K (downsampled to 32× 32, which we
call IN-32 [16]).5 To allow direct comparison, we emulate their setting as much as possible, e.g., using
weight standardization [10], group normalization, and their choices of hyperparameters for pre-training.
We use both without any public data, and pre-trained on ImageNet-1K.

Additionally, Tang et al. [60] utilize WRN-16-4 to achieve DP SOTA performance on CIFAR-10,
when no extra public data is used for pretraining. They leverage image priors generated by random
processes [3] instead of starting from random initialization, outperforming [62] and [18] when they only
train from scratch. Moreover, they achieve SOTA performance using only a linear probe, making for
a direct comparison to the linear ScatterNet method of [62]. We adopt the same architecture and
replicate their settings to the greatest extent possible, incorporating techniques such as augmentation
multiplicity and normalization. Tang et al. [60] build on the approach of De et al. [18] by using the
third-to-last layer of the network, which has a dimension of 4096. We adopt a similar strategy but
reduce the dimensionality to 2048. This adjustment is necessary due to the larger image sizes in our
datasets (CheXpert and EyePACS with 224 × 224 images) compared to CIFAR-10 (32 × 32 images)
and resource constraints.

CLIP-based models CLIP [52] is a popular contrastive learning pre-training technique, which allows
one to jointly train a language and image encoder. CLIP has been observed to enable robust zero-shot
image classification when pre-training on very large Internet datasets. We use two ViT [21] models
pre-trained using CLIP: OpenAI’s ViT-B/16 (pre-trained on the proprietary WebImageText (WIT)
dataset) and OpenCLIP’s ViT-G/14 model (pre-trained on LAION-2B [55]).6 Besides pre-training data,
these models differ in their size (12 and 48 layers, respectively) and patch size (16 and 14, respectively).
For zero-shot experiments we use these models as-is, for DP fine-tuning experiments, we use only
the image encoder as a feature extractor, and on top of that, apply either a linear layer (i.e., logistic

5They use WRN-16-4 and WRN-40-4 for from-scratch experiments and WRN-28-10 for fine-tuning experiments. For
simplicity, we use WRN-28-10 in all our experiments.

6https://github.com/mlfoundations/open_clip
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(a) EyePACS (b) CheXpert

Figure 2: Normalization generally improves the final performance of all models. For CLIP-ViT models,
GroupNorm small and large are groups of 8 and 16, respectively. For ScatterNets, GroupNorm small is
9 and large is 27. The choice of 27 over 81 is due to its superior performance. All experiments are done
at ε = 3.

regression) or a two-layer neural network (TLNN, featuring tanh/tempered sigmoid activations [48]).
We exclusively use CLIP-based models with their respective public pre-training datasets.

5 Experiments

Beyond proposing a variety of datasets and evaluation settings for benchmarking, we experimentally
investigate techniques and the resulting utility obtained therein. Some of the key questions guiding our
exporation: how many of the lessons learned in DP image classification on datasets like CIFAR-10 and
ImageNet transfer to the privacy-critical setting of medical images? How much and when does public
data help for such datasets, which may be ill-represented in public data? And, in absolute terms, how
well can we do on these datasets with DP, in various evaluation settings?

After describing our experimental setup (Section 5.1), we revisit the efficacy of several ablations
commonly employed in DP settings (Section 5.2). Finally, we make more broad conclusions about DP
image classification based on our results (Section 5.3). Our code is included in the code repository.

5.1 Experimental Setup

We use PyTorch [49], and the Opacus library [68] for DP ML. We employed the Adam optimizer [39]
across all experiments, both private and non-private, with a default learning rate of 0.001. We run
our experiments at a variety of privacy levels (ε ∈ [1, 3, 5, 8]) with fixed delta values proportional to
the inverse of the dataset size (10−6 for CheXpert and 10−5 for EyePACS), as we prescribed earlier.
Batch size and total training epochs were fixed at 1024 and 20, respectively. A hyper-parameter search
was performed to identify the optimal clipping norm within the range [0.001, 0.01, 0.1, 1, 10]. Following
established metrics for all these datasets, we use AUC for CheXpert and EyePACS, and accuracy for
CIFAR-10. We report mean and standard deviation over three independent runs. We used early stopping
for non-private numbers due to overfitting, a phenomenon we did not observe for the DP setting due to
its natural regularization properties [37].
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(a) EyePACS (b) CheXpert

Figure 3: Augmentation multiplicity helps in general for CheXpert but not for EyePACS. We evaluate
augmentation multiplicity by adding 4 and 8 augmentations of each image in the training data. All
experiments are done at ε = 3.

