
High-Dimensional Vector Quantization: General Framework, Recent
Advances, and Future Directions

Jianyang Gao†, Yutong Gou†, Yuexuan Xu†, Jifan Shi†, Cheng Long†∗,
Raymond Chi-Wing Wong§, Themis Palpanas‡

†Nanyang Technological University
jianyang.gao, c.long@ntu.edu.sg, yutong003, yuexuan001, jifan002@e.ntu.edu.sg

§The Hong Kong University of Science and Technology
raywong@cse.ust.hk

‡LIPADE, Université Paris Cité
themis@mi.parisdescartes.fr

Abstract
Vector quantization is fundamental for high-dimensional vector data management. In this paper,

we first introduce the background of vector data management and vector quantization. We then
present the general framework of vector quantization and discuss existing popular schemes. We next
introduce recent advances of quantization, namely the RaBitQ method, which provides optimized
approaches for binary and scalar quantization and achieves asymptotic optimality. In particular, we
discuss RaBitQ’s insights, codebooks and distance estimator. Finally, we discuss opportunities of
building data-aware quantization methods with theoretical error bounds for the future work.

1 Introduction

With the explosive growth of unstructured data, including images, text, and audio, the need for effective
processing and management of the data has become increasingly urgent. Recent advances in deep
learning have enabled the extraction of semantic information from unstructured data through deep neural
network models such as GPT, DeepSeek, and Llama. These models can represent unstructured data as
high-dimensional vectors, which can then be utilized in downstream models for various applications,
including classification and generation. Additionally, these vector representations can be stored in
database management systems to support semantic-based management and retrieval of unstructured
data, with applications across diverse fields including databases [15], information retrieval [48, 49],
recommendation [50], and retrieval-augmented generation (RAG) [51].

The nearest neighbor (NN) query is a fundamental operation in vector data management [4, 13, 14,
17, 22, 30–36, 53–56, 61, 63–65]. Formally, given a database of vectors, an NN query receives a query
vector and aims to find the closest data vector from the query vector in the database. However, due
to the curse of dimensionality, it has been proven that designing algorithms for exact NN queries is
intrinsically difficult, with no algorithm able to achieve sub-linear worst-case time complexity [52]. To
address this challenge, researchers often relax the problem to an approximate nearest neighbor (ANN)
query for better time-accuracy trade-off. Despite the relaxation, existing methods [17, 53–56] still suffer
from high time consumption for vectors generated by deep neural network models due to their high
dimensionality. For instance, in early 2024, OpenAI’s most powerful model, text-embedding-3-large1,

∗Cheng Long is the corresponding author.
1https://openai.com/index/new-embedding-models-and-api-updates/

3

https://openai.com/index/new-embedding-models-and-api-updates/

generated vectors with 1,536 or 3,072 dimensions. For these vectors, the running time of most in-memory
ANN algorithms is dominated by that of distance computations between vectors, since each computation
requires thousands of arithmetic operations on floating-point numbers [8]. The space consumption is
also dominated by that of storing the vectors due to their high dimensionality.

Vector quantization addresses this challenge by reducing the precision of vector representations
while preserving their essential characteristics. Specifically, they construct a codebook conceptually,
map each data vector to its most similar codeword within the codebook, and store the corresponding
short code to achieve space efficiency. During querying, distances between data vectors and query
vectors can be estimated solely based on the compressed codes, which is more efficient than computing
the distances based on raw vectors. Many real-world vector database systems and libraries, e.g.,
Milvus and FAISS, deploy vector quantization to speed up and save space for ANN queries over
high-dimensional vector data [15, 20, 21, 45, 46]. Quantization also plays an important role in neural
network quantization/compression for efficient inference and/or deployment under resource-constrained
settings [11, 12].

There exists a substantial body of literature on vector quantization across various fields, including
machine learning, computer vision, and data management [1, 7, 9, 10, 16–18, 23, 28]. Scalar quantization
(SQ) and its variants [1, 57, 60] take finite uniform grids as codebooks and map a floating-point vector
to a vector of unsigned integers, enabling distance estimation through arithmetic operations on unsigned
integers without the need for decompression. Product quantization (PQ) adopts machine learning
techniques, such as clustering, in codebook construction [17, 18]. Additive quantization (AQ) further
increases the flexibility of learning, by enlarging the search space of codebooks [7, 16, 23]. Recent studies
utilize neural networks to construct codebooks, enabling an even larger search space of codebooks [38, 39].
Despite the increased flexibility of codebooks, these learning-based methods degenerate the efficiency of
distance estimation and vector quantization, and cause the loss of theoretical error bounds.

More recently, a new quantization method called RaBitQ has been proposed [9, 10], offering optimized
approaches for binary quantization and scalar quantization. It achieves asymptotic optimality on the
space-accuracy trade-off, and guarantees unbiased distance estimation. RaBitQ consistently outperforms
existing popular methods in real-world systems including PQ, SQ and their variants. Given its promising
performance, RaBitQ is attracting much attention from the industry and has been adopted in several
real-world systems in industry recently. For example, TensorChord has developed a highly cost-efficient
vector search solution, with RaBitQ serving as one of its key components2. ElasticSearch adopts RaBitQ
with some minor modifications for vector quantization3. In particular, RaBitQ strikes the right balance in
the space-accuracy trade-off by leveraging the concentration of measure [24], a phenomenon that exhibits
itself in high-dimensional spaces. This unique property in high-dimensional spaces allows the algorithm
to accurately estimate certain variables without doing any computations, which brings performance
gains in accuracy, at no cost. Moreover, RaBitQ’s distance estimation can be efficiently supported by
bitwise operations, and arithmetic operations of unsigned integers, since it adopts transformed finite
uniform grids as its codebook, i.e., a codebook of binary and scalar quantization. For this codebook,
it designs an algorithm for finding the best-match codeword. In particular, to find better quantized
vector beyond scalar quantization, it tries different re-scaling parameters on a per-vector basis. For
each re-scaling parameter, it performs scalar quantization on the rescaled vectors and computes the
similarity between the original vector and the quantized vector. After trying various parameters, it finds
the optimal rescaling parameter and the best-match codeword which minimizes the quantization error.

In this paper, we first study the general framework of vector quantization and discuss how existing
studies fit into the framework. In addition, we discuss how some existing methods incorporate learning

2https://blog.vectorchord.ai/vectorchord-store-400k-vectors-for-1-in-postgresql
3https://github.com/apache/lucene/pull/13651

4

https://blog.vectorchord.ai/vectorchord-store-400k-vectors-for-1-in-postgresql
https://github.com/apache/lucene/pull/13651

into the framework. We then present intuitive explanations on the state-of-the-art quantization method
called RaBitQ [9, 10]. The method offers optimized approaches for binary and scalar quantization,
provides unbiased distance estimation, and achieves the asymptotically optimal error bound. Finally, we
discuss a promising research direction: how to design a data-aware quantization method with theoretical
error bounds.

