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Abstract

Learned sparse representations form a very interesting class of contextual embeddings for text
retrieval. In the last few years, they have proven to be effective models of relevance. Moreover,
they are interpretable by design. Despite their compatibility with inverted indexes, retrieval over
sparse embeddings remains challenging. That is due to the distributional differences between learned
embeddings and term frequency-based lexical models of relevance such as BM25. Recognizing this
challenge, a great deal of research has gone into, among other things, designing retrieval algorithms
tailored to the properties of learned sparse representations, including approximate retrieval systems.
In fact, this task featured prominently in the latest BigANN Challenge at NeurIPS 2023, where
approximate algorithms were evaluated on a large benchmark dataset by throughput and recall. In
this work, we summarize a recent—novel—organization of the inverted index that enables fast yet
effective approximate retrieval over learned sparse embeddings. Our approach organizes inverted lists
into geometrically cohesive blocks, each equipped with a summary vector. During query processing,
we quickly determine if a block must be evaluated using the summaries. As we show experimentally,
single-threaded query processing using our method, Seismic, reaches sub-millisecond per-query
latency on various sparse embeddings of the Ms Marco dataset while maintaining high recall. Our
results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted
index-based solutions and further outperforms the winning (graph-based) submissions to the BigANN
Challenge by a significant margin.

1 Introduction

Neural Information Retrieval (NIR) has gained increasing popularity since the introduction of pre-trained
Large Language Models (LLMs) [41]. NIR models learn a vector representation of short pieces of text,
known as an embedding, that captures the contextual semantics of the input, thereby enabling more
effective matching of queries to documents and, thus, first-stage retrieval [5].

There are three main families of embeddings in Information Retrieval. The first is dense embeddings,
where queries and documents are encoded into single, high-dimensional vectors [29, 33, 43, 76, 79]. These
methods use the BERT [17] [CLS] token as a latent representation of the input text and fine-tune it to
optimize a ranking loss. Relevance is estimated using the dot product between the query and document
embeddings. Consequently, document collections are encoded offline, and the retrieval task is performed
by extracting the top-k results through Maximum Inner Product Search (MIPS).
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The second family, Multi-Vector Retrieval (MVR), encodes each term as a vector, producing a
collection of vectors as the embedding for a given piece of text [34, 39, 57, 67, 68]. The similarity between
queries and documents is computed using the late interaction mechanism, which involves a max-sum
reduction across the rows and columns of the resulting matrix multiplication. While MVR offers a
more fine-grained representation of input text and achieves higher retrieval effectiveness than dense
embeddings, it is significantly more resource-intensive in terms of retrieval time and memory usage.

The third family and the main focus of this paper is represented by Learned Sparse Retrieval
(LSR) [23, 25, 26, 35, 46, 58], where text is encoded into a sparse embeddings, where each dimension
corresponds with a term (or token) in the model’s vocabulary. When a coordinate is nonzero in an
embedding, that indicates that the corresponding term is semantically relevant to the input. Similar to
Dense Retrieval, the similarity between a query and a document is estimated using the dot product,
thus raising the problem of MISP in the sparse domain.

LSR is attractive for three reasons. First, LSR models are competitive with dense retrieval models
that encode text into dense vectors. Importantly, evidence suggests that some LSR models generalize
better to out-of-domain datasets [4, 35]. Out-of-domain evaluation refers to the scenario where the
encoder is trained on one dataset (commonly MSMARCO [59]) and then evaluated on a different
collection to assess the model’s resilience to distribution shifts in the data. A widely used framework for
out-of-domain evaluation is the BEIR dataset collection [69]. Second, because of the one-to-one mapping
between dimensions and vocabulary terms, sparse embeddings are interpretable by design. Third,
because sparse embeddings retain many of the benefits of classical lexical models such as BM25 [65]
while addressing one of their major weaknesses. That is because, sparse embeddings can, at least in
theory, be indexed and retrieved using the all-too-familiar inverted index-based machinery [71], while
at the same time, remedying the vocabulary mismatch problem due to the incorporation of contextual
signals. Their performance, interpretability, and similarity to lexical models make LSR an important
area of research. Efforts in this space include improving the effectiveness of sparse embeddings [23, 25]
and the efficiency of sparse retrieval algorithms [6, 7, 24, 50, 52].

The latter category is justified because, despite the apparent compatibility of sparse embeddings
with inverted indexes, efficient retrieval remains a challenge. That is so because the weights learned by
LSR models exhibit statistical properties that do not conform to the assumptions under which popular
inverted index-based retrieval algorithms operate [6, 12, 49]. Overcoming these limitations requires
either forcing LSR models to produce the “right” distribution, or designing retrieval algorithms that
have fewer restrictive assumptions. As an example of the first direction, Efficient Splade [35] applies
L1 regularization and uses dedicated query and document encoders to make queries shorter. Works in
the second direction [6, 7] take a leaf out of the Approximate Nearest Neighbor (ANN) literature [3]:
Algorithms that produce approximate, as opposed to exact, top-k sets. This relaxation makes it easier to
trade off accuracy for large gains in efficiency.