5.2 Revisiting DP ablations

One of the most comprehensive ablation studies for DP image classification is by [18]. By using group
normalization, large batches, weight standardization, augmentation multiplicity, and parameter averaging,
they manage to raise CIFAR-10 accuracy on a validation set from 50.8% to an impressive 79.7%. We
fix ε = 3 and, focusing on the CLIP ViTs and ScatterNets, run the exact same ordered sequence of
ablations, without carrying forward the latest technique if it does not show improved utility. Broadly
speaking, while [18]’s techniques proved highly effective for CIFAR-10, our results reveal mixed outcomes
depending on various parameters.

Normalization Batch normalization [32] is not compatible with DPSGD because it combines informa-
tion across a batch, making it impossible to bound the impact of a single image in the dataset. Instead,
prior work has shown that variants including group normalization [66] and data normalization can be
suitable replacements [7, 18, 24, 62].

Group normalization splits the channels of the hidden activations of an image into groups and
normalizes the activations within each group. For the CLIP ViT models, with an input dimension of 512
and 1280 for the B/16 and G/14 respectively, we experiment with 8 and 16 groups. For Scatter features,
with dimension (243, H/4, W/4) for RGB images and following [62], we use 9, 27, and 81 groups. Data
normalization works on data channels by normalizing using the corresponding mean and variance across
the training data. Normalizing in such a way, however, incurs a privacy cost as the per-channel means
and variances must be privately estimated. We use Gaussian noise with (σ = 8) to estimate these means
and variances for all runs, following [62].

In Figure 2 we show that normalization generally improves the final performance of all models,
though the most effective normalization differs across architecture and dataset. Interestingly, the four
experiments where data normalization was superior involved models with larger unclipped gradients. In
these cases, the optimal clipping norm chosen during hyperparameter tuning was also the highest value
(10). This suggests that data normalization can effectively manage large gradient magnitudes, especially
when clipping underestimates the true gradient norms. Detailed results for our experiments are given in
Table 1 and Table 2.
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Table 1: Studying the impact of normalization for ScatterNet + CNN, normalization consistently
improves performance. Data normalization tends to outperform group normalization for EyePACS and
CIFAR-10, particularly due to the large gradients of their Scatter features.

Dataset Model Baseline DataNorm GroupNorm9 GroupNorm27 GroupNorm81
EyePACS (AUC) SN + CNN 57.1± 0.38 66.35± 0.12 60.34± 0.22 62.41± 0.24 63.68± 0.15

CheXpert (AUC) SN + CNN 79.15± 0.26 80.74± 0.62 79.53± 0.28 80.99± 0.08 80.72± 0.35

CIFAR-10 (Acc) SN + CNN 55.18± 0.28 68.29 ± 0.17 65.97± 0.13 66.26± 0.11 66.45± 0.45

Table 2: Normalization impact for CLIP ViT models: Normalization generally improves performance,
but it also depends on the architecture and dataset. Normalizations marked in red show a drop in
performance compared to the baseline.

Dataset Model Baseline DataNorm GroupNorm8 GroupNorm16
EyePACS B/16 + Linear 65.44± 0.04 68.2± 0.04 69.28± 0.06 69.52 ± 0.08
EyePACS B/16 + TLNN 67.89± 0.06 68.86± 0.03 69.55 ± 0.06 69.41± 0.04
EyePACS G/14 + Linear 66.54± 0.04 72.04 ± 0.03 72.01± 0.04 71.78± 0.01
EyePACS G/14 + TLNN 70.30± 0.13 72.66 ± 0.03 72.1± 0.17 72.12± 0.31
EyePACS G/14(CLIPA) + Linear 63.88± 0.08 73.02 ± 0.2 70.7± 0.06 70.62± 0.07
EyePACS G/14(CLIPA) + TLNN 64.9± 0.2 72.9 ± 0.1 70.87± 0.25 70.8± 0.2