2 General Framework and Popular Schemes of Quantization

In this section, we first illustrate the general framework of vector quantization. Then, we discuss existing
schemes of quantization which are applied for high-dimensional vector data management, particularly,
nearest neighbor search. Finally, we introduce several other vector compression schemes.

2.1 The General Framework of Vector Quantization

Vector quantization is a longstanding research topic [7, 9, 10, 16–18, 23, 28, 29, 62]. The general
functionality of quantization is to represent continuous data objects by discrete codes of finite length.
It is also used for lossy data compression, i.e., compressing high-resolution discrete data objects into
codes with fewer bits. In particular, in high-dimensional vector data management, letting D be the
dimensionality, quantization is used to represent vectors in RD by codes of certain length. The code
is subsequently used to perform computational tasks. In this paper, all algorithms can be used to
estimate metrics in Euclidean spaces including Euclidean distances, inner products and cosine similarities.
To simplify the presentation, we describe quantization algorithms using Euclidean distances as an
example. The cases for inner products and cosine similarities can be addressed similarly. Furthermore,
in approximate nearest neighbor (ANN) search, distance estimation is usually performed on a data
vector or and a query vector qr. We focus on estimating the squared distances ∥or − qr∥2. A vector
quantization algorithm involves the following two critical components.

• Codebook: A codebook C refers to a finite set of vectors in Rd. The elements in a codebook are
referred to as codewords. Each codeword has a unique representation, namely a code, which can be
physically stored in computers. An algorithm quantizes a vector by finding the nearest codeword
from a codebook as its quantized vector. The corresponding code of the quantized vector is then
stored.

• Distance estimator: A distance estimator is a function based on the query vector and the
quantized data vector of a raw vector, which aims to estimte the distance between the query vector
and the raw vector. It can be computed during querying without retrieving the raw vectors.

For a quantization algorithm, we primarily focus on its performance in the following aspects: (1)
space-accuracy trade-off (i.e., the trade-off between the length of a quantized code and accuracy of the
estimated distance based on the quantized code), (2) distance estimation time and (3) vector quantization
time. The performance of a quantization algorithm is largely determined by the codebook construction
and distance estimator, which we explain with existing schemes of methods.

2.2 Scalar Quantization and Binary Quantization

Scalar quantization (SQ) is a family of classical algorithms which are widely deployed in real-world
systems [15, 20, 21]. The methods take finite uniform grids, i.e., the vectors whose coordinates are B-bit
unsigned integers, and resize them to form the codebook an illustration is shown in Figure 1a. Binary
quantization is a special case of SQ with B = 1. Let vl and vr be a lower bound and an upper bound

5

(a) Scalar Quantization

0
1

255

...

0
1

255

...

0
1

255

...

2 255 101

raw vector

quantized vector

sub-codebook 1 sub-codebook 2 sub-codebook 3

(b) Product Quantization

255

...

2

255

101

raw vector

quantized vector

sub-codebook 1

+

+

0
1

255

...

sub-codebook 2

0
1

255

...

sub-codebook 3

0
1

(c) Additive Quantization

Figure 1: The illustrations of codebooks. The codebooks of product quantization and additive quantiza-
tion do not have a clear geometric illustration as that of the scalar quantization does.

for resizing the codebook respectively (i.e., the length of the grid is vr−vl
2B−1

). The classical SQ takes the
minimum and maximum values of a dataset for vl and vr. The state-of-the-art variant LVQ [1] takes the
minimum and maximum values of the coordinates of every individual vector as vl and vr, respectively.
Let ∆ := vr−vl

2B−1
be the length of a grid cell. The codebook of SQ is illustrated in Figure 1a and is

formally presented as follows.

C =
{
∆ · c+ vl · 1D

∣∣c[i] = 0, 1, 2, ..., 2B − 1
}

(1)

Here 1D denotes a D-dimensional vector whose coordinates are ones.
The simple codebook of SQ, i.e., finite uniform grids, leads to clear advantages in vector quantization

time and distance estimation time. Specifically, the vector quantization can be performed by rounding
every coordinate of a vector to its nearest boundary of the grid cells for the corresponding dimension. The
distance estimation can be realized with arithmetic operations of unsigned integers, i.e., the computation
can be achieved without decompressing the codes. It is worth highlighting that when B = 1, i.e., the
case of binary quantization, the computation can be realized with efficient bitwise operations. Despite
this, the classical SQ and LVQ have limitations in the space-accuracy trade-off using a small number of
bits. As has been reported, these methods can hardly achieve reasonable accuracy when using 1-bit and
2-bit quantization, which correspond to 32x and 16x compression rates, respectively [10].

2.3 Product Quantization

Product quantization (PQ) is a popular thread of quantization methods [17–19, 58]. Unlike SQ, which
uses finite uniform grids as the codebook, PQ incorporates learning into the codebook construction
process. This characteristic makes PQ and its variants part of the broader category known as learning
to hash [19]. It constructs its codebook by optimizing within a large search space, aiming to learn the
underlying distribution of the dataset through this optimization process. Specifically, for PQ, it divides
D dimensions of a vector into M sub-segments, with each sub-segment containing D/M dimensions.
For each sub-segment, it constructs a sub-codebook by taking 2k centroids (by default, k = 8) obtained
through clustering, a typical unsupervised learning task on a dataset. Finally, PQ takes the Cartesian
product of the sub-codebooks as the codebook of PQ. Let Ci be the i-th sub-codebook, the codebook of
PQ is illustrated in Figure 1b and is formally presented as follows.

C = C1 × C2 × ...× CM (2)

In this scheme, to quantize a vector, it can separately process each sub-segment. For each sub-segment,
it can find the nearest codeword by computing the vector’s distances from all codewords. OPQ further

6

introduces a learned rotation before the codebook construction [18]. VAQ proposes to non-uniformly
assign bits to different subspaces according to their importance [58]. Both further enlarge the search
space of codebooks in the learning process.