Approximate retrieval offers great potential and serves as a bridge between dense and sparse
retrieval [7]. So appealing is this paradigm that the 2023 BigANN Challenge1 at NeurIPS dedicated a
track to learned sparse embeddings. Submissions were evaluated on the Splade [24] embeddings of
the Ms Marco [59] Passage dataset, and were ranked by the highest throughput past 90% accuracy
(i.e., recall with respect to exact search). The results were intriguing: the top two submissions were
graph-based ANN methods designed for dense vectors, while other approaches, including an optimized
approximate inverted index-based design struggled.

This paper summarizes recent work [8, 9] focusing on defining an ANN algorithm that we call Seismic
(Spilled Clustering of Inverted Lists with Summaries for Maximum Inner Product Search) and that
admits effective and efficient retrieval over learned sparse embeddings. Our design uses in a new way two

1https://big-ann-benchmarks.com/neurips23.html
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familiar data structures: the inverted and the forward index. In particular, we extend the inverted index
by introducing a novel organization of inverted lists into geometrically-cohesive blocks. Each block is
equipped with a “sketch,” serving as a summary of the vectors contained in it. The summaries allow us
to skip over a large number of blocks during retrieval and save substantial compute. When a summary
indicates that a block must be examined, we use the forward index to retrieve exact embeddings of its
documents and compute inner products.

We evaluate Seismic against strong baselines, including the top (open-source) submissions to the
BigANN Challenge. We additionally include classic inverted index-based retrieval and impact-sorted
indexes as reference points for completeness. Experimental results show average per-query latency in
microsecond territory on various sparse embeddings of Ms Marco [59]. Seismic outperforms the
graph-based winning solutions of the BigANN Challenge by a factor of at least 3.4 at 95% accuracy on
Splade and 12 on Efficient Splade, with the margin widening substantially as accuracy increases. Other
baselines, including inverted index-based algorithms, are consistently one to two orders of magnitude
slower than Seismic.

2 Related Work

We summarize the thread of work on learned sparse embeddings, then discuss methods that approach
the problem of retrieval over such vector collections.
Learned Sparse Representations. Learned sparse representations were investigated [77] even before
the emergence of pre-trained LLMs. But the rise of LLMs supercharged this research and led to a flurry
of activity on the topic [1, 13–15, 24, 25, 40, 46, 82]. First attempts at this include DeepCT and HDCT
by Dai and Callan [13–15].

DeepCT used the Transformer [73] encoder of BERT [18] to extract contextual features of a word
into an embedding, which can be viewed as a feature vector that characterizes the term’s syntactic
and semantic role in a given context. Because the vocabulary associated with a document remains the
same, it does not address the vocabulary mismatch problem. One way to address vocabulary mismatch
is to use a generative model, such as doc2query [61] or docT5query [60], to expand documents with
relevant terms and boost existing terms by repeating them in the document, implicitly performing term
re-weighting. In fact, uniCoil-T5 [40, 45] expands its input with DocT5Query [60] before learning and
producing a sparse representation.

Formal et al. build on SparTerm [1] and propose Splade [26]. Their construction introduces sparsity-
inducing regularization and a log-saturation effect on term weights, so that the sparse representations
learned by Splade are typically relatively sparser. Interestingly, Splade showed competitive results
with respect to state-of-the-art dense and sparse methods [26]. In a later work, Formal et al. make
adjustments to Splade’s pooling and expansion mechanisms, and introduce distillation into its training.
This second version, called Splade v2, reached state-of-the-art results on the Ms Marco [59] passage
ranking task as well as the Beir [70] zero-shot evaluation benchmark [25]. The Splade model has
undergone many other rounds of improvements which have been documented in the latest work by the
same authors [24]. Among these, one notable extension is the Efficient Splade which, as we already
noted, attempts to make the learned embeddings more friendly to inverted index-based algorithms.
Retrieval Algorithms. The Information Retrieval literature offers a wide array of algorithms tailored to
retrieval on text collections [71]. They are often exact and scale easily to massive datasets. MaxScore [72]
and WAND [2], and subsequent improvements [19, 20, 53, 54], are examples that, essentially, solve the
MIPS problem over “bag-of-words” representations of text, such as BM25 [65] or TF-IDF [66]. These
algorithms operate on an inverted index, augmented with additional data to speed up query processing.
One that features prominently is the maximum attainable partial inner product—an upper-bound. This
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enables the possibility of navigating the inverted lists, one document at a time, and deciding quickly
if a document may belong to the result set. Effectively, such algorithms (safely) prune the parts of
the index that cannot be in the top-k set. That is why they are often referred to as dynamic pruning
techniques. Although efficient in practice, dynamic pruning methods are designed specifically for text
collections. Importantly, they ground their performance on several pivotal assumptions: non-negativity,
higher sparsity rate for queries, and a Zipfian shape of the length of inverted lists. These assumptions
are valid for TF-IDF or BM25, which is the reason why dynamic pruning works well and the worst-case
time complexity of MIPS is seldom encountered in practice. These assumptions do not necessarily hold
for collections of learned sparse representations, however. Learned vectors may be real-valued, with a
sparsity rate that is closer to uniform across dimensions [6, 49]. Mackenzie et al. [50] find that learned
sparse embeddings reduce the odds of pruning or early-termination in the document-at-a-time (DaaT)
and Score-at-a-Time (SaaT) paradigms.

