
The Evolution of Vector Search: Data Engineering and ML Aspects

Yannis Papakonstantinou
*Google Cloud, yannispap@google.com

1 Introduction

Approximate Nearest Neighbor Search (ANNS) has been an active area of research for the last decades.
More recently, the emergence of Generative AI (GenAI) and the emergence of powerful embedding
models has led to a big surge of research activity. It also led to a large number of vector search offerings
both from purpose-built vector databases as well as from databases and data warehouses that added
vector and ANNS abilities.

While ANNS is not a new research problem, we believe that this area deserves further research
for multiple reasons: The first (and obvious) reason is that whenever an area obtains a much higher
importance it becomes worthy to dive deeper into its research and strive for perfection. ANNS is no
exception to this. Thus, we appropriately see many research works that bring forth indexing improvements,
quantization improvements and algorithmic improvements to improve the performance/recall Pareto of
ANNS.

But we also believe that there are genuinely novel research needs in ANNS, beyond pure ANNS
research, which emerged along with the recent surge. In this special issue of the Data Engineering
Bulletin, we highlight the data engineering challenges in bringing vector search to databases (Section 2)
and in expanding from pure ANNS to the larger problem of raising the quality of search(Section 3). We
highlight also how ML can automate the solution to many of the data engineering problems we describe.

2 Vector Search meets Databases

Vector search is quickly becoming a staple of database applications, which use it for improved semantic
search and in GenAI applications as an enabler of the Retrieval Augmented Generation (RAG) pattern.
Similarly, in data warehouses it fuels analytics applications, such as classification, entity resolution
and deduplication, search and anomaly detection in log analytics and other applications thanks to its
powerful semantic matching ability.

This expansion brings myriads of database developers and data engineers to ANNS. But these
developers are used to SQL’s environment, which provides transactional consistency, declarative interfaces
and physical-logical independence, which means that the query optimizer will figure out the best algorithm.
Furthermore, we see that the new use cases of semantic search in databases typically involve SQL queries
that perform ANNS along with filters on the structured attributes of the table that has the vectors
and/or filters on attributes of tables that join with it.

2.1 Ease of Use

SQL developers, accustomed to SQL’s declarativeness and physical-logical independence face an unfamiliar
situation where they have to learn about their index choices, the esoteric parameters of each index
and the respective index creation and search algorithms. The developers often need to choose between

89



different indexing methods, the most prominent being tree-quantization based indices and graph-based
indices. Then they need to correctly configure their chosen index. Finally they also need to configure
search parameters, which are particular to each algorithm. For example, configuring a graph-based index
requires setting the memory space and (at least) two esoteric parameters, which are the number of edges
per node and the number of candidates from which these edges will be chosen. Similarly for a tree-based
index the user has to set the number of levels, vectors per leaf and fanout of the internal nodes.

What the developers truly care about is to meet the latency, queries per second (qps) and quality
(recall) requirements of their application. The only way to meet them is by heavy experimentation with
the index build parameters and the search parameters. Especially for SQL developers and users the
manipulation of such parameters is a regression to pre-SQL times; during the last 3-4 decades SQL users
are accustomed to just declaring indices and queries and expect the system to take care of the rest.
Data engineering research is needed on effective, high level interfaces that receive the requirements and
automate optimization. We believe that ML techniques will have to play a major role in automating
optimization. As an alternate to complete automation, efficient and credible experimentation and tuning
systems can allow database developers to semi-automate the process of achieving their performance
goals.

Ease-of-use includes the capability of databases and data warehouses to automatically compute
embeddings for the unstructured data and appropriately index them, so that the developers need not
take care of the pipeline themselves. In the same spirit, ease-of-use also includes transactional consistency
between the source data, their embeddings and the indices. Sufficient transactional consistency has been
achieved by many recent releases that rely on the usual disk-based durability. Database developers want
vector search to perform well from disk but also work very efficiently when there is plenty of memory.
Database research is needed on how to combine the best of both worlds: Transactionally store the
data in disk, yet achieve performance commensurate with a purpose-built main memory solution when
the database instance has enough memory at its disposal, and the queries and associated datasets are
non-trivial.

2.2 Challenges in queries that combine SQL filters, joins and vectors

Searches are often accompanied by structured data filters. Querying the structured data directly from
the tables that they are found is far more convenient and manageable than the approach that is followed
by purpose-built vector databases, where the structured data are organized into the vector index.
The combination of filters, joins and vector-based ranking creates novel query execution and query
optimization problems. The conventional method had been a choice between prefiltering (i.e., first
evaluate the conditions and then do brute force evaluation of distances for the qualified rows/vectors)
and postfiltering, i.e., first use the ANNS index to get a large number of candidates, then evaluate the
conditions. We see significant promise in inline filtering techniques where the conditions are evaluated
as the search procedure navigates the index. We believe there is important database research to be done
on both the plan execution primitives and the optimization of their usage.

Works that create special index structures for accelerating filtered search queries have also recently
emerged. We expect further advances in this area and the emergence of a plurality of approaches
since there are multiple requirements, which will contradict each other: Some approaches will excel
in particular types of filters while others will have broader scope of conditions. Some approaches will
rely on “heavy” special vector index structures (eg, structures that weave the structured data in the
vector index) and thus have the expected downsides on maintenance and memory footprint, while other
approaches will work with minimal (or even no) modifications to the vector indices themselves.

