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Letter from the Editor-in-Chief

It is my pleasure to present this second special issue of the Data Engineering Bulletin, dedicated to
exploring the multi-faceted and increasingly influential field of High-Dimensional Similarity Search. With
the rapid surge in large-scale and highly varied data—from time series to deep embeddings—similarity
search has become the cornerstone for enabling the efficient retrieval of complex objects. Such explosive
growth demands new approaches and tools for discovering patterns, retrieving relevant objects, and
performing analytics. High-Dimensional Similarity Search sits at the heart of these endeavors, offering
the means to efficiently compare data of great complexity and dimensionality. It is also becoming a
major channel for large language models to shape modern data management, as LLMs rely on powerful
retrieval pipelines to ground their responses in factual and contextual knowledge. By bridging the gap
between advanced analytics and robust data systems, high-dimensional similarity search is poised to
make a profound and lasting impact.

In this issue, we delve into new techniques and systems that elevate the state of the art. There are
in-depth discussions on vector quantization, showing how refined approaches can significantly improve
both space efficiency and accuracy. We also see how state-of-the-art disk-based methods and hybrid
memory solutions push the limits on performance, adapting to datasets that grow rapidly or demand
frequent updates. Additionally, an examination of emerging strategies for handling learned sparse
representations highlights the challenges of scaling up in scenarios where large or structurally diverse
vectors must still be queried at speed. Another contribution surveys powerful dimensionality-reduction
tools and clarifies their trade-offs, shining a light on how practitioners may blend classic approaches
with neural network advances to maximize performance.

I would like to extend my heartfelt thanks to Themis Palpanas, our Associate Editor, whose
meticulous work guided this issue to completion, as well as to the authors of the opinion pieces who
offer valuable perspectives on the intersection of machine learning and similarity search. I am equally
grateful to the contributors of all the articles gathered here, as their results underscore the depth of
this field and its central importance to the future of data engineering. I hope you find the methods and
insights presented in these pages both illuminating and inspirational, and I look forward to seeing the
exciting progress they will spark in our community.

Haixun Wang
EvenUp
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Letter from the Special Issue Editor

High-dimensional vector similarity search is a key operation in several data analysis pipelines across
many diverse domains and applications. It represents an important and challenging problem in modern
data management, with a strong interest from users and industrial players alike. This interest has
been steadily growing, especially thanks to the proliferation of a particular kind of vectors, the deep
embedding representations (of all sort of different data objects), and the subsequent need for analyzing
very large collections of such embeddings.

In our previous special issue on the topic in this Bulletin (High-Dimensional Similarity Search: from
Time Series Management Systems to Vector Databases, IEEE Data Eng. Bull. 46(3), 2023), we explored
various aspects of the high-dimensional similarity search problem. In particular, we examined the
different kinds of vectors, ranging from time series to deep embeddings, we discussed different families
of techniques that solve the problem, ranging from multidimensional trees and random projections to
inverted files and k-nearest neighbor graphs, and we highlighted the work of different communities on
this problem, ranging from the time series to the machine learning communities.

In this special issue, we focus on approximate similarity search, which is gaining popularity, because
it provides very fast query answering times. We once again explore different aspects of the problem,
including different forms of vector dimensionality reduction, methods designed for operation in memory
and on solid state drives, and efficient solutions for sparse vectors. Moreover, we pay particular attention
to the role of machine learning in this context, and how various machine learning techniques may help
solve the vector similarity search problem more efficiently and effectively. The papers in this special issue
(just like in the previous one) also include several details about real use cases of vector similarity search
and their special characteristics and requirements in terms of data size, query latency and scalability, as
well as discussions on (the several) open research directions.

In the first paper, Gao et al. discuss vector quantization, and present RaBitQ, a state-of-the-art
binary and scalar vector quantization method that provides unbiased distance estimation, and achieves
asymptotically optimal error bounds. In the second paper, Krishnaswamy et al. present the DiskANN
library of k-nearest neighbor graph indices, which provides an efficient solution for both solid state drives
and in memory, while at the same time supporting fast updates and predicate (filtered) search. In the
third paper, Bruch et al. describe SEISMIC, an efficient solution for approximate similarity search on
large collections of learned sparse representations (where the vast majority of the vector coordinates are
0), which finds important applications in information retrieval. In the fourth paper, Wang et al. examine
the applicability and usefulness of dimensionality-reduction for speeding up approximate similarity
search; they consider six dimensionality-reduction techniques, including traditional algorithms such as
PCA and vector quantization, as well as algorithms based on deep learning approaches.

The last two contributions are opinion articles. Douze studies the interplay between vector similarity
search and machine learning, comments on the reasons why machine learning does not currently
play a big role in vector search, and discusses the role of vector search in machine learning. Finally,
Papakonstantinou explores the engineering and machine learning aspects of vector search, and focuses
on the emerging needs in this area that include the convergence of vector search with databases.

Overall, the above papers represent a multi-faceted view of vector similarity search, and the ongoing
work in this area, in different domains, in both the academia and the industry. We hope that this special
issue will further help and inspire the research community in its quest to solve this challenging problem.
We would like to thank all the authors for their valuable contributions, as well as Haixun Wang for giving
us the opportunity to put together this special issue, and Jieming Shi for helping in its publication.

Themis Palpanas
Université Paris Cité
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†Nanyang Technological University
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Abstract
Vector quantization is fundamental for high-dimensional vector data management. In this paper,

we first introduce the background of vector data management and vector quantization. We then
present the general framework of vector quantization and discuss existing popular schemes. We next
introduce recent advances of quantization, namely the RaBitQ method, which provides optimized
approaches for binary and scalar quantization and achieves asymptotic optimality. In particular, we
discuss RaBitQ’s insights, codebooks and distance estimator. Finally, we discuss opportunities of
building data-aware quantization methods with theoretical error bounds for the future work.

1 Introduction

With the explosive growth of unstructured data, including images, text, and audio, the need for effective
processing and management of the data has become increasingly urgent. Recent advances in deep
learning have enabled the extraction of semantic information from unstructured data through deep neural
network models such as GPT, DeepSeek, and Llama. These models can represent unstructured data as
high-dimensional vectors, which can then be utilized in downstream models for various applications,
including classification and generation. Additionally, these vector representations can be stored in
database management systems to support semantic-based management and retrieval of unstructured
data, with applications across diverse fields including databases [15], information retrieval [48, 49],
recommendation [50], and retrieval-augmented generation (RAG) [51].

The nearest neighbor (NN) query is a fundamental operation in vector data management [4, 13, 14,
17, 22, 30–36, 53–56, 61, 63–65]. Formally, given a database of vectors, an NN query receives a query
vector and aims to find the closest data vector from the query vector in the database. However, due
to the curse of dimensionality, it has been proven that designing algorithms for exact NN queries is
intrinsically difficult, with no algorithm able to achieve sub-linear worst-case time complexity [52]. To
address this challenge, researchers often relax the problem to an approximate nearest neighbor (ANN)
query for better time-accuracy trade-off. Despite the relaxation, existing methods [17, 53–56] still suffer
from high time consumption for vectors generated by deep neural network models due to their high
dimensionality. For instance, in early 2024, OpenAI’s most powerful model, text-embedding-3-large1,

∗Cheng Long is the corresponding author.
1https://openai.com/index/new-embedding-models-and-api-updates/
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generated vectors with 1,536 or 3,072 dimensions. For these vectors, the running time of most in-memory
ANN algorithms is dominated by that of distance computations between vectors, since each computation
requires thousands of arithmetic operations on floating-point numbers [8]. The space consumption is
also dominated by that of storing the vectors due to their high dimensionality.

Vector quantization addresses this challenge by reducing the precision of vector representations
while preserving their essential characteristics. Specifically, they construct a codebook conceptually,
map each data vector to its most similar codeword within the codebook, and store the corresponding
short code to achieve space efficiency. During querying, distances between data vectors and query
vectors can be estimated solely based on the compressed codes, which is more efficient than computing
the distances based on raw vectors. Many real-world vector database systems and libraries, e.g.,
Milvus and FAISS, deploy vector quantization to speed up and save space for ANN queries over
high-dimensional vector data [15, 20, 21, 45, 46]. Quantization also plays an important role in neural
network quantization/compression for efficient inference and/or deployment under resource-constrained
settings [11, 12].

There exists a substantial body of literature on vector quantization across various fields, including
machine learning, computer vision, and data management [1, 7, 9, 10, 16–18, 23, 28]. Scalar quantization
(SQ) and its variants [1, 57, 60] take finite uniform grids as codebooks and map a floating-point vector
to a vector of unsigned integers, enabling distance estimation through arithmetic operations on unsigned
integers without the need for decompression. Product quantization (PQ) adopts machine learning
techniques, such as clustering, in codebook construction [17, 18]. Additive quantization (AQ) further
increases the flexibility of learning, by enlarging the search space of codebooks [7, 16, 23]. Recent studies
utilize neural networks to construct codebooks, enabling an even larger search space of codebooks [38, 39].
Despite the increased flexibility of codebooks, these learning-based methods degenerate the efficiency of
distance estimation and vector quantization, and cause the loss of theoretical error bounds.

More recently, a new quantization method called RaBitQ has been proposed [9, 10], offering optimized
approaches for binary quantization and scalar quantization. It achieves asymptotic optimality on the
space-accuracy trade-off, and guarantees unbiased distance estimation. RaBitQ consistently outperforms
existing popular methods in real-world systems including PQ, SQ and their variants. Given its promising
performance, RaBitQ is attracting much attention from the industry and has been adopted in several
real-world systems in industry recently. For example, TensorChord has developed a highly cost-efficient
vector search solution, with RaBitQ serving as one of its key components2. ElasticSearch adopts RaBitQ
with some minor modifications for vector quantization3. In particular, RaBitQ strikes the right balance in
the space-accuracy trade-off by leveraging the concentration of measure [24], a phenomenon that exhibits
itself in high-dimensional spaces. This unique property in high-dimensional spaces allows the algorithm
to accurately estimate certain variables without doing any computations, which brings performance
gains in accuracy, at no cost. Moreover, RaBitQ’s distance estimation can be efficiently supported by
bitwise operations, and arithmetic operations of unsigned integers, since it adopts transformed finite
uniform grids as its codebook, i.e., a codebook of binary and scalar quantization. For this codebook,
it designs an algorithm for finding the best-match codeword. In particular, to find better quantized
vector beyond scalar quantization, it tries different re-scaling parameters on a per-vector basis. For
each re-scaling parameter, it performs scalar quantization on the rescaled vectors and computes the
similarity between the original vector and the quantized vector. After trying various parameters, it finds
the optimal rescaling parameter and the best-match codeword which minimizes the quantization error.

In this paper, we first study the general framework of vector quantization and discuss how existing
studies fit into the framework. In addition, we discuss how some existing methods incorporate learning

2https://blog.vectorchord.ai/vectorchord-store-400k-vectors-for-1-in-postgresql
3https://github.com/apache/lucene/pull/13651
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into the framework. We then present intuitive explanations on the state-of-the-art quantization method
called RaBitQ [9, 10]. The method offers optimized approaches for binary and scalar quantization,
provides unbiased distance estimation, and achieves the asymptotically optimal error bound. Finally, we
discuss a promising research direction: how to design a data-aware quantization method with theoretical
error bounds.

2 General Framework and Popular Schemes of Quantization

In this section, we first illustrate the general framework of vector quantization. Then, we discuss existing
schemes of quantization which are applied for high-dimensional vector data management, particularly,
nearest neighbor search. Finally, we introduce several other vector compression schemes.

2.1 The General Framework of Vector Quantization

Vector quantization is a longstanding research topic [7, 9, 10, 16–18, 23, 28, 29, 62]. The general
functionality of quantization is to represent continuous data objects by discrete codes of finite length.
It is also used for lossy data compression, i.e., compressing high-resolution discrete data objects into
codes with fewer bits. In particular, in high-dimensional vector data management, letting D be the
dimensionality, quantization is used to represent vectors in RD by codes of certain length. The code
is subsequently used to perform computational tasks. In this paper, all algorithms can be used to
estimate metrics in Euclidean spaces including Euclidean distances, inner products and cosine similarities.
To simplify the presentation, we describe quantization algorithms using Euclidean distances as an
example. The cases for inner products and cosine similarities can be addressed similarly. Furthermore,
in approximate nearest neighbor (ANN) search, distance estimation is usually performed on a data
vector or and a query vector qr. We focus on estimating the squared distances ∥or − qr∥2. A vector
quantization algorithm involves the following two critical components.

• Codebook: A codebook C refers to a finite set of vectors in Rd. The elements in a codebook are
referred to as codewords. Each codeword has a unique representation, namely a code, which can be
physically stored in computers. An algorithm quantizes a vector by finding the nearest codeword
from a codebook as its quantized vector. The corresponding code of the quantized vector is then
stored.

• Distance estimator: A distance estimator is a function based on the query vector and the
quantized data vector of a raw vector, which aims to estimte the distance between the query vector
and the raw vector. It can be computed during querying without retrieving the raw vectors.

For a quantization algorithm, we primarily focus on its performance in the following aspects: (1)
space-accuracy trade-off (i.e., the trade-off between the length of a quantized code and accuracy of the
estimated distance based on the quantized code), (2) distance estimation time and (3) vector quantization
time. The performance of a quantization algorithm is largely determined by the codebook construction
and distance estimator, which we explain with existing schemes of methods.

2.2 Scalar Quantization and Binary Quantization

Scalar quantization (SQ) is a family of classical algorithms which are widely deployed in real-world
systems [15, 20, 21]. The methods take finite uniform grids, i.e., the vectors whose coordinates are B-bit
unsigned integers, and resize them to form the codebook an illustration is shown in Figure 1a. Binary
quantization is a special case of SQ with B = 1. Let vl and vr be a lower bound and an upper bound
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Figure 1: The illustrations of codebooks. The codebooks of product quantization and additive quantiza-
tion do not have a clear geometric illustration as that of the scalar quantization does.

for resizing the codebook respectively (i.e., the length of the grid is vr−vl
2B−1

). The classical SQ takes the
minimum and maximum values of a dataset for vl and vr. The state-of-the-art variant LVQ [1] takes the
minimum and maximum values of the coordinates of every individual vector as vl and vr, respectively.
Let ∆ := vr−vl

2B−1
be the length of a grid cell. The codebook of SQ is illustrated in Figure 1a and is

formally presented as follows.

C =
{
∆ · c+ vl · 1D

∣∣c[i] = 0, 1, 2, ..., 2B − 1
}

(1)

Here 1D denotes a D-dimensional vector whose coordinates are ones.
The simple codebook of SQ, i.e., finite uniform grids, leads to clear advantages in vector quantization

time and distance estimation time. Specifically, the vector quantization can be performed by rounding
every coordinate of a vector to its nearest boundary of the grid cells for the corresponding dimension. The
distance estimation can be realized with arithmetic operations of unsigned integers, i.e., the computation
can be achieved without decompressing the codes. It is worth highlighting that when B = 1, i.e., the
case of binary quantization, the computation can be realized with efficient bitwise operations. Despite
this, the classical SQ and LVQ have limitations in the space-accuracy trade-off using a small number of
bits. As has been reported, these methods can hardly achieve reasonable accuracy when using 1-bit and
2-bit quantization, which correspond to 32x and 16x compression rates, respectively [10].

2.3 Product Quantization

Product quantization (PQ) is a popular thread of quantization methods [17–19, 58]. Unlike SQ, which
uses finite uniform grids as the codebook, PQ incorporates learning into the codebook construction
process. This characteristic makes PQ and its variants part of the broader category known as learning
to hash [19]. It constructs its codebook by optimizing within a large search space, aiming to learn the
underlying distribution of the dataset through this optimization process. Specifically, for PQ, it divides
D dimensions of a vector into M sub-segments, with each sub-segment containing D/M dimensions.
For each sub-segment, it constructs a sub-codebook by taking 2k centroids (by default, k = 8) obtained
through clustering, a typical unsupervised learning task on a dataset. Finally, PQ takes the Cartesian
product of the sub-codebooks as the codebook of PQ. Let Ci be the i-th sub-codebook, the codebook of
PQ is illustrated in Figure 1b and is formally presented as follows.

C = C1 × C2 × ...× CM (2)

In this scheme, to quantize a vector, it can separately process each sub-segment. For each sub-segment,
it can find the nearest codeword by computing the vector’s distances from all codewords. OPQ further
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introduces a learned rotation before the codebook construction [18]. VAQ proposes to non-uniformly
assign bits to different subspaces according to their importance [58]. Both further enlarge the search
space of codebooks in the learning process.

Introducing learning to the codebook construction leads to better flexibility and data-awareness,
resulting in better space-accuracy trade-off under a large compression rate, e.g., 32x and 16x compres-
sion [10, 17, 18]. However, the codebook of PQ also causes significant degeneration on the efficiency of
distance estimation. Specifically, during querying, they adopt asymmetric distance computation to esti-
mate the distance [17]. When a query comes, it prepares a look-up-table (LUT) for every sub-codebook.
The i-th LUT stores 2k numbers which represent the squared distances between the codewords in the
i-th sub-codebook and i-th sub-segment of the query vector. For a given code, by looking up and
accumulating the values in the LUTs for M times, where M is the number of sub-segments, it can
compute an estimated distance. As has been comprehensively studied [3], under the same compression
rates, this computation is much less efficient compared with that of SQ, whose computation can be
realized with bitwise operations or arithmetic operations of unsigned integers. The operation of looking
up tables incurs frequent random memory accesses and would be slow when M is large, where the
LUTs cannot be fully hosted in L1 cache [1]. To mitigate the issue, FastScan is proposed to estimate
distances batch by batch based on SIMD (Single Instruction Multiple Data) instructions. It significantly
accelerates the process and can be easily deployed in clustering-based indices such as IVF [3, 5, 6, 21, 59].
Despite this, there has been no known efficient implementation for estimating distances between two
individual vectors, which largely limits the efficiency of PQ and its variants when they are combined
with graph-based indices [1]. These studies underscore a fundamental trade-off between the flexibility of
codebooks and the efficiency of distance estimation: integrating learning into a specific component of the
quantization pipeline may not necessarily enhance overall performance in ANN queries. Furthermore,
it is worth highlighting that although the search space of PQ’s codebook covers the codebook of SQ,
due to its heuristic objectives and approximate optimization algorithms, PQ does not necessarily find a
better codebook and produce better accuracy than SQ. In fact, PQ is consistently worse than SQ and
its variants when a moderate compression rate is used [10].

2.4 Additive Quantization

Additive quantization (AQ) further generalizes PQ by considering a larger search space of the codebook [7,
16, 23]. It considers M sub-codebooks, where each contains 2k codewords. Unlike PQ whose sub-
codebooks are formed of vectors in (D/M)-dimensional spaces, the sub-codebooks of AQ are formed of
vectors in D-dimensional spaces. The codeword of AQ is formed of the summation of the codeword in
the sub-codebooks. Let Ci be the i-th sub-codebook. The codebook of AQ is illustrated in Figure 1c
and is formally presented as follows.

C =

{
M∑
i=1

ci

∣∣∣∣∣ci ∈ Ci
}

(3)

The search space of AQ’s codebook is strictly a superset of that of PQ’s, indicating that it has
even better flexibility of learning [7, 16, 23]. This brings improvement of space-accuracy trade-off under
aggressive compression rates [7, 16, 21, 23]. For instance, when quantizing a vector with 32 bits, 64 bits
and 128 bits, these methods have shown better accuracy than PQ and its variants [16, 21]. However, the
scheme of codebook construction also causes the intrinsic hardness of vector quantization and limits their
scalability. Specifically, quantizing a vector requires enumerating all 2M×k codewords to exactly find the
nearest one, which is computationally impractical. Existing methods all adopt approximate algorithms
to mitigate this issue [7, 16, 23]. Despite this, the time costs of quantization are still significantly higher
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than other schemes of methods. Additionally, similar to the comparison between SQ and PQ, although
the search space of AQ’s codebook covers the search space of PQ’s, due to the approximation nature of
their optimization algorithms, the AQ methods do not always find a better codebook and provide better
accuracy than PQ [9], especially when the compression rate is moderate.

2.5 Other Schemes of Vector Compression

In recent years, there have been several studies, which construct codebook with neural networks [38, 39].
UNQ implicitly constructs its codebook via training a neural network consisting of an encoder and
a decoder [38]. Specifically, for quantizing a vector, it encodes the raw vectors into a hidden space,
quantizes the vectors in the hidden space into codes, and generates the quantized vector via decoding the
codes. In this scheme, the encoder and decoder implicitly decide the codebook. QINCo [39] introduces
neural networks into the workflow of residual quantization [37]. The introduction of neural networks
further enhances the flexibility of codebook construction. However, it also significantly increases the
time of vector quantization and distance estimation. For distance estimation, the methods need to
decompress the codes, which introduces heavy costs. It remains to be an interesting question how to
utilize the flexibility of neural networks while estimating distances efficiently. Besides quantization,
hashing can also be used for vector compression. A line of studies named signed random projection which
generate a short code for estimating the angular values between vectors via binarizing the vectors after
randomization [43, 44, 47], which has its indexing phase similar to binary quantization. However, during
querying, these methods map both data and query vectors into binary codes and estimate angular values
via counting collisions. This disables asymmetric distance estimation and introduces errors from both
data and query vectors. Furthermore, they cannot be easily adopted to cases of using more than 1 bit
per dimension. Besides, there have been methods for lossless compression of floating-point arrays [40–42].
They retain perfect accuracy and would require a decompression step to recover the raw vectors for
computing distances. As a comparison, quantization provides lossy compression and mostly supports
distances estimation without decompression. Thus, it is likely that these methods are used for different
purposes.

