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Abstract

Given a large number of users preferences as inputs over a large number of items, preference queries
leverage different preference aggregation methods to aggregate individual preferences in a systematic
manner and come up with a single output (top-k ordered or unordered/a complete order) that is most
representative. The preference aggregation methods are widely adopted from the social choice theory,
some of which are rank based (single-round vs. multi-round), while others are non-rank based. These
queries are prevalent in high fidelity applications, including search, ranking and recommendation, hiring
and admission, and electoral voting systems. This article outlines algorithmic challenges and directions in
designing an optimization guided computational framework that allows to change the original aggregated
output (either ordered or unordered top-k or a complete order) to satisfy different criteria related to
fairness and robustness, considering different preference elicitation models (ways users provide their
input preferences) and aggregation methods (ways the individual preference get aggregated).

1 Introduction
The need to aggregate a large number of individual preferences in a systematic manner is ubiquitous. Users can
provide preferences in many ways - as likes/dislikes, ordinal preferences, or ranked order (full or partial). The
social choice theory [17] offers a plethora of aggregation methods to aggregate individual preferences and come
up with a single output. These outputs may be a single rank that is most representative of all users preferences, or
sometimes a smaller number of k items (top-k) that are ordered or presented as a set. While designed for electoral
voting systems primarily, the applicability of answering queries is prevalent in many high fidelity applications,
such as, ranking and listing web search results, recommending movies/songs, selecting a handful of candidates
for domains where resource is scarce (such as hiring and admission), to name a few. It is not a stretch to consider
a setting in which thousands of items (notationally n) have received preferences from hundreds of thousands (or
even millions) of users (notationally m) and the goal is to produce a single output (notationally �) that is most
representative.

The computational implications of different preference aggregation methods are well studied. What is
not so well understood is how hard it is to change the original produced output, which may be necessary for
many compelling reasons. Satisfying additional criteria, such as, promoting fairness (e.g., ensuring presence
of individuals with certain socio-demographic properties), or Understanding robustness, i.e., figuring out the
minimum amount of change of the inputs that would result in a different outcome than the original output.
This latter aspect provides understanding on how manipulable the proposed aggregation methods are which
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are certainly important for aggregation methods that are heavily used in electoral systems, but are applicable
in other scenarios as well (e.g., in figuring out the robustness of a rating system of products). To the best of
our knowledge, a systematic study is needed to investigate these aspects in conjunction with different preference
elicitation models, requiring different preference aggregation methods. That, in nutshell, is the focus of this
article.
We discuss these challenges considering four interspersed dimensions, as described below.
Preference Elicitation Models. The article simultaneously considers a vast range of preference elicitation
processes that we broadly categorize as rank based and non rank based. In rank based processes, the users can
provide a fully ranked order over all items, a partial order, or a coarser preference (like item a ranked higher than
item b, etc). In non rank based preferences, users can provide only likes, both likes and dislikes, or even an ordinal
preference (likes item a as "excellent", b as "good", etc). The choice of these preference elicitation methods is
dictated by the different applications. Rank based ones are suitable in hiring/admission/electoral system, while
non rank based ones are more relevant in obtaining user feedback from search results, user satisfaction survey,
product reviews, etc.
Preference Aggregation Methods. Then the preference aggregation methods that are most commensurate to
the underlying preference elicitation process and underlying application are studied. For example, when user
preferences are given as ranked order, depending on the underlying application, we will aggregate them using
existing single-round rank based methods (e.g., Kemeny, Spearman’s footrule, or Borda), or multi-round based
methods (STV, IRV). The former aggregation methods are suitable in hiring decision, whereas, the latter ones are
gaining popularity in voting systems. On the other hand, when users provide non rank based preferences, we will
show how Jaccard similarity or Hamming distances are suitable to aggregate them and come up with the final
output.
Produced Output Form. From the application point of view, the produced output may require an order over
all n items (hiring/admission), or a small number k of n items as outputs. In case of top-k items requirement,
the returned k-items may need to be ordered for certain applications (top-k web pages returned by the search
engine), or in some cases it is fine to return them as a set (selecting a set of representatives or body to form certain
committee).
Change Original Output. The importance of quantifying the minimum effort needed to change the original output
is evident for several reasons, such as promoting fairness and robustness. Robustness is heavily used in electoral
system to produce margin, that investigates how to bound the amount of change of the original outcome in case
x% of the inputs are destroyed/deleted/modified. We discuss them further in details below.