The most similar work to ours is [7]. The authors investigate if approximate MIPS algorithms for
dense vectors port over to sparse vectors. They focus on inverted file (IVF) where vectors are partitioned
into clusters during indexing, with only a fraction of clusters scanned during retrieval. They show that
IVF serves as an efficient solution for sparse MIPS. Interestingly, the authors cast IVF as dynamic
pruning and turn that insight into a novel organization of the inverted index for approximate MIPS for
general sparse vectors. Our index structure can be viewed as an extension of theirs.

Finally, we briefly describe another ANN algorithm over dense vectors: HNSW [51], a graph-based
algorithm that constructs a graph where each document is a node and two nodes are connected if they
are deemed “similar.” Similarity is based on Euclidean distance, but [56] shows inner product results in a
structure that is capable of solving MIPS rather quickly and accurately. As we learn in the presentation
of our empirical analysis, algorithms that adapt IP-HNSW [56] to sparse vectors work remarkably well.

3 Definitions and Notation

Suppose we have a collection X ⊂ Rd
+ of nonnegative sparse vectors. If x ∈ X , then x is a d-dimensional

vector where the vast majority of its coordinates are 0 and the rest are real positive values. We use
superscript to enumerate a collection: x(j) is the j-th vector in X .

We use lower-case letters (e.g., x) to denote a vector, call 1 ≤ i ≤ d its coordinate, and write xi for
its i-th value. Together, we refer to a coordinate and value pair as an entry, and say an entry is non-zero
if it has a non-zero value. A sparse vector can be identified as a set of non-zero entries: {(i, xi) | xi ̸= 0}.

Sparse MIPS aims to solve the following problem to find, from X , the set S of top k vectors whose
inner product with the query vector q ∈ Rd is maximal:

S =
(k)

argmax
x∈X

⟨q, x⟩. (14)

Let us define a few concepts that we frequently refer to. The Lp norm of a vector denoted by ∥·∥p is
defined as ∥x∥p = (

∑
i|xi|p)1/p. We call the Lp norm of a vector its Lp mass. Additionally:

Definition 1 (α-mass subvector) Consider a vector x and a permutation π that sorts the entries of
x by their absolute value: |xπi | ≥ |xπi+1 |. For a constant α ∈ [0, 1], denote by 1 ≤ j ≤ d the smallest
integer such that:

j∑
i=1

|xπi | ≤ α∥x∥1.

We call x̃ made up of {(πi, xπi)}
j
i=1, the α-mass subvector of x. Clearly, ∥x̃∥1 ≤ α∥x∥1.
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4 Concentration of Importance

Recently, Daliri et al. [16] presented a sketching algorithm for sparse vectors that rest on the following
simple principle: Coordinates that contribute more heavily to the L2 norm of a vector, weigh more
significantly on the inner product between vectors. Using that intuition, they report that if we were
to drop the non-zero coordinates of a sparse vector with a probability proportional to its contribution
to the L2 mass, we can reduce the size of a collection while approximately maintaining inner products
between vectors.

Inspired by [16], we examined two state-of-the-art LSR techniques: Splade [23] and Efficient
Splade [35]. Our analysis reveals a parallel property, which we call the “concentration of importance.”
In particular, we observe that the LSR techniques place a disproportionate amount of the total L1 mass
of a vector on just a small subset of the coordinates.

Let us demonstrate this phenomenon on the Ms Marco Passage dataset [59] with the Splade
embeddings.2 We take every vector, sort its entries by value, and measure the fraction of the L1 mass
preserved by considering a given number of top entries. For queries, the top 10 entries yield 0.75-mass
subvectors. For documents, the top 50 (about 30% of non-zero entries), give 0.75-mass subvectors. We
illustrated our measurements in Figure 13a.

These results bring us naturally to our next question: What are the ramifications of the concentration
of importance for inner product between queries and documents? One way to study that is as follows:
We take the top-10 document vectors for each query, prune each document vector by keeping a fraction
of its non-zero entries with the largest value. We do the same for query vectors. We then compute the
inner product between the trimmed-down queries and documents and report the results in Figure 13b.

The figure shows that, if we took the top 10% of the most “important” coordinates from queries (9)
and documents (20), we preserve, on average, 85% of the full inner product. Keeping 12 query and 25
document coordinates bumps that up to 90%.

Our results confirm that LSR tends to concentrate importance on a few coordinates. Furthermore, a
partial inner product between the largest entries (by absolute value) approximates the full inner product
with arbitrary accuracy. As we will see shortly, this property, which is in agreement with [16], can help
speed up query processing and reduce space consumption rather substantially.

5 Seismic

We introduce Seismic [8, 9], a novel ANN algorithm that allows effective and efficient approximate
retrieval over learned sparse representations. The design of Seismic uses two important and familiar
data structures: the inverted index and the forward index. In an nutshell, we use a forward index for
inner product computation, and an inverted index to pinpoint the subset of documents that must be
evaluated.

First, Seismic uses an organization of the inverted index that blends together static and dynamic
pruning to significantly reduce the number of documents that must be evaluated during retrieval. Second,
it partitions inverted lists into geometrically-cohesive blocks to facilitate efficient skipping of blocks.
Finally, we attach a summary to each block, whose inner product with a query approximates—albeit
not necessarily in an unbiased manner—the inner product of the query with documents contained in the
block.