Introducing learning to the codebook construction leads to better flexibility and data-awareness,
resulting in better space-accuracy trade-off under a large compression rate, e.g., 32x and 16x compres-
sion [10, 17, 18]. However, the codebook of PQ also causes significant degeneration on the efficiency of
distance estimation. Specifically, during querying, they adopt asymmetric distance computation to esti-
mate the distance [17]. When a query comes, it prepares a look-up-table (LUT) for every sub-codebook.
The i-th LUT stores 2k numbers which represent the squared distances between the codewords in the
i-th sub-codebook and i-th sub-segment of the query vector. For a given code, by looking up and
accumulating the values in the LUTs for M times, where M is the number of sub-segments, it can
compute an estimated distance. As has been comprehensively studied [3], under the same compression
rates, this computation is much less efficient compared with that of SQ, whose computation can be
realized with bitwise operations or arithmetic operations of unsigned integers. The operation of looking
up tables incurs frequent random memory accesses and would be slow when M is large, where the
LUTs cannot be fully hosted in L1 cache [1]. To mitigate the issue, FastScan is proposed to estimate
distances batch by batch based on SIMD (Single Instruction Multiple Data) instructions. It significantly
accelerates the process and can be easily deployed in clustering-based indices such as IVF [3, 5, 6, 21, 59].
Despite this, there has been no known efficient implementation for estimating distances between two
individual vectors, which largely limits the efficiency of PQ and its variants when they are combined
with graph-based indices [1]. These studies underscore a fundamental trade-off between the flexibility of
codebooks and the efficiency of distance estimation: integrating learning into a specific component of the
quantization pipeline may not necessarily enhance overall performance in ANN queries. Furthermore,
it is worth highlighting that although the search space of PQ’s codebook covers the codebook of SQ,
due to its heuristic objectives and approximate optimization algorithms, PQ does not necessarily find a
better codebook and produce better accuracy than SQ. In fact, PQ is consistently worse than SQ and
its variants when a moderate compression rate is used [10].

2.4 Additive Quantization

Additive quantization (AQ) further generalizes PQ by considering a larger search space of the codebook [7,
16, 23]. It considers M sub-codebooks, where each contains 2k codewords. Unlike PQ whose sub-
codebooks are formed of vectors in (D/M)-dimensional spaces, the sub-codebooks of AQ are formed of
vectors in D-dimensional spaces. The codeword of AQ is formed of the summation of the codeword in
the sub-codebooks. Let Ci be the i-th sub-codebook. The codebook of AQ is illustrated in Figure 1c
and is formally presented as follows.

C =

{
M∑
i=1

ci

∣∣∣∣∣ci ∈ Ci
}

(3)

The search space of AQ’s codebook is strictly a superset of that of PQ’s, indicating that it has
even better flexibility of learning [7, 16, 23]. This brings improvement of space-accuracy trade-off under
aggressive compression rates [7, 16, 21, 23]. For instance, when quantizing a vector with 32 bits, 64 bits
and 128 bits, these methods have shown better accuracy than PQ and its variants [16, 21]. However, the
scheme of codebook construction also causes the intrinsic hardness of vector quantization and limits their
scalability. Specifically, quantizing a vector requires enumerating all 2M×k codewords to exactly find the
nearest one, which is computationally impractical. Existing methods all adopt approximate algorithms
to mitigate this issue [7, 16, 23]. Despite this, the time costs of quantization are still significantly higher

7

than other schemes of methods. Additionally, similar to the comparison between SQ and PQ, although
the search space of AQ’s codebook covers the search space of PQ’s, due to the approximation nature of
their optimization algorithms, the AQ methods do not always find a better codebook and provide better
accuracy than PQ [9], especially when the compression rate is moderate.

2.5 Other Schemes of Vector Compression

In recent years, there have been several studies, which construct codebook with neural networks [38, 39].
UNQ implicitly constructs its codebook via training a neural network consisting of an encoder and
a decoder [38]. Specifically, for quantizing a vector, it encodes the raw vectors into a hidden space,
quantizes the vectors in the hidden space into codes, and generates the quantized vector via decoding the
codes. In this scheme, the encoder and decoder implicitly decide the codebook. QINCo [39] introduces
neural networks into the workflow of residual quantization [37]. The introduction of neural networks
further enhances the flexibility of codebook construction. However, it also significantly increases the
time of vector quantization and distance estimation. For distance estimation, the methods need to
decompress the codes, which introduces heavy costs. It remains to be an interesting question how to
utilize the flexibility of neural networks while estimating distances efficiently. Besides quantization,
hashing can also be used for vector compression. A line of studies named signed random projection which
generate a short code for estimating the angular values between vectors via binarizing the vectors after
randomization [43, 44, 47], which has its indexing phase similar to binary quantization. However, during
querying, these methods map both data and query vectors into binary codes and estimate angular values
via counting collisions. This disables asymmetric distance estimation and introduces errors from both
data and query vectors. Furthermore, they cannot be easily adopted to cases of using more than 1 bit
per dimension. Besides, there have been methods for lossless compression of floating-point arrays [40–42].
They retain perfect accuracy and would require a decompression step to recover the raw vectors for
computing distances. As a comparison, quantization provides lossy compression and mostly supports
distances estimation without decompression. Thus, it is likely that these methods are used for different
purposes.

Based on the discussions above, incorporating learning into the quantization pipeline is a tricky
question. On the one hand, enlarging the flexibility of learning usually degenerates the efficiency of vector
quantization and distance estimation. On the other hand, optimizing a codebook within a larger search
space does not necessarily produce better space-accuracy trade-off. Furthermore, although learning
is powerful in exploring the properties of a dataset, the learning-based methods can hardly provide
theoretical error bounds and are observed to fail disastrously [9]. This motivates us to explore the
possibility of enhancing a method with learning while retaining rigorous theoretical error bounds. To this
end, next, we will introduce RaBitQ, the first practical algorithm which achieves asymptotically optimal
theoretical error bounds. Then, we will discuss the possibility of enhancing it with learning-based
techniques.

3 RaBitQ: Practical and Asymptotically Optimal Quantization

RaBitQ develops a practical and asymptotically optimal algorithm of quantization with an arbitrary
compression rate [9, 10]. It first normalizes the raw data vector and query vector or and qr based on a
centering vector c, i.e., we take the normalized vector o := or−c

∥or−c∥ and q := qr−c
∥qr−c∥ . We next reduce the

original question of estimating distances between the raw vectors to the question of estimating the inner
product of the unit vectors based on the following equation.

∥or − qr∥2 = ∥(or − c)− (qr − c)∥2 = ∥or − c∥2 + ∥qr − c∥2 − 2 · ∥or − c∥ · ∥qr − c∥ · ⟨q,o⟩ (4)

8

Note that for nearest neighbor search, ∥or − c∥ can be computed and stored before any queries come,
and ∥qr − c∥ can be computed once and used for different data vectors or so that the amortized cost for
each data vector is negligible. Thus, we focus on the quantization of unit vectors (i.e., q and o) and the
estimation of their inner product.