Based on the discussions above, incorporating learning into the quantization pipeline is a tricky
question. On the one hand, enlarging the flexibility of learning usually degenerates the efficiency of vector
quantization and distance estimation. On the other hand, optimizing a codebook within a larger search
space does not necessarily produce better space-accuracy trade-off. Furthermore, although learning
is powerful in exploring the properties of a dataset, the learning-based methods can hardly provide
theoretical error bounds and are observed to fail disastrously [9]. This motivates us to explore the
possibility of enhancing a method with learning while retaining rigorous theoretical error bounds. To this
end, next, we will introduce RaBitQ, the first practical algorithm which achieves asymptotically optimal
theoretical error bounds. Then, we will discuss the possibility of enhancing it with learning-based
techniques.

3 RaBitQ: Practical and Asymptotically Optimal Quantization

RaBitQ develops a practical and asymptotically optimal algorithm of quantization with an arbitrary
compression rate [9, 10]. It first normalizes the raw data vector and query vector or and qr based on a
centering vector c, i.e., we take the normalized vector o := or−c

∥or−c∥ and q := qr−c
∥qr−c∥ . We next reduce the

original question of estimating distances between the raw vectors to the question of estimating the inner
product of the unit vectors based on the following equation.

∥or − qr∥2 = ∥(or − c)− (qr − c)∥2 = ∥or − c∥2 + ∥qr − c∥2 − 2 · ∥or − c∥ · ∥qr − c∥ · ⟨q,o⟩ (4)
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Note that for nearest neighbor search, ∥or − c∥ can be computed and stored before any queries come,
and ∥qr − c∥ can be computed once and used for different data vectors or so that the amortized cost for
each data vector is negligible. Thus, we focus on the quantization of unit vectors (i.e., q and o) and the
estimation of their inner product.

3.1 Insights

We first introduce a key insight behind the RaBitQ method. We note that RaBitQ achieves the
asymptotically optimal performance. One of the key reasons behind the optimality is that RaBitQ fully
utilizes a unique property/phenomenon in high-dimensional spaces, namely concentration of measure [24].
There have been vast theoretical studies on this phenomenon over the past decades [2, 25–27]. In this
paper, however, instead of discussing the principle in rigorous mathematical languages, let us start from
simple examples to build an intuitive understanding on the counter-intuitive phenomenon.

Consider the following scenario: we are interested in determining the value of the projection of a unit
vector x onto a specific vector—for simplicity, let’s choose the first coordinate of the vector, represented
as x[0]. However, due to certain constraints, we do not have direct access to this value. Therefore, our
goal is to estimate its approximate range without performing any explicit computations. Basically, since
the vector x is a unit vector, and with no further information, the only inference we can make is that
the value of x[0] must fall within the interval [−1, 1].

Next, let us investigate the case, where the vector x follows the uniform distribution on the unit
sphere. To better understand the behavior of x[0] in this case, we generate 105 random vectors following
this distribution. The empirical distribution of x[0] is plotted in Figure 2. On the left panel, we illustrate
the case for a 3-dimensional vector. This scenario is intuitive: for a unit vector, x[0] can take any value
within the range [−1, 1]. On the right panel, however, the situation becomes far less intuitive when the
vector has 1,000 dimensions. While the theoretically possible range of x[0] remains [−1, 1], the figure
reveals a striking phenomenon: the values of x[0] are highly concentrated around 0. This unexpected
behavior highlights a fundamental distinction between low-dimensional and high-dimensional spaces: in
high-dimensional spaces, randomness (e.g., the uniform distribution of x on the unit sphere) can lead to
surprisingly certainty (i.e., the concentration of x[0] around 0).

Figure 2: The Empirical Distribution of x[0].

This example typically demonstrates the phenomenon of concentration of measure in high-dimensional
spaces. Formally, based on the seminal Johnson-Lindenstrauss Lemma [25] (JL Lemma), with probability
at least 99.9%, the value x[0] in this example is unlikely to deviate from 0 by Ω( 1√

D
), where D is the

dimensionality. For more theoretical studies around the phenomenon of concentration of measure, we
refer readers to comprehensive surveys and textbooks [24, 27].

The concentration phenomenon in high-dimensional spaces leads to intriguing implications. In
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particular, in this example, when x has 3 dimensions, the only information we have about x[0] is that it
lies within the interval [−1, 1], which is not very informative. However, when x has 1,000 dimensions,
the concentration phenomenon tells us that x[0] is highly unlikely to deviate from 0 by Ω( 1√

D
) . Since

D is large, this interval becomes much narrower, providing a significantly tighter bound on x[0] in
high-dimensional spaces. We note that this is particularly counter-intuitive because we did not access
any single bit of data nor perform any computation to reach this conclusion. However, the uncertainty
about x[0] significantly decreases. In other words, via analyzing the concentration phenomenon, we gain
“free information” about x[0] without doing any computation.

This insight creates opportunities to enhance algorithms by leveraging this “free information”.
One area, where this can be especially advantageous is quantization. By effectively harnessing this
phenomenon, we can achieve significant improvements without incurring additional costs.

3.2 Codebook

3.2.1 The Codebook for 1-Bit Quantization

We first consider the case where we quantize a D-dimensional vector to a D-bit string, i.e., it is the
quantization with 1-bit per dimension. Recall that we have normalized the raw vectors into unit vectors,
and thus we shall focus on quantizing vectors on the unit sphere. Furthermore, as is discussed in
Section 2, the construction of the codebook significantly impacts the efficiency of distance estimation.
To ensure that the distance estimation can be realized with bitwise operations, instead of learning a
codebook as PQ and AQ do, we take a hypercube, a special case of finite uniform grids of SQ, and align
it onto the unit sphere to form the codebook, which is illustrated in Figure 3. In addition, recall that we
target to utilize the “free information” which comes from randomness. Therefore, we inject the codebook
some randomness by randomly rotating it, i.e., we sample a random orthogonal matrix P (a type of
Johnson-Lindenstrauss Transformation) and conceptually take the rotated vectors in the hypercube as
the final codebook.

Figure 3: The Codebook of 1-Bit Quantization.

Based on this codebook, we note that the quantization process for a vector is efficient and simple.
Specifically, for a given vector, we first apply an inverse rotation to it. In practice, the inverse rotation can
be efficiently computed in O(D logD) time using Fast Johnson-Lindenstrauss Transformation algorithms
such as Fast Walsh-Hadamard Transformation [66–68] and Kac’s Walk [69]. The codeword (of the
codebook before rotation) whose coordinates share the same signs as the rotated vector is the one that
best approximates the original vector. By recording the sign of each coordinate as the quantization code,
we effectively quantize a D-dimensional vector into a D-bit string, completing the process.
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3.2.2 The Codebook for B-Bit Quantization

When extending the quantization to B bits per dimension, the construction of the codebook becomes
more complex. Specifically, as is discussed in Section 2, to support efficient distance estimation based on
arithmetic operations of unsigned integers, a quantization algorithm needs to adopt finite uniform grids
(i.e., the codebook used in SQ) as the codebook. However, unlike 1-bit quantization, simply shifting the
codebook cannot align all the vectors onto the unit sphere. To address this issue, we map the codebook
onto the unit sphere through normalization, as illustrated in Figure 4. This figure provides an example
of the quantization codebook when B = 2 in the 2-dimensional space. The empty blue points in the left
panel represent a set of vectors on finite uniform grids. The solid red points in the right panel represent
the normalized vectors. Applying a random rotation on the red points yields the codebook.

However, based on this codebook, the quantization process for a vector becomes challenging. For the
original codebook, rounding with SQ can be easily performed for each dimension to identify the nearest
vector. For the normalized codebook, the result of rounding no longer guarantees to best approximate
the vector. Figure 5a provides such an example. Specifically, the purple triangle represents the vector
X which we aim to quantize. In the original codebook, vector A is the result of performing rounding
with SQ on X. However, in the normalized codebook, vector B is the one which best approximates X,
i.e., its corresponding normalized vector is closer to X. We observe that while the optimal vector may
not be found by directly rounding the vector, rescaling the vector before rounding can help locate the
optimal vector. To illustrate this, consider the example in Figure 5b, where we plot a rescaled vector
tX with another purple triangle. Here, the rescaling factor t is a positive number. After rescaling X
and performing SQ, we successfully identified the optimal vector B in the codebook. Furthermore, we
have formally proved that for any given vector, there always exists a rescaling factor such that rounding
the rescaled vector guarantees the identification of the optimal vector in the codebook [10]. Therefore,
to identify the optimal vector, we can explore various rescaling factors. For each rescaling factor, we
determine the nearest vector by rounding with SQ and calculate the corresponding quantization error.
By comparing these errors, we can ultimately determine the optimal rescaling factor and the optimal
quantized vector. Based on this idea, we propose an algorithm which guarantees to find the optimal
quantized vector in O(2B ·D logD) time, which is good enough for practical usage as the algorithm
is designed for vector compression and B is small. Additionally, when B is large, the algorithm can
be further accelerated to O(D) with some approximation. The detailed quantization algorithm can be
found in [10].

In other words, the codebook is constructed by shifting, normalizing, and randomly rotating finite
uniform grids, which are the codebooks used in SQ. It is worth noting that the quantization algorithm
can also be equivalently viewed as a method for exploring and optimizing the parameters of SQ. In

Figure 4: The Codebook of B-Bit Quantization.
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(a) (b) (c)

Figure 5: An Example of the Quantization Process for B-Bit Codebooks.

particular, rescaling the input vectors can be equivalently viewed as rescaling the codebook itself. In
Figure 5a, rounding X onto the codebook yields the vector A. In Figure 5c, we keep the vector X
unchanged and rescale the codebook. In this scenario, rounding X onto the rescaled codebook yields the
rescaled vector B. The distance between X and B in Figure 5c is much smaller than that between X
and A in Figure 5a. Therefore, our algorithm can be equivalently explained as performing SQ by testing
different parameters on a per-vector basis, computing the quantization error for each, and selecting the
optimal parameter and codeword to minimize the error. Mathematically, rescaling a vector by a factor
of t is equivalent to rescaling a codebook by 1/t. Additionally, the codebook for 1-bit quantization can
be seen as a special case of the codebook for B-bit quantization with B = 1.

3.3 Distance Estimator

We have now completed the construction of the codebook and the quantization of the data vectors.
Recall that o represents the data vector to be quantized, q is a query vector and P is a sample from
a random orthogonal matrix. The quantized data vector is denoted as ō, and its representation using
unsigned integers is given by xu. Formally, we have ō = P (xu − 2B−1

2 · 1D)/∥xu − 2B−1
2 · 1D∥ [9, 10].

Building on the quantized data vector, we now introduce an estimator for the inner product ⟨o,q⟩.

3.3.1 The Construction of the Estimator

To achieve this, we first analyze the geometric relationship among the vectors o, ō and q. In particular,
we observe that although o, ō and q are vectors in high-dimensional spaces, estimating ⟨o,q⟩ only
requires focusing on the 2-dimensional subspace that contains o and q, as illustrated in Figure 6. Here,
e1 is a unit vector that is orthogonal to o and lies within the subspace. By analyzing the geometric
relationships among the vectors in the subspace, we derive the following equation for the inner product
of the vectors.

⟨ō,q⟩ = ⟨ō,o⟩ · ⟨q,o⟩+ ⟨ō, e1⟩ · ⟨q, e1⟩ = ⟨ō,o⟩ · ⟨q,o⟩+ ⟨ō, e1⟩ ·
√
1− ⟨o,q⟩2 (5)

By transforming the equation, we have the following equation.

⟨ō,q⟩
⟨ō,o⟩

= ⟨o,q⟩+
√

1− ⟨o,q⟩2 · ⟨ō, e1⟩
⟨ō,o⟩

(6)
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Figure 6: Geometric Relationship among the Vectors.

Note that ⟨o,q⟩ is our target. We treat the first term ⟨ō,q⟩
⟨ō,o⟩ as an estimator, and thus the last term

represents the error. Recall that during codebook construction, we have sampled a random orthogonal
matrix P , applied it to all codewords and generated a randomized codebook. The vector ō is a vector
selected from this randomized codebook, making it a random vector. The inner products ⟨ō,o⟩ and
⟨ō, e1⟩ represent the projections of the random vector ō onto o and e1, respectively. As a result,
these inner products are random variables. As is discussed in Section 3.1, in high-dimensional spaces,
randomness can lead to the concentration phenomenon. We rigorously analyze the distribution, in
particular, the extent of concentration of ⟨ō,o⟩ and ⟨ō, e1⟩. Based on the analysis, we have proven that
the error term has 0 expectation, indicating that the estimator is unbiased [9].

E
[
⟨ō,q⟩
⟨ō,o⟩

]
= ⟨o,q⟩ (7)

Additionally, we have proven that the space-accuracy trade-off of our algorithm achieves the asymptotical
optimality, which was established by a prior theoretical study [2]. This makes our algorithm the first to
achieve the optimality as a practically applicable algorithm, to the best of our knowledge. The specific
theoretical result is presented as follows [10].

Theorem 3.1: Let D be the dimensionality. For ϵ > 0 where 1
ϵ2
log 1

δ > D, to ensure that the error of the
estimator is bounded by ϵ with probability at least 1− δ, it is sufficient to set B = Θ

(
log
(
1
D ·

1
ϵ2
log 1

δ

))
.

It is worth noting that the number of bits B is logarithmic with respect to ϵ−2 and is negatively related
to the dimensionality D. This indicates a counter-intuitive fact: the higher the dimensionality is, under
the same compression rates, the smaller the error would be.

3.3.2 The Computation of the Estimator

The question of estimating distances has been reduced to the one of computing ⟨ō,q⟩ / ⟨ō,o⟩, (i.e.,
the estimator). Note that ⟨ō,o⟩ is independent of the query. It can be precomputed before querying.
Recall that ō is a vector in the codebook which is generated by shifting, normalizing and rotating finite
unit grids, i.e., the vectors of B-bit unsigned integer. We denote the D-dimensional vector whose all
coordinates are equal to 1 by 1D. Additionally, let q′ := P−1q. To support the computation of ⟨ō,q⟩
with arithmetic operations of unsigned integers, we transform ⟨ō,q⟩ as follows.

⟨ō,q⟩ =

〈
P

xu − 2B−1
2 · 1D

∥xu − 2B−1
2 · 1D∥

,q

〉
=

1

∥xu − 2B−1
2 · 1D∥

(〈
xu,q

′〉− 2B − 1

2

D∑
i=1

q′[i]

)
(8)
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Here ∥xu − 2B−1
2 · 1D∥ is independent of queries and can be precomputed. The variable

∑D
i=1 q

′[i] can
be computed once and shared by all data vectors. We perform quantization on q′, i.e., we approximate
it with ∆ · qu + vl · 1D. Then the computation is finally reduced to the inner product between vectors of
unsigned integers as follows.

〈
xu,q

′〉 = ⟨xu,∆ · qu + vl · 1D⟩ = ∆ · ⟨xu,qu⟩+ vl ·
D∑
i=1

xu[i] (9)

Note that number of bits used for quantizing the query q′ should be larger than B by more than 3 bits
so that the error introduced from the query side is negligible. Particularly, when B = 1, the computation
can be realized with highly efficient bitwise operations. Note that the computation is exactly the same
as SQ. Thus, RaBitQ can replace SQ seamlessly while providing better accuracy. We refer readers to
the RaBitQ papers for more details [9, 10].

3.4 Summary

In summary, our RaBitQ methods provide optimized methods for binary and scalar quantization. Its
distance estimation can be realized in the same way of binary and scalar quantization. Under the same
compression rates, it consistently produces better accuracy than LVQ [1], the state-of-the-art variant of
SQ. Thus, replacing the SQ methods with RaBitQ would bring consistent improvement. In particular,
we would like to highlight that when B = 1 and B = 2, the error of RaBitQ is smaller than that of
LVQ by orders of magnitude, indicating RaBitQ’s significant improvement [10]. Additionally, RaBitQ
primarily focuses on the compression rates ranging from 3x to 32x, with only limited discussion on
settings with over 32x compression. A concurrent study of the extended RaBitQ paper, MRQ [28],
focuses on achieving over 32x compression and enhancing performance using data-aware technologies. We
refer readers to the MRQ paper for more detailed discussions [28]. Finally, to the best of our knowledge,
RaBitQ is the first practical algorithm which achieves the asymptotic optimality established by a prior
theoretical study [2].

4 Future Directions: towards Data-Aware Methods with Theoretical
Error Bounds

The RaBitQ method provides practical and asymptotically optimal quantization. This result relies
on the codebook construction process, where the codebook is generated based on the codebook of SQ.
This codebook allows distance estimation to be efficiently computed using bitwise operations (for 1-bit
quantization) and arithmetic operations on unsigned integers (for B-bit quantization). The theoretical
error bound requires that the codebook is randomly rotated. Therefore, incorporating learning into either
codebook construction or rotation will cause the loss of the theoretical error bounds. However, we observe
that the theoretical bounds remain valid regardless of the centering vector chosen for normalization.
Consequently, the normalization step can be improved without sacrificing any theoretical guarantees.
This opens up the opportunity to enhance RaBitQ by incorporating advanced learning techniques into
the normalization step. Nevertheless, based on the current scheme, there are still some constraints
on the selection of centering vectors for normalization. Specifically, it uses the centroids of KMeans
clustering [9, 10] for normalization. In this scheme, the algorithm needs to pre-process (i.e., quantize)
the query vector for every centroid. This cost can be amortized if a centroid is shared by many data
vectors. However, when a centroid is shared by a few data vectors only, the cost of pre-processing the
query vector would be significant. This issue can be resolved with a simple trick, which is presented as
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follows.

∥or − qr∥2 = ∥or − c∥2 + ∥qr − c∥2 − 2 ⟨or − c,qr − c⟩ (10)

≈ ∥or − c∥2 + ∥qr − c∥2 − 2∥or − c∥ · ∥qr − c∥ · ⟨ō,q⟩
⟨ō,o⟩

(11)

= ∥or − c∥2 + ∥qr − c∥2 − 2∥or − c∥ · ⟨ō,qr − c⟩
⟨ō,o⟩

(12)

= ∥or − c∥2 + 2∥or − c∥ ⟨ō, c⟩
⟨ō,o⟩

+ ∥qr − c∥2 − 2∥or − c∥ · ⟨ō,qr⟩
⟨ō,o⟩

(13)

The first two terms are independent of queries and can be precomputed. Thus, the only question is
to compute ⟨ō,qr⟩, where qr is independent of the centroid. Thus, when a query comes, it can be
pre-processed once and shared by all data vectors, even though their normalization is based on different
centering vectors.

With this trick, one possible research direction is to combine RaBitQ with other types of quantization
methods. In particular, it is possible to use the quantized vector of other quantization methods
(e.g., additive quantization) for normalization. Specifically, for a dataset, we can first adopt additive
quantization to find a quantized vector for every vector. Then, we use the quantized vector as the
centering vector for normalization. Recall that additive quantization could perform competitively when
using a small number of bits, due to its better flexibility of codebook construction. It may capture
the data distribution with a few bits, which can enhance the normalization step with moderate costs.
On the other hand, RaBitQ provides better scalability, efficiency and rigorous theoretical error bounds.
Combining both methods is expected to enhance data-awareness while preserving error bounds. However,
several details remain to be addressed in this direction, which should be carefully studied.

5 Conclusion

Vector quantization is fundamental for reducing the memory costs of high-dimensional vector data
management. In this paper, we presented the general framework of vector quantization, which involves
two critical components, the codebook and the distance estimator. We reviewed existing popular
quantization schemes, and discussed how incorporating learning within their pipelines affects their costs
of vector quantization and distance estimation. We provided an intuitive overview of the RaBitQ method,
which serves as an optimized approach to binary and scalar quantization, and achieve asymptotically
optimal theoretical error bounds. Finally, we discussed opportunities to further enhance the RaBitQ
methods through learning-based normalization techniques, aiming to develop a data-aware approach
with rigorous theoretical error bounds.
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The DiskANN library: Graph-Based Indices for Fast, Fresh and
Filtered Vector Search

Ravishankar Krishnaswamy Magdalen Dobson Manohar Harsha Vardhan Simhadri

Abstract

Approximate nearest neighbor search has become a core component of AI systems on cloud and
edge, spanning extremes of scales and form factors. We overview the DiskANN library of graph-
based indices and algorithms that enable the practical construction and deployment of approximate
nearest neighbor search indices across a variety of such systems. Specifically, we present indices
that are capable of running efficiently out of an SSD, preserving recall over a stream of updates,
and incorporating attributes alongside vector data to support predicate filters. They also support
performance at least on par with other “in-memory" graph-based indices. Interestingly, all these
algorithms arise from a variation of the prune procedure used in most graph-based indexing algorithms.

1 Introduction

query

Figure 1: Nearest neighbor
search in two dimensions.

Nearest Neighbor Search (NNS) is a classical problem in computer science,
aimed at identifying the closest points in a dataset relative to a specified query
point, based on a chosen distance metric (e.g., Euclidean or cosine similarity
for vector datasets, or Jaccard similarity for sets of words). Formally, the input
is a dataset P of points in Euclidean space along with a distance function, and
the goal is to design a data structure that, given a query point q and target k,
efficiently retrieves the k closest neighbors for q in the dataset P according to
the given distance function. Algorithms and bounds for fundamental problem
are well studied in the research community [3, 8, 15, 16, 20, 43, 47, 48, 55, 62,
80].

1.1 Approximate Nearest Neighbor Search (ANNS)

Since it is impossible to retrieve the exact nearest neighbors without exhaustive search of the dataset
in the general case [43, 80] due to a phenomenon known as the curse of dimensionality [25], one aims
instead to find the approximate nearest neighbors (ANN) where the goal is to retrieve k neighbors that
are close to being optimal with the help of ANNS indices. We also refer to this problem as vector
search. The quality of an index and the corresponding search algorithm is judged by the trade-off it
provides between accuracy and the time and space complexity of a query, or in the case of specific
implementations of the algorithm, the hardware resources such as compute, memory and I/O needed for
a query.