CheXpert B/16 + Linear 76.05± 0.19 78.31± 0.04 78.35 ± 0.05 78.03± 0.1
CheXpert B/16 + TLNN 78.21± 0.07 78.42± 0.07 78.5± 0.02 78.86 ± 0.1
CheXpert G/14 + Linear 79.32± 0.08 81.6 ± 0.01 81.55± 0.05 81.18± 0.2
CheXpert G/14 + TLNN 81.80 ± 0.06 80.48± 0.33 81.37± 0.1 81.47± 0.17
CheXpert G/14(CLIPA) + Linear 72.39± 0.07 76.12± 0.4 77.34 ± 1.1 77.17± 0.5
CheXpert G/14(CLIPA) + TLNN 77.65± 0.89 75.74± 1.1 77.38± 0.3 77.43 ± 0.7

CIFAR10 CLIP + Linear 99.64(93.91) 99.76(94.41) 99.75(94.43) 99.75(94.57)
CIFAR10 CLIP + TLNN 99.69(94.10) 99.74(94.15) 99.74(94.36) 99.75(94.51)

Larger Batch Size The impact of larger batch sizes in differentially private training has been observed
both theoretically [4, 59] and empirically [2, 18]. In Table 3, scaling the batch size from 1024 to 4096
showed that CheXpert benefited in 80% of experiments, while EyePACS did not. This disparity is likely
due to CheXpert having a training set six times larger than EyePACS, resulting in fewer model update
steps for EyePACS and potential underfitting with a fixed number of epochs. We further observed that
increasing the number of epochs showed a positive impact of larger batch sizes on EyePACS when using
the ScatterNet model.

Weight Standardization We experiment with weight standardization (WS) on the Scatternet +
CNN model as it applies to only convolution layers. From our results in Table 3, we observe that weight
standardization does not help with EyePACS but helps with CheXpert and CIFAR-10. As alluded by
prior work [10, 18], we also observe a positive correlation of group normalization with WS. However,
due to a limited number of experiments, we do not have strong evidence either way.

Augmentation Multiplicity We apply a sequence of augmentations to our benchmark datasets:
reflect padding, random cropping, and random horizontal flipping. While [18] recommend 16 augmenta-
tions per image, due to computational constraints with large datasets, we use 4 and 8 augmentations. As
shown in Figure 3, contrary to [18]’s findings, augmentation multiplicity (augmult) does not consistently
yield positive effects. Except for one experiment, (ViT-G/14+TLNN), augmentations generally benefit
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(a) EyePACS (b) CheXpert

Figure 4: Pre-training datasets have different impacts: Wide-ResNet, pretrained on ImageNet, performs
best on EyePACS, while ViT-G/14 with linear probe surpasses Wide-ResNet 28-10 linear probe across
all ε values on CheXpert. Furthermore, ViT-G/14 achieves near-random performance on EyePACS in
zero-shot settings but attains a non-trivial 59.11% AUC on CheXpert.

(a) EyePACS (b) CheXpert

Figure 5: Pre-training public data is more beneficial with higher ε values. For CheXpert, ScatterNet
performs better at smaller ε values, while pretrained models show marginal improvements at larger ε
values. Similarly, for EyePACS, CLIP ViT-G/14 linear performs better as ε value increases.
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Table 3: Studying all ablations together, we observe an almost consistent improvement in performance
for CIFAR-10, whereas this pattern is not observed with the other datasets.

Dataset Model Best Normalization +Larger Batch +WS +Best Augmult +EMA
EyePACS SN + CNN 66.35± 0.12 66.24± 0.23 65.81± 0.06 65.69± 0.42 66.65 ± 0.16
EyePACS B/16 + L 69.52 ± 0.08 68.95± 0.24 - 69.04± 0.05 69.09± 0.12
EyePACS B/16 + TLNN 69.55 ± 0.06 69.16± 0.28 - 69.24± 0.08 69.3± 0.21
EyePACS G/14 + L 72.04 ± 0.03 71.59± 0.24 - 71.45± 0.37 71.29± 0.17
EyePACS G/14 + TLNN 72.66± 0.03 73.07 ± 0.06 - 73.07± 0.05 73± 0.03
EyePACS CLIPA + L 73.02 ± 0.2 68.5± 0.07 - 68.37± 0.05 70.94± 0
EyePACS CLIPA + TLNN 72.09± 0.1 72.17 ± 0.1 - 72.04± 1.6 71.9± 0.07