3.1 Insights

We first introduce a key insight behind the RaBitQ method. We note that RaBitQ achieves the
asymptotically optimal performance. One of the key reasons behind the optimality is that RaBitQ fully
utilizes a unique property/phenomenon in high-dimensional spaces, namely concentration of measure [24].
There have been vast theoretical studies on this phenomenon over the past decades [2, 25–27]. In this
paper, however, instead of discussing the principle in rigorous mathematical languages, let us start from
simple examples to build an intuitive understanding on the counter-intuitive phenomenon.

Consider the following scenario: we are interested in determining the value of the projection of a unit
vector x onto a specific vector—for simplicity, let’s choose the first coordinate of the vector, represented
as x[0]. However, due to certain constraints, we do not have direct access to this value. Therefore, our
goal is to estimate its approximate range without performing any explicit computations. Basically, since
the vector x is a unit vector, and with no further information, the only inference we can make is that
the value of x[0] must fall within the interval [−1, 1].

Next, let us investigate the case, where the vector x follows the uniform distribution on the unit
sphere. To better understand the behavior of x[0] in this case, we generate 105 random vectors following
this distribution. The empirical distribution of x[0] is plotted in Figure 2. On the left panel, we illustrate
the case for a 3-dimensional vector. This scenario is intuitive: for a unit vector, x[0] can take any value
within the range [−1, 1]. On the right panel, however, the situation becomes far less intuitive when the
vector has 1,000 dimensions. While the theoretically possible range of x[0] remains [−1, 1], the figure
reveals a striking phenomenon: the values of x[0] are highly concentrated around 0. This unexpected
behavior highlights a fundamental distinction between low-dimensional and high-dimensional spaces: in
high-dimensional spaces, randomness (e.g., the uniform distribution of x on the unit sphere) can lead to
surprisingly certainty (i.e., the concentration of x[0] around 0).

Figure 2: The Empirical Distribution of x[0].

This example typically demonstrates the phenomenon of concentration of measure in high-dimensional
spaces. Formally, based on the seminal Johnson-Lindenstrauss Lemma [25] (JL Lemma), with probability
at least 99.9%, the value x[0] in this example is unlikely to deviate from 0 by Ω(1√

D
), where D is the

dimensionality. For more theoretical studies around the phenomenon of concentration of measure, we
refer readers to comprehensive surveys and textbooks [24, 27].

The concentration phenomenon in high-dimensional spaces leads to intriguing implications. In

9

particular, in this example, when x has 3 dimensions, the only information we have about x[0] is that it
lies within the interval [−1, 1], which is not very informative. However, when x has 1,000 dimensions,
the concentration phenomenon tells us that x[0] is highly unlikely to deviate from 0 by Ω(1√

D
) . Since

D is large, this interval becomes much narrower, providing a significantly tighter bound on x[0] in
high-dimensional spaces. We note that this is particularly counter-intuitive because we did not access
any single bit of data nor perform any computation to reach this conclusion. However, the uncertainty
about x[0] significantly decreases. In other words, via analyzing the concentration phenomenon, we gain
“free information” about x[0] without doing any computation.

This insight creates opportunities to enhance algorithms by leveraging this “free information”.
One area, where this can be especially advantageous is quantization. By effectively harnessing this
phenomenon, we can achieve significant improvements without incurring additional costs.

3.2 Codebook

3.2.1 The Codebook for 1-Bit Quantization

We first consider the case where we quantize a D-dimensional vector to a D-bit string, i.e., it is the
quantization with 1-bit per dimension. Recall that we have normalized the raw vectors into unit vectors,
and thus we shall focus on quantizing vectors on the unit sphere. Furthermore, as is discussed in
Section 2, the construction of the codebook significantly impacts the efficiency of distance estimation.
To ensure that the distance estimation can be realized with bitwise operations, instead of learning a
codebook as PQ and AQ do, we take a hypercube, a special case of finite uniform grids of SQ, and align
it onto the unit sphere to form the codebook, which is illustrated in Figure 3. In addition, recall that we
target to utilize the “free information” which comes from randomness. Therefore, we inject the codebook
some randomness by randomly rotating it, i.e., we sample a random orthogonal matrix P (a type of
Johnson-Lindenstrauss Transformation) and conceptually take the rotated vectors in the hypercube as
the final codebook.

Figure 3: The Codebook of 1-Bit Quantization.

Based on this codebook, we note that the quantization process for a vector is efficient and simple.
Specifically, for a given vector, we first apply an inverse rotation to it. In practice, the inverse rotation can
be efficiently computed in O(D logD) time using Fast Johnson-Lindenstrauss Transformation algorithms
such as Fast Walsh-Hadamard Transformation [66–68] and Kac’s Walk [69]. The codeword (of the
codebook before rotation) whose coordinates share the same signs as the rotated vector is the one that
best approximates the original vector. By recording the sign of each coordinate as the quantization code,
we effectively quantize a D-dimensional vector into a D-bit string, completing the process.

10

3.2.2 The Codebook for B-Bit Quantization

When extending the quantization to B bits per dimension, the construction of the codebook becomes
more complex. Specifically, as is discussed in Section 2, to support efficient distance estimation based on
arithmetic operations of unsigned integers, a quantization algorithm needs to adopt finite uniform grids
(i.e., the codebook used in SQ) as the codebook. However, unlike 1-bit quantization, simply shifting the
codebook cannot align all the vectors onto the unit sphere. To address this issue, we map the codebook
onto the unit sphere through normalization, as illustrated in Figure 4. This figure provides an example
of the quantization codebook when B = 2 in the 2-dimensional space. The empty blue points in the left
panel represent a set of vectors on finite uniform grids. The solid red points in the right panel represent
the normalized vectors. Applying a random rotation on the red points yields the codebook.

However, based on this codebook, the quantization process for a vector becomes challenging. For the
original codebook, rounding with SQ can be easily performed for each dimension to identify the nearest
vector. For the normalized codebook, the result of rounding no longer guarantees to best approximate
the vector. Figure 5a provides such an example. Specifically, the purple triangle represents the vector
X which we aim to quantize. In the original codebook, vector A is the result of performing rounding
with SQ on X. However, in the normalized codebook, vector B is the one which best approximates X,
i.e., its corresponding normalized vector is closer to X. We observe that while the optimal vector may
not be found by directly rounding the vector, rescaling the vector before rounding can help locate the
optimal vector. To illustrate this, consider the example in Figure 5b, where we plot a rescaled vector
tX with another purple triangle. Here, the rescaling factor t is a positive number. After rescaling X
and performing SQ, we successfully identified the optimal vector B in the codebook. Furthermore, we
have formally proved that for any given vector, there always exists a rescaling factor such that rounding
the rescaled vector guarantees the identification of the optimal vector in the codebook [10]. Therefore,
to identify the optimal vector, we can explore various rescaling factors. For each rescaling factor, we
determine the nearest vector by rounding with SQ and calculate the corresponding quantization error.
By comparing these errors, we can ultimately determine the optimal rescaling factor and the optimal
quantized vector. Based on this idea, we propose an algorithm which guarantees to find the optimal
quantized vector in O(2B ·D logD) time, which is good enough for practical usage as the algorithm
is designed for vector compression and B is small. Additionally, when B is large, the algorithm can
be further accelerated to O(D) with some approximation. The detailed quantization algorithm can be
found in [10].