2 Overarching Research Goals
The overarching goal is to design optimization guided computational framework containing principled models
and scalable solutions that allows to change the original aggregated output (either ordered or unordered top-k or a
complete order) to satisfy different criteria, considering different preference elicitation models and aggregation
functions to promote: a. Fairness from the standpoint of the protected attributes[27] of the items/candidates (e.g.,
race, gender, ethnicity), where the candidates are selected by aggregating elicited preferences of the members
(panelists, voters, search committee). We shall investigate existing group fairness criteria in the context of
preference aggregation [27, 29], as well as adapt fairness criteria studied in the context of resource allocation or
social choice theory. b. Robustness, namely, understanding how easy or hard it is to change the original outcome
of different preference aggregation models given a budgeted preference substitution requirement. For instance, if
the total number of preference updates is budgeted to be  x, is it possible to change the original outcome? We
are interested in exploring these viewpoints for multiple preference elicitation models and output forms. What is
also important to notice is that a given preference elicitation may be suitable to multiple aggregation methods
and may require to satisfy more than one produced output form. These gives rise to many combinations of the
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problem.
The rest of the article is organized as follows: In Section 4, we study how to Satisfy output constraints in single
round rank-based preference aggregation methods. We study this considering ranking, which is a commonly
used method to prioritize desirable outcomes among a set of items/candidates and is an essential step in many
high impact applications. Here the members elicit a complete or partial preference order over the candidates and
the goal is to produce an aggregated ranked order over all candidates or produce top-k results that minimize
disagreements among individual preferences. We will also include preference substitution in single round rank-
based preference aggregation methods to satisfy complex top-k constraints, where the requirement is defined
over a set R of protected attributes.
In Section 5, we study how to satisfy output constraints in multi round rank-based preference aggregation
methods, popularly known as ranked choice voting or (RCV) [12]. Two popular representatives of these models
are IRV (Instant run-off voting) [12] that selects one item/candidate as the winner, and STV (single transferable
vote) [10, 13] that generalizes IRV and selects a set of k-items/candidates as winners. It is known that RCV
represents majority rules and improves result diversity. Unlike single round preference aggregation models,
RCV minimizes the effect of strategic voting as users can provide their “true preference” for the candidates they
support, not just provide preference against the items/candidates they oppose most. It is also shown in recent
works, how RCV promotes anonymity and anti-plurality [13], compared to single round based algorithms.
In Section 6, we will study how to satisfy output constraints in non rank based preference aggregation methods.
Here we investigate preference aggregation methods that do not require users inputs to be ranked order. A
simple case in this context is a Boolean model, where each user describes their preference over n items as a
Boolean vector of 0 and 1. When users provide only their “likes” on the items, the aggregation function such as
Jaccard Similarity or Overlap similarity [24] may be appropriate to find top-k items that have exhibited maximum
similarity over the users preferences. On the other hand, when the users provide both “likes” and “dislikes”, the
aggregation function may intend to produce a Boolean vector that minimizes the Hamming Distance between the
input preferences and the produced output. Generalization of the Boolean preference elicitation models is also
discussed.
Comparison with Existing Work. This contribution builds on our work recent works on fairness [20, 28], and
prior works on preference aggregation [2, 3, 8], studying robustness [24]. We acknowledge that the existing
popular group based fairness definition, such as, statistical parity [15] is somewhat similar to one of our proposed
fairness notion. However, the best adapted version of top-k statistical parity studied in a recent paper [21] does
not account for proportionate representation in every position of the top-k, limiting its applicability. Studying
computational challenges related to computing the margin of victory has been a focus of recent research [4, 6, 10]
in the context of electoral voting and related applications. But none of these existing works study the general
version of the problem, which is, how to promote additional simple/complex constraints/criteria in the output,
which is our primary focus. Other than these prior works, which are much narrow in scope, we are unaware
of any computational work that systematically studies different preference elicitation models, multiple output
changing criteria, and preference aggregation combining these two.

3 Formalism
There are 4 types of inputs that our proposed framework takes: (a) a set N of n items, where each item has a set
A of discrete attributes. Each attribute a 2 A has `a different values. (b) a set of m users, where the i-th user
u(i) provides her preference as �i. The users’ preferences could be rank based, partial or full order, or non rank
based. (c) a distance function F (defined formally below) that measure the “distance” between a set of m input
preferences �1,�2, . . . ,�m and an output � with the required output form. The exact distance function depends
on the underlying preference elicitation model and the required output form which may be either a complete
ranking of the items or a subset of k items, either ranked or not. (d) a set C of output criteria/constraints. Some
variants of our problem also include as input a budgetary constraint B.
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Definition 3.1: Distance function F . Given m input preferences �1,�2, . . . ,�m and an output � with the re-
quired output form, the function F(�,�1,�2, . . . ,�m) is the distance of � from the input preferences �1,�2, . . . ,�m.
In some cases the function F(·) is an aggregation of a distance function between a single input preference and
the output. Examples for such an aggregation are the sum of the pairwise distances and the maximum distance to
any of the input preferences. In other cases F(·) measures the minimum modification of the input preferences
that would result in the preference aggregation method outputting the output �.