CheXpert SN + CNN 80.99± 0.08 81.54± 0.34 82.11± 0.29 81.41± 0.3 82.24 ± 0.22
CheXpert B/16 + L 78.35± 0.05 78.42± 0.07 - 78.65 ± 0.1 78.65 ± 0.04
CheXpert B/16 + TLNN 78.86± 0.1 78.86± 0.1 - 78.97± 0.12 79.01 ± 0.1
CheXpert G/14 + L 81.6± 0.01 81.76± 0.05 - 82.04 ± 0.14 82.01± 0.05
CheXpert G/14 + TLNN 81.8± 0.06 81.04± 0.16 - 81.06± 0.34 81.14± 0.26
CheXpert CLIPA + L 77.34± 1.1 80.17± 0.08 - 80.38 ± 1.5 80.34± 0.15
CheXpert CLIPA + TLNN 77.43± 0.7 80.4± 0.2 - 80.75 ± 0.18 80.52± 0.02

CIFAR10 B/16 + L 99.75(94.57) 99.74(94.49) - 99.77(94.76) 99.76(94.67)
CIFAR10 B/16 + TLNN 99.75(94.51) 99.76(94.55) - 99.79(94.81) 99.78(94.76)
CIFAR-10 SN + CNN 68.29± 0.17 66.47± 0.31 68.96± 0.26 69.16 ± 0.08 68.07± 0.24

CheXpert but not EyePACS. Future work may explore the effectiveness of dataset-specific augmentations,
which could potentially yield more beneficial results. We show detailed experiment results in Table 4.

Parameter Averaging The final ablation that [18] suggests is the exponential moving average
(EMA)[50] of all the parameters in the model. In Table 3, we notice that EMA occasionally improves
performance, which contradicts the findings of [18] that it consistently enhances results across all
experiments.

5.3 Experimental findings

We highlight some findings from our experimental results.

Different pre-training datasets offer varying degrees of improvement depending on the
private data We compare representative models publicly pre-trained on a variety of datasets on both
CheXpert and EyePACS. Results are displayed in Figure 4. For the case of no pre-training data, we
choose ScatterNet+Linear, due to its consistently superior utility compared to Wide-ResNet trained
from scratch, particularly for high privacy (i.e., low ε) settings.

On the other end of the spectrum, when we allow large-scale public pre-trarining, the CLIP ViT
models provide a good indication of zero-shot performance (i.e., ε = 0).

When analyzing CheXpert, ViT-B/16 performs close to random in the zero-shot setting, whereas
ViT-G/14 achieves an AUC of 59.11%, moderately better than random. Moving from ScatterNet+linear
to Wide-ResNet+Linear, there is a noticeable decrease in AUC, yet ViT-G/14 consistently outperforms
across various ε values, indicating that ViT-G/14 is a better fit for CheXpert. Notably, at ε = 8,
Wide-ResNet with full fine-tuning exceeds the performance of ViT-G/14. However, considering that
Wide-ResNet is fully fine-tuned while ViT-G/14 is not, this doesn’t necessarily make Wide-ResNet
better suited for CheXpert. Nevertheless, for smaller ε, it is clear that ViT-G/14 is the superior model
with only linear fine-tuning.
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Table 4: Studying the impact of augmentation multiplicity, we find that it consistently improves
performance for CIFAR-10. However, looking at EyePACS and CheXpert, we observe inconsistent
behavior, except that it generally seems to reduce performance with EyePACS. For the third column, we
take the best result from Table 3 after best normalization, larger batch size, and weight standardization.