In other words, the codebook is constructed by shifting, normalizing, and randomly rotating finite
uniform grids, which are the codebooks used in SQ. It is worth noting that the quantization algorithm
can also be equivalently viewed as a method for exploring and optimizing the parameters of SQ. In

Figure 4: The Codebook of B-Bit Quantization.

11

(a) (b) (c)

Figure 5: An Example of the Quantization Process for B-Bit Codebooks.

particular, rescaling the input vectors can be equivalently viewed as rescaling the codebook itself. In
Figure 5a, rounding X onto the codebook yields the vector A. In Figure 5c, we keep the vector X
unchanged and rescale the codebook. In this scenario, rounding X onto the rescaled codebook yields the
rescaled vector B. The distance between X and B in Figure 5c is much smaller than that between X
and A in Figure 5a. Therefore, our algorithm can be equivalently explained as performing SQ by testing
different parameters on a per-vector basis, computing the quantization error for each, and selecting the
optimal parameter and codeword to minimize the error. Mathematically, rescaling a vector by a factor
of t is equivalent to rescaling a codebook by 1/t. Additionally, the codebook for 1-bit quantization can
be seen as a special case of the codebook for B-bit quantization with B = 1.

3.3 Distance Estimator

We have now completed the construction of the codebook and the quantization of the data vectors.
Recall that o represents the data vector to be quantized, q is a query vector and P is a sample from
a random orthogonal matrix. The quantized data vector is denoted as ō, and its representation using
unsigned integers is given by xu. Formally, we have ō = P (xu − 2B−1

2 · 1D)/∥xu − 2B−1
2 · 1D∥ [9, 10].

Building on the quantized data vector, we now introduce an estimator for the inner product ⟨o,q⟩.

3.3.1 The Construction of the Estimator

To achieve this, we first analyze the geometric relationship among the vectors o, ō and q. In particular,
we observe that although o, ō and q are vectors in high-dimensional spaces, estimating ⟨o,q⟩ only
requires focusing on the 2-dimensional subspace that contains o and q, as illustrated in Figure 6. Here,
e1 is a unit vector that is orthogonal to o and lies within the subspace. By analyzing the geometric
relationships among the vectors in the subspace, we derive the following equation for the inner product
of the vectors.

⟨ō,q⟩ = ⟨ō,o⟩ · ⟨q,o⟩+ ⟨ō, e1⟩ · ⟨q, e1⟩ = ⟨ō,o⟩ · ⟨q,o⟩+ ⟨ō, e1⟩ ·
√
1− ⟨o,q⟩2 (5)

By transforming the equation, we have the following equation.

⟨ō,q⟩
⟨ō,o⟩

= ⟨o,q⟩+
√

1− ⟨o,q⟩2 · ⟨ō, e1⟩
⟨ō,o⟩

(6)

12

Figure 6: Geometric Relationship among the Vectors.

Note that ⟨o,q⟩ is our target. We treat the first term ⟨ō,q⟩
⟨ō,o⟩ as an estimator, and thus the last term

represents the error. Recall that during codebook construction, we have sampled a random orthogonal
matrix P , applied it to all codewords and generated a randomized codebook. The vector ō is a vector
selected from this randomized codebook, making it a random vector. The inner products ⟨ō,o⟩ and
⟨ō, e1⟩ represent the projections of the random vector ō onto o and e1, respectively. As a result,
these inner products are random variables. As is discussed in Section 3.1, in high-dimensional spaces,
randomness can lead to the concentration phenomenon. We rigorously analyze the distribution, in
particular, the extent of concentration of ⟨ō,o⟩ and ⟨ō, e1⟩. Based on the analysis, we have proven that
the error term has 0 expectation, indicating that the estimator is unbiased [9].

E
[
⟨ō,q⟩
⟨ō,o⟩

]
= ⟨o,q⟩ (7)

Additionally, we have proven that the space-accuracy trade-off of our algorithm achieves the asymptotical
optimality, which was established by a prior theoretical study [2]. This makes our algorithm the first to
achieve the optimality as a practically applicable algorithm, to the best of our knowledge. The specific
theoretical result is presented as follows [10].

Theorem 3.1: Let D be the dimensionality. For ϵ > 0 where 1
ϵ2
log 1

δ > D, to ensure that the error of the
estimator is bounded by ϵ with probability at least 1− δ, it is sufficient to set B = Θ

(
log
(
1
D ·

1
ϵ2
log 1

δ

))
.

It is worth noting that the number of bits B is logarithmic with respect to ϵ−2 and is negatively related
to the dimensionality D. This indicates a counter-intuitive fact: the higher the dimensionality is, under
the same compression rates, the smaller the error would be.

3.3.2 The Computation of the Estimator

The question of estimating distances has been reduced to the one of computing ⟨ō,q⟩ / ⟨ō,o⟩, (i.e.,
the estimator). Note that ⟨ō,o⟩ is independent of the query. It can be precomputed before querying.
Recall that ō is a vector in the codebook which is generated by shifting, normalizing and rotating finite
unit grids, i.e., the vectors of B-bit unsigned integer. We denote the D-dimensional vector whose all
coordinates are equal to 1 by 1D. Additionally, let q′ := P−1q. To support the computation of ⟨ō,q⟩
with arithmetic operations of unsigned integers, we transform ⟨ō,q⟩ as follows.

⟨ō,q⟩ =

〈
P

xu − 2B−1
2 · 1D

∥xu − 2B−1
2 · 1D∥

,q

〉
=

1

∥xu − 2B−1
2 · 1D∥

(〈
xu,q

′〉− 2B − 1

2

D∑
i=1

q′[i]

)
(8)

13

Here ∥xu − 2B−1
2 · 1D∥ is independent of queries and can be precomputed. The variable

∑D
i=1 q

′[i] can
be computed once and shared by all data vectors. We perform quantization on q′, i.e., we approximate
it with ∆ · qu + vl · 1D. Then the computation is finally reduced to the inner product between vectors of
unsigned integers as follows.