Theoretical analyses [8, 14, 43] typically provide bounds on the quality of the solution using the
approximation ratio, namely, the ratio of the distance of the candidate returned by the algorithm and
the true closest nearest neighbor for the query vector, for the case when k = 1. For larger values of k, a
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common generalization is the ratio of the distance of the kth candidate returned by the algorithm and
the true kth closest nearest neighbor for the query. In this paper, we use a slightly different, but related,
notion of recall relevant to practical applications of ANNS indices.1

Definition 1 (k-recall@k′) For a query vector q over dataset P , suppose that (a) G ⊆ P is the set of
actual k nearest neighbors in P , and (b) X ⊆ P is the output of a top-k′ ANNS query to an index. Then
the k-recall@k′, where k ≤ k′ for the index for query q is |X∩G|

k . Recall for a set of queries refers to the
average recall over all queries.

1.2 Usage: Scenarios and Scale

Indices for ANNS are critical in diverse applications in computer vision [78], data mining [22], information
retrieval [56], classification [35], to state of a few. In these applications, objects are embedded in a high
dimensional vector space by a semantic embedding model that captures the intended notion of semantic
similarity as geometric distance in a high-dimensional Euclidean vector space [28, 39, 68, 82]. Typical
embeddings have dimensions range from 100 to 1000, and use ℓ2-distance, cosine similarity, or inner
product as distance functions2. With improvements in machine learning models and scale of data they
are trained on, such dense vector indices over embeddings of objects have become pivotal to the quality
of search [23, 82] and recommendation systems [27]. Industrial use cases from web and enterprise search
to device local search (e.g., Windows Copilot Runtime [64]) now rely on vector search. Further, with the
evolution of Large Language Models (LLMs), such indices have also found powerful use in grounding
LLMs and providing access to valuable private or proprietary data via Retrieval Augmented Generation
(RAG) [52]. Agents such as OpenAI DeepResearch, Microsoft Copilots [1] that combine LLMs generative
and reasoning abilities with knowledge stores such as web or enterprise document indices primarily use
vector search for retrieval.

Due to the pervasive nature of this workload, standalone vector indexing software such as FAISS [31]
and nmslib [21] as well as vector indexing extensions for existing systems have been developed. For
example, inverted-index based search engines [11, 65, 72, 76], document databases [12, 49, 59, 69], and
relational databases [6, 13, 57, 61, 66, 83, 84] now allow vector search to search and retrieve their content.
Specialized vector databases that primarily support vector search have been developed [7, 26, 34, 67, 77].

Given the range of applications in which vector search is used, their deployments can span extremes
of scale in size and throughput:
Index Size. A web index could span hundreds of billions of vectors, each representing a URL and
its contents. In addition, each user interaction with the web search interface might trigger requests to
dozens of other semantic indices for advertisements, videos, images, entities, etc., each of which might
span billions of vectors. Enterprise search system like Microsoft 365 that serve millions of users could be
even larger. They might build millions of indices, each representing an enterprise’s shared content or
personal email inbox. Such systems might index many trillions of vectors overall. On the other extreme,
a device local AI runtime might have many small application specific indices each with only thousands
of vectors.
Query performance. Web scale indices need to process tens of thousands to hundreds of thousands of
queries per second, with each response taking no more than tens of milliseconds. On the other hand, an
inbox or an index on a personal device might only be searched a few times a day. These two use cases

1An index that provides good k-recall@k can also satisfy other notions of recall such as finding all neighbors within a
certain radius in the real-world scenarios.

2We will restrict our focus to such datasets, and hence use the terms Vector Search and ANNS interchangeably.
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are separated by 10 orders of magnitude in their query throughput. Query throughput for other cases
falls at various points in this range.
Update speeds. As the underlying collection of objects these vector indices represent change (e.g. web
crawls, new emails, new rows/docs in a database), the vector index must be updated to represent this.
The update latency required could vary from near-instant in the case of a database that has committed
a transaction, or an index over conversation history with an AI conversation agent, to a few seconds or
minutes in case of a real-time web or document index. The update throughput can also be as demanding
as tens of thousands of updates/sec for a web based index.

Limitations of previous algorithms: Prior algorithms such as HNSW and FAISS IVF-PQ excelled
over static datasets when indices could be stored in memory. In such scenarios, they could process tens
of thousands of queries per second on multi-core processors or a GPU. However, the requirement of
holding data in memory can be prohibitively expensive. A billion 768 dimensional vectors along with
an HNSW index requires about 3.5 TB of main memory. For most scenarios except those requiring
thousands of queries per second, it is difficult to justify this cost. It would be strongly preferable to
construct an index that can be served from inexpensive SSDs which cost about 25x lesser than main
memory. In fact, this is the only path to scaling these indices to industrial scale datasets.

Once built, these indices must be continuously updated but prior work is sparse on details on
updating vector indices. The effect of sequences of incremental updates, where they exist in prior work,
on the recall of the index are not well understood.

Further, in many scenarios, it is natural to select the closest vectors to the query among those that
satisfy a particular clause. For example, one might want to retrieve most relevant documents from a
particular domain or relevant to certain geography. In such cases, algorithms that query vector indices
and then post-filter for the predicate afterwards can be quite inefficient.

1.3 The DiskANN library

The DiskANN library was developed to address the limitations highlighted above and other requirements.
To present a few highlights, the DiskANN library can:

• index about a billion vectors points on a single compute node with a commodity SSD, and serve
queries with high recall at upto 10,000 queries per second with single digit millisecond latency [73].

• process thousands of updates per second concurrently with queries. It can also update SSD based
indices via a novel graph merge algorithms with limited memory and write amplification [71].

• construct specialized indices for certain predicate patterns that are nearly as efficient to query as
plain vector indices [38].

• can process queries at least as efficiently as other graph-based indices such as HNSW when the
same index (built for SSD) is hosted in memory, with comparable recall.

These ideas have been deployed in a variety of applications spanning web search, computational
advertisements, enterprise search, databases, Copilots and other retrieval-augmented generative AI
scenarios across Microsoft and adapted elsewhere in the industry [26, 49, 57, 67]. An open-source
implementation of these ideas is available at https://github.com/Microsoft/DiskANN.
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2 Overview of Different Classes of ANNS Algorithms

Recent surveys and benchmarks [10, 32, 53] provide an overview of the large body of research, and
comparison of the state-of-the-art ANN algorithms. Here, we focus on the algorithms relevant for vectors
in high-dimensional space with Euclidean metrics, and provides a broad categorization of them. Beyond
ANNS for points in Euclidean spaces, there has been work for tailored inputs and other notions of
similarity such as those for time series data [2, 22, 51]. See [32] for a comprehensive study of such
algorithms.

Trees. Some of the early research on ANNS focused on low-dimensional points (say, d ≤ 20). For such
points, spatial partitioning ideas such as R∗-trees [17], kd-trees [18] and Cover Trees [20] work well, but
these typically do not scale well for high-dimensional data owing to the curse of dimensionality. There
have been some recent advances in maintaining several trees and combining them with new ideas to
develop good algorithms such as FLANN [60] and Annoy [19].

Locality Sensitive Hashing (LSH). In a breakthrough result, Indyk and Motwani [43] developed a
class of algorithms, known as locality sensitive hashing which resulted in the first, and only-known provably
approximate solutions to the ANNS problem with a polynomially-sized index and sub-linear query time.
Subsequent to this work, there has been a plethora of different LSH-based algorithms [4, 43, 85], including
those which depend on the data [5], use spectral methods [81], distributed LSH [75], etc.

Clustering. Similar to LSH, there is another body of work [24, 48] which focuses on a more data-
dependent way to solve ANNS in practice. These methods first cluster the dataset points using methods
with good empirical performance, such as k-means heuristic. They then store an inverted index mapping
each cluster to the list of database points that fall into the cluster. At query time, the search algorithm
computes the closest (or closest few) cluster center(s) to the query, retrieves all the database points
which belong to these closest clusters and computes the top k vectors from these retrieved points.

Graph-Based Index. One potential drawback of the space partitioning approaches (like the ones
discussed above) is that that there are exponentially (in the dimension) many neighboring cells/clusters
to a given region of space. Hence, it becomes difficult to select which nearby cells to scan to reduce the
query time complexity. To circumvent such boundary issues, there has been an evolution of graph-based
ANNS indexing algorithms [37, 45, 46, 55, 73, 74]. Several comparative studies [10, 32, 53, 79] of ANNS
algorithms have concluded that these graph-based methods significantly out-perform other techniques in
terms of search performance on a range of real-world static datasets. These algorithms are also widely
used in the industry at scale. This paper shall deal with one such algorithm, called DiskANN [73], which
has been used extensively in Microsoft in its core search technologies.

3 The DiskANN Algorithm

The primary data structure in the DiskANN data structure is a directed graph with vertices corresponding
to points in P , the dataset that is to be indexed, and edges between them. With slight notation overload,
we denote the graph G = (P,E) by letting P also denote the vertex set. Given a node p in this directed
graph, we let Nout(p) and Nin(p) denote the set of out- and in-edges of p. We denote the number of points
by n = |P |. Finally, we let xp denote the database vector corresponding to p, and let d(p, q) = ||xp − xq||
denote the ℓ2 distance between two points p and q. We now describe how the DiskANN index is built
and searched. We first describe how the search algorithm works assuming that the graph has been built.
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Algorithm 1: GreedySearch(s, xq, k, L)

Data: Graph G with start node s, query xq, result size k, search list size L ≥ k
Result: Result set L containing k-approx NNs, and a set V containing all the visited nodes
begin

initialize sets L ← {s}, E ← ∅, and V ← ∅
// L is the list of best L nodes, E is the set of all nodes which have

already been expanded from the list, and V is the set of all nodes
which have been visited, i.e., inserted into the list

initialize hops← 0 and cmps← 0
while L \ E ≠ ∅ do

let p∗ ← argminp∈L\E ||xp − xq||
update L ← L ∪ (Nout(p

∗) \ V) and E ← E ∪ {p∗}
if |L| > L then

update L to retain closest L points to xq

update hops← hops+ 1 and cmps← cmps+ |Nout(p
∗) \ V|

update V ← V ∪Nout(p
∗)

return [closest k points from V; V]

3.1 Index Search and Navigable Graphs

In graph-based data structures for vector similarity search like DiskANN, an important aspect of
performance is how efficiently the graph index can be traversed to locate nodes closest to a given
query. This efficiency depends on the graph’s navigability—a property that allows a search algorithm to
efficiently find nearby nodes to the query using a greedy-like algorithm, without exhaustively examining
every node.

Roughly speaking, navigability of a directed graph is the property that ensures that the index can be
queried for nearest neighbors using the following greedy search algorithm. The greedy search algorithm
traverses the graph starting at a designated start node s ∈ P . The search iterates by greedily walking
from the current node u to a node v ∈ Nout(u) that minimizes the distance to the query, and terminates
when it reaches a locally-optimal node, say p∗, that has the property d(p∗, q) ≤ d(p, q)∀p ∈ Nout(p

∗).
In other words, greedy search terminates when it improve distance to the query point by navigating
out of p∗, and thus returns it as the candidate nearest neighbor for query q. In practice, we use a
generalization of this procedure called beam search, where the algorithm maintains a list of size L ≥ k,
and iterates until the list is locally optimal, and finally outputs the top k from the list. Algorithm 1
formally describes this variant.

3.2 Index Construction and the α-RNG property

We now describe how to build a good navigable graph. Note that the primary goal of the index
construction phase is that the greedy search algorithm quickly converges to a good local optimal solution
(ideally the nearest neighbor(s) of the query) for most queries. We can measure the quickness, i.e.,
search complexity, in terms of the final number of distance comparisons and number of graph hops
(tracked by cmps and hops respectively in Algorithm 1). Roughly speaking, the search complexity can be
approximated by deg × hops, where deg is the average out-degree of the graph. Furthermore, the space
complexity of the index is O(Ndeg) +O(Nd) to store the graph data structure and the d-dimensional
vectors of the database. In order to keep the data structure implementations simple, we enforce an
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upper bound of R, a tunable parameter on the maximum out-degree of each node in the graph. Thus
the question becomes, how do we choose the (at most) R out-neighbors of any node p, so that the greedy
search algorithm converges to a good local optimum while minimizing the number of hops.

Algorithms like NN-Descent [30] use gradient descent techniques to determine G. The more recent
algorithms start with a specific initial graph — an empty graph with no edges [55, 73] or an approximate
k−nearest-neighbor graph [36, 37] — and iterate over all the base points xp to refine G using the following
two-step construction algorithm to improve navigability. Each iteration adds edges to ensure that if the
query is close to xp, the the greedy algorithm Algorithm 1 will converge to xp. Since we don’t know the
query points at index construction time, we simulate the query as being xp itself.

• Candidate Generation - For each base point xp, run Algorithm 1 on G to obtain E , the set of
all nodes expanded during the search process. In order to ensure that xp is reachable after the
graph update in this iteration, we add E to Nout(p) and Nin(p), thereby improving the navigability
to p in the updated graph G.

• Edge Pruning – When the out-degree of a node p exceeds R, a pruning algorithm filters out
similar kinds of (or redundant) edges from the adjacency list to ensure |Nout(p)| ≤ R. Different
algorithms differ in how they prune the neighborhoods, and this forms a crucial difference between
the different graph-based ANNS algorithms.

3.2.1 The DiskANN Pruning Strategy

One of the crucial differentiators between DiskANN and other graph algorithms is in the way it prunes
the out neighbors of a node p, when the degree exceeds the threshold R. Indeed, how do we determine
which of p’s current neighbors to retain while bringing the degree down? To answer this question, prior
algorithms like HNSW and NSG applied a very elegant pruning strategy which will greatly sparsify the
graph. Loosely speaking, if p has two neighbors p1 and p2 such that ||xp − xp2 || > ||xp1 − xp2 ||, then we
can declare p2 as a redundant neighbor, and remove it from the out-neighborhood of p. Intuitively, if the
query is close to p2 (which is why the greedy search algorithm will find the edge p→ p2 useful), then p1
is a candidate neighbor which gets the search procedure closer to p2 (a surrogate for the target region)
than p, and hence we can eliminate the edge to p2. However, as we shall see in subsequent sections, this
pruning strategy might end up being be too aggressive, and has some drawbacks.

Definition 2 (α Relative Neighborhood Graph (RNG) Property) The crucial concept used in
the DiskANN graph construction is a more relaxed pruning procedure, which removes an edge (p, p2)
only if there is an edge (p, p1) and ||xp − xp2 || > α||xp1 − xp2 || for some constant α > 1.

Intuitively, building such a graph using α > 1 helps the distance to the query vector to decrease
geometrically by a factor of α in Algorithm 1 in each step over the graph. Note that graphs become
denser as α increases as this is a more relaxed pruning criterion. We formalize this pruning strategy
in Algorithm 3. In practice, α is typically set between 1.0 to 1.4, with 1.2 being the typical choice. It is
very unusual for α < 1.0 or α > 1.4 to yield desirable results. See Figure 2 for an illustration of the
pruning algorithm.
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Figure 2: An illustration of Algorithm 3 on an adjacency list of length 7 in two-dimensional space. The seven vertices
are numbered in order of distance from p. In application of the algorithm, v4 and v7 are pruned out due to proximity to
v3, and v5 is pruned due to proximity to v2. Lower α would cause more aggressive pruning and a sparser adjacency list,
while higher α would cause fewer vertices to be pruned out for a denser adjacency list. While algorithms such as HNSW
implictly set the α value to 1.0, DiskANN’s crucial insight was that configuring α to higher values results in a much higher
quality graph.

Algorithm 2: Insert(xp, s, L, α,R)

Data: Graph G(P,E) with start node s, new
vector xp, parameter α > 1, out degree
bound R, list size L

Result: Graph G′(P ′, E′) where
P ′ = P ∪ {p}

begin
initialize expanded nodes E ← ∅
initialize candidate list L ← ∅
[L, E ]← GreedySearch(s, p, 1, L)
set Nout(p)← RobustPrune(p, E , α,R)
foreach j ∈ Nout(p) do

if |Nout(j) ∪ {p}| > R then
set Nout(j)←
RobustPrune(j,Nout(j) ∪ {p}, α,R)

else
update Nout(j)← Nout(j) ∪ {p}

Algorithm 3: RobustPrune(p, E , α,R)

Data: Graph G, point p ∈ P , candidate set
E , distance threshold α ≥ 1, degree
bound R

Result: G is modified by setting at most R
new out-neighbors for p

begin
E ← (E ∪Nout(p)) \ {p}
Nout(p)← ∅
while E ̸= ∅ do

p∗ ← argminp′∈E d(p, p
′)

Nout(p)← Nout(p) ∪ {p∗}
if |Nout(p)| = R then

break

for p′ ∈ E do
if α · d(p∗, p′) ≤ d(p, p′) then

remove p′ from E

3.2.2 The Overall Index Construction Algorithm

We now have all the pieces to state our index construction algorithm. The input comprises of a dataset
P of n points, degree bound R, list size parameter L, and RNG parameter α ≥ 1.
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Algorithm 4: Index Construction
Data: Dataset P , degree bound R, list size parameter L, RNG parameter α
Result: Navigable Graph G = (P,E), start node s

let s← argminp∈P ||xp −
∑

p′∈P xp′

n || // s is the medoid of the dataset

for each point p in dataset P do
run Insert(xp, s, L, α,R)

3.3 Theoretical Analysis of DiskANN Graphs

As mentioned in the earlier section, one of the crucial differences between the DiskANN graph construction
algorithm and other graph methods like HNSW and NSG, is the α parameter used during the pruning
procedure. The other algorithms implicitly use α = 1, thereby producing much sparser graphs. It turns
out that, even from a theoretical perspective, the α parameter plays a crucial role in ensuring that
the DiskANN algorithm constructs graphs with provable guarantees. In a very elegant paper, Indyk
and Xu [44] proved the following theorem for a so-called slow-preprocessing variant of DiskANN. The
interested reader may refer to the paper for more complete details.

Definition 3: For any point p in dataset P and radius r ≥ 0, we use B(p, r) to denote a ball of radius
r centered at p, i.e., B(p, r) = {x ∈ P : d(x, p) ≤ r}. We say that a dataset P has the doubling constant
C if any ball B(p, 2r) centered at some p can be covered using at most C balls of radius r, and C is the
smallest number with this property. The value log2C is called the doubling dimension of P .

The doubling dimension is often used as a measure of the “intrinsic dimensionality” of a data set.
Moreover, recent empirical studies [9] show that several real-world datasets for vector search reside in
large ambient dimensional space, but have significantly smaller intrinsic dimensionality.

Theorem 3.1: Consider a dataset P of doubling dimension r, and suppose ∆ is its aspect ratio,
i.e., Dmax/Dmin. Then the graph constructed using the DiskANN slow-preprocessing algorithm has
maximum degree at most O(α)d log∆. Moreover, the greedy search Algorithm 1 converges to an(
α+1
α−1 + ϵ

)
-approximate solution in O(logα

(
∆

(α−1)ϵ

)
hops.

Interestingly, note that the theorem gives good convergence bounds only if α > 1, which serves as
validation for the more relaxed pruning strategy employed by DiskANN.

4 DiskANN Features

We now illustrate how this simple graph construction procedure can accommodate various important
features, and present experimental results supporting our conclusions.

4.1 In-Memory Index

In this section, we showcase the performance of the in-memory DiskANN graph on state-of-the-art,
modern datasets, as compared to other popular in-memory ANNS algorithms. In these experiments,
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Algorithm Build Time(s) on
Wikipedia-Cohere-35M

Build Time (s) on
OpenAI-ArXiv-2M

In-Mem DiskANN 4556 1210
In-Mem Quantized DiskANN 2948 851

HNSW 13778 1137
ScaNN 2059 206

Figure 3: Build times of each algorithm
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(a) Results on Wikipedia-Cohere dataset. DiskANN was build with
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Figure 4: Recall/QPS curves comparing in-memory DiskANN with ScaNN and HNSW.

we compare DiskANN to ScaNN [41], a popular partition-based alternative algorithm, and HNSW [55],
a widely used graph-based algorithm. For each algorithm, we used publicly available guidelines [42,
70] as well as our own parameter sweeps to select the best parameters for each dataset. When
configuring DiskANN and ScaNN, we used each algorithm’s respective quantization options–namely,
scalar quantization to 16 bits for DiskANN and anisotropic vector quantization for ScaNN. The most
widely used implementation of HNSW did not include a native quantization scheme, so for the sake of a
fair comparison with HNSW, we also include the full-precision version of DiskANN in our experiments.
Our experiments were run on an Azure Standard_L32s_v3 [58] machine with a third generation Intel
processor with 32 vCPUs, using 8 threads for search.

In Figure 4 and Figure 3, we show the results of our experiments on two datasets, Wikipedia-Cohere-
35M, with 35 million points, and OpenAI-ArXiV-2M, with 2 million points. Both datasets are publicly
available at the Big ANN Benchmarks repository [33]. Overall, our results show strong performance of
DiskANN, especially on larger datasets.

4.2 SSD-Resident Index

While graph-based ANN indices offer state of the art search performance in terms of latency/throughput
vs recall, they are quite expensive to host due to consuming a significant amount of RAM. Indeed, one
needs to store an additional graph data structure of size O(ndavg) over and above the data vectors,
where davg is the average degree of the graph index. One way to mitigate this space issue is to store
the graph on cheaper auxiliary storage devices such as SSDs (solid state drives). Doing this in a naive
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(a) 20% index built (b) 60% index built (c) 100% index built

(d) 20% index built (e) 60% index built (f) 100% index built

Figure 5: Stages of Index Construction with α = 1 ( Figures 5a to 5c) and α = 2 ( Figures 5d to 5f)

manner would unfortunately make the search latencies increase significantly. Indeed, each time the
greedy search Algorithm 1 needs to expand one node to fetch its neighbors, the algorithm needs to make
one round-trip to the SSD to fetch this adjacency list information, and the SSD round-trip latencies are
an order of magnitude larger than a random RAM access.