Dataset Model Norm + Larger BS + WS +Augmult(4) +Augmult(8)
EyePACS SN + CNN 66.35 ± 0.12 65.69± 0.42 65.36± 0.19
EyePACS B/16 + L 69.52 ± 0.08 69.04± 0.05 68.99± 0.11
EyePACS B/16 + TLNN 69.55 ± 0.06 69.24± 0.08 69.35± 0.2
EyePACS G/14 + L 72.04± 0.03 71.45± 0.37 71.36± 0.24
EyePACS G/14 + TLNN 73.07± 0.05 73.07 ± 0.05 73.02± 0.07
EyePACS G/14 (CLIPA)+ L 73.02± 0.2 68.37± 0.05 68.14± 1.2
EyePACS G/14 (CLIPA)+ TLNN 72.9± 0.1 72.04± 1.6 71.98± 0.3

CheXpert SN + CNN 82.11± 0.29 81.41± 0.3 81.39± 0.41
CheXpert B/16 + L 78.42± 0.07 78.58± 0.04 78.65 ± 0.1
CheXpert B/16 + TLNN 78.86± 0.1 78.91± 0.04 78.97 ± 0.12
CheXpert G/14 + L 81.76± 0.05 82.04 ± 0.14 81.9± 0.19
CheXpert G/14 + TLNN 81.8± 0.06 81.06± 0.04 81.03± 0.1
CheXpert G/14 (CLIPA)+ L 77.34± 1.1 80.34± 0.2 80.38 ± 1.5
CheXpert G/14 (CLIPA)+ TLNN 77.43± 0.7 80.5± 0.1 80.75 ± 0.18

CIFAR-10 (ACC) SN + CNN 68.96± 0.26 69.07± 0.2 69.16± 0.08
CIFAR-10 (ACC) B/16 + L 99.75(94.57) 99.76(94.68) 99.77(94.76)
CIFAR-10 (ACC) B/16 + TLNN 99.76(94.55) 99.78(94.75) 99.79(94.81)

Looking at Figure 4 for EyePACS, both CLIP ViT models show random performance in the zero-
shot setting, indicating no improvement from pretraining. Conversely, Wide-ResNet linear exhibits
a significant performance boost when transitioning from ScatterNet linear to Wide-ResNet linear,
maintaining its superiority across all ε values. Although we notice that as we move toward less private
regimes, the power of pre-trained ViT-G/14 becomes more evident, particularly from ε = 1 to ε = 3,
approaching the performance of Wide-ResNet linear. However, there remains a substantial gap between
fully fine-tuned Wide-ResNet and the other models, unlike CheXpert, suggesting that Wide-ResNet is
better suited for EyePACS.

Public pre-training data helps more with higher ε values We compare feature generation
methods in Figure 5 since, in all cases, there is a linear classifier on top of diverse feature extractors.
On CheXpert, linear fine-tuning with ScatterNet shows the best performance at ε = 1. However, as
ε increases, pretrained models, especially ViT-G/14, begin to outperform other methods significantly.
While full fine-tuning of CLIP has not been explored, a direct comparison of features shows ViT-G/14’s
superiority when ε is sufficiently large. As ε value increases further, ViT-G/14’s performance improves
notably, highlighting its strong pretrained performance under less stringent privacy constraints.

When comparing the best performance on CheXpert across our proposed methods, ScatterNet
achieves superior results compared to CLIP ViT models and Wide-ResNet on ε = 3, as shown in Figure
5. However, as ε values increase, pretrained models begin to perform better, and the performance gap
between ScatterNet and the other models widens.

For EyePACS, we don’t see the same pattern, likely because EyePACS is a much smaller dataset
(about one-sixth the size) and Scatter features have high dimensionality, making it hard to balance this
complexity with private training. We use ScatterNet linear as the baseline for the no pretraining regime
and compare it to other architectures’ linear fine-tuning for a fair comparison.
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Table 5: Test AUC for EyePACS at different epsilons. Baselines include ScatterNet (SN), WideResNet
(WRN) and CLIP models on datasets with different public data pre-training. The SOTA is due to [64].