〈
xu,q

′〉 = ⟨xu,∆ · qu + vl · 1D⟩ = ∆ · ⟨xu,qu⟩+ vl ·
D∑
i=1

xu[i] (9)

Note that number of bits used for quantizing the query q′ should be larger than B by more than 3 bits
so that the error introduced from the query side is negligible. Particularly, when B = 1, the computation
can be realized with highly efficient bitwise operations. Note that the computation is exactly the same
as SQ. Thus, RaBitQ can replace SQ seamlessly while providing better accuracy. We refer readers to
the RaBitQ papers for more details [9, 10].

3.4 Summary

In summary, our RaBitQ methods provide optimized methods for binary and scalar quantization. Its
distance estimation can be realized in the same way of binary and scalar quantization. Under the same
compression rates, it consistently produces better accuracy than LVQ [1], the state-of-the-art variant of
SQ. Thus, replacing the SQ methods with RaBitQ would bring consistent improvement. In particular,
we would like to highlight that when B = 1 and B = 2, the error of RaBitQ is smaller than that of
LVQ by orders of magnitude, indicating RaBitQ’s significant improvement [10]. Additionally, RaBitQ
primarily focuses on the compression rates ranging from 3x to 32x, with only limited discussion on
settings with over 32x compression. A concurrent study of the extended RaBitQ paper, MRQ [28],
focuses on achieving over 32x compression and enhancing performance using data-aware technologies. We
refer readers to the MRQ paper for more detailed discussions [28]. Finally, to the best of our knowledge,
RaBitQ is the first practical algorithm which achieves the asymptotic optimality established by a prior
theoretical study [2].

4 Future Directions: towards Data-Aware Methods with Theoretical
Error Bounds

The RaBitQ method provides practical and asymptotically optimal quantization. This result relies
on the codebook construction process, where the codebook is generated based on the codebook of SQ.
This codebook allows distance estimation to be efficiently computed using bitwise operations (for 1-bit
quantization) and arithmetic operations on unsigned integers (for B-bit quantization). The theoretical
error bound requires that the codebook is randomly rotated. Therefore, incorporating learning into either
codebook construction or rotation will cause the loss of the theoretical error bounds. However, we observe
that the theoretical bounds remain valid regardless of the centering vector chosen for normalization.
Consequently, the normalization step can be improved without sacrificing any theoretical guarantees.
This opens up the opportunity to enhance RaBitQ by incorporating advanced learning techniques into
the normalization step. Nevertheless, based on the current scheme, there are still some constraints
on the selection of centering vectors for normalization. Specifically, it uses the centroids of KMeans
clustering [9, 10] for normalization. In this scheme, the algorithm needs to pre-process (i.e., quantize)
the query vector for every centroid. This cost can be amortized if a centroid is shared by many data
vectors. However, when a centroid is shared by a few data vectors only, the cost of pre-processing the
query vector would be significant. This issue can be resolved with a simple trick, which is presented as

14

follows.

∥or − qr∥2 = ∥or − c∥2 + ∥qr − c∥2 − 2 ⟨or − c,qr − c⟩ (10)

≈ ∥or − c∥2 + ∥qr − c∥2 − 2∥or − c∥ · ∥qr − c∥ · ⟨ō,q⟩
⟨ō,o⟩

(11)

= ∥or − c∥2 + ∥qr − c∥2 − 2∥or − c∥ · ⟨ō,qr − c⟩
⟨ō,o⟩

(12)

= ∥or − c∥2 + 2∥or − c∥ ⟨ō, c⟩
⟨ō,o⟩

+ ∥qr − c∥2 − 2∥or − c∥ · ⟨ō,qr⟩
⟨ō,o⟩

(13)

The first two terms are independent of queries and can be precomputed. Thus, the only question is
to compute ⟨ō,qr⟩, where qr is independent of the centroid. Thus, when a query comes, it can be
pre-processed once and shared by all data vectors, even though their normalization is based on different
centering vectors.

With this trick, one possible research direction is to combine RaBitQ with other types of quantization
methods. In particular, it is possible to use the quantized vector of other quantization methods
(e.g., additive quantization) for normalization. Specifically, for a dataset, we can first adopt additive
quantization to find a quantized vector for every vector. Then, we use the quantized vector as the
centering vector for normalization. Recall that additive quantization could perform competitively when
using a small number of bits, due to its better flexibility of codebook construction. It may capture
the data distribution with a few bits, which can enhance the normalization step with moderate costs.
On the other hand, RaBitQ provides better scalability, efficiency and rigorous theoretical error bounds.
Combining both methods is expected to enhance data-awareness while preserving error bounds. However,
several details remain to be addressed in this direction, which should be carefully studied.

5 Conclusion

Vector quantization is fundamental for reducing the memory costs of high-dimensional vector data
management. In this paper, we presented the general framework of vector quantization, which involves
two critical components, the codebook and the distance estimator. We reviewed existing popular
quantization schemes, and discussed how incorporating learning within their pipelines affects their costs
of vector quantization and distance estimation. We provided an intuitive overview of the RaBitQ method,
which serves as an optimized approach to binary and scalar quantization, and achieve asymptotically
optimal theoretical error bounds. Finally, we discussed opportunities to further enhance the RaBitQ
methods through learning-based normalization techniques, aiming to develop a data-aware approach
with rigorous theoretical error bounds.

References

[1] Aguerrebere, Cecilia and Bhati, Ishwar Singh and Hildebrand, Mark and Tepper, Mariano and
Willke, Theodore. Similarity Search in the Blink of an Eye with Compressed Indices. VLDB, 2023.

[2] Alon, Noga, and Klartag, Bo’az. Optimal Compression of Approximate Inner Products and
Dimension Reduction. FOCS, 2017.

[3] André, Fabien, Kermarrec, Anne-Marie, and Le Scouarnec, Nicolas. Cache Locality is Not Enough:
High-Performance Nearest Neighbor Search with Product Quantization Fast Scan. VLDB, 2015.

15

[4] Ilias Azizi, Karima Echihabi, and Themis Palpanas. ELPIS: Graph-Based Similarity Search for
Scalable Data Science. In PVLDB, 2023.

[5] André, Fabien, Kermarrec, Anne-Marie, and Le Scouarnec, Nicolas. Accelerated Nearest Neighbor
Search with Quick ADC. ICMR ’17, 2017.

[6] André, Fabien, Kermarrec, Anne-Marie, and Le Scouarnec, Nicolas. Quicker ADC: Unlocking the
Hidden Potential of Product Quantization With SIMD. IEEE TPAMI, 2021.

[7] Babenko, Artem, and Lempitsky, Victor. Additive Quantization for Extreme Vector Compression.
CVPR, 2014.

[8] Gao, Jianyang, and Long, Cheng. High-Dimensional Approximate Nearest Neighbor Search: with
Reliable and Efficient Distance Comparison Operations. In SIGMOD, 2023.