2The cocondenser-ensembledistill checkpoint was obtained from https://huggingface.co/naver/
splade-cocondenser-ensembledistil.
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(a) Fraction of L1 mass preserved by keeping only the
top non-zero entries with the largest absolute value.

(b) Fraction of inner product (with 95% confidence
intervals) preserved by inner product between the top
query and document coordinates with the largest ab-
solute value.

5.1 Static Pruning

Seismic heavily relies on the concentration of importance property discussed in Section 4. The property
shows that a small subset of the most important coordinates of the sparse embedding of a query and
document vector can be used to effectively approximate their inner product. We incorporate this result
in Seismic during the construction of the inverted index through static pruning.

Concretely, for coordinate i, we build its inverted list by gathering all x ∈ X whose xi ̸= 0. We then
sort the inverted list by xi’s value in decreasing order (breaking ties arbitrarily), so that the document
whose i-th coordinate has the largest value appears at the beginning of the list. We then prune the
inverted list by keeping at most the first λ entries for a fixed λ—our first hyper-parameter. We denote
the resulting inverted list for coordinate i by Ii.

5.2 Blocking of Inverted Lists

Seismic also introduces a novel blocking strategy on inverted lists. It partitions each inverted list into β
small blocks—our second hyper-parameter. The rationale behind a blocked organization of an inverted
list is to group together documents that are similar in terms of their local representations, so as to
facilitate a dynamic pruning strategy, to be described shortly.

We defer the determination of similarity to a clustering algorithm. In other words, the documents
whose ids are present in an inverted list are given as input to a clustering algorithm, which subsequently
partitions them into β clusters. Each cluster is then turned into one block, consisting of the id of
documents whose vectors belong to the same cluster. Conceptually, each block is “atomic” in the following
sense: if the dynamic pruning algorithm decides we must visit a block, all the documents in that block
are fully evaluated.

We note that any geometrical (supervised or unsupervised) clustering algorithm may be readily used.
We use a shallow variant [11] of K-Means as follows. Given a set of vectors S, we uniformly-randomly
sample β vectors, {µ(j)}βj=1, from S, and use them as cluster representatives. For each x ∈ S, we find
j∗ = argmaxj⟨x, µ(j)⟩, and assign x to the j∗-th cluster.

5.3 Per-block Summary Vectors

So far we have described how we statically prune inverted lists to the top λ entries and then partition
them into β blocks using a clustering algorithm. We now describe how this structure can be used as a
basis for a novel dynamic pruning method.
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We need an efficient way to determine if a block should be evaluated. To that end, Seismic leverages
the concept of a summary vector: a d-dimensional vector that “represents” the documents in a block.
The summary vectors are stored in the inverted index, one per block, and are meant to serve as an
efficient way to compute a good-enough approximation of the inner product between a query and the
documents within the block.

One realization of this idea is to upper-bound the full inner product attainable by documents in a
block. In other words, the i-th coordinate of the summary vector of a block would contain the maximum
xi among the documents in that block. This construction can be best described as a vectorization of the
upper-bound scalars in blocked variants of WAND [20].

More precisely, our summary function ϕ : 2X → Rd takes a block B from the universe of all blocks
2X , and produces a vector whose i-th coordinate is simply:

ϕ(B)i = max
x∈B

xi. (15)

This summary is conservative: its inner product with the query is no less than the inner product between
the query and any of its document: ⟨q, ϕ(B)⟩ ≥ ⟨q, x⟩ for all x ∈ B and an arbitrary query q.

The caveat, however, is that the number of non-zero entries in summary vectors grows quickly with
the block size. That is the source of two potential issues: 1) the space required to store summaries
increases; and 2) as inner product computation takes time proportional to the number of non-zero
entries, the time required to evaluate a block could become unacceptably high.

We may address that caveat by applying pruning and quantization, with the understanding that any
such method may take away the conservatism of the summary. As we will empirically show, there are
many pruning or quantization candidates to choose from.

In particular, we use the following technique that builds on the concentration of importance property:
We prune ϕ(B), obtained from Equation (15), by keeping only its α-mass subvector. That, α, is our
third and last indexing hyper-parameter.

We further reduce the size of summaries by applying scalar quantization. With the goal of reserving
a single byte for each value, we subtract the minimum value m from each summary entry, and divide
the resulting range into 256 sub-intervals of equal size. A value in the summary is replaced with the
index of the sub-interval it maps to. To reconstruct a value approximately, we multiply the id of its
sub-interval by the size of the sub-intervals, then add m.

5.4 Forward Index

Seismic blends together two data structures. The first is an inverted index that tells us which documents
to examine. To make it practical, we apply approximations that allow us to gain efficiency with a possible
loss in accuracy. A forward index, which is simply a look-up table that stores the exact document
vectors, helps correct those errors and offers a way to compute the exact inner products between a query
and the documents within a block, whenever that block is deemed a good candidate for evaluation.

We must note that, documents belonging to the same block are not necessarily stored consecutively
in the forward index. This is simply infeasible because the same document may belong to different
inverted lists and, thus, to different blocks. Because of this layout, computing the inner products may
incur many cache misses, which are detrimental to query latency. In our implementation, we extensively
use prefetching instructions to mitigate this effect.