This was in fact one of the main reasons [73] introduced a new graph construction algorithm: the
graphs constructed based on the α-RNG property (with α > 1) would end up considerably reducing the
number of hops at search time, resulting in improved query latencies. Figure 5 illustrates the improved
connectivity of the graph (which in turn will bring down the number of hops at search time) by using
large values of α, in a dataset comprising of 100 random points in the unit square. In the plot in Figure 6,
we show how the indices built with α = 1 and α = 1.2 differ in terms of how many hops it takes for the
greedy search Algorithm 1 to achieve a desired recall on a real-world dataset. For this experiment, we
used the arxiv-openai dataset [33] which comprises of around 2, 000, 000 vectors in 1536 dimensions,
and the amazon-cohere dataset [33] which comprises of around 2, 000, 000 vectors in 384 dimensions

4.3 Streaming Index

In this section, we show how DiskANN can be adapted to the streaming scenario; that is, maintaining
an index under a stream of insertions and deletions rather than a static index built in one shot. Since
the build routine is naturally composed of a stream of insertions, the insert procedure is adapted to
this scenario without modification. On the other hand, maintaining a high-performance index under a
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Figure 6: Recall vs Hops for Indices built with different values of α
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Figure 7: Search recall over 20 cycles of deleting and re-inserting 5% of SIFT1M dataset with statically built HNSW,
Vamana, and NSG indices with Ls = 44, 20, 27, respectively.

stream of deletions is significantly more difficult. In this section, we explain this difficulty and how to
mitigate it, and show the performance of streaming DiskANN under a variety of situations.

The most natural approach to deleting a point p from a DiskANN graph is to simply delete its
corresponding vertex, as well as all edges pointing to the vertex representing p. However, this simple
policy, which we refer to as the “Drop Policy”, fails to maintain consistent recall for search with the same
Ls, and rather degrades over time (see Figure 7. The reason for this degradation is that the deleted
point may be an important routing node for queries to reach their correct answers, so losing the in- and
out-neighbors of the node leads without any attempt at repair results in a lower quality graph.

This need for repair led to Algorithm 5 [71], which loops over vertices which have an edge to a
deleted vertex, and replaces that edge with the out-neighbors of the deleted vertex while respecting the
degree bound. In Figure 10 we refer to this policy as the “Consolidate Policy." This global algorithm
can be called as a background process after a certain percentage of the index has been deleted; in the
meantime, deleted nodes can be used as part of the search path but not returned as query results.
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Algorithm 5: Consolidate Deletes
Data: Dataset P , degree bound R, list size parameter L, RNG parameter α, delete set D ⊆ P
Result: Navigable Graph G = (P \D,E), start node s
for p ∈ P do

Ep ← ∅
if p ̸∈ D then

for q ∈ Nout(p) do
if q ∈ D then

Ep ← Ep ∪ {e|e ∈ Nout(q)e ̸∈ D}
else

Ep ← Ep ∪ q

if |Ep| > R then
Ep ← RobustPrune(p,Ep, α,R)

Nout(p)← Ep

else
continue
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Figure 8: 5-recall@5 for FreshVamana indices for 50 cycles of deletion and re-insertion of 5%, 10%, and 50% of index size
on the million-point and 5% of SIFT100M datasets. Ls is chosen to obtain 5-recall@5≈ 95% on Cycle 0 index.

4.4 Recall stability of FreshVamana

We now demonstrate how using our insert and delete consolidation algorithms ensures that the resulting
index is stable over a long stream of updates. We start with a statically built Vamana index and subject
it to multiple cycles of insertions and deletions. In each cycle, we delete 5%, 10% and 50% of randomly
chosen points from the existing index, and re-insert the same points. We then choose appropriate Ls (the
candidate list size during search) for 95% 5-recall@5 and plot the search recall as the index is updated.
Since both the index contents and Ls are the same after each cycle, a good set of update rules would
keep the recall stable over these cycles. Figure 8 confirms that is indeed the case, for the million point
datasets and the 100 million point SIFT100M dataset. In all these experiments, we use an identical
set of parameters L,α = 1.2, R for the static Vamana index we begin with as well as our FreshVamana
updates.

Effect of α on recall stability. To study the effect of α on recall we run the update rules for a stream
of deletions and insertions with different α values, and track how the recall changes as we perform our
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Figure 10: Recall over time for two streaming scenarios.

updates in Figure 9. Note that recall is stable for all indices except for the one with α = 1, validating
the importance of using α > 1.

We examine the recall of the algorithms described above with two further streaming runbooks. The
Drop Policy is called in a global background process at the same rate as the Consolidate Policy. A
runbook consists of a sequence of insert, delete, and search operations, and recall is measured at each
search operation. The first runbook is based the MSTuring-30M [33] dataset and designed to mimic
the real-world trend of distribution shift within a streaming scenario. The dataset is clustered into 64
clusters, and points are inserted and deleted in clustered order over five rounds. The second runbook,
based on the Wikipedia-35M [33] dataset, is designed to reflect another real-world scenario: that of an
index where data is reliably deleted based on a time window. In this runbook, each point in the dataset
is inserted and randomly assigned an expiration date, after which it is deleted. Figure 10 shows the
trend in recall over time of both datasets. In Figure 10a, recall drops and then increases each time the
delete algorithm is called, in five noticeable peaks corresponding to the five rounds. The recall using the
Consolidate Policy is significantly higher than that of the Drop Policy. Similarly, in Figure 10b, recall
using the Consoldate Policy remains much more steady over time than recall using the Drop Policy.
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4.5 Filtered DiskANN

We now show how the simplicity of the modular graph construction and search approach allows us to
solve interesting generalizations of ANNS which also have great real-world significance, by considering
the case of filtered search. A motivating example is where each database point p ∈ P corresponds to an
advertisement, and the advertiser has an embedding vector xp capturing the semantic information, and
an additional set L(p) of labels, corresponding to the set of countries where the ad can be displayed.
The advertisement retrieval problem now corresponds to finding the closest vectors from the database
which contains the country where the query originated from.

Formally, each database point p ∈ P , in addition to a vector xp ∈ Rd, also comes with a set of
associated labels L(p) ⊆ U , where U is a universe of possible labels. The query point again has a vector
xq ∈ Rd and a filter label ℓ(q) ∈ U . The goal is to retrieve the closest database points whose label-set
contains ℓ(q): given a target k, we want to retrieve the top-k set (or a close approximation thereof)
R∗ := argminkp:ℓ(q)∈L(p) ||xp − xq||, where argmink notation denotes the set of k elements optimizing the
condition.

We now show how to adapt the basic graph construction and search to handle such simple filters. The
ideas described are formalized in [38]. More sophisticated ideas to handle more complex filter predicates
like conjunctions and disjunctions (as opposed to single filters at query time) using graph-based methods
are presented in [63]. The interested reader may refer to these articles for any missing details.

4.5.1 Index Search

There are two main changes we make to the search algorithm, both of which are intuitive. The main
change to Algorithm 1 is that we make sure that our candidate list L of best L nodes only contains
candidates p which satisfy the query filter, i.e., ℓ(q) ∈ L(p). Indeed, the step

update L ← L ∪ (Nout(p
∗) \ V) and E ← E ∪ {p∗}

gets replaced with

update L ← L ∪ ({x : x ∈ Nout(p
∗) ∧ ℓ(q) ∈ L(x)} \ V) and E ← E ∪ {p∗}

The second main change is that, instead of the search starting from a global start node s, the start
node s(ℓ) for a query q with filter label ℓ depends on the filter label ℓ, to guarantee that ℓ ∈ L(s(ℓ)),
i.e., the start node satisfies the query filter. To efficiently enable this, we pre-compute a map from the
universe of labels to satisfying start nodes.

4.5.2 Index Build

Given that the search routine for query q only restricts to running a greedy search over the induced
sub-graph of points containing the the label ℓ(q), we want the index construction to ensure that each of
these induced subgraphs (for any label ℓ ∈ U) is sufficiently well-connected and resembles a navigable
DiskANN index only over these points themselves. To this end, the index construction is once again
composed of iterating over all database points. In each iteration, when considering point p with labels
L(p), we first obtain some candidates to add edges with p, and then prune these candidates using the
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α-RNG property. In the filtered setting, the candidates are precisely the union of all the nodes visited
during each of the searches FilteredGreedy(s(ℓ), xp, 1, L, ℓ)

3 for ℓ ∈ L(p). This ensures that p only has
edges to other nodes which share common labels, and can promote the connectivity of these labels.
Next, the prune procedure also deviates from Section 3.2.1 in that it now depends both on the geometry
of vectors and as well as the label overlap between the possible candidates. We outline this change
in Definition 4, and make a corresponding adaption to Algorithm 3 to incorporate the label information.
This overall algorithm is known as Filtered DiskANN. In another variant, we build a DiskANN graph for
each label, namely over the point-set P (ℓ) = {x : ℓ ∈ L(x)}, take a union of all these graphs, and finally
perform the filtered prune algorithm on each vertex independently to bring down the degree. Without
the prune step, this graph will be very dense but excellent for filtered search; the pruning brings down
the degree considerably without compromising on the quality a lot. This algorithm is known as Stitched
DiskANN.

Definition 4: (α Relative Neighborhood Graph (RNG) Property for Filtered Index Con-
struction). For any p, p1 and p2, the pruning algorithm removes an edge (p, p2) if there is an edge
(p, p1), ||xp − xp2 || > α||xp1 − xp2 || for some constant α > 1, and moreover, L(p1) ⊇ L(p) ∩ L(p2).

We now demonstrate the efficacy of our algorithm on two different use-cases.

Ads Dataset. The Ads datasets represent sponsored advertisements from a large ad corpus relevant
across 47 regions (countries). Each ad can be served in one or more geographical regions based on
advertiser preference. The vectors are 64-dimensional and derived from the twin-tower encoders [40, 54]
applied to advertisements. Each data point p on average has a label set of size ∼ 10. We compared
our Filtered and Stitched DiskANN algorithms against several baselines: the first is a natural baseline
that we refer to as inline clustering. In this baseline algorithm, we cluster the dataset into C clusters
(whose value depends on the number of data points in the index and is typically ∼

√
N) using k-means

algorithm. Then for each label ℓ ∈ U , we maintain an inverted index of the set of points which contain
the label ℓ. When a query vector xq arrives with a filter ℓ(q), we first look up the inverted index to
retrieve the set of base points which contain the label ℓ(q); let us call this set P (ℓ(q)) to denote the
valid points. Then we compute the closest m clusters (which is a tunable parameter for search) from
the C cluster centroids, and retrieve all the vectors belonging to those closest clusters; let us call the
set of this vectors as N , denoting the nearby points. Finally, we intersect the sets N ∩ P (ℓ(q)) and
compute the distances of these points to the query, before outputting the closest k vectors. We can
also use a clustering index (like Faiss-IVF) to retrieve the top k′ >> k vectors (without any filter
requirements), and then post-process to identify the ones matching the query filter – this approach is
known as Post-Process (Clustering). Finally, we can employ such a post-processing method on HNSW
and (vanilla) DiskANN as well. We group the query based on the specificity of the filters, i.e., what
fraction of points satisfy the query filter. A specificity of 100 percent means almost all points satisfy the
query filter, and 1 percent means only 1 percent of the points satisfy the query filter. The Filtered and
Stitched DiskANN graph was constructed with degree R = 96 and list size L = 150.

We also run some comparisons on another challenging semi-synthetic dataset called Wikipedia-
Cohere [33], which embed passages from Wikipedia using the cohere.ai multilingual-22-12 model. The
queries comprise of embeddings of sentences from the Wikipedia Simple articles using the same model.
The universe U of labels for filtering are the top 4000 highest frequency words in English, excluding the
NLTK stop-words. Each base vector has labels corresponding to the subset of words of U occurring in the

3This runs the filtered greedy search algorithm for the query being xp, with candidate list size L, filter predicate being
ℓ, starting at the pre-computed start node s(ℓ).
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Figure 11: Ads dataset: QPS (x-axis) vs recall@10 for various algorithms with filters of 100, 75, 50, 25 and 1 percentile
specificity.

Figure 12: Recall vs Latency for Filtered DiskANN vs Clustering-Based Baseline

corresponding paragraph. Similarly, the query filter corresponds to the most common word from U in the
corresponding sentence. This captures a hybrid search scenario, where there is semantic similarity using
the vectors, and also hard keyword match requirements given by the filtering constraint. In Figure 12
we compare the performance of our Filtered-DiskANN algorithm against the inline clustering baseline.

5 Conclusion and Open Research Directions

In this article, we surveyed the DiskANN library for Approximate Nearest Neighbor Search, and
demonstrated its versatility by adapting it to in-memory vector search (for high throughput scenarios),
disk-based vector search (for high-scale scenarios), filtered vector search (for scenarios with query-
time predicates), as well as streaming vector search (to handle highly dynamic data corpora such as
emails, twitter feeds, etc.). We also described the provable guarantees of the algorithm under specific
distributional assumptions on the data.

Going forward, there are many more interesting challenges for vector search algorithms to handle,
and it will be important future work to see how the principles underlying the graph construction and
search algorithms detailed in this article extend to those scenarios as well. For example, how can we
handle more complex query predicates, which involve range filters, conjunctions, and disjunctions, and
are crucial to applications such as shopping or targeted advertisements?

Next, many retrieval scenarios lean on the so-called multi-vector retrieval models, where documents
and queries are represented by multiple vectors, and the similarity score is a more complicated function
(compared to a simple euclidean distance we assumed in this article) involving these sets of vectors [50].
Such similarity scores are useful when comparing objects represented by large sets of vectors, such as
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long texts where each paragraph is represented by an individual vector. Can we extend our approach to
handle such scenarios as well? Some examples of such a distance function include Chamfer distance and
the Relaxed Earth Mover distance [29].

For the streaming index, we have presented a deletion policy where the graph is consolidated at
regular intervals to remove the deleted nodes. Can we enable a more immediate, eager deletion policy
which reflects deletions in real-time, while preserving the update and search latencies and search recalls?
In short, there are a lot of exciting and impactful avenues for future work in this space for the interested
reader to pursue.
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Abstract

Learned sparse representations form a very interesting class of contextual embeddings for text
retrieval. In the last few years, they have proven to be effective models of relevance. Moreover,
they are interpretable by design. Despite their compatibility with inverted indexes, retrieval over
sparse embeddings remains challenging. That is due to the distributional differences between learned
embeddings and term frequency-based lexical models of relevance such as BM25. Recognizing this
challenge, a great deal of research has gone into, among other things, designing retrieval algorithms
tailored to the properties of learned sparse representations, including approximate retrieval systems.
In fact, this task featured prominently in the latest BigANN Challenge at NeurIPS 2023, where
approximate algorithms were evaluated on a large benchmark dataset by throughput and recall. In
this work, we summarize a recent—novel—organization of the inverted index that enables fast yet
effective approximate retrieval over learned sparse embeddings. Our approach organizes inverted lists
into geometrically cohesive blocks, each equipped with a summary vector. During query processing,
we quickly determine if a block must be evaluated using the summaries. As we show experimentally,
single-threaded query processing using our method, Seismic, reaches sub-millisecond per-query
latency on various sparse embeddings of the Ms Marco dataset while maintaining high recall. Our
results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted
index-based solutions and further outperforms the winning (graph-based) submissions to the BigANN
Challenge by a significant margin.

1 Introduction

Neural Information Retrieval (NIR) has gained increasing popularity since the introduction of pre-trained
Large Language Models (LLMs) [41]. NIR models learn a vector representation of short pieces of text,
known as an embedding, that captures the contextual semantics of the input, thereby enabling more
effective matching of queries to documents and, thus, first-stage retrieval [5].

There are three main families of embeddings in Information Retrieval. The first is dense embeddings,
where queries and documents are encoded into single, high-dimensional vectors [29, 33, 43, 76, 79]. These
methods use the BERT [17] [CLS] token as a latent representation of the input text and fine-tune it to
optimize a ranking loss. Relevance is estimated using the dot product between the query and document
embeddings. Consequently, document collections are encoded offline, and the retrieval task is performed
by extracting the top-k results through Maximum Inner Product Search (MIPS).
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The second family, Multi-Vector Retrieval (MVR), encodes each term as a vector, producing a
collection of vectors as the embedding for a given piece of text [34, 39, 57, 67, 68]. The similarity between
queries and documents is computed using the late interaction mechanism, which involves a max-sum
reduction across the rows and columns of the resulting matrix multiplication. While MVR offers a
more fine-grained representation of input text and achieves higher retrieval effectiveness than dense
embeddings, it is significantly more resource-intensive in terms of retrieval time and memory usage.

The third family and the main focus of this paper is represented by Learned Sparse Retrieval
(LSR) [23, 25, 26, 35, 46, 58], where text is encoded into a sparse embeddings, where each dimension
corresponds with a term (or token) in the model’s vocabulary. When a coordinate is nonzero in an
embedding, that indicates that the corresponding term is semantically relevant to the input. Similar to
Dense Retrieval, the similarity between a query and a document is estimated using the dot product,
thus raising the problem of MISP in the sparse domain.

LSR is attractive for three reasons. First, LSR models are competitive with dense retrieval models
that encode text into dense vectors. Importantly, evidence suggests that some LSR models generalize
better to out-of-domain datasets [4, 35]. Out-of-domain evaluation refers to the scenario where the
encoder is trained on one dataset (commonly MSMARCO [59]) and then evaluated on a different
collection to assess the model’s resilience to distribution shifts in the data. A widely used framework for
out-of-domain evaluation is the BEIR dataset collection [69]. Second, because of the one-to-one mapping
between dimensions and vocabulary terms, sparse embeddings are interpretable by design. Third,
because sparse embeddings retain many of the benefits of classical lexical models such as BM25 [65]
while addressing one of their major weaknesses. That is because, sparse embeddings can, at least in
theory, be indexed and retrieved using the all-too-familiar inverted index-based machinery [71], while
at the same time, remedying the vocabulary mismatch problem due to the incorporation of contextual
signals. Their performance, interpretability, and similarity to lexical models make LSR an important
area of research. Efforts in this space include improving the effectiveness of sparse embeddings [23, 25]
and the efficiency of sparse retrieval algorithms [6, 7, 24, 50, 52].

The latter category is justified because, despite the apparent compatibility of sparse embeddings
with inverted indexes, efficient retrieval remains a challenge. That is so because the weights learned by
LSR models exhibit statistical properties that do not conform to the assumptions under which popular
inverted index-based retrieval algorithms operate [6, 12, 49]. Overcoming these limitations requires
either forcing LSR models to produce the “right” distribution, or designing retrieval algorithms that
have fewer restrictive assumptions. As an example of the first direction, Efficient Splade [35] applies
L1 regularization and uses dedicated query and document encoders to make queries shorter. Works in
the second direction [6, 7] take a leaf out of the Approximate Nearest Neighbor (ANN) literature [3]:
Algorithms that produce approximate, as opposed to exact, top-k sets. This relaxation makes it easier to
trade off accuracy for large gains in efficiency.

Approximate retrieval offers great potential and serves as a bridge between dense and sparse
retrieval [7]. So appealing is this paradigm that the 2023 BigANN Challenge1 at NeurIPS dedicated a
track to learned sparse embeddings. Submissions were evaluated on the Splade [24] embeddings of
the Ms Marco [59] Passage dataset, and were ranked by the highest throughput past 90% accuracy
(i.e., recall with respect to exact search). The results were intriguing: the top two submissions were
graph-based ANN methods designed for dense vectors, while other approaches, including an optimized
approximate inverted index-based design struggled.

This paper summarizes recent work [8, 9] focusing on defining an ANN algorithm that we call Seismic
(Spilled Clustering of Inverted Lists with Summaries for Maximum Inner Product Search) and that
admits effective and efficient retrieval over learned sparse embeddings. Our design uses in a new way two

1https://big-ann-benchmarks.com/neurips23.html
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familiar data structures: the inverted and the forward index. In particular, we extend the inverted index
by introducing a novel organization of inverted lists into geometrically-cohesive blocks. Each block is
equipped with a “sketch,” serving as a summary of the vectors contained in it. The summaries allow us
to skip over a large number of blocks during retrieval and save substantial compute. When a summary
indicates that a block must be examined, we use the forward index to retrieve exact embeddings of its
documents and compute inner products.

We evaluate Seismic against strong baselines, including the top (open-source) submissions to the
BigANN Challenge. We additionally include classic inverted index-based retrieval and impact-sorted
indexes as reference points for completeness. Experimental results show average per-query latency in
microsecond territory on various sparse embeddings of Ms Marco [59]. Seismic outperforms the
graph-based winning solutions of the BigANN Challenge by a factor of at least 3.4 at 95% accuracy on
Splade and 12 on Efficient Splade, with the margin widening substantially as accuracy increases. Other
baselines, including inverted index-based algorithms, are consistently one to two orders of magnitude
slower than Seismic.

2 Related Work

We summarize the thread of work on learned sparse embeddings, then discuss methods that approach
the problem of retrieval over such vector collections.
Learned Sparse Representations. Learned sparse representations were investigated [77] even before
the emergence of pre-trained LLMs. But the rise of LLMs supercharged this research and led to a flurry
of activity on the topic [1, 13–15, 24, 25, 40, 46, 82]. First attempts at this include DeepCT and HDCT
by Dai and Callan [13–15].