[9] Gao, Jianyang, and Long, Cheng. RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical
Error Bound for Approximate Nearest Neighbor Search. SIGMOD, 2024.

[10] Gao, Jianyang, Gou, Yutong, Xu, Yuexuan, Yang, Yongyi, Long, Cheng, and Wong, Raymond
Chi-Wing. Practical and Asymptotically Optimal Quantization of High-Dimensional Vectors in
Euclidean Space for Approximate Nearest Neighbor Search. CoRR, 2024 (to appear in SIGMOD
2025).

[11] Liang, Tailin, Glossner, John, Wang, Lei, Shi, Shaobo, and Zhang, Xiaotong. Pruning and
Quantization for Deep Neural Network Acceleration: A Survey. Neurocomputing, 2021.

[12] Gholami, Amir, Kim, Sehoon, Dong, Zhen, Yao, Zhewei, Mahoney, Michael W., and Keutzer, Kurt.
A Survey of Quantization Methods for Efficient Neural Network Inference. Low-Power Computer
Vision, 2022.

[13] Manos Chatzakis, Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas, and Botao Peng
Odyssey: A Journey in the Land of Distributed Data Series Similarity Search. In PVLDB, 2023.

[14] Jiuqi Wei, Xiaodong Lee, Zhenyu Liao, Themis Palpanas, and Botao Peng. Subspace Collision: An
Efficient and Accurate Framework for High-dimensional Approximate Nearest Neighbor Search. In
SIGMOD, 2025.

[15] Wang, Jianguo and Yi, Xiaomeng and Guo, Rentong and Jin, Hai and Xu, Peng and Li, Shengjun
and Wang, Xiangyu and Guo, Xiangzhou and Li, Chengming and Xu, Xiaohai and Yu, Kun and
Yuan, Yuxing and Zou, Yinghao and Long, Jiquan and Cai, Yudong and Li, Zhenxiang and Zhang,
Zhifeng and Mo, Yihua and Gu, Jun and Jiang, Ruiyi and Wei, Yi and Xie, Charles. Milvus: A
Purpose-Built Vector Data Management System. SIGMOD, 2021.

[16] Martinez, Julieta, Zakhmi, Shobhit, Hoos, Holger H., and Little, James J. LSQ++: Lower Running
Time and Higher Recall in Multi-Codebook Quantization. ECCV, 2018.

[17] Jegou, Herve, Douze, Matthijs, and Schmid, Cordelia. Product quantization for nearest neighbor
search. IEEE TPAMI, 2010.

[18] Ge, Tiezheng, He, Kaiming, Ke, Qifa, and Sun, Jian. Optimized product quantization for approxi-
mate nearest neighbor search. CVPR, 2013.

[19] Wang, Jingdong, Zhang, Ting, Song, Jingkuan, Sebe, Nicu, and Shen, Heng Tao. A Survey on
Learning to Hash. IEEE TPAMI, 2018.

16

[20] Chen, Cheng, Jin, Chenzhe, Zhang, Yunan, Podolsky, Sasha, Wu, Chun, Wang, Szu-Po, Hanson,
Eric, Sun, Zhou, Walzer, Robert, and Wang, Jianguo. SingleStore-V: An Integrated Vector Database
System in SingleStore. VLDB, 2024.

[21] Douze, Matthijs, Guzhva, Alexandr, Deng, Chengqi, Johnson, Jeff, Szilvasy, Gergely, Mazaré,
Pierre-Emmanuel, Lomeli, Maria, Hosseini, Lucas, and Jégou, Hervé. The Faiss library. CoRR,
2024.

[22] Qitong Wang, Ioana Ileana, and Themis Palpanas. LeaFi: Data Series Indexes on Steroids with
Learned Filters. In SIGMOD, 2025.

[23] Martinez, Julieta, Clement, Joris, Hoos, Holger H., and Little, James J. Revisiting Additive
Quantization. ECCV, 2016.

[24] Vershynin, Roman. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, 2018.

[25] Johnson, William B., and Lindenstrauss, Joram. Extensions of Lipschitz mappings into a Hilbert
space 26. Contemporary Mathematics, 1984.

[26] Larsen, Kasper Green, and Nelson, Jelani. Optimality of the Johnson-Lindenstrauss lemma. FOCS,
2017.

[27] Freksen, Casper Benjamin. An Introduction to Johnson-Lindenstrauss Transforms. CoRR, 2021.

[28] Yang, Mingyu, Li, Wentao, and Wang, Wei. Fast High-dimensional Approximate Nearest Neighbor
Search with Efficient Index Time and Space. CoRR, 2024.

[29] Schäfer, Patrick, Brand, Jakob, Leser, Ulf, Peng, Botao, and Palpanas, Themis. Fast and Exact
Similarity Search in less than a Blink of an Eye. CoRR, 2024.

[30] Yang, Ming, Cai, Yuzheng, and Zheng, Weiguo. CSPG: Crossing Sparse Proximity Graphs for
Approximate Nearest Neighbor Search. NeurIPS, 2024.

[31] Deng, Liwei, Chen, Penghao, Zeng, Ximu, Wang, Tianfu, Zhao, Yan, and Zheng, Kai. Efficient
Data-aware Distance Comparison Operations for High-Dimensional Approximate Nearest Neighbor
Search. CoRR, 2024.

[32] Zheng, Bolong, Zhao, Xi, Weng, Lianggui, Hung, Nguyen Quoc Viet, Liu, Hang, and Jensen,
Christian S. PM-LSH: A Fast and Accurate LSH Framework for High-Dimensional Approximate
NN Search. VLDB, 2020.

[33] Jiang, Wenqi, Li, Shigang, Zhu, Yu, De Fine Licht, Johannes, He, Zhenhao, Shi, Runbin, Renggli,
Cedric, Zhang, Shuai, Rekatsinas, Theodoros, Hoefler, Torsten, and Alonso, Gustavo. Co-design
Hardware and Algorithm for Vector Search. SC, 2023.

[34] Chen, Meng, Zhang, Kai, He, Zhenying, Jing, Yinan, and Wang, X. Sean. RoarGraph: A Projected
Bipartite Graph for Efficient Cross-Modal Approximate Nearest Neighbor Search. VLDB, 2024.

[35] Wang, Mengzhao, Xu, Weizhi, Yi, Xiaomeng, Wu, Songlin, Peng, Zhangyang, Ke, Xiangyu, Gao,
Yunjun, Xu, Xiaoliang, Guo, Rentong, and Xie, Charles. Starling: An I/O-Efficient Disk-Resident
Graph Index Framework for High-Dimensional Vector Similarity Search on Data Segment. SIGMOD,
2024.