Seismic adopts a coordinate-at-a-time traversal (Line 3) of the inverted index. For each coordinate
i ∈ qcut, it evaluates the blocks using their summary. The documents within a block are evaluated further
if the approximation with the summary is greater than a fraction of the minimum inner product in the
Min-Heap. That means that, the forward index retrieves the complete document vector in the selected
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Algorithm 1: Indexing with Seismic.
Input: Collection X of sparse vectors in Rd; λ: Maximum length of each inverted list; β:
Maximum number of blocks per inverted list; α: Fraction of the overall importance preserved by
each summary.
Result: Seismic index.
1: for i ∈ {1, . . . , d} do
2: S ← {j | x(j)i ̸= 0, x(j) ∈ X}
3: Sort S in decreasing order by xi for all x ∈ S
4: Ii ← {Si,1,Si,2, . . . ,Si,λ}
5: Cluster Ii into β partitions, {Bi,j}βj=1

6: for 1 ≤ j ≤ β do
7: Si,j ← α-mass subvector of ϕ(Bi,j) {Equation (15)}
8: end for
9: end for

10: return Ii, {Si,j} ∀i, j

block and computes inner products. A document whose inner product is greater than the minimum
score in the Min-Heap is inserted into the heap. Note that, Algorithm 2 takes two hyper-parameters:
an integer cut, and heap_factor ∈ (0, 1).

6 Experiments

We now evaluate Seismic in terms of its accuracy, latency, space usage, and indexing time against
existing solutions.

We note that, due to space constraints, we excluded many combinations of datasets and LSR models
(e.g., uniCoil-T5 embeddings of NQ) from the presentation of our results. However, the reported
trends hold consistently.

6.1 Setup

Datasets. We experiment on two publicly-available datasets: Ms Marco v1 Passage [59] and Natural
Questions (NQ) from Beir [70]. Ms Marco is a collection of 8.8M passages in English. In our
evaluation, we use the smaller “dev” set of queries for retrieval, which includes 6,980 questions. NQ is a
collection of 2.68M questions in English. We use it in combination with its “test” set of 7,842 queries.
Learned Sparse Representations. We evaluate Seismic with embeddings generated by three LSR
models:

• Splade [23]. Each non-zero entry is the importance weight of a term in the BERT [18] WordPiece [75]
vocabulary consisting of 30,000 terms. We use the cocondenser-ensembledistil3 version of
Splade that yields MRR@10 of 38.3 on the Ms Marco dev set. The number of non-zero entries in
documents (queries) is, on average, 119 (43) for Ms Marco and 153 (51) for NQ.

• Efficient Splade [35]. Similar to Splade, but there are 181 (5.9) non-zero entries in Ms Marco
documents (queries). We use the efficient-splade-V-large4 version, yielding MRR@10 of
3Checkpoint at https://huggingface.co/naver/splade-cocondenser-ensembledistil
4Checkpoints at https://huggingface.co/naver/efficient-splade-V-large-doc and https:

//huggingface.co/naver/efficient-splade-V-large-query.
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Algorithm 2: Query processing with Seismic.
Input: q: query; k: number of results; cut: number of largest query entries considered;
heap_factor: a correction factor to rescale the summary inner product; Ii’s and Si,j ’s: inverted
lists and summaries obtained from Algorithm 1.
Result: A Heap with the top-k documents.
1: qcut ← the top cut entries of q with the largest value
2: Heap← ∅
3: for i ∈ qcut do
4: for Bj ∈ Ii do
5: r ← ⟨q, Si,j⟩
6: if Heap.len() = k and r < Heap.min()

heap_factor then
7: continue {Skip the block}
8: end if
9: for d ∈ Bj do

10: p = ⟨q,ForwardIndex[d]⟩
11: if Heap.len() < k or p > Heap.min() then
12: Heap.insert(p, d)
13: end if
14: if Heap.len() = k + 1 then
15: Heap.pop_min()
16: end if
17: end for
18: end for
19: end for
20: return Heap

38.8 on the Ms Marco dev set. We refer to this model as E-Splade.

It is worth highlighting that these embedding models belong to different families. Splade and
E-Splade perform expansion for both queries and documents. On the other hand, uniCoil-T5 only
performs document expansion and does so using a generative model.

We generate the Splade and E-Splade embeddings using the original code published on GitHub.5

After generating the embeddings, we replicate the performance in terms of MRR@10 on the Ms Marco
dev set to confirm that our replication achieves the same performance presented in the original papers.
Baselines. We compare Seismic with five state-of-the-art retrieval solutions. Two of these are the
winning solutions of the “Sparse Track” at the 2023 BigANN Challenge6 at NeurIPS. These include:

• GrassRMA: A graph-based method for dense vectors adapted to sparse vectors that appears in the
BigANN challenge as “sHnsw.”7

• PyAnn: Another graph-based ANN solution.8

The other three baselines are inverted index-based solutions:
5https://github.com/naver/splade
6https://big-ann-benchmarks.com/neurips23.html
7C++ code is publicly available at https://github.com/Leslie-Chung/GrassRMA.
8C++ code is publicly available at https://github.com/veaaaab/pyanns.
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Splade on Ms Marco