DeepCT used the Transformer [73] encoder of BERT [18] to extract contextual features of a word
into an embedding, which can be viewed as a feature vector that characterizes the term’s syntactic
and semantic role in a given context. Because the vocabulary associated with a document remains the
same, it does not address the vocabulary mismatch problem. One way to address vocabulary mismatch
is to use a generative model, such as doc2query [61] or docT5query [60], to expand documents with
relevant terms and boost existing terms by repeating them in the document, implicitly performing term
re-weighting. In fact, uniCoil-T5 [40, 45] expands its input with DocT5Query [60] before learning and
producing a sparse representation.

Formal et al. build on SparTerm [1] and propose Splade [26]. Their construction introduces sparsity-
inducing regularization and a log-saturation effect on term weights, so that the sparse representations
learned by Splade are typically relatively sparser. Interestingly, Splade showed competitive results
with respect to state-of-the-art dense and sparse methods [26]. In a later work, Formal et al. make
adjustments to Splade’s pooling and expansion mechanisms, and introduce distillation into its training.
This second version, called Splade v2, reached state-of-the-art results on the Ms Marco [59] passage
ranking task as well as the Beir [70] zero-shot evaluation benchmark [25]. The Splade model has
undergone many other rounds of improvements which have been documented in the latest work by the
same authors [24]. Among these, one notable extension is the Efficient Splade which, as we already
noted, attempts to make the learned embeddings more friendly to inverted index-based algorithms.
Retrieval Algorithms. The Information Retrieval literature offers a wide array of algorithms tailored to
retrieval on text collections [71]. They are often exact and scale easily to massive datasets. MaxScore [72]
and WAND [2], and subsequent improvements [19, 20, 53, 54], are examples that, essentially, solve the
MIPS problem over “bag-of-words” representations of text, such as BM25 [65] or TF-IDF [66]. These
algorithms operate on an inverted index, augmented with additional data to speed up query processing.
One that features prominently is the maximum attainable partial inner product—an upper-bound. This
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enables the possibility of navigating the inverted lists, one document at a time, and deciding quickly
if a document may belong to the result set. Effectively, such algorithms (safely) prune the parts of
the index that cannot be in the top-k set. That is why they are often referred to as dynamic pruning
techniques. Although efficient in practice, dynamic pruning methods are designed specifically for text
collections. Importantly, they ground their performance on several pivotal assumptions: non-negativity,
higher sparsity rate for queries, and a Zipfian shape of the length of inverted lists. These assumptions
are valid for TF-IDF or BM25, which is the reason why dynamic pruning works well and the worst-case
time complexity of MIPS is seldom encountered in practice. These assumptions do not necessarily hold
for collections of learned sparse representations, however. Learned vectors may be real-valued, with a
sparsity rate that is closer to uniform across dimensions [6, 49]. Mackenzie et al. [50] find that learned
sparse embeddings reduce the odds of pruning or early-termination in the document-at-a-time (DaaT)
and Score-at-a-Time (SaaT) paradigms.

The most similar work to ours is [7]. The authors investigate if approximate MIPS algorithms for
dense vectors port over to sparse vectors. They focus on inverted file (IVF) where vectors are partitioned
into clusters during indexing, with only a fraction of clusters scanned during retrieval. They show that
IVF serves as an efficient solution for sparse MIPS. Interestingly, the authors cast IVF as dynamic
pruning and turn that insight into a novel organization of the inverted index for approximate MIPS for
general sparse vectors. Our index structure can be viewed as an extension of theirs.

Finally, we briefly describe another ANN algorithm over dense vectors: HNSW [51], a graph-based
algorithm that constructs a graph where each document is a node and two nodes are connected if they
are deemed “similar.” Similarity is based on Euclidean distance, but [56] shows inner product results in a
structure that is capable of solving MIPS rather quickly and accurately. As we learn in the presentation
of our empirical analysis, algorithms that adapt IP-HNSW [56] to sparse vectors work remarkably well.

3 Definitions and Notation

Suppose we have a collection X ⊂ Rd
+ of nonnegative sparse vectors. If x ∈ X , then x is a d-dimensional

vector where the vast majority of its coordinates are 0 and the rest are real positive values. We use
superscript to enumerate a collection: x(j) is the j-th vector in X .

We use lower-case letters (e.g., x) to denote a vector, call 1 ≤ i ≤ d its coordinate, and write xi for
its i-th value. Together, we refer to a coordinate and value pair as an entry, and say an entry is non-zero
if it has a non-zero value. A sparse vector can be identified as a set of non-zero entries: {(i, xi) | xi ̸= 0}.

Sparse MIPS aims to solve the following problem to find, from X , the set S of top k vectors whose
inner product with the query vector q ∈ Rd is maximal:

S =
(k)

argmax
x∈X

⟨q, x⟩. (14)

Let us define a few concepts that we frequently refer to. The Lp norm of a vector denoted by ∥·∥p is
defined as ∥x∥p = (

∑
i|xi|p)1/p. We call the Lp norm of a vector its Lp mass. Additionally:

Definition 1 (α-mass subvector) Consider a vector x and a permutation π that sorts the entries of
x by their absolute value: |xπi | ≥ |xπi+1 |. For a constant α ∈ [0, 1], denote by 1 ≤ j ≤ d the smallest
integer such that:

j∑
i=1

|xπi | ≤ α∥x∥1.

We call x̃ made up of {(πi, xπi)}
j
i=1, the α-mass subvector of x. Clearly, ∥x̃∥1 ≤ α∥x∥1.
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4 Concentration of Importance

Recently, Daliri et al. [16] presented a sketching algorithm for sparse vectors that rest on the following
simple principle: Coordinates that contribute more heavily to the L2 norm of a vector, weigh more
significantly on the inner product between vectors. Using that intuition, they report that if we were
to drop the non-zero coordinates of a sparse vector with a probability proportional to its contribution
to the L2 mass, we can reduce the size of a collection while approximately maintaining inner products
between vectors.

Inspired by [16], we examined two state-of-the-art LSR techniques: Splade [23] and Efficient
Splade [35]. Our analysis reveals a parallel property, which we call the “concentration of importance.”
In particular, we observe that the LSR techniques place a disproportionate amount of the total L1 mass
of a vector on just a small subset of the coordinates.

Let us demonstrate this phenomenon on the Ms Marco Passage dataset [59] with the Splade
embeddings.2 We take every vector, sort its entries by value, and measure the fraction of the L1 mass
preserved by considering a given number of top entries. For queries, the top 10 entries yield 0.75-mass
subvectors. For documents, the top 50 (about 30% of non-zero entries), give 0.75-mass subvectors. We
illustrated our measurements in Figure 13a.

These results bring us naturally to our next question: What are the ramifications of the concentration
of importance for inner product between queries and documents? One way to study that is as follows:
We take the top-10 document vectors for each query, prune each document vector by keeping a fraction
of its non-zero entries with the largest value. We do the same for query vectors. We then compute the
inner product between the trimmed-down queries and documents and report the results in Figure 13b.

The figure shows that, if we took the top 10% of the most “important” coordinates from queries (9)
and documents (20), we preserve, on average, 85% of the full inner product. Keeping 12 query and 25
document coordinates bumps that up to 90%.

Our results confirm that LSR tends to concentrate importance on a few coordinates. Furthermore, a
partial inner product between the largest entries (by absolute value) approximates the full inner product
with arbitrary accuracy. As we will see shortly, this property, which is in agreement with [16], can help
speed up query processing and reduce space consumption rather substantially.

5 Seismic

We introduce Seismic [8, 9], a novel ANN algorithm that allows effective and efficient approximate
retrieval over learned sparse representations. The design of Seismic uses two important and familiar
data structures: the inverted index and the forward index. In an nutshell, we use a forward index for
inner product computation, and an inverted index to pinpoint the subset of documents that must be
evaluated.

First, Seismic uses an organization of the inverted index that blends together static and dynamic
pruning to significantly reduce the number of documents that must be evaluated during retrieval. Second,
it partitions inverted lists into geometrically-cohesive blocks to facilitate efficient skipping of blocks.
Finally, we attach a summary to each block, whose inner product with a query approximates—albeit
not necessarily in an unbiased manner—the inner product of the query with documents contained in the
block.

2The cocondenser-ensembledistill checkpoint was obtained from https://huggingface.co/naver/
splade-cocondenser-ensembledistil.
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(a) Fraction of L1 mass preserved by keeping only the
top non-zero entries with the largest absolute value.

(b) Fraction of inner product (with 95% confidence
intervals) preserved by inner product between the top
query and document coordinates with the largest ab-
solute value.

5.1 Static Pruning

Seismic heavily relies on the concentration of importance property discussed in Section 4. The property
shows that a small subset of the most important coordinates of the sparse embedding of a query and
document vector can be used to effectively approximate their inner product. We incorporate this result
in Seismic during the construction of the inverted index through static pruning.

Concretely, for coordinate i, we build its inverted list by gathering all x ∈ X whose xi ̸= 0. We then
sort the inverted list by xi’s value in decreasing order (breaking ties arbitrarily), so that the document
whose i-th coordinate has the largest value appears at the beginning of the list. We then prune the
inverted list by keeping at most the first λ entries for a fixed λ—our first hyper-parameter. We denote
the resulting inverted list for coordinate i by Ii.

5.2 Blocking of Inverted Lists

Seismic also introduces a novel blocking strategy on inverted lists. It partitions each inverted list into β
small blocks—our second hyper-parameter. The rationale behind a blocked organization of an inverted
list is to group together documents that are similar in terms of their local representations, so as to
facilitate a dynamic pruning strategy, to be described shortly.

We defer the determination of similarity to a clustering algorithm. In other words, the documents
whose ids are present in an inverted list are given as input to a clustering algorithm, which subsequently
partitions them into β clusters. Each cluster is then turned into one block, consisting of the id of
documents whose vectors belong to the same cluster. Conceptually, each block is “atomic” in the following
sense: if the dynamic pruning algorithm decides we must visit a block, all the documents in that block
are fully evaluated.

We note that any geometrical (supervised or unsupervised) clustering algorithm may be readily used.
We use a shallow variant [11] of K-Means as follows. Given a set of vectors S, we uniformly-randomly
sample β vectors, {µ(j)}βj=1, from S, and use them as cluster representatives. For each x ∈ S, we find
j∗ = argmaxj⟨x, µ(j)⟩, and assign x to the j∗-th cluster.

5.3 Per-block Summary Vectors

So far we have described how we statically prune inverted lists to the top λ entries and then partition
them into β blocks using a clustering algorithm. We now describe how this structure can be used as a
basis for a novel dynamic pruning method.

48



We need an efficient way to determine if a block should be evaluated. To that end, Seismic leverages
the concept of a summary vector: a d-dimensional vector that “represents” the documents in a block.
The summary vectors are stored in the inverted index, one per block, and are meant to serve as an
efficient way to compute a good-enough approximation of the inner product between a query and the
documents within the block.

One realization of this idea is to upper-bound the full inner product attainable by documents in a
block. In other words, the i-th coordinate of the summary vector of a block would contain the maximum
xi among the documents in that block. This construction can be best described as a vectorization of the
upper-bound scalars in blocked variants of WAND [20].

More precisely, our summary function ϕ : 2X → Rd takes a block B from the universe of all blocks
2X , and produces a vector whose i-th coordinate is simply:

ϕ(B)i = max
x∈B

xi. (15)

This summary is conservative: its inner product with the query is no less than the inner product between
the query and any of its document: ⟨q, ϕ(B)⟩ ≥ ⟨q, x⟩ for all x ∈ B and an arbitrary query q.

The caveat, however, is that the number of non-zero entries in summary vectors grows quickly with
the block size. That is the source of two potential issues: 1) the space required to store summaries
increases; and 2) as inner product computation takes time proportional to the number of non-zero
entries, the time required to evaluate a block could become unacceptably high.

We may address that caveat by applying pruning and quantization, with the understanding that any
such method may take away the conservatism of the summary. As we will empirically show, there are
many pruning or quantization candidates to choose from.

In particular, we use the following technique that builds on the concentration of importance property:
We prune ϕ(B), obtained from Equation (15), by keeping only its α-mass subvector. That, α, is our
third and last indexing hyper-parameter.

We further reduce the size of summaries by applying scalar quantization. With the goal of reserving
a single byte for each value, we subtract the minimum value m from each summary entry, and divide
the resulting range into 256 sub-intervals of equal size. A value in the summary is replaced with the
index of the sub-interval it maps to. To reconstruct a value approximately, we multiply the id of its
sub-interval by the size of the sub-intervals, then add m.

5.4 Forward Index

Seismic blends together two data structures. The first is an inverted index that tells us which documents
to examine. To make it practical, we apply approximations that allow us to gain efficiency with a possible
loss in accuracy. A forward index, which is simply a look-up table that stores the exact document
vectors, helps correct those errors and offers a way to compute the exact inner products between a query
and the documents within a block, whenever that block is deemed a good candidate for evaluation.

We must note that, documents belonging to the same block are not necessarily stored consecutively
in the forward index. This is simply infeasible because the same document may belong to different
inverted lists and, thus, to different blocks. Because of this layout, computing the inner products may
incur many cache misses, which are detrimental to query latency. In our implementation, we extensively
use prefetching instructions to mitigate this effect.

Seismic adopts a coordinate-at-a-time traversal (Line 3) of the inverted index. For each coordinate
i ∈ qcut, it evaluates the blocks using their summary. The documents within a block are evaluated further
if the approximation with the summary is greater than a fraction of the minimum inner product in the
Min-Heap. That means that, the forward index retrieves the complete document vector in the selected
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Algorithm 1: Indexing with Seismic.
Input: Collection X of sparse vectors in Rd; λ: Maximum length of each inverted list; β:
Maximum number of blocks per inverted list; α: Fraction of the overall importance preserved by
each summary.
Result: Seismic index.
1: for i ∈ {1, . . . , d} do
2: S ← {j | x(j)i ̸= 0, x(j) ∈ X}
3: Sort S in decreasing order by xi for all x ∈ S
4: Ii ← {Si,1,Si,2, . . . ,Si,λ}
5: Cluster Ii into β partitions, {Bi,j}βj=1

6: for 1 ≤ j ≤ β do
7: Si,j ← α-mass subvector of ϕ(Bi,j) {Equation (15)}
8: end for
9: end for

10: return Ii, {Si,j} ∀i, j

block and computes inner products. A document whose inner product is greater than the minimum
score in the Min-Heap is inserted into the heap. Note that, Algorithm 2 takes two hyper-parameters:
an integer cut, and heap_factor ∈ (0, 1).

6 Experiments

We now evaluate Seismic in terms of its accuracy, latency, space usage, and indexing time against
existing solutions.

We note that, due to space constraints, we excluded many combinations of datasets and LSR models
(e.g., uniCoil-T5 embeddings of NQ) from the presentation of our results. However, the reported
trends hold consistently.

6.1 Setup

Datasets. We experiment on two publicly-available datasets: Ms Marco v1 Passage [59] and Natural
Questions (NQ) from Beir [70]. Ms Marco is a collection of 8.8M passages in English. In our
evaluation, we use the smaller “dev” set of queries for retrieval, which includes 6,980 questions. NQ is a
collection of 2.68M questions in English. We use it in combination with its “test” set of 7,842 queries.
Learned Sparse Representations. We evaluate Seismic with embeddings generated by three LSR
models:

• Splade [23]. Each non-zero entry is the importance weight of a term in the BERT [18] WordPiece [75]
vocabulary consisting of 30,000 terms. We use the cocondenser-ensembledistil3 version of
Splade that yields MRR@10 of 38.3 on the Ms Marco dev set. The number of non-zero entries in
documents (queries) is, on average, 119 (43) for Ms Marco and 153 (51) for NQ.

• Efficient Splade [35]. Similar to Splade, but there are 181 (5.9) non-zero entries in Ms Marco
documents (queries). We use the efficient-splade-V-large4 version, yielding MRR@10 of
3Checkpoint at https://huggingface.co/naver/splade-cocondenser-ensembledistil
4Checkpoints at https://huggingface.co/naver/efficient-splade-V-large-doc and https:

//huggingface.co/naver/efficient-splade-V-large-query.
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Algorithm 2: Query processing with Seismic.
Input: q: query; k: number of results; cut: number of largest query entries considered;
heap_factor: a correction factor to rescale the summary inner product; Ii’s and Si,j ’s: inverted
lists and summaries obtained from Algorithm 1.
Result: A Heap with the top-k documents.
1: qcut ← the top cut entries of q with the largest value
2: Heap← ∅
3: for i ∈ qcut do
4: for Bj ∈ Ii do
5: r ← ⟨q, Si,j⟩
6: if Heap.len() = k and r < Heap.min()

heap_factor then
7: continue {Skip the block}
8: end if
9: for d ∈ Bj do

10: p = ⟨q,ForwardIndex[d]⟩
11: if Heap.len() < k or p > Heap.min() then
12: Heap.insert(p, d)
13: end if
14: if Heap.len() = k + 1 then
15: Heap.pop_min()
16: end if
17: end for
18: end for
19: end for
20: return Heap

38.8 on the Ms Marco dev set. We refer to this model as E-Splade.

It is worth highlighting that these embedding models belong to different families. Splade and
E-Splade perform expansion for both queries and documents. On the other hand, uniCoil-T5 only
performs document expansion and does so using a generative model.

We generate the Splade and E-Splade embeddings using the original code published on GitHub.5

After generating the embeddings, we replicate the performance in terms of MRR@10 on the Ms Marco
dev set to confirm that our replication achieves the same performance presented in the original papers.
Baselines. We compare Seismic with five state-of-the-art retrieval solutions. Two of these are the
winning solutions of the “Sparse Track” at the 2023 BigANN Challenge6 at NeurIPS. These include:

• GrassRMA: A graph-based method for dense vectors adapted to sparse vectors that appears in the
BigANN challenge as “sHnsw.”7

• PyAnn: Another graph-based ANN solution.8

The other three baselines are inverted index-based solutions:
5https://github.com/naver/splade
6https://big-ann-benchmarks.com/neurips23.html
7C++ code is publicly available at https://github.com/Leslie-Chung/GrassRMA.
8C++ code is publicly available at https://github.com/veaaaab/pyanns.
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Splade on Ms Marco

Accuracy (%) 90 91 92 93 94 95 96 97

Ioqp 17,423 (93.2×) 17,423 (84.6×) 18,808 (91.2×) 21,910 (98.7×) 24,382 (90.6×) 31,843 (105.1×) 35,735 (102.7×) 51,522 (97.0×)
SparseIvf 4,169 (22.3×) 4,984 (24.2×) 6,442 (31.3×) 7,176 (32.3×) 8,516 (31.7×) 10,254 (33.8×) 12,881 (37.0×) 15,840 (29.8×)
GrassRMA 807 (4.3×) 867 (4.2×) 956 (4.6×) 1,060 (4.8×) 1,168 (4.3×) 1,271 (4.2×) 1,577 (4.5×) 1,984 (3.7×)
PyAnn 489 (2.6×) 539 (2.6×) 603 (2.9×) 654 (2.9×) 845 (3.1×) 1,016 (3.4×) 1,257 (3.6×) 1,878 (3.5×)
Seismic (ours) 187 – 206 – 206 – 222 – 269 – 303 – 348 – 531 –

E-Splade on Ms Marco

Ioqp 7,857 (35.4×) 8,382 (37.8×) 8,892 (37.2×) 9,858 (41.2×) 10,591 (41.4×) 11,536 (30.7×) 11,934 (31.2×) 14,485 (24.9×)
SparseIvf 4,643 (20.9×) 5,058 (22.8×) 5,869 (24.6×) 6,599 (27.6×) 7,555 (29.5×) 8,962 (23.8×) 10,414 (27.2×) 13,883 (23.9×)
GrassRMA 2,074 (9.3×) 2,658 (12.0×) 2,876 (12.0×) 3,490 (14.6×) 4,431 (17.3×) 5,141 (13.7×) 7,181 (18.7×) 12,047 (20.7×)
PyAnn 1,685 (7.6×) 1,702 (7.7×) 2,045 (8.6×) 2,409 (10.1×) 3,119 (12.2×) 4,522 (12.0×) 7,317 (19.1×) 12,578 (21.6×)
Seismic (ours) 222 – 222 – 239 – 239 – 256 – 376 – 383 – 581 –

Splade on NQ

Ioqp 8,313 (42.6×) 8,854 (45.4×) 9,334 (44.2×) 11,049 (46.0×) 11,996 (48.0×) 14,180 (53.3×) 15,254 (53.3×) 18,120 (50.1×)
SparseIvf 3,862 (19.8×) 4,309 (22.1×) 4,679 (22.2×) 5,464 (22.8×) 6,113 (24.5×) 6,675 (25.1×) 7,796 (27.3×) 9,109 (25.2×)
GrassRMA 1,000 (5.1×) 1,138 (5.8×) 1,208 (5.7×) 1,413 (5.9×) 1,549 (6.2×) 2,091 (7.9×) 2,448 (8.6×) 3,038 (8.4×)
PyAnn 610 (3.1×) 668 (3.4×) 748 (3.5×) 870 (3.6×) 1,224 (4.9×) 1,245 (4.7×) 1,469 (5.1×) 1,942 (5.4×)
Seismic (ours) 195 – 195 – 211 – 240 – 250 – 266 – 286 – 362 –

Table 1: Mean latency (µsec/query) at different accuracy cutoffs with speedup (in parenthesis) gained
by Seismic over others.

• Ioqp [47]: Impact-sorted query processor written in Rust. We choose Ioqp because it is known to
outperform JASS [42], a widely-adopted open-source impact-sorted query processor.

• SparseIvf [7]: An inverted index where lists are partitioned into blocks through clustering. At query
time, after finding the N closest clusters to the query, a coordinate-at-a-time algorithm traverses the
inverted lists. The solution is approximate because only documents that belong to top N clusters are
considered.