Public data Model Test AUC (%)
ε = 1 ε = 3 ε = 5 ε = 8 ε =∞

None SN + L 59.77± 0.35 61.92± 0.16 62.32± 0.37 62.5± 0.28 69.70± 0.11
None SN + CNN 63.73± 0.11 66.36± 0.17 66.59± 0.43 67.37± 0.27 69.28± 0.20
None WRN-16-4+L 61.57± 0.02 63.29± 0.04 63.7± 0.04 63.95± 0.04 67.74± 0.01
None WRN (Scratch) 55.45± 0.18 56.53± 0.08 57.14± 0.34 57.65± 0.22 61.97± 0.09
IN-32 WRN + Linear 67.73± 0.15 68.68± 0.05 68.91± 0.10 69.10± 0.03 73.21± 0.09
IN-32 WRN (Full) 69.34± 1.09 79.21± 0.83 79.84± 0.27 80.78± 0.38 83.61± 0.03
WIT B/16 + Linear 63.9± 0.04 65.44± 0.04 66.1± 0.05 66.6± 0.12 69.93± 0.01
WIT B/16 + TLNN 65.12± 0.04 67.89± 0.06 69.22± 0.1 69.84± 0.02 70.54± 0.01
LAION G/14 + Linear 63.42± 0.17 66.54± 0.04 68.07± 0.2 69.03± 0.06 69.88± 0.2
LAION G/14 + TLNN 65.47± 0.02 70.30± 0.13 71.74± 0.3 72.3± 0.19 73.36± 0.15
DataComp1B G/14(CLIPA) + Linear 63.42± 0.06 63.88± 0.08 63.8± 0.12 64.33± 0.32 70.87± 0.01
DataComp1B G/14(CLIPA) + TLNN 64.41± 1.00 64.9± 0.20 65.07± 0.26 65.67± 0.08 75.42± 0.08
IN-1K SOTA - - - - 95.1

As illustrated in Figure 5, increasing the ε value amplifies ViT-G/14’s performance advantage over
the ScatterNet baseline, widening the gap. However, we do not observe any significant changes in
ViT-B/16 and Wide-ResNet linear. ViT-B/16 appears to perform poorly regardless of privacy settings.
On the other hand, Wide-ResNet linear consistently maintains a significant gap between its linear model
and ScatterNet. This can be explained by the fact that Wide-ResNet linear can already achieve high
AUC in the ε = 1 case, leaving little room for improvement.

The fact that Wide-ResNet maintains its advantage from the start is not surprising, given that as
discussed earlier, the pre-trained model seems to help with EyePACS the most. However, ViT-G/14’s
performance improves more as the ε value increases. The detailed numbers for this experiment are
provided in Table 5 and Table 6.

Progress on CIFAR10 does not translate to progress on benchmark datasets Looking at
Figure 4, we notice that ViT-G/14 achieves an astonishing 99.75% zero-shot accuracy on CIFAR-10.
In stark contrast, the same model’s zero-shot performance on CheXpert and EyePACS is significantly
lower, with AUC scores of 59.11% and 50.73%, respectively—the latter essentially equating to random
guessing. Additionally, Wide-ResNet achieves 94.7% accuracy on CIFAR-10 at ε = 1, yet only 78.52%
and 71.00% AUC on CheXpert and EyePACS, respectively.

Upon reviewing the ablation experiments in section 5.2, it becomes evident that the techniques
beneficial for CIFAR-10 do not necessarily yield similar advantages for EyePACS and CheXpert datasets.
The patterns observed in CIFAR-10 did not replicate in these medical image datasets, and notably,
performance on CheXpert and EyePACS showed inconsistency.

Additionally, we observe that incorporating synthetic data as demonstrated by Tang et al. [60], leads
to SOTA performance on CIFAR-10 without pretraining. However, in our experiments, ScatterNet
outperforms [60]’s approach on CheXpert, whereas on EyePACS, Tang et al. achieve better results.

6 Related Work

Several works have evaluated the privacy-utility tradeoffs for DPML algorithms [35, 36, 73]. Jayaraman
et al. [36] explored the impact of various variants of DP for ML algorithms. They explored the privacy
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Table 6: Test AUC for CheXpert at different epsilons. Baselines include ScatterNet (SN), WideResNet
(WRN) and CLIP models on datasets with different public data pre-training. The SOTA is from
[7](Private) and [70](Non-Private).