Accuracy (%) 90 91 92 93 94 95 96 97

Ioqp 17,423 (93.2×) 17,423 (84.6×) 18,808 (91.2×) 21,910 (98.7×) 24,382 (90.6×) 31,843 (105.1×) 35,735 (102.7×) 51,522 (97.0×)
SparseIvf 4,169 (22.3×) 4,984 (24.2×) 6,442 (31.3×) 7,176 (32.3×) 8,516 (31.7×) 10,254 (33.8×) 12,881 (37.0×) 15,840 (29.8×)
GrassRMA 807 (4.3×) 867 (4.2×) 956 (4.6×) 1,060 (4.8×) 1,168 (4.3×) 1,271 (4.2×) 1,577 (4.5×) 1,984 (3.7×)
PyAnn 489 (2.6×) 539 (2.6×) 603 (2.9×) 654 (2.9×) 845 (3.1×) 1,016 (3.4×) 1,257 (3.6×) 1,878 (3.5×)
Seismic (ours) 187 – 206 – 206 – 222 – 269 – 303 – 348 – 531 –

E-Splade on Ms Marco

Ioqp 7,857 (35.4×) 8,382 (37.8×) 8,892 (37.2×) 9,858 (41.2×) 10,591 (41.4×) 11,536 (30.7×) 11,934 (31.2×) 14,485 (24.9×)
SparseIvf 4,643 (20.9×) 5,058 (22.8×) 5,869 (24.6×) 6,599 (27.6×) 7,555 (29.5×) 8,962 (23.8×) 10,414 (27.2×) 13,883 (23.9×)
GrassRMA 2,074 (9.3×) 2,658 (12.0×) 2,876 (12.0×) 3,490 (14.6×) 4,431 (17.3×) 5,141 (13.7×) 7,181 (18.7×) 12,047 (20.7×)
PyAnn 1,685 (7.6×) 1,702 (7.7×) 2,045 (8.6×) 2,409 (10.1×) 3,119 (12.2×) 4,522 (12.0×) 7,317 (19.1×) 12,578 (21.6×)
Seismic (ours) 222 – 222 – 239 – 239 – 256 – 376 – 383 – 581 –

Splade on NQ

Ioqp 8,313 (42.6×) 8,854 (45.4×) 9,334 (44.2×) 11,049 (46.0×) 11,996 (48.0×) 14,180 (53.3×) 15,254 (53.3×) 18,120 (50.1×)
SparseIvf 3,862 (19.8×) 4,309 (22.1×) 4,679 (22.2×) 5,464 (22.8×) 6,113 (24.5×) 6,675 (25.1×) 7,796 (27.3×) 9,109 (25.2×)
GrassRMA 1,000 (5.1×) 1,138 (5.8×) 1,208 (5.7×) 1,413 (5.9×) 1,549 (6.2×) 2,091 (7.9×) 2,448 (8.6×) 3,038 (8.4×)
PyAnn 610 (3.1×) 668 (3.4×) 748 (3.5×) 870 (3.6×) 1,224 (4.9×) 1,245 (4.7×) 1,469 (5.1×) 1,942 (5.4×)
Seismic (ours) 195 – 195 – 211 – 240 – 250 – 266 – 286 – 362 –

Table 1: Mean latency (µsec/query) at different accuracy cutoffs with speedup (in parenthesis) gained
by Seismic over others.

• Ioqp [47]: Impact-sorted query processor written in Rust. We choose Ioqp because it is known to
outperform JASS [42], a widely-adopted open-source impact-sorted query processor.

• SparseIvf [7]: An inverted index where lists are partitioned into blocks through clustering. At query
time, after finding the N closest clusters to the query, a coordinate-at-a-time algorithm traverses the
inverted lists. The solution is approximate because only documents that belong to top N clusters are
considered.

• Pisa [55]: An inverted index-based C++ library based on ds2i [62] that uses highly-optimized
blocked variants of WAND. Pisa is exact as it traverses inverted lists in a rank-safe manner.

We also considered the method by Lassance et al. [37]. Their approach statically prunes either
inverted lists (by keeping p-quantile of elements), documents (by keeping a fixed number of top entries),
or all coordinates whose value is below a threshold. While simple, [37] is only able to speed up query
processing by 2–4× over Pisa on E-Splade embeddings of Ms Marco. We found it to be ineffective
on Splade and generally far slower than GrassRMA and PyAnn. As such we do not include it in our
discussions.

We build Ioqp and Pisa indexes using Anserini9 and apply recursive graph bisection [48]. For Ioqp,
we vary the fraction (of the total collection) hyper-parameter in [0.1, 1] with step size of 0.05. For
SparseIvf, we sketch documents using SinnamonWeak and a sketch size of 1,024, and build 4

√
N

clusters, where N is the number of documents in the collection. For GrassRMA and PyAnn, we build
different indexes by running all possible combinations of efc ∈ {1000, 2000} and M ∈ {16, 32, 64, 128, 256}.
During search we test efs ∈ [5, 100] with step size 5, then [100, 400] with step 10, [100, 1000] with step
100, and finally [1000, 5000] with step 500. We apply early stopping when accuracy saturates.