90



3 Next Generation Search: Raising the Search Quality

Organizations want to enable higher result quality, which typically translates to recall, for their users’
searches. This leads to the use of technologies beyond plain vector search and plain embeddings,
whose inclusion in the search architecture is more intricate than a mere change of the embedding
model. Consequently, these technologies invite respective research questions on the engineering of the
search. Many of these technologies are already in widespread adoption and many more will likely be
widely adopted soon. We overview a few of them next and present related data engineering research
opportunities.

3.1 Hybrid Search

It is widely accepted that search achieves higher quality when semantic search (that is, vector search)
is combined with classic text search. While vector search captures the semantics aspect of the search,
classic text search solves the needle-in-the-haystack problem by ensuring that the data mentioning the
specific requested keywords/terms are not missed. The currently prevalent methods of combining vector
search and text search perform vector search in isolation from text search and vice versa. Then they
combine the results of the text search and the results of the vector search afterwards. These methods
are open to simplification and also to performance and quality optimization by intertwining the two
types of search closer.

3.2 Semantic Search that trades off Quality, Performance and Simplicity

Diving deeper, we see that a stack of techniques emerges around retrieval and reranking, where as we go
up the stack these techniques increase the accuracy (quality) of semantic search but also the latency/cost
and/or the difficulty of deploying. We list characteristic techniques here in order of ascending quality.

1. Vector search over single embeddings remains the cheapest/fastest semantic retrieval method.
Interestingly, there is not yet a benchmark to evaluate out-of-the-box solutions that would choose
embedding models and autoconfigure vector search.

2. The fairly mature chunking and the associated crowding (during search) are simple techniques
that slightly increase cost and latency by splitting long text data and thus having multiple vectors
per doc.

3. Recently emerging supervised vector adaptation techniques (eg, [1] improve both quality and
performance but require the customer to provide a small number of examples of desired results.

4. Multivector search (eg [2]) elevates quality by partially bringing in the benefits of cross-attention
relevance ranking (#5) while keeping the efficiency benefits of computing embeddings and indexing
them in advance. Data engineering challenges will appear in incorporating multivector retrieval
in current vector systems (eg, see [3]). Furthermore, the increased number of options invites ML
techniques for automating configuration and search optimization.

5. Cross-attention relevance (re-)rankers conceptually are functions relevance(Question, Data) that
return a score for the relevance of the question to the data. Since a score based on cross attention
cannot be precomputed, it is far more expensive than vector search. However, for their contribution
in raising recall, they emerge as a common tool for reranking the results of vector search or hybrid
search.

91



6. LLMs provide the highest flexibility as the user/developer can create a prompt that guides the
LLM in how to rank. LLM-based algorithms may solicit relevance scores from the LLM for each
to-be-ranked data item. But other algorithms are also possible that do not base ranking on
relevance scoring; for example, feeding the question and the full set of to-be-ranked data items to
the LLM prompt and asking it to spot the most relevant to the question.

Ultimately higher level abstractions are needed to give users the ability to achieve optimization
of their goals on performance, cost and latency without having to learn the esoteric aspects of each
technology. Until such time where optimization is sufficiently automated, efficient and easy-to-use
experimentation techniques will be needed to semi-automate the optimization of combinations of these
technologies.

4 Conclusion

Recent embedding models of high search quality as well as the interest in RAG have turned vector
search into a focus for industry and research. While pure ANNS has a long history in the research
community, we believe that we are in the early stages of the larger problem: Quality search that includes
the structured data, textual indices and many techniques that improve semantic search. This research
will entail both novel ML-based advances but also advances in ANNS and in the data engineering of
end-to-end systems that use these techniques.

5 Bio

Yannis Papakonstantinou is a Distinguished Engineer, working on Query Processing and GenAI, at
Google Cloud. Naturally vector search and, more broadly, powerful search is among the topics he works
on. He is also an Adjunct Professor of Computer Science and Engineering at the University of California,
San Diego, following many years of having been a UCSD regular faculty member. Previously he was
an architect in query processing & ETL at Databricks. Earlier, he was a Senior Principal Scientist at
Amazon Web Services from 2018-2021 and was a consultant for AWS since 2016. He was the CEO and
Chief Scientist of Enosys Software, which built and commercialized an early Enterprise Information
Integration platform for structured and semistructured data. The Enosys Software was OEM’d and sold
under the BEA Liquid Data and BEA Aqualogic brand names and eventually acquired by BEA Systems.
He has published over one hundred twenty research articles that have received over 20,000 citations.
Yannis holds a Diploma of Electrical Engineering from the National Technical University of Athens, MS
and Ph.D. in Computer Science from Stanford University (1997).

References

[1] Jinsung Yoon, Yanfei Chen, Sercan Aric and Thomas Pfister. Search-Adaptor: Embedding
Customization for Information Retrieval. Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2024.

[2] Omar Khattab and Matei Zaharia. ColBERT: Efficient and Effective Passage Search via Contextu-
alized Late Interaction over BERT SIGIR, 2020.

[3] Laxman Dhulipala, Majid Hadian, Rajesh Jayaram, Jason Lee and Vahab Mirrokni. MUVERA:
Multi-Vector Retrieval via Fixed Dimensional Encodings https://arxiv.org/abs/2405.19504

92