• Pisa [55]: An inverted index-based C++ library based on ds2i [62] that uses highly-optimized
blocked variants of WAND. Pisa is exact as it traverses inverted lists in a rank-safe manner.

We also considered the method by Lassance et al. [37]. Their approach statically prunes either
inverted lists (by keeping p-quantile of elements), documents (by keeping a fixed number of top entries),
or all coordinates whose value is below a threshold. While simple, [37] is only able to speed up query
processing by 2–4× over Pisa on E-Splade embeddings of Ms Marco. We found it to be ineffective
on Splade and generally far slower than GrassRMA and PyAnn. As such we do not include it in our
discussions.

We build Ioqp and Pisa indexes using Anserini9 and apply recursive graph bisection [48]. For Ioqp,
we vary the fraction (of the total collection) hyper-parameter in [0.1, 1] with step size of 0.05. For
SparseIvf, we sketch documents using SinnamonWeak and a sketch size of 1,024, and build 4

√
N

clusters, where N is the number of documents in the collection. For GrassRMA and PyAnn, we build
different indexes by running all possible combinations of efc ∈ {1000, 2000} and M ∈ {16, 32, 64, 128, 256}.
During search we test efs ∈ [5, 100] with step size 5, then [100, 400] with step 10, [100, 1000] with step
100, and finally [1000, 5000] with step 500. We apply early stopping when accuracy saturates.

Our grid search for Seismic on Ms Marco is over: λ ∈ [1500, 7500] with step size of 500,
β ∈ [150, 750] with step 50, and α ∈ [0.1, 0.5] with 0.1. Best results are achieved with λ = 6,000,
β = 400, and α = 0.4. The grid search for Seismic on NQ is over: λ ∈ {4500, 5250, 6000}, β ∈
{300, 350, 400, 450, 525, 600, 700, 800}, and α ∈ {0.3, 0.4, 0.5}. Best results are achieved with λ = 5,250,
β = 525, and α = 0.5. Seismic employs 8-bit scalar quantization for summaries. Moreover, Seismic
uses matrix multiplication to efficiently multiply the query vector with all quantized summaries of an
inverted list.

9https://github.com/castorini/anserini
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Evaluation Metrics. We evaluate all methods using three metrics:

• Latency (µsec.). The time elapsed, in microseconds, from the moment a query vector is presented to
the index to the moment it returns the requested top k document vectors running in single thread
mode. Latency does not include embedding time.

• Accuracy. The percentage of true nearest neighbors recalled in the returned set. By measuring the
recall of an approximate set given the exact top-k set, we study the impact of the different levers in
an algorithm on its overall accuracy as a retrieval engine.

• Index size (MiB). The space the index occupies in memory.

Reproducibility and Hardware Details. We implemented Seismic in Rust.10 We compile Seismic
by using the version 1.77 of Rust and use the highest level of optimization made available by the compiler.
We conduct experiments on a server equipped with one Intel i9-9900K CPU with a clock rate of 3.60
GHz and 64 GiB of RAM. The CPU has 8 physical cores and 8 hyper-threaded ones. We query the
index using a single thread.

6.2 Accuracy-Latency Trade-off

Table 1 details retrieval performance in terms of average per-query latency for Splade, E-Splade,
and uniCoil-T5 on Ms Marco, and Splade on NQ. We frame the results as the trade-off between
effectiveness and efficiency. In other words, we report mean per-query latency at a given accuracy level.

The results on these datasets show Seismic’s remarkable relative efficiency, reaching a latency that
is often one to two orders of magnitude smaller. Overall, Seismic consistently outperforms all baselines
at all accuracy levels, including GrassRMA and PyAnn, which in turn perform better than other
inverted index-based baselines—confirming the findings of the BigANN Challenge.

We make a few additional observations. Ioqp appears to be the slowest method across datasets.
This is not surprising considering the distributional abnormalities of learned sparse vectors, as discussed
earlier. SparseIvf generally improves over Ioqp, but Seismic speeds up query processing further. In
fact, the minimum speedup over Ioqp (SparseIvf) on Ms Marco is 84.6× (22.3×) on Splade, 24.9×
(20.9×) on E-Splade, and 143.3× (53.6×) on uniCoil-T5.

Seismic consistently outperforms GrassRMA and PyAnn by a substantial margin, ranging from
2.6× (Splade on Ms Marco) to 21.6× (E-Splade on Ms Marco) depending on the level of accuracy.
In fact, as accuracy increases, the latency gap between Seismic and the two graph-based methods
widens. This gap is much larger when query vectors are sparser, such as with E-Splade embeddings.
That is because, when queries are highly sparse, inner products between queries and documents become
smaller, reducing the efficacy of a greedy graph traversal. As one data point, PyAnn over E-Splade
embeddings of Ms Marco visits roughly 40,000 documents to reach 97% accuracy, whereas Seismic
evaluates just 2,198 documents.

Finally, we highlight that Pisa is the slowest (albeit, exact) solution. On Ms Marco, Pisa processes
queries in about 100,325 microseconds on Splade embeddings. On E-Splade. its average latency is
7,947 microsecond. We note that the high latency on Splade is largely due to the much larger number
of non-zero entries in queries.

We conclude with a remark on the relationship between retrieval accuracy (as measured by recall with
respect to exact search) and ranking quality (such as MRR and NDCG [30] given relevance judgments).
Even though ranking quality is not our primary focus, we measured MRR@10 on Ms Marco for
the approximate top-k sets obtained from Seismic, and plot that as a function of per-query latency

10Our code is publicly available at https://github.com/TusKANNy/seismic.
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Figure 14: MRR@10 on Ms Marco.

in Figure 14. While MRR@10 is relatively stable, we do notice a drop in the low-latency (and thus
low-accuracy) regime. Perhaps more interesting is the fact that Seismic can speed up retrieval over
Splade so much that if the time budget is tight, using Splade embeddings gets us to a higher MRR@10
faster.

6.3 Comparison against Learned Dense Representations

The large speedup provided by Seismic allows sparse representation to be competitive with Dense
Retrieval methods, where documents and queries are encoded into dense high-dimensional dense vectors.
Here, researchers rely on the vast Approximate Nearest Neighbors literature for the dense domain,
yielding high-recall results on a million-scale dataset in a few milliseconds. We compare Seismic with a
state-of-the-art dense encoder, i.e., DRAGON [43], paired with the well-known HNSW [51] graph-based
index. Dragon is a highly effective dense retrieval method that reaches 39.0 of MRR@10 thanks to the
multi-teacher distillation from which it benefits during training. Encoding documents and queries with
DRAGON yields dense vectors with 768 dimensions each. We rely on the well-known faiss [21] library
to build a HNSW graph with M = 200 and efc = 400.

We build a Seismic index on the Splade-V3 [36] embeddings. Splade-V3 is the current state-of-
the-art method for learned sparse representation, which is an improved version of Splade, relying on
self-distillation with hard negatives, that reaches 40.3 of MRR@10 on Ms Marco. We use λ = 5000,
β = 1000, and α = 0.5. We report the result of our comparison in Figure 15. Seismic proves to be
a highly efficient solution compared to dense retrieval. The combination of Splade-V3 and Seismic
largely dominates over DRAGON + HNSW on the entire Pareto-frontier, being both more efficient and
more effective. Moreover, observe that the dense forward index takes about 12.5 GBytes to be stored
(assuming to use 16 bit floating point values), while the forward index of Splade-V3 takes about as half
(5.5Gbytes), considering to use 16 bits integers to store the ids of the components and 16 bit floating
point for the values.
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Figure 15: DRAGON indexed with HSNW against Splade-V3 indexed with Seismic on Ms Marco.

54



Splade on Ms Marco

Model Index size (MiB) Index build time (min.)

Ioqp 2,195 -
SparseIvf 8,830 44
GrassRMA 10,489 267
PyAnn 5,262 137
Seismic (ours) 6,416 5

Table 2: Index size and build time.

6.4 Space and Build Time

Table 2 records the time it takes to index the entire Ms Marco collection embedded with Splade with
different methods, and the size of the resulting index. We perform this experiment on a machine with
two Intel Xeon Silver 4314 CPUs clocked at 2.40GHz, with 32 physical cores plus 32 hyper-threaded
ones and 512 GiB of RAM. We build the indexes by using multi-threading parallelism with 64 cores.

We left out the build time for Ioqp because its index construction has many external dependencies
(such as Anserini and graph bisection) that makes giving an accurate estimate difficult.

Trends for other datasets are similar to those reported in Table 2. Notably, indexes produced by
approximate methods are larger. That makes sense: using more auxiliary statistics helps narrow the
search space dynamically and quickly. Among the highly efficient methods, the size of Seismic’s index
is mild, especially compared with GrassRMA. Importantly, Seismic builds its index in a fraction of
the time it takes PyAnn or GrassRMA to index the collection.

7 Concluding Remarks

We presented Seismic, a novel approximate algorithm that facilitates effective and efficient retrieval over
learned sparse embeddings. We showed empirically its remarkable efficiency on a number of embeddings
of publicly-available datasets. Seismic outperforms existing methods, including the winning, graph-based
algorithms at the BigANN Challenge in NeurIPS 2023 that use similar-sized (or larger) indexes.

One of the exciting opportunities that our research creates is that it offers a new way of thinking
about sparse embedding models. Let us explain how. When Splade proved difficult to scale because
state-of-the-art inverted index-based solutions failed to process queries fast enough, the community
moved towards E-Splade and other variants that reduce query processing time, but that exhibit
degraded performance in zero-shot settings. Evidence suggests, for example, that E-Splade embeddings
of Quora—a Beir dataset—yield NDCG@10 of 0.76 while Splade embeddings yield 0.83. Seismic
changes that equation by speeding up retrieval over Splade so dramatically that switching to E-Splade
becomes unnecessary and, in fact, detrimental to both efficiency and effectiveness.

8 Future Work

Several future work can be foreseen to extend this result, which can be summarized in different lines of
research:

• Current approaches in approximate nearest neighbors retrieval over learned representations often
employ: 1) graph-based, and 2) inverted-index based solutions for indexing data. A first line of
research we intend to investigate regards mixing the two “worlds” to fully exploit specific properties
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of each of them. Specifically, we intend to improve inverted-index based solutions with the “locality”
intrinsically modeled by graph-based methods. This can be achieved via the exploitation of the
trade-off enabled by the reduction of the average query latency achieved via the storage of the neighbor
of the documents in the collection. We expect this to have an impact as pre-computed neighbors can
allow inverted indexed to work at lower recall cuts, thus significantly reducing their query processing
time.

• We also intend to investigate novel compression techniques for inverted lists [63] to further reduce the
size of inverted and forward indexes.

• A third line of research asks for a comprehensive evaluation of the performance of Seismic and its
competitors on big datasets. In fact, the evaluation of these approaches in information retrieval
has always been conducted on datasets of limited sizes— typically Ms Marco version 1.0— which
consists of less than ten million documents. A detailed analysis of what are the challenges arising
from the application of these methods to bigger datasets, which are in the order of hundreds of
millions of documents, is missing. We believe that this would spark novel, interesting research
questions contributing to the definition of new—fast and effective—approximate nearest neighbors
search methods.

• Recent work have been done to develop indexing data structures that jointly exploit both dense and
sparse embeddings [64, 81]. Linear combinations of the relevance estimated by the two representations
separately have been shown to improve the retrieval accuracy [10, 27, 38, 44, 74]. We plan to explore
the application of Seismic to hybrid representations to exploit the compact representation provided
by dense embeddings together with the per-term space partitioning induced by sparse ones.

• In Section 6.3, we highlighted how sparse embeddings are generally more memory-compact than dense
ones. Yet, dense embeddings can rely on a vast amount of literature on vector compression, including
the well-known Product Quantization approach [22, 28, 31, 32]. PQ has shown to be highly effective
in reducing the memory burden of dense representations by one order of magnitude without sacrificing
accuracy [78, 80]. At the moment, sparse methods lack a comparable method for vector compression.
A compelling research direction is to develop novel compression methods tailored for learned sparse
representations.
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Abstract

Approximate Nearest Neighbor Search (ANNS) on high-dimensional vectors has become a
fundamental and essential component in various machine learning tasks. Recently, with the rapid
development of deep learning models and the applications of Large Language Models (LLMs), the
dimensionality of the vectors keeps growing in order to accommodate a richer semantic representation.
This poses a major challenge to the ANNS solutions since distance calculation cost in ANNS grows
linearly with the dimensionality of vectors. To overcome this challenge, dimensionality-reduction
techniques can be leveraged to accelerate the distance calculation in the search process. In this paper,
we investigate six dimensionality-reduction techniques that have the potential to improve ANNS
solutions, including classical algorithms such as PCA and vector quantization, as well as algorithms
based on deep learning approaches. We further describe two frameworks to apply these techniques in
the ANNS workflow, and theoretically analyze the time and space costs, as well as the beneficial
threshold for the pruning ratio of these techniques. The surveyed techniques are evaluated on six
public datasets. The analysis of the results reveals the characteristics of the different families of
techniques and provides insights into the promising future research directions.

1 Introduction

ANN Search Approximate Nearest Neighbor Search (ANNS) is a crucial component for numerous
applications in various fields [13], such as image recognition [22], pose estimation [34], and recommendation
systems [11], particularly in high-dimensional spaces. Recent studies have shown that deep neural
networks, including large language models, can be augmented by retrieval to enhance accuracy [29, 30]
and decrease the magnitude of parameters [21], further emphasizing the significance of ANNS in modern
AI applications. Objects, such as images, documents, and videos, can be transformed into dense vectors
in the embedding space. ANNS aims to find top-k most similar objects in the embedding space RD, given
a query vector q ∈ RD. Compared to the prohibitively high cost of exact search, ANNS is more appealing
due to its ability to retrieve high-quality approximate neighbors with a faster response time [14, 15]. To
support efficient ANNS, vector indexes are proposed as special data structures to capture the similarity
relation between vectors before querying. With vector indexes, most of the data that are irrelevant to
the query can be quickly pruned when querying, leading to search efficiency.
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During ANNS, the time for distance calculation is a major bottleneck. Taking the popular HNSW [33]
vector index as an example, the distance calculations account for 60%∼90% of the total query processing
time. This is also the case for other types of indexes. The time complexity of common distance metrics,
like L2 and inner product, is O(D) where D is the dimensionality of the vectors. This indicates that
the dimensionality of the vectors is a key factor for the efficiency of ANNS vector indexes. In public
datasets, the vector dimensionality ranges from hundreds to thousands. With the rapid evolution of
pre-trained language models, the dimensionality of embedding vectors also grows: dimensionalities of a
few thousands are now commonly used in order to better capture the data semantics [4, 12, 24]. Some of
the latest embedding models, such as Alibaba’s Qwen2 [51] and Saleforce’s SFR [37], produce 3584- and
4096-dimensional vectors, respectively. This presents a significant challenge for the ANNS algorithms.

Dimensionality-Reduction To overcome this challenge, dimensionality-reduction techniques can be
leveraged to reduce the distance calculation cost. Specifically, the original high-dimensional vectors can
be summarized using lower-dimensional representations, and the distance between these representations
can be used to approximate the actual vector distances. The idea behind this is that the accuracy loss
when computing the distance will not necessarily decrease the final search accuracy of ANNS. In fact,
in the top-k nearest neighbor search problem, only the first k vectors require exact distance, while for
the other vectors, we only need to confirm they are farther from the query than the top-k. That is, an
estimated distance is already sufficient for most distance calculations in the ANNS problem. Given that
the distance estimation achieved by low-dimension representations is usually much more efficient than
the full calculation, the performance of current ANNS solutions can be significantly improved. Moreover,
since distance calculation is a basic operation for all ANNS algorithms, this approach can benefit all
existing algorithms and is orthogonal to specific index structures.

Nevertheless, the estimated distance provided by current dimensionality-reduction techniques cannot
be used to safely prune the non-kNN vectors. That is, the distance of some kNN vectors might be
over-estimated (and these vectors be skipped), leading to a degraded search accuracy. Recent methods,
like ADSampling [18], leverage random projection as the dimensionality-reduction technique to reduce
this estimation error, but with a higher estimation cost. On the other hand, many dimensionality-
reduction techniques are yet unexplored for the ANNS problem. These techniques, such as Principle
Component Analyses (PCA) [2] and Discrete Wavelet Transformation (DWT) [9], are widely studied in
the community with solid theoretical foundations, and thus, have the potential to play a positive role in
the ANNS problem.

Contributions In this paper, we survey six dimensionality-reduction techniques and two frameworks
that apply these techniques to the ANNS problem. The dimensionality-reduction techniques include
classical techniques like PCA, machine learning techniques like Product Quantization (PQ) [26], and
the deep neural network SEANet [44]. These techniques show advantages in different scenarios in our
experiments. We analyze these techniques in theory when serving the ANNS problem. Besides, we study
two frameworks to apply these techniques to the ANNS problem, named in-place transformation and
out-of-place acceleration. The former requires pre-processing for the dataset before building the index
and adopts an adaptive query algorithm to reduce the cost of distance calculations. The latter constructs
an auxiliary data structure when building the index and leverages it to accelerate distance calculations.
Furthermore, we implement a pluggable library, named Fudist, to incorporate the dimensionality-
reduction techniques as an efficient distance calculator. With Fudist, we evaluate the techniques on
16 real million-scale datasets of different distributions. Based on these empirical results, we list open
problems on different technical directions in this research area.

All source codes, datasets, and hyper-parameter settings used in our benchmark are available
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online [1]. This ensures the reproducibility of all the experimental results presented in this work. We
hope that Fudist will become a standard library for ANNS research that is orthogonal to the index type
and search algorithms, and thus, will help improve the comparison of results from different papers.

The rest of this paper is organized as follows. We first review the related works in Section 2. In
Section 3, we present the two frameworks for applying dimensionality-reduction techniques to the ANNS
problem, and in Section 4, we describe the surveyed dimensionality-reduction techniques. The evaluation
results are shown in Section 5, and Section 6 concludes this paper with a list of open problems.

2 Related Work and Background

ANN Indexes State-of-the-art ANN indexes [31] can be categorized into four classes, proximity-
graph-based [43, 45], PQ-based1 [20, 26], Locality Sensitive Hashing (LSH)-based [53, 55] and tree-
based [5, 10, 47, 48] (though, some hybrid techniques have started to emerge, combining trees with
LSH [50], LSH with proximity-graphs [54], and proximity-graphs with trees [6]; some more recent
techniques do not fall in any of these four classes [49]). Among the solutionss in these four classes,
graph-based indexes [7] achieve the best query performance for ng-approximate (i.e., approximate search
with no guarantees [15]) in-memory search, and thus, attracts much interest from the academic and
industrial communities. In this paper, we focus on the popular HNSW [33] graph-based index, which is
a widely adopted index for ANNS [25, 42], and we implement our dimensionality-reduction techniques
on HNSW to verify their effectiveness.

Dimensionality-Reduction Techniques Dimensionality reduction is an important research problem
with several solutions proposed in the literature. Classical methods include PCA, DWT, MDS [27],
Isomap [40], and MR [36]. These methods leverage linear or nonlinear transformations to obtain
low-dimensional representations. We select PCA and DWT as representatives since they can be trained
efficiently. Random projection, designed based on Johnson-Lindenstrauss lemma [28], is also widely
adopted for dimensionality reduction. In practice, random projection is usually implemented as the
inner products of a vector and a group of random vectors, i.e., Locality Sensitive Hashing (LSH). In this
paper, we select PM-LSH [55] and ADSampling [18] as representatives of this class.

Some machine learning methods can train a codebook to encode vectors as short codewords and
then estimate the actual distance with an efficient asymmetric distance calculation [26]. Represented by
Product Quantization (PQ) [26], these methods first segment the vector to obtain several subspaces
and then cluster sub-vectors on these subspaces. We select OPQ [20] as an optimized version of PQ for
evaluation.

Deep neural networks can also train low-dimensional vectors with the loss of distance deviation.
Since no existing models are trained for reducing dimensions in the ANNS problem to the best of our
knowledge, we adapt SEANet [44] in ourexperiments to show the potential of this class of methods.

Some other techniques are proposed to reduce vector dimensions for data visualization, like t-SNE [41],
LargeVis [39], and h-NNE [38]. A recent survey [16] summarizes and evaluates recent progress for these
techniques. However, data visualization usually requires a two- or three-dimensional representation,
leading to a significant information loss, which makes these techniques impractical for the ANNS problem.
Space-filling curves, like the Z-order curve and Hilbert-order curve, can also reduce dimensionality by
ordering vectors. Yet, they suffer from the same problem as visualization methods. Dimensionality-
reduction techniques also serve for the training and inference of deep neural networks to reduce memory
consumption [32]. In this case, the target of the reduced representation is to reserve the model accuracy
instead of the distance loss [52], which is out of the scope of this paper.

1PQ stands for Product Quantization.
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Algorithm 1: Greedy search (graph G, query q, entry point ep, parameter ef)
1: pq = a priority queue with unlimited capacity, initialized with ep
2: H = a max-heap with capacity ef
3: while pq is not empty do
4: dvc , vc = pop an element from pq
5: dvtop , vtop = the heap top of H
6: if dvc > dvtop then
7: break
8: end if
9: for each neighbor v of vc which has not been accessed do

10: dv = dist(v, q)
11: if dv < dvtop then
12: Insert (dv, v) into pq and H
13: end if
14: mark v as accessed
15: end for
16: resize H to be ef
17: end while
18: return k smallest elements in H

2.1 Background on Graph-Based Indexes

We now describe the greedy search algorithm for graph-based indexes, which we will use later on.
Graph indexes use a directed graph G(V,E) to index vectors, where each vector is represented as

a vertex in V , and the edges in E connect vectors based on some kind of proximity. Graph indexes
commonly use greedy search to retrieve kNN. As shown in Algorithm 1, the search starts from an entry
point ep, which is often selected randomly, and then computes the distance between the neighbors
of ep to the query q. The accessed points are stored in a priority queue pq. In the next step, the
algorithm selects the closest point to q from pq as the next stop to visit and repeats the above process.
Note that not all accessed points can enter pq: the algorithm maintains a size-bounded heap H for
best-so-far answers, and only the points that are closer than some point in H are qualified to enter pq.
Finally, the algorithm terminates when all the points in pq are farther than the points in H to q. The
algorithm is greedy because only points that are relatively close to the query can be accessed. A way to
escape such “local optimuma” is to increase the capacity of H, i.e., ef , which is the knob to tune the
efficiency-accuracy trade-off in graph indexes.