Our grid search for Seismic on Ms Marco is over: λ ∈ [1500, 7500] with step size of 500,
β ∈ [150, 750] with step 50, and α ∈ [0.1, 0.5] with 0.1. Best results are achieved with λ = 6,000,
β = 400, and α = 0.4. The grid search for Seismic on NQ is over: λ ∈ {4500, 5250, 6000}, β ∈
{300, 350, 400, 450, 525, 600, 700, 800}, and α ∈ {0.3, 0.4, 0.5}. Best results are achieved with λ = 5,250,
β = 525, and α = 0.5. Seismic employs 8-bit scalar quantization for summaries. Moreover, Seismic
uses matrix multiplication to efficiently multiply the query vector with all quantized summaries of an
inverted list.

9https://github.com/castorini/anserini
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Evaluation Metrics. We evaluate all methods using three metrics:

• Latency (µsec.). The time elapsed, in microseconds, from the moment a query vector is presented to
the index to the moment it returns the requested top k document vectors running in single thread
mode. Latency does not include embedding time.

• Accuracy. The percentage of true nearest neighbors recalled in the returned set. By measuring the
recall of an approximate set given the exact top-k set, we study the impact of the different levers in
an algorithm on its overall accuracy as a retrieval engine.

• Index size (MiB). The space the index occupies in memory.

Reproducibility and Hardware Details. We implemented Seismic in Rust.10 We compile Seismic
by using the version 1.77 of Rust and use the highest level of optimization made available by the compiler.
We conduct experiments on a server equipped with one Intel i9-9900K CPU with a clock rate of 3.60
GHz and 64 GiB of RAM. The CPU has 8 physical cores and 8 hyper-threaded ones. We query the
index using a single thread.

6.2 Accuracy-Latency Trade-off

Table 1 details retrieval performance in terms of average per-query latency for Splade, E-Splade,
and uniCoil-T5 on Ms Marco, and Splade on NQ. We frame the results as the trade-off between
effectiveness and efficiency. In other words, we report mean per-query latency at a given accuracy level.

The results on these datasets show Seismic’s remarkable relative efficiency, reaching a latency that
is often one to two orders of magnitude smaller. Overall, Seismic consistently outperforms all baselines
at all accuracy levels, including GrassRMA and PyAnn, which in turn perform better than other
inverted index-based baselines—confirming the findings of the BigANN Challenge.

We make a few additional observations. Ioqp appears to be the slowest method across datasets.
This is not surprising considering the distributional abnormalities of learned sparse vectors, as discussed
earlier. SparseIvf generally improves over Ioqp, but Seismic speeds up query processing further. In
fact, the minimum speedup over Ioqp (SparseIvf) on Ms Marco is 84.6× (22.3×) on Splade, 24.9×
(20.9×) on E-Splade, and 143.3× (53.6×) on uniCoil-T5.

Seismic consistently outperforms GrassRMA and PyAnn by a substantial margin, ranging from
2.6× (Splade on Ms Marco) to 21.6× (E-Splade on Ms Marco) depending on the level of accuracy.
In fact, as accuracy increases, the latency gap between Seismic and the two graph-based methods
widens. This gap is much larger when query vectors are sparser, such as with E-Splade embeddings.
That is because, when queries are highly sparse, inner products between queries and documents become
smaller, reducing the efficacy of a greedy graph traversal. As one data point, PyAnn over E-Splade
embeddings of Ms Marco visits roughly 40,000 documents to reach 97% accuracy, whereas Seismic
evaluates just 2,198 documents.

Finally, we highlight that Pisa is the slowest (albeit, exact) solution. On Ms Marco, Pisa processes
queries in about 100,325 microseconds on Splade embeddings. On E-Splade. its average latency is
7,947 microsecond. We note that the high latency on Splade is largely due to the much larger number
of non-zero entries in queries.

We conclude with a remark on the relationship between retrieval accuracy (as measured by recall with
respect to exact search) and ranking quality (such as MRR and NDCG [30] given relevance judgments).
Even though ranking quality is not our primary focus, we measured MRR@10 on Ms Marco for
the approximate top-k sets obtained from Seismic, and plot that as a function of per-query latency

10Our code is publicly available at https://github.com/TusKANNy/seismic.
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Figure 14: MRR@10 on Ms Marco.

in Figure 14. While MRR@10 is relatively stable, we do notice a drop in the low-latency (and thus
low-accuracy) regime. Perhaps more interesting is the fact that Seismic can speed up retrieval over
Splade so much that if the time budget is tight, using Splade embeddings gets us to a higher MRR@10
faster.

6.3 Comparison against Learned Dense Representations

The large speedup provided by Seismic allows sparse representation to be competitive with Dense
Retrieval methods, where documents and queries are encoded into dense high-dimensional dense vectors.
Here, researchers rely on the vast Approximate Nearest Neighbors literature for the dense domain,
yielding high-recall results on a million-scale dataset in a few milliseconds. We compare Seismic with a
state-of-the-art dense encoder, i.e., DRAGON [43], paired with the well-known HNSW [51] graph-based
index. Dragon is a highly effective dense retrieval method that reaches 39.0 of MRR@10 thanks to the
multi-teacher distillation from which it benefits during training. Encoding documents and queries with
DRAGON yields dense vectors with 768 dimensions each. We rely on the well-known faiss [21] library
to build a HNSW graph with M = 200 and efc = 400.