Public data Model Test AUC (%)
ε = 1 ε = 3 ε = 5 ε = 8 ε =∞

None SN + CNN 78.16± 0.22 79.15± 0.26 79.16± 0.18 79.68± 0.04 80.65± 0.12
None SN + Linear 77.43± 0.15 77.95± 0.31 78.18± 0.09 78.30± 0.06 78.94± 0.13
None WRN-16-4+L 76.81± 0.02 77.15± 0.05 77.19± 0.05 77.25± 0.01 77.49± 0.03
None WRN (Scratch) 76.9± 0.02 77.8± 0.04 77.89± 0.05 78.68± 0.10 87.31± 0.07
IN-32 WRN + Linear 74.95± 0.15 75.29± 0.07 75.31± 0.08 75.52± 0.16 75.91± 0.08
IN-32 WRN (Full) 78.46± 0.07 79.40± 1.57 80.98± 0.42 82.62± 0.94 87.62± 0.09
WIT B/16 + Linear 75.03± 0.03 76.05± 0.19 76.29± 0.06 76.88± 0.12 76.89± 0.01
WIT B/16 + TLNN 77.28± 0.19 78.21± 0.07 78.33± 0.04 78.54± 0.06 78.56± 0.01
LAION G/14 + Linear 77.28± 0.19 79.32± 0.08 80.02± 0.12 80.42± 0.05 80.48± 0.02
LAION G/14 + TLNN 80.63± 0.4 81.80± 0.06 82.25± 0.02 82.27± 0.0.4 82.28± 0.01
DataComp1B G/14(CLIPA) + Linear 71.45± 0.27 72.39± 0.07 72.98± 0.38 72.37± 0.41 78.35± 1.3
DataComp1B G/14(CLIPA) + TLNN 77.3± 0.60 77.65± 0.89 77.67± 0.25 77.51± 0.85 80.62± 0.06
IN-21K SOTA 86.3 - - 89.2 -
IN-1K SOTA - - - - 93 7

leakage concerning the privacy parameter ϵ for the same algorithm. The work of Zhao et al. [73] and
Jarin et al. [35] similarly study the privacy-utility tradeoffs for different DP ML algorithms and evaluate
them against membership inference attacks. There have also been some attempts at benchmarking
DP algorithms [27, 61, 65]. Tao et al. [61] and Gong et al. [27] benchmark different synthetic data
generation algorithms for tabular data and image data respectively. The work of Wei et al. [65] is
closest to our work, where they benchmark different DPML algorithms on standard ML datasets such as
MNIST/CIFAR-10 and comment on the effects of improvements made in DPML literature. In our work,
we take a different stance than them and propose a new benchmark based on privacy-critical medical
datasets. Compared to their work, we also experimented with more established architectures based on
various techniques, such as Scatternets and CLIP-based models.

7 Future Work

While our work focused on image classification, future research should explore benchmarks in other
areas such as Natural Language Understanding and Generation. In addition, to ensure fair comparisons,
future work could investigate the use of more advanced model architectures. For instance, experiments
using the NFNet-F7 [11] model pre-trained on ImageNet-1K could be compared with our Wide-ResNet
experiments.

Future research should also extend to a wider range of datasets, both within and beyond the medical
domain. This exploration will help in understanding the generalizability of DP ML techniques and
identifying domain-specific challenges.

The continued maintenance and updating of the leaderboard we have established will be crucial for
tracking long-term progress in the field and identifying emerging trends or breakthroughs. This ongoing
effort will provide valuable insights into the evolution of DP ML techniques over time.
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8 Conclusion

We suggest a number of standardized settings for benchmarking DP image classification, particularly
with a focus on privacy-critical domains such as medical images. We also provide a leaderboard to
help track progress on image classification benchmarks. In our experimental investigation, we find that
several of the techniques which have enjoyed great success for DP ML are not universally effective across
datasets and architectures, and furthermore that progress on standard benchmarks like CIFAR-10 do
not transfer to medical images. Of course, it is hard and rare to design universally effective techniques.
Indeed, our experiments are for a limited number of datasets and a limited number of architectures, so it
is impossible to make a conclusion broad enough to encompass the entire field of DP image classification.
However, it is clear that present work leaves the door open for new ideas and techniques that push the
envelope on private image classification in these settings.
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