In this paper, we focus on optimizing the seemingly simple distance calculation step (line 10 in
Algorithm 1), which is the bottleneck of the query algorithm, as discussed in Section 1.

3 Two Frameworks for Making Use of Dimensionality-Reduction

In this section, we introduce two frameworks to leverage different dimensionality-reduction techniques to
benefit the search process: in-place transformation described in Section 3.1, and out-of-place acceleration
described in Section 3.2.
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(a) In-place transformation

(b) Out-of-place acceleration

Figure 1: Illustration of two frameworks to apply dimensionality-reduction techniques

3.1 In-Place Transformation

The in-place transformation framework was introduced in [18], for a specific dimensionality-reduction
technique, ADSampling. We generalize the framework for all distance-preserved dimensionality-reduction
techniques, as shown in Figure 1a. In this sense, any technique that preserves the distances between
vectors after the transformation, can be applied to this framework to benefit the ANNS problem. For
example, all linear transformations, including PCA, are applicable.

In an in-place transformation framework, the dataset and the query will be transformed in a pre-
processing step, before indexing and querying. Then, the vector index will be built based on the
transformed dataset. Note that since vector indexes are constructed based on the distances between
vectors rather than the vectors themselves, the vector index built from the transformed dataset will
be the same as the original one. When querying, the query will be first transformed in the same way.
When calculating the distance, the in-place transformation framework adopts an early termination
strategy. That is, we calculate the distance dimension by dimension in a cumulative way. Since partial
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distances are smaller than full distance, once the current partial distance has exceeded the threshold, the
calculation stops, and the rest of the dimensions are skipped. The number of computed dimensions will
vary for different vectors (see the incarnadine part in Figure 1a). In the worst case, all the dimensions
will be computed and this cost will equal the normal distance calculation cost (besides the cost of
termination check).

The rationale behind this method is that transformation techniques will move significant dimensions
into the front part of the transformed vector, leading to a higher probabilistic to early terminate the
calculation. To reduce the cost of the termination check, a parameter ∆ > 1 is introduced as the cycle to
check termination. ∆ is usually set to 16 or 32 to align with the SIMD instruction width of the distance
calculation.

3.2 Out-of-Place Acceleration

The out-of-place acceleration framework leverages an auxiliary data structure, besides the original index
structure, to help skip the full distance calculation. As shown in Figure 1b, the vector index is built
directly from the raw dataset, and at the same time, a transformed low-dimensional representation table
is generated by some dimensionality-reduction technique. This table is the auxiliary data structure.
When querying, we generate a low-dimensional representation for the query. For calculating the distance,
we first estimate the distance with the low-level representations: if it satisfies the pruning condition, the
corresponding full distance will be skipped. Otherwise, the exact distance should be fully calculated.

In the out-of-place acceleration framework, the dimensionality-reduction technique is not required to
preserve exactly the original distances between vectors, or thelower bounds of the original distances.
This means that some vectors might be skipped incorrectly. Nevertheless, as discussed in Section 1, only
the top-k vectors are required to compute the exact distance, while for the other vectors, dismissal or an
approximate distance does not necessarily influence the final search accuracy. For example, on graph
indexes, there could be several paths from the entry point to the destination kNN. A false dismissal
might block one path while other paths are still available. Considering that estimating the distance
with low-dimensional representations is usually very efficient, the estimation loss can be compensated
by a large parameter ef , which may lead to an overall high search performance. We also introduce a
parameter α as a multiplier of the estimated distance to control the influence of the estimation loss.

4 Dimensionality Reduction

In this section, we survey six representative dimensionality reduction techniques from various domains
that have the potential to benefit the ANNS problem. The studied techniques are listed in Table 1,
including three distance-preserved techniques for the in-place transformation framework (i.e., PCA,
DWT, and ADSampling), and three other dimensionality-reduction techniques for the out-of-place
acceleration framework (i.e., PM-LSH, SEANet*, and OPQ). In the same table, we also present the
additional indexing and query time complexity, as well as the additional space cost.

4.1 Dimensionlity-Reduction Techniques

PCA. Principal Component Analysis (PCA) is a classical linear transformation that selects a new group
of vector bases for the data in high-dimensional vector space. Specifically, the eigenvectors of the dataset
are selected as the new basis, and the dimensions with larger eigenvalues (or higher variances) are placed
at the front positions of the new vector coordinates. Therefore, by evaluating the first few dimensions,
we expect to obtain most of the distance, and have a high probability of early stopping the full distance
calculation. When applying PCA to the ANNS problem, a transformation matrix is required to reside
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Table 1: List of dimensionality-reduction techniques with time and space complexity. Nc is the number
of visited points when querying, d is the (expected) dimension of the lower-dimensional representation,
∆ is the termination check cycle, X is the number of neurons in SEANet*, m and Ks are the number of
segments and codewords in each codebook of OPQ.

Category Method Accuracy
guarantee

Extra
query cost

Extra
indexing cost1

Extra
memory cost

In-place
PCA [2] exact O(D2 +Ncd/∆) O(ND2) D2

DWT [9] exact O(D +Ncd/∆) O(ND) 0
ADSampling [18] probabilistic O(D2 +Ncd/∆) O(ND2) D2

Out-of-place
PM-LSH [55] probabilistic O(Dd+Ncd) O(NDd) Nd+Dd
SEANet* [44] None O(X +Ncd) O(nX) O(X)

OPQ [20] None O(DKs +Ncm) O(NDKs) Nm+DKs +D2

1 The training time is omitted since the size of the training set is smaller than the dataset.

in memory for pre-processing queries, leading to D2 floats memory cost and O(D2) extra query cost.
When calculating distances, we check the termination condition for every ∆ dimension, and thus the
extra distance calculation cost is O(d/∆).

Note that PCA can also be leveraged as a dimensionality-reduction technique in the out-of-place
acceleration framework. In this case, we can only take the front part of the transformed dataset and
estimate the overall distance with a fixed dimensionality d. However, according to our experiments, using
PCA in the out-of-place framework shows inferior performance to that of the in-place transformation
framework. In the rest of this paper, when discussing PCA, we refer to using it in the in-place
transformation framework.

DWT. Discrete Wavelet Transform (DWT) is a classical time series analysis tool following Parseval’s
Theorem [9]. It decomposes the vector using hierarchical wavelet transformations, where the major
waves are placed in the first positions. The distances between vectors are preserved in both the time and
frequency domains, and thus, DWT can be applied in the in-place transformation framework. Compared
to PCA, DWT is not a linear transformation and does not need a matrix to be stored in memory,
avoiding the extra memory cost. At the same time, it offers linear indexing and querying time costs.
Consequently, DWT is the most lightweight technique among the surveyed techniques.

ADSampling. ADSampling adopts a random squared matrix as the transformation matrix, where
each element is sampled from a standard Gaussian distribution. As indicated in Johnson-Lindenstrauss
lemma [28], the random projection has a shape probabilistic error bound for the deviation of the
distance. In this case, the exact distance can be estimated by partial distances with some (probabilistic)
confidence. The more dimensions are calculated, the higher the confidence is. Therefore, ADSampling
has a probabilistic accuracy guarantee instead of a deterministic one (like PCA and DWT). ADSampling
shares the same time and space complexities as PCA, but is much easier to implement, with no training
process like SVD in PCA.

PM-LSH PM-LSH is also designed based on the Johnson-Lindenstrauss lemma [28]. In contrast
to ADSampling, PM-LSH directly reduces the dimensionality using the inner product between the
vector and a group of random vectors (i.e., the hash function family). PM-LSH can encode vectors with
ultra-low dimensional representations (e.g. 16) and provides an accuracy guarantee for the distance
deviation. Similar to ADSampling, PM-LSH requires a random transformation matrix in memory when
querying, leading to Dd space cost and O(Dd) query pre-processing cost. In addition, in the out-of-place
acceleration framework, the dimensionality-reduced dataset (i.e., the data after hashing) requires Nd
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space. To generate this auxiliary structure, we additionally need a hashing operation for the dataset
when building the index, with O(NDd) time cost. When calculating a distance, estimating the distance
with the low-dimensional representations is necessary, for an extra O(d) cost. If the pruning condition is
not satisfied, the full distance will be calculated.

SEANet*. Series Approximation Network (SEANet) is a deep neural network proposed to represent
high-frequency data series with deep learning embeddings. These embeddings are further indexed by the
iSAX tree index family [8, 10, 35, 47, 48]. SEANet adopts an encoder-decoder framework with a loss
function comprising both distance deviation and vector reconstruction error. We adapt SEANet to the
ANNS problem, resulting in SEANet*. Specifically, we remove the decoder part to make SEANet* an
encoder-only framework, since vector reconstruction is not necessary in the ANNS problem. Moreover,
we remove the construction error in the loss function to focus on distance preservation. Training SEANet
introduces a significant time cost when building the index, and it also incurs higher space costs than
other alternatives, in order to store the network. Nevertheless, as we will show in the experiments,
SEANet* displays a strong potential to improve the query performance significantly.

OPQ. Product Quantization (PQ) is a popular vector compression technique that is commonly
adopted along with the IVF index (i.e., iVF-PQ [25]). In the context of a graph-based index, PQ helps
direct the search in memory, in order to reduce the I/O cost of a disk-based index, DiskANN [23]. In this
paper, we use it to estimate distances efficiently. During indexing, we train the codebooks of the dataset
and obtain the codewords of vectors with the codebooks as the auxiliary data structure. When querying,
we first generate a distance look-up table using the query and the codebooks. When calculating the
distance, the distance can be efficiently estimated by looking up the distance table. Note that OPQ
does not give any accuracy guarantee on the distance estimation. Nevertheless, due to the efficiency of
distance estimation, the accuracy loss can often be compensated, resulting in an overall performance
improvement.

4.2 Beneficial Threshold

We now study at which point the dimensionality-reduction techniques can improve the query performance
of the ANNS algorithm, instead of hurting it. Specifically, we focus on a key factor, the pruning ratio ρ,
defined as ρ = 1− Nf

Nc
, where Nf is the number of full distance calculations and Nc is the number of

visited points.
To make our methods more efficient than the raw HNSW, the following inequation should hold:

Nc · (Ce + (1− ρ) · O(D)) + Cp < N ′
c · O(D), (16)

where Ce and Cp are the distance estimation cost and query pre-processing cost, respectively (i.e., the
second and the first term of the fourth column in Table 1), and N ′

c is the number of visited points for the
raw HNSW to achieve the same query accuracy. We can derive the beneficial threshold of the pruning
ratio ρ:

ρ > 1− N ′
c

Nc
+

1

O(D)
(
Cp

Nc
+ Ce). (17)

The second term describes the additional search cost of our methods, compared to the raw HNSW,
because of the distance estimation deviation. For distance-preserved methods, this term is equal to
1 in theory. For others, this term is smaller than 1. However, in practice, we observe that even for
distance-preserved methods, this term is also a bit smaller than 1, due to the transformation and
calculation error of float-point numbers. The third term describes the ratio of the amortized cost of
distance estimation to the full calculation for each vector. Obviously, with a more accurate and efficient
dimensionality-reduction technique, the beneficial threshold will be lower.
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Table 2: Dataset characteristics

Datasets Dataset size Query size D Hardness

Trevi 100,000 200 4096 5335
H&M 105,100 10,000 2048 3439
GIST 1,000,000 10,000 960 12381
MNIST 69,000 200 784 1010
Imagenet 1,000,000 10,000 150 10240
Deep 1,000,000 10,000 96 9451

5 Experiments

5.1 Experimental Settings

Setup Experiments were conducted on an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz CPU
20MiB L3 cache with 128GB 2400MHz main memory, running Ubuntu Linux 16.04 LTS. All codes
are implemented in C++ and compiled in g++ 9.4.0 with -O3 optimization. SIMD operations are
implemented with AVX instructions. The codes are open-sourced in [1].

Datasets We select six public datasets of different dimensionality and hardness [46], as listed in Table 2.
We generate unbiased workloads consisting of queries with different hardness using the Steiner-Hardness
method [46] for datasets GIST, H&M, Imagenet, and Deep. We use the public workloads for Trevi and
MNIST (their data distributions make them hard to augment with the Steiner-Hardness method).

Metrics We use recall to measure the accuracy of ANNS. Formally, Recall k@k = |A∩G|
k , where A is

the returned approximated neighbors sets and G is the ground truth (i.e., real kNN).

Hyper-parameters k is set to 20, and queries are executed using one thread. The construction
parameters of HNSW, M and efCons, are tuned to achieve the best query performance. The multiplier
α is tuned to make each dimensionality-reduction technique in the out-of-place acceleration framework
perform the best. DWT requires the length of the vector to be a power of two, while OPQ requires it to
be a multiple of the number of segments. For these two methods, we add padding zeros to the datasets
that do not satisfy the corresponding requirements. For DWT, we remove the all-zero columns after
thetransformation. For ADSampling, we fix the hyper-parameter ϵ0 to be 2.1 as recommended, which
usually reaches the optimum in our experiments.

5.2 Search Performance

We first disable the utilization of SIMD instructions for distance calculations as in [18], and test the
overall search performance of the dimensionality-reduction techniques. The results are shown in Figure 2.
For these six datasets, the best alternatives improve the performance of raw HNSW by 6.3x, 2.1x, 2.0x,
1.6x, 1.1x, and 1.1x, respectively under 98% recall, where the best methods are respectively DWT,
ADSampling, DWT, and OPQ for the rest three. The performance improvement significantly increases
when the dimensionality of the dataset grows to over 700, where the benefit of skipping one-time
full-distance calculation is larger. The result of SEANet* on Trevi and MNIST is omitted since the
model does not coverage on very high-dimensional (Trevi) and sparse (MNIST) datasets.
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(a) Trevi (D=4096) (b) H&M (D=2048) (c) GIST (D=960)

(d) MNIST (D=784) (e) Imagenet (D=150) (f) Deep (D=96)

Figure 2: Query performance with dimensionality-reduction techniques.

On the very high-dimensional dataset Trevi, DWT, and PM-LSH provide significant improvement
thanks to their fast preprocessing time, with a complexity of O(D) and O(Dd), respectively. On a simple,
but with high-dimensional dataset, preprocessing plays an important role in the overall performance.
Other methods can only provide an improvement on the high-recall range (>98% recall), where more
distance calculations can amortize the preprocessing cost.

A similar behavior is observed in the H&M dataset in Figure 3b, where DWT and PM-LSH perform
the best again. SEANet* achieves outstanding performance that is close to PM-LSH, as well. since
the data distribution of this dataset can be well described by the neural network model. OPQ cannot
improve the original HNSW performance on this dataset due to its long pre-processing time.

On the GIST dataset, ADSampling, SEANet*, PCA, OPQ, and DWT all show about 1.5x performance
improvement over the raw HNSW. Only PM-LSH loses its edge on this dataset. The GIST dataset is a
good representative of modern vector embedding datasets, which are dense and have high dimensionality
with medium hardness.

MNIST is a sparse dataset where most of the values in the vectors are zeros. In this case, techniques
that can effectively summarize the key information like DWT and PCA, show obvious advantages, while
OPQ does not perform well since clustering on this sparse dataset tends to be ineffective. Random
projections like ADSampling and PM-LSH are generally inferior to DWT and PCA.

On the rest three low-dimensional datasets, OPQ, PCA, and ADSampling show no more than 20%
improvements over HNSW, while the other three methods show marginally positive (see Figure 2(d) and
(e)) or even negative (see Figure 2(f)) influence on HNSW.

Moreover, we observe that not all techniques outperform the raw HNSW; this is true for all
datasets we used in our experiments. This indicates that on some datasets, the pruning ratio of some
dimensionality-reduction techniques cannot reach the beneficial threshold. Since no single method
consistently outperforms all others, selecting the best technique for different datasets is a necessary step.
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(a) Trevi (D=4096) (b) H&M (D=2048) (c) GIST (D=960)

(d) MNIST (D=784) (e) Imagenet (D=150) (f) Deep (D=96)

Figure 3: ANNS performance with SIMD (AVX)

Search with SIMD instructions. Since SIMD instructions are widely adopted in ANNS libraries,
such as FAISS and hnswlib, we also test the performance improvement of the surveyed techniques with
SIMD (AVX) instructions. The results are shown in Figure 3. For these six datasets, the average query
speedup of the best alternatives is 2.2x, 1.2x, 1.7x, 0.9x, 0.9x, and 0.8x, compared to the raw HNSW,
for 98% recall. The respective best method is DWT, OPQ, PM-LSH, and OPQ for the rest three.

On the Trevi dataset, all methods lead to an improvement, albeit a small one. OPQ improves more
than PCA, since the implementation of the quantization techniques fully leverages the SIMD instructions.
On the H&M dataset, only SEANet* improves over the original HNSW across the whole recall range.
On the GIST dataset, OPQ isthe best alternative thanks to its high estimation efficiency. SEANet*
comes second after OPQ, followed by ADSampling, PM-LSH, and DWT. PCA performs worse than the
raw HNSW in this case.

We note that when the dimensionality is smaller than 800 (this includes the MNIST, Imagenet,
and Deep datasets), the techniques we evaluated cannot provide a significant improvement over the
raw HNSW, since the SIMD acceleration of the raw distance calculations reduces the benefit of the
additional pruning that these techniques offer.

5.3 Accuracy Loss

In this section, we study the characteristics of the surveyed dimensionality-reduction techniques by
calculating the Approximation Ratio, defined as AR = d̂ist(v,q)

dist(v,q) where d̂ist is the estimated distance. We
sample partial vectors from training and test sets to evaluate the approximation ratios.

Figure 4 depicts the distribution of AR on GIST and H&M datasets, where the dotted line indicates
AR = 1.0, an optimal case of distance-estimation techniques. We use the notation PCA-0.5 to indicate
that weestimate distances using the first 50% of the dimensions in the transformed dataset.

As distance-preserved techniques, the AR of PCA and DWT is always below 1; PCA is much tighter
than DWT, with a smaller variance. Similarly, although ADSampling does not provide a lower bound,
it hardly generates false dismissals thanks to itsreliable probabilistic guarantee. On the H&M dataset

73



(a) All DCOs (b) Adaptive DCOs

(c) All DCOs (d) Adaptive DCOs

Figure 4: Approximation ratio on GIST (top) and H&M (bottom)

(refer to Figure 4c), SEANet* provides much more accurate estimation than PM-LSH and OPQ. This
result indicates the strong potential of deep learning methods to estimate the similarity between very
high-dimensional vectors by using low-dimensional representations. As shown in Figures 4b and 4d,
when applying dimensionality-reduction techniques in the in-place transformation framework, we can
expect a more accurate estimation with a smaller variance by checking more dimensions. For PCA,
we can already get a very accurate estimation by calculating 80% of the dimensions when querying.
Although DWT shows inferior performance than the other techniques, with no more than 50% of the
dimensions, it quickly turns accurate with more dimensions (>60%).

5.4 Verification of Beneficial Threshold

In the final experiment, we calculate each term in Equation 17 to verify the effectiveness of the beneficial
threshold, and evaluate the practical cost of the asymptotic complexities reported in Table 1. We report
the results on the Deep and GIST datasets, in Table 3. On the Deep dataset, it is only for OPQ that
the pruning ratio ρ exceeds the beneficial threshold θ, while on the GIST dataset, all the methods
meet the threshold. This verifies the experimental results shown in Figure 2. On the Deep dataset, the
beneficial thresholds for distance-preserved techniques are very high, and for PCA it is larger than 1,
which indicates it is impossible to gain performance improvement. On the GIST dataset, the increase of
the practical cost of O(D) leads to a major drop of the beneficial threshold θ. Moreover, according to the
value of 1− N ′

c
Nc

, we observe that the extra search cost introduced by the accuracy loss occupies a small
portion of θ. Except for the very high-dimensional and simple dataset Trevi, the amortized preprocessing
cost, Cp

NcO(D) is also very small. In this case, the estimation cost Ce
O(D) is the most important factor. We

observe that OPQ wins the first place on both datasets w.r.t. the estimation efficiency. We also note
that on the GIST dataset, the Nc value of SEANet* is close to that of the distance-preserved methods,
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Table 3: Key metrics evaluation on Deep and GIST on recall = 0.94. N ′
c is the number of visited points

for the raw HNSW, and O(D) is the cost of full distance calculation. Nc is the number of visited points
for corresponding dimensionality-reduction techniques, Ce and Cp are the distance estimation cost and
query pre-processing cost, ρ and θ are the pruning ratio and the beneficial threshold.

Recall@0.94 Deep. N ′
c = 6760.3, O(D) ≈ 0.2423 µs GIST. N ′

c = 7929.5, O(D) ≈ 1.305 µs

Nc Ce (µs) Cp (µs) ρ θ Nc Ce (µs) Cp (µs) ρ θ

ADSampling 6760.1 0.2354 2.939 0.9301 0.9734 8165.3 0.6327 194.4 0.9383 0.5319
DWT 6813.1 0.2348 1.066 0.9423 0.9775 7812.2 0.8935 6.836 0.9399 0.6703
PCA 6821.7 0.2420 2.956 0.9424 1.0093 7773.3 0.7439 195.2 0.9402 0.5691
PM-LSH 7185.4 0.1300 0.681 0.1601 0.5960 8538.8 0.2200 7.713 0.2938 0.2406
SEANet* 8433.9 0.1230 14.48 0.2616 0.7131 7836.9 0.1471 16.59 0.4828 0.1024
OPQ 7148.8 0.0768 19.22 0.5703 0.3832 8274.5 0.1194 371.9 0.5941 0.1676

which indicates a strong potential for the estimation effectiveness of deep learning methods.