17

[36] Wang, Zeyu, Wang, Qitong, Cheng, Xiaoxing, Wang, Peng, Palpanas, Themis, and Wang, Wei.
Steiner-Hardness: A Query Hardness Measure for Graph-Based ANN Indexes. PVLDB, 2024.

[37] Chen, Yongjian, Guan, Tao, and Wang, Cheng. Approximate Nearest Neighbor Search by Residual
Vector Quantization. Sensors, 2010.

[38] Morozov, Stanislav, and Babenko, Artem. Unsupervised Neural Quantization for Compressed-
Domain Similarity Search. ICCV, 2019.

[39] Huijben, Iris A. M., Douze, Matthijs, Muckley, Matthew J., van Sloun, Ruud, and Verbeek, Jakob.
Residual Quantization with Implicit Neural Codebooks. ICML, 2024.

[40] Afroozeh, Azim, Kuffo, Leonardo X., and Boncz, Peter. ALP: Adaptive Lossless Floating-Point
Compression. SIGMOD, 2023.

[41] Pelkonen, Tuomas, Franklin, Scott, Teller, Justin, Cavallaro, Paul, Huang, Qi, Meza, Justin, and
Veeraraghavan, Kaushik. Gorilla: a fast, scalable, in-memory time series database. VLDB, 2015.

[42] Liakos, Panagiotis, Papakonstantinopoulou, Katia, and Kotidis, Yannis. Chimp: efficient lossless
floating point compression for time series databases. VLDB, 2022.

[43] Charikar, Moses S. Similarity Estimation Techniques from Rounding Algorithms. STOC, 2002.

[44] Dubey, Punit Pankaj, Verma, Bhisham Dev, Pratap, Rameshwar, and Kang, Keegan. Improving
sign-random-projection via count sketch. UAI, 2022.

[45] Yang, Wen, Li, Tao, Fang, Gai, and Wei, Hong. PASE: PostgreSQL Ultra-High-Dimensional
Approximate Nearest Neighbor Search Extension. SIGMOD, 2020.

[46] Mohoney, Jason, Pacaci, Anil, Chowdhury, Shihabur Rahman, Mousavi, Ali, Ilyas, Ihab F., Minhas,
Umar Farooq, Pound, Jeffrey, and Rekatsinas, Theodoros. High-Throughput Vector Similarity
Search in Knowledge Graphs. SIGMOD, 2023.

[47] Ji, Jianqiu, Li, Jianmin, Yan, Shuicheng, Zhang, Bo, and Tian, Qi. Super-Bit Locality-Sensitive
Hashing. NeurIPS, 2012.

[48] Liu, Ying, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A survey of content-based image
retrieval with high-level semantics. Pattern recognition 40, no. 1 (2007): 262-282.

[49] Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian Shun. Approximate
Nearest Neighbor Search with Window Filters. arXiv preprint arXiv:2402.00943 (2024).

[50] Schafer, J. Ben, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative filtering recommender
systems. In The adaptive web: methods and strategies of web personalization, pp. 291-324. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007.

[51] Asai, Akari, Sewon Min, Zexuan Zhong, and Danqi Chen. Tutorial Proposal: Retrieval-based Lan-
guage Models and Applications. In The 61st Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, p. 41. 2023.

[52] Indyk, Piotr, and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp.
604–613. 1998.

18

[53] Datar, Mayur, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253-262. 2004.

[54] Malkov, Yu A., and Dmitry A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 42, no. 4 (2018): 824-836.

[55] Beygelzimer, Alina, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In
Proceedings of the 23rd international conference on Machine learning, pp. 97-104. 2006.

[56] Guo, Ruiqi, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In International Conference
on Machine Learning, pp. 3887-3896. PMLR, 2020.

[57] Weber, Roger, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In VLDB, vol. 98, pp. 194-205. 1998.

[58] Paparrizos, John, Edian, Ikraduya, Liu, Chunwei, Elmore, Aaron J., and Franklin, Michael J. Fast
Adaptive Similarity Search through Variance-Aware Quantization. ICDE, 2022.

[59] Guo, Ruiqi, Sun, Philip, Lindgren, Erik, Geng, Quan, Simcha, David, Chern, Felix, and Kumar,
Sanjiv. Accelerating large-scale inference with anisotropic vector quantization. ICML, 2020.

[60] Ferhatosmanoglu, Hakan, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi. Vector approxi-
mation based indexing for non-uniform high dimensional data sets. In Proceedings of the Ninth
International Conference on Information and Knowledge Management, pp. 202-209. 2000.

[61] Wei, Jiuqi, Peng, Botao, Lee, Xiaodong, and Palpanas, Themis. DET-LSH: A Locality-Sensitive
Hashing Scheme with Dynamic Encoding Tree for Approximate Nearest Neighbor Search. VLDB,
2024.

[62] Lu, Kejing, Kudo, Mineichi, Xiao, Chuan, and Ishikawa, Yoshiharu. HVS: hierarchical graph
structure based on Voronoi diagrams for solving approximate nearest neighbor search. VLDB, 2021.

[63] Song, Yitong, Wang, Kai, Yao, Bin, Chen, Zhida, Xie, Jiong, and Li, Feifei. Efficient Reverse k
Approximate Nearest Neighbor Search Over High-Dimensional Vectors. ICDE, 2024.

[64] Zuo, Chaoji, Qiao, Miao, Zhou, Wenchao, Li, Feifei, and Deng, Dong. SeRF: Segment Graph for
Range-Filtering Approximate Nearest Neighbor Search. SIGMOD, 2024.

[65] Su, Yongye, Sun, Yinqi, Zhang, Minjia, and Wang, Jianguo. Vexless: A Serverless Vector Data
Management System Using Cloud Functions. SIGMOD, 2024.

[66] Andoni, Alexandr, Indyk, Piotr, Laarhoven, Thijs, Razenshteyn, Ilya, and Schmidt, Ludwig.
Practical and Optimal LSH for Angular Distance. NeurIPS, 2015.

[67] FALCONN-LIB. Library for Fast Fast Hadamard Transform. 2015. Available at: https://
github.com/FALCONN-LIB/FFHT. Accessed: 17 Apr, 2024.

[68] Ailon, Nir, and Chazelle, Bernard. The Fast Johnson–Lindenstrauss Transform and Approximate
Nearest Neighbors. SIAM Journal on Computing, 2009.

[69] Jain, Vishesh, Pillai, Natesh S., Sah, Ashwin, Sawhney, Mehtaab, and Smith, Aaron. Fast and
Memory-Optimal Dimension Reduction Using Kac’s Walk. The Annals of Applied Probability, 2022.

19

https://github.com/FALCONN-LIB/FFHT
https://github.com/FALCONN-LIB/FFHT