We build a Seismic index on the Splade-V3 [36] embeddings. Splade-V3 is the current state-of-
the-art method for learned sparse representation, which is an improved version of Splade, relying on
self-distillation with hard negatives, that reaches 40.3 of MRR@10 on Ms Marco. We use λ = 5000,
β = 1000, and α = 0.5. We report the result of our comparison in Figure 15. Seismic proves to be
a highly efficient solution compared to dense retrieval. The combination of Splade-V3 and Seismic
largely dominates over DRAGON + HNSW on the entire Pareto-frontier, being both more efficient and
more effective. Moreover, observe that the dense forward index takes about 12.5 GBytes to be stored
(assuming to use 16 bit floating point values), while the forward index of Splade-V3 takes about as half
(5.5Gbytes), considering to use 16 bits integers to store the ids of the components and 16 bit floating
point for the values.
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Figure 15: DRAGON indexed with HSNW against Splade-V3 indexed with Seismic on Ms Marco.
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Splade on Ms Marco

Model Index size (MiB) Index build time (min.)

Ioqp 2,195 -
SparseIvf 8,830 44
GrassRMA 10,489 267
PyAnn 5,262 137
Seismic (ours) 6,416 5

Table 2: Index size and build time.

6.4 Space and Build Time

Table 2 records the time it takes to index the entire Ms Marco collection embedded with Splade with
different methods, and the size of the resulting index. We perform this experiment on a machine with
two Intel Xeon Silver 4314 CPUs clocked at 2.40GHz, with 32 physical cores plus 32 hyper-threaded
ones and 512 GiB of RAM. We build the indexes by using multi-threading parallelism with 64 cores.

We left out the build time for Ioqp because its index construction has many external dependencies
(such as Anserini and graph bisection) that makes giving an accurate estimate difficult.

Trends for other datasets are similar to those reported in Table 2. Notably, indexes produced by
approximate methods are larger. That makes sense: using more auxiliary statistics helps narrow the
search space dynamically and quickly. Among the highly efficient methods, the size of Seismic’s index
is mild, especially compared with GrassRMA. Importantly, Seismic builds its index in a fraction of
the time it takes PyAnn or GrassRMA to index the collection.

7 Concluding Remarks

We presented Seismic, a novel approximate algorithm that facilitates effective and efficient retrieval over
learned sparse embeddings. We showed empirically its remarkable efficiency on a number of embeddings
of publicly-available datasets. Seismic outperforms existing methods, including the winning, graph-based
algorithms at the BigANN Challenge in NeurIPS 2023 that use similar-sized (or larger) indexes.

One of the exciting opportunities that our research creates is that it offers a new way of thinking
about sparse embedding models. Let us explain how. When Splade proved difficult to scale because
state-of-the-art inverted index-based solutions failed to process queries fast enough, the community
moved towards E-Splade and other variants that reduce query processing time, but that exhibit
degraded performance in zero-shot settings. Evidence suggests, for example, that E-Splade embeddings
of Quora—a Beir dataset—yield NDCG@10 of 0.76 while Splade embeddings yield 0.83. Seismic
changes that equation by speeding up retrieval over Splade so dramatically that switching to E-Splade
becomes unnecessary and, in fact, detrimental to both efficiency and effectiveness.

8 Future Work

Several future work can be foreseen to extend this result, which can be summarized in different lines of
research:

• Current approaches in approximate nearest neighbors retrieval over learned representations often
employ: 1) graph-based, and 2) inverted-index based solutions for indexing data. A first line of
research we intend to investigate regards mixing the two “worlds” to fully exploit specific properties
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of each of them. Specifically, we intend to improve inverted-index based solutions with the “locality”
intrinsically modeled by graph-based methods. This can be achieved via the exploitation of the
trade-off enabled by the reduction of the average query latency achieved via the storage of the neighbor
of the documents in the collection. We expect this to have an impact as pre-computed neighbors can
allow inverted indexed to work at lower recall cuts, thus significantly reducing their query processing
time.

• We also intend to investigate novel compression techniques for inverted lists [63] to further reduce the
size of inverted and forward indexes.

• A third line of research asks for a comprehensive evaluation of the performance of Seismic and its
competitors on big datasets. In fact, the evaluation of these approaches in information retrieval
has always been conducted on datasets of limited sizes— typically Ms Marco version 1.0— which
consists of less than ten million documents. A detailed analysis of what are the challenges arising
from the application of these methods to bigger datasets, which are in the order of hundreds of
millions of documents, is missing. We believe that this would spark novel, interesting research
questions contributing to the definition of new—fast and effective—approximate nearest neighbors
search methods.

• Recent work have been done to develop indexing data structures that jointly exploit both dense and
sparse embeddings [64, 81]. Linear combinations of the relevance estimated by the two representations
separately have been shown to improve the retrieval accuracy [10, 27, 38, 44, 74]. We plan to explore
the application of Seismic to hybrid representations to exploit the compact representation provided
by dense embeddings together with the per-term space partitioning induced by sparse ones.

• In Section 6.3, we highlighted how sparse embeddings are generally more memory-compact than dense
ones. Yet, dense embeddings can rely on a vast amount of literature on vector compression, including
the well-known Product Quantization approach [22, 28, 31, 32]. PQ has shown to be highly effective
in reducing the memory burden of dense representations by one order of magnitude without sacrificing
accuracy [78, 80]. At the moment, sparse methods lack a comparable method for vector compression.
A compelling research direction is to develop novel compression methods tailored for learned sparse
representations.
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