6 Conclusions and Future Directions

In this paper, we survey six dimensionality-reduction techniques that have the potential to benefit the
query performance of the ANNS algorithm. We employ two frameworks, in-place transformation, and
out-of-place acceleration, to integrate these techniques into the ANNS indexing and querying workflow.
Under these frameworks, we study the theoretical time and space complexity and benchmark their
performance with an extensive and fair evaluation. The results indicate that the best alternatives
improve the query performance of the original HNSW by up to 6x, but at the same time, the performance
of each technique varies widely across different datasets, and in some cases, we observe no improvement
at all.

We observe that at the framework level, the out-of-place acceleration framework offers greater
flexibility for use with pre-existing graph indexes, as it can enhance query performance through the
addition of an auxiliary data structure. In contrast, the in-place transformation framework necessitates
the reconstruction of the index, but with lower memory usage compared to the out-of-place framework.

Based on the results of our study, we discuss below promising research directions.
1. Quantization techniques with quality guarantees. Due to the high efficiency of distance

estimation, OPQ shows a robust performance improvement in the high-recall range. However, since
the distance estimation does not come with any guarantees, it takes much time to tune the parameters
to achieve the optimal trade-off between efficiency improvement and accuracy loss. In this case, an
accuracy guarantee, which can be provided by LSH and the techniques of the in-place transformation
framework, will make PQ more feasible and efficient for the ANNS problem [17, 19].

2. Deep neural networks show a strong potential for efficient low-dimensional repre-
sentations. Under the same dimensionality, deep learning methods show the best estimation accuracy
over all methods on some datasets. There is still a large design space for deep learning methods w.r.t.
the model framework, loss function, sampling, and training strategy, in this scenario. Moreover, finding
the optimal hyper-parameters, such as the dimensionality of the representations, is a challenging open
problem.

3. Adaptive dimensionality-reduction techniques selection. There is no single technique
outperforming all the others according to our evaluation. This indicates that an effective method
selection approach is necessary in practice. One of the challenges is how to relate the accuracy loss of
the estimation with the search effort in the ANNS problem, which relies on the cost analysis of the
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graph search algorithm [46].
4. Efficient storage compression with dimensionality-reduction techniques. As the

dimensionality of the vectors grow larger, the storage cost of vectors becomes very high, which renders
current database storage and query optimization techniques ineffective for the vector type. While
scalar quantization techniques [3] provide an alternative, dimensionality-reduction offers an orthogonal
approach to address this problem. In this sense, combining these two types of techniques may offer an
efficient database storage compression solution for vector data.
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Machine learning and high dimensional vector search

Matthijs Douze, Meta FAIR

Abstract

Machine learning and vector search are two research topics that developed in parallel in nearby
communities. However, unlike many other fields related to big data, machine learning has not
significantly impacted vector search. In this opinion paper we attempt to explain this oddity. Along
the way, we wander over the numerous bridges between the two fields.

1 Introduction

Most high-dimensional vector search methods are based on statistical tools, signal processing approaches
or graph traversal algorithms. Statistical tools include random projections [15], dimensionality reduction
(PCA and the SVD). Signal processing is employed primarily to compress vectors with quantization [4,
22, 30] Most recent indexing methods are rely on graphs [3, 11, 34, 49] that are built with graph traversal
heuristics.

Vector search (VS) is used in machine learning (ML) for training data deduplication [39] and searching
ML embeddings [5, 28]. Therefore, there are many research teams around the world that are competent
in both fields.

In their seminal work The case for learned indexing structures [32], Kraska et al. introduced a series
of ML based algorithms to speed up classical indexing structures like hash tables and B-trees. These
structures are classical building blocks of databases, e.g. a B-tree can be seen as a one dimensional VS
index. They hoped to open “an entirely new research direction for a decades old field”.

However, 7 years later, it is striking that ML has had very little impact on VS. No ML based method
appears in the current VS benchmarks at any scale [2, 46, 47]. The most advanced ML tool that is
widely used for VS is the k-means clustering algorithm. There is no deep learning, no use of high-capacity
networks.

In the following, we attempt to explain why this is the case. We work out a typical use case of
VS (Section 2), then expose the fundamental limits of ML for VS (Section 3); in Section 4, we review
interesting applications in the other direction: VS for ML.

2 Information retrieval with machine learning

Let’s start from a typical application of vector search: image retrieval. We manage a collection of N
images C = {x1, . . . , xN}, where N is large and possibly growing. From a given query image q, the
objective is to find images in C that are relevant to it, for example because they represent the same
object.

N-way classifier. The most straightforward ML approach for this is to train a N -way classifier
f1(q) ∈ [0, 1]N that outputs a scalar score close to 1 for the images that are relevant and close to 0 for
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the others. The best matching item from the collection can be found without even accessing the images
after the training phase:

I1 = argmax f1(q). (18)

The model could be any standard image classification model, convolutional or transformer-based [19,
25]. Note that processing images is inherently slow, since the raw pixels must be converted into
semantically relevant information, which requires several neural net layers. More importantly, the
model’s size needs to be proportional to the collection size N , and it is impossible to add or remove
images from the collection after the model was trained.

Pairwise comparison. Another approach is to design a function f2 that, given (x, x′) returns a score
that is high if x′ relevant to x and low otherwise. At search time, f2 is used to compare the query q
with all the images from the collection (which must be accessible):

I2 = argmax
i=1,...,N

f2(q, xi). (19)

The usual learning machinery can be deployed to train this function: given a training set of
matching and non-matching images, the model is optimized to return 0 or 1 with, for example, a binary
cross-entropy loss.

This resolves the problem of the model size, that remains fixed, and adding/removing from the
collection is painless. The issue with this approach is that the model f2 is still expensive to evaluate,
and querying one image requires N evaluations (forward passes) of f2. Therefore it is not tractable
beyond a few hundred images.

Embeddings. A way to avoid this is to force f2 to decompose as:

f3(x, x
′) = S(E(x), E(x′)), (20)

where E, the embedder (or feature extractor) is a function that computes a vector in d dimensions from
an image, and S : Rd × Rd → R is a similarity function between embeddings. This is akin to kernel
methods [6, chapter 7], and sometimes called a “two-tower” network.

The feature extraction function E can be costly to evaluate, but it is performed beforehand, when
the image is added to the collection: (e1, . . . , eN ) = (E(x1), . . . , E(xN )) is precomputed. At search time,
we perform only simple vector comparisons with all N :

I3 = argmax
i=1,...,N

S(E(q), ei) (21)

From a ML point of view, since we impose a constraint on the function f3, it is bound to be less
accurate than the function f2, that performs a direct comparison between items: there is an information
bottleneck.

The functions S and E are bound by an embedding contract [20], that states that E should generate
embeddings such that the comparison with S is semantically meaningful.

Embedding extraction. There is a vast literature on embedding extraction for images. It started
in the pre-deep era [31, 40]. Later, image embedding models were first sampled from some layer of
a classification model [5], then trained specifically using a clustering supervision [9], or variants of
contrastive learning [10, 12, 16, 29]. The embeddings can be specialized for different granularities of
image matching: from class-level via instance-level to copy-level [7, 41].
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Embeddings can be extracted from other modalities as well, with slight variations. For text
embeddings (like BERT [17, 27]) the size of the embedding vector is usually larger than the original text
– embeddings are not guaranteed to compress the items they are computed from. These text embeddings
are the basis for the retrieval augmented generation for LLMs [28]. Text and image embeddings can
be matched together as with the CLIP embeddings [43]. Recommendation systems are often based on
two-tower networks, with different embedding functions for the users and the items to recommend [38].

3 Vector search with machine learning

Performing the embedding search of Equation 21 is an operation whose complexity is O(N × d) for
most similarity functions. The research on vector search aims at keeping this complexity under control
when N becomes large. In the process, some accuracy can be sacrificed, and the brute force search of
Equation 21 becomes an Approximate Nearest Neighbor Search (ANNS) task.

Vector search is a linear classifier. Let’s assume that the similarity function, in Equation (21) is a
dot product1. In that case, the operation to be performed is a matrix-vector multiplication between
E(q) and the matrix that stacks embeddings [e1, . . . , eN ]. This is equivalent to a linear layer of size
N × d. This means that vector search can be solved with the simplest of machine learning tools: a linear
classifier of size N .

This equivalence between vector search and classification is used for k-NN classifiers [10, 36, 42] (but
k-NN classifiers are less accurate than training linear classifiers end-to-end).

A fundamental divergence. ANNS and ML both strive to optimize an accuracy objective. However,
vector search starts where machine learning stops. The problems to handle when training a machine
learning model are the train-test discrepancy, overfitting, regularization, etc. Resource utilization is a
second thought. Vector search does not have any of these problems, because computing the perfect
result is straightforward (Equation 21). The problem of vector search is how to compute the result
accurately with limited resources.

This explains why directly applying ML does not solve VS: as soon as ML starts to apply operations
at scale N , it is already slower than performing burte-force VS. This observation was already done
in [32]. Their approach is to break down the indexing structures into a distribution modeling part, that
can be solved by ML and the indexing structure itself, that scales to size N .

ML for vector distribution modeling. A direct application of this approach for VS is to train a
transformation that maps vectors to a space that is easier to index [45]. In this approach the input
vectors are transformed into a more uniform space while maintaining neighborhood relations; a lattice
quantizer is then used to encode the uniform vectors.

Modeling the vector distribution can be used to apply lossy compression to vectors, which is equivalent
to quantization. The k-means algorithm is a strong baseline for quantization because it obeys Lloyd’s
conditions and is efficient. In fact, the way VQ-VAEs are trained, with an exponential moving average,
is similar to online k-means [44].

However, to scale it to more accurate compression, k-means must be applied several times (multi-
codebook quantization), which yields less optimal representations like product quantization [30] or
additive quantization [4].

1This is without loss of generality: most standard distances can be reduced to computing dot products in a transformed
space [20].
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Deep learning models can be applied to improve multi-codebook quantization. This is done in the
UNQ quantizer [37], where a learned transformation maps the vectors to a space where it is easier to
apply quantization. In the QINCo series of works [26, 50] the codebooks of a residual quantizer are
adapted using a neural net to better approximate the vector distribution. One interesting work shows
that, given a quantizer, it is possible to train a decoder that improves its accuracy [1].

One important family of VS methods is to partition the vector space. At search time, only a subset
of partitions are visited. Usually this partitioning is based on k-means [30]. However, the partitions can
also be predicted from a vector with a classifier [18, 35].

Discussion. These approaches show that there are operating points where ML can help improving
VS. However, in many cases, the practitioner hits hard limits. The first limit is that the complexity of
the quantization must remain below that of a brute-force vector search. The second limit is that often,
increasing the capacity of the model does not improve the fit of the vector distribution: a shallow model
(or k-means itself) is hard to outperform with deeper models. Why this happens is an open research
question.

4 Machine learning with vector search

We review methods where VS is included within deep learning models.

Network compression. In the previous section, we showed the equivalence between VS and a linear
layer. Therefore, it is natural to apply vector search techniques to these layers, especially when the
weight matrix is skinny (N ≫ d).

Techniques originally developed for VS have been applied to compressing linear layers. Product
quantization is used to compress convolutional neural nets [23] and language models [48], with or without
retraining the model (quantization-aware training or post-training quantization). This is especially
useful for large recommendation models where most of the network parameters are in embedding
tables [38], i.e. N ≫ d. In some settings, a compressed linear operator can be applied to its input
without decompression [24].

Attention operators. Large language models are built around an attention operator that functions
as an associative memory: a query vector is matched with embeddings of all the previous tokens of the
prompt. This is basically a vector search task.

When the prompt size increases (the “long context” setting, N ≫ d), it becomes beneficial to
use ANNS. This includes compression [21], and also non-exhaustive VS with partitions [8], random
projections [13] or graphs [33]. One difficulty of attention operators is that the queries and database
vectors have different distributions. For partition-based VS, this can be addressed by training different
partition classifiers for queries and database vectors [35].

Discussion. VS has a potential to be an accelerator for ML models, whenever the input needs to be
compared to a large number of vectors. The limit is that ML is typically run on hardware that is so
efficient in doing exact VS (matrix multiplication) [14] that the size above which it makes sense to use
ANNS is large (currently around N = 105) and growing.
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5 Conclusion

We reviewed several use cases where VS and ML are interlinked. It is clear that ML cannot replace the
VS data structures, but it can help modeling the data distributions. One direction that deserves more
exploration is leverage ML to better build graph-based indexes. In the other direction, there are tasks
in ML where VS can be very useful, in particular to solve large classification problems and to perform
attention on long contexts.

The case for learned indexing structures [32] speculated that the increase of compute capacity would
make ML models more amenable to indexing methods. What happened is rather that for many use
cases of VS, compute has become so cheap that they can just be solved in brute force.
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1 Introduction

Approximate Nearest Neighbor Search (ANNS) has been an active area of research for the last decades.
More recently, the emergence of Generative AI (GenAI) and the emergence of powerful embedding
models has led to a big surge of research activity. It also led to a large number of vector search offerings
both from purpose-built vector databases as well as from databases and data warehouses that added
vector and ANNS abilities.

While ANNS is not a new research problem, we believe that this area deserves further research
for multiple reasons: The first (and obvious) reason is that whenever an area obtains a much higher
importance it becomes worthy to dive deeper into its research and strive for perfection. ANNS is no
exception to this. Thus, we appropriately see many research works that bring forth indexing improvements,
quantization improvements and algorithmic improvements to improve the performance/recall Pareto of
ANNS.

But we also believe that there are genuinely novel research needs in ANNS, beyond pure ANNS
research, which emerged along with the recent surge. In this special issue of the Data Engineering
Bulletin, we highlight the data engineering challenges in bringing vector search to databases (Section 2)
and in expanding from pure ANNS to the larger problem of raising the quality of search(Section 3). We
highlight also how ML can automate the solution to many of the data engineering problems we describe.

2 Vector Search meets Databases

Vector search is quickly becoming a staple of database applications, which use it for improved semantic
search and in GenAI applications as an enabler of the Retrieval Augmented Generation (RAG) pattern.
Similarly, in data warehouses it fuels analytics applications, such as classification, entity resolution
and deduplication, search and anomaly detection in log analytics and other applications thanks to its
powerful semantic matching ability.

This expansion brings myriads of database developers and data engineers to ANNS. But these
developers are used to SQL’s environment, which provides transactional consistency, declarative interfaces
and physical-logical independence, which means that the query optimizer will figure out the best algorithm.
Furthermore, we see that the new use cases of semantic search in databases typically involve SQL queries
that perform ANNS along with filters on the structured attributes of the table that has the vectors
and/or filters on attributes of tables that join with it.

2.1 Ease of Use

SQL developers, accustomed to SQL’s declarativeness and physical-logical independence face an unfamiliar
situation where they have to learn about their index choices, the esoteric parameters of each index
and the respective index creation and search algorithms. The developers often need to choose between
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different indexing methods, the most prominent being tree-quantization based indices and graph-based
indices. Then they need to correctly configure their chosen index. Finally they also need to configure
search parameters, which are particular to each algorithm. For example, configuring a graph-based index
requires setting the memory space and (at least) two esoteric parameters, which are the number of edges
per node and the number of candidates from which these edges will be chosen. Similarly for a tree-based
index the user has to set the number of levels, vectors per leaf and fanout of the internal nodes.

What the developers truly care about is to meet the latency, queries per second (qps) and quality
(recall) requirements of their application. The only way to meet them is by heavy experimentation with
the index build parameters and the search parameters. Especially for SQL developers and users the
manipulation of such parameters is a regression to pre-SQL times; during the last 3-4 decades SQL users
are accustomed to just declaring indices and queries and expect the system to take care of the rest.
Data engineering research is needed on effective, high level interfaces that receive the requirements and
automate optimization. We believe that ML techniques will have to play a major role in automating
optimization. As an alternate to complete automation, efficient and credible experimentation and tuning
systems can allow database developers to semi-automate the process of achieving their performance
goals.

Ease-of-use includes the capability of databases and data warehouses to automatically compute
embeddings for the unstructured data and appropriately index them, so that the developers need not
take care of the pipeline themselves. In the same spirit, ease-of-use also includes transactional consistency
between the source data, their embeddings and the indices. Sufficient transactional consistency has been
achieved by many recent releases that rely on the usual disk-based durability. Database developers want
vector search to perform well from disk but also work very efficiently when there is plenty of memory.
Database research is needed on how to combine the best of both worlds: Transactionally store the
data in disk, yet achieve performance commensurate with a purpose-built main memory solution when
the database instance has enough memory at its disposal, and the queries and associated datasets are
non-trivial.

2.2 Challenges in queries that combine SQL filters, joins and vectors

Searches are often accompanied by structured data filters. Querying the structured data directly from
the tables that they are found is far more convenient and manageable than the approach that is followed
by purpose-built vector databases, where the structured data are organized into the vector index.
The combination of filters, joins and vector-based ranking creates novel query execution and query
optimization problems. The conventional method had been a choice between prefiltering (i.e., first
evaluate the conditions and then do brute force evaluation of distances for the qualified rows/vectors)
and postfiltering, i.e., first use the ANNS index to get a large number of candidates, then evaluate the
conditions. We see significant promise in inline filtering techniques where the conditions are evaluated
as the search procedure navigates the index. We believe there is important database research to be done
on both the plan execution primitives and the optimization of their usage.

Works that create special index structures for accelerating filtered search queries have also recently
emerged. We expect further advances in this area and the emergence of a plurality of approaches
since there are multiple requirements, which will contradict each other: Some approaches will excel
in particular types of filters while others will have broader scope of conditions. Some approaches will
rely on “heavy” special vector index structures (eg, structures that weave the structured data in the
vector index) and thus have the expected downsides on maintenance and memory footprint, while other
approaches will work with minimal (or even no) modifications to the vector indices themselves.
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3 Next Generation Search: Raising the Search Quality

Organizations want to enable higher result quality, which typically translates to recall, for their users’
searches. This leads to the use of technologies beyond plain vector search and plain embeddings,
whose inclusion in the search architecture is more intricate than a mere change of the embedding
model. Consequently, these technologies invite respective research questions on the engineering of the
search. Many of these technologies are already in widespread adoption and many more will likely be
widely adopted soon. We overview a few of them next and present related data engineering research
opportunities.

3.1 Hybrid Search

It is widely accepted that search achieves higher quality when semantic search (that is, vector search)
is combined with classic text search. While vector search captures the semantics aspect of the search,
classic text search solves the needle-in-the-haystack problem by ensuring that the data mentioning the
specific requested keywords/terms are not missed. The currently prevalent methods of combining vector
search and text search perform vector search in isolation from text search and vice versa. Then they
combine the results of the text search and the results of the vector search afterwards. These methods
are open to simplification and also to performance and quality optimization by intertwining the two
types of search closer.

3.2 Semantic Search that trades off Quality, Performance and Simplicity

Diving deeper, we see that a stack of techniques emerges around retrieval and reranking, where as we go
up the stack these techniques increase the accuracy (quality) of semantic search but also the latency/cost
and/or the difficulty of deploying. We list characteristic techniques here in order of ascending quality.

1. Vector search over single embeddings remains the cheapest/fastest semantic retrieval method.
Interestingly, there is not yet a benchmark to evaluate out-of-the-box solutions that would choose
embedding models and autoconfigure vector search.

2. The fairly mature chunking and the associated crowding (during search) are simple techniques
that slightly increase cost and latency by splitting long text data and thus having multiple vectors
per doc.

3. Recently emerging supervised vector adaptation techniques (eg, [1] improve both quality and
performance but require the customer to provide a small number of examples of desired results.

4. Multivector search (eg [2]) elevates quality by partially bringing in the benefits of cross-attention
relevance ranking (#5) while keeping the efficiency benefits of computing embeddings and indexing
them in advance. Data engineering challenges will appear in incorporating multivector retrieval
in current vector systems (eg, see [3]). Furthermore, the increased number of options invites ML
techniques for automating configuration and search optimization.

5. Cross-attention relevance (re-)rankers conceptually are functions relevance(Question, Data) that
return a score for the relevance of the question to the data. Since a score based on cross attention
cannot be precomputed, it is far more expensive than vector search. However, for their contribution
in raising recall, they emerge as a common tool for reranking the results of vector search or hybrid
search.
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6. LLMs provide the highest flexibility as the user/developer can create a prompt that guides the
LLM in how to rank. LLM-based algorithms may solicit relevance scores from the LLM for each
to-be-ranked data item. But other algorithms are also possible that do not base ranking on
relevance scoring; for example, feeding the question and the full set of to-be-ranked data items to
the LLM prompt and asking it to spot the most relevant to the question.

Ultimately higher level abstractions are needed to give users the ability to achieve optimization
of their goals on performance, cost and latency without having to learn the esoteric aspects of each
technology. Until such time where optimization is sufficiently automated, efficient and easy-to-use
experimentation techniques will be needed to semi-automate the optimization of combinations of these
technologies.

4 Conclusion

Recent embedding models of high search quality as well as the interest in RAG have turned vector
search into a focus for industry and research. While pure ANNS has a long history in the research
community, we believe that we are in the early stages of the larger problem: Quality search that includes
the structured data, textual indices and many techniques that improve semantic search. This research
will entail both novel ML-based advances but also advances in ANNS and in the data engineering of
end-to-end systems that use these techniques.
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