Definition 3.2: Output criteria/constraints. For an attribute a 2 A, let c(pa) denote the cardinality constraints
of items with value pa (pa is one of the `a possible values of attribute a). Given to the framework is a set C of
such cardinality constraints for each attribute value pa, for every a 2 A, A ⇢ A. There are two explicit cases that
we consider.

• The output � is ordered and consists of k  n items. In this case the cardinality constraints are defined
for every  2 [1..k] items, and for every such  2 [1..k], the  top ranked items of output � have to satisfy
these cardinality constraints.

• The output � is an unordered set of k items. In this case the cardinality constraints are defined for k
items and the items in the output set � have to satisfy these cardinality constraints.

Definition 3.3: A budgetary constraint. A budgetary constraint B is an upper bound on the distance of the
output from the input preferences. The budgetary constraint implies that F(�,�1,�2, . . . ,�m)  B.

Definition 3.4: Preference Aggregation Considering Constraints. We intend to study different types of
problem definitions that require different algorithmic treatments. Given either complete or partial preferences
�1,�2, . . . ,�m over the items in N , a preference aggregation method, a distance function F(·), and a set of
output criteria C.

• (Constrained optimization). Produce an output � with the required form that minimizes F(�,�1,�2, . . . ,�m)
and satisfies C.

• (Optimization under budgetary constraints). Produce an output � with the required form that optimizes
C, while satisfying F(�,�1,�2, . . . ,�m)  B. (The objective function for optimizing C varies.)

• (Bi-criteria optimization). Given parameters ↵ and � produce an output � with the required form that
satisfies both F(�,�1, . . . ,�m)  ↵ and G(C)  �, where G is the objective function for optimizing C.

3.1 Specifying Output Criteria

We discuss orthogonal reasons where the original outputs coming out of the preference aggregation methods need
to be “massaged” further. What unifies them is that these criteria are defined over one or more attributes of the
items. Depending on how many attributes are involved in the definition and their relationship thereof gives rise to
additional challenges.

3.1.1 Fair Preference Aggregation

We will study fairness in the context of group based protected attributes of the candidates. Output criteria/con-
straints for fairness (refer to Definition 3.2) are expressed over one or more protected attributes. Their protected
attributes could be expressed over gender, ethnicity, race, or the state the candidates are living in.

Formally speaking, each item/candidate v 2 N has one or more protected attributes. When `a = 2, it is a
binary protected attribute; when `a � 2 it is a multi-valued protected attribute. As an example, race is (usually) a
multi-valued protected attribute, and gender is sometimes a binary protected attribute.
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p-fairness. p-fairness has been studied in the context of resource allocation satisfying temporal fairness or
proportionate progress [7, 25]. It was introduced in the classical Chairman Assignment Problem [5, 25] that
studies how to select a chairman of an union every year from a set of n states such that that at any time the
accumulated number of chairmen from each state is proportional to its weight.

In the context of ranking, suppose that each of the n ranked items has a protected attribute a(·) that can take
any of `a different values. For pa 2 [1..`a], let c0(pa) denote the fraction of items with protected attribute value
pa, that is, c0(pa) = 1

n

Pn
i=1 a(i)=pa . The goal is to ensure that c0(pa) fraction (rounded either up or down) of

every top  items have protected attribute value pa.

3.1.2 Robust Preference Aggregation

Output criteria/constraints for robustness on the other hand investigates the flip questions: Given either complete
or partial preferences �1,�2, . . . ,�m over n items, let � be the output obtained by the preference aggregation
method. Given a budget B, how to make B or less changes in the original preferences, such that the outcome
is different from �? This question is related to finding the margin in electoral systems and quantifies how
manipulable the underlying aggregation method is. We study this problem under different manipulation models –
addition only, deletion only, or substitution (addition + deletion).

4 Single Round Rank based Preference Aggregation
We outline two separate lines of algorithmic problems: (1) incorporating output criteria (e.g., p-fairness) in
single round rank-based preference aggregation methods, and (2) satisfying complex constraints in single round
rank-based preference aggregation methods.

4.1 Incorporating output criteria in rank aggregation
The input to the classical rank aggregation problem consists of m complete order of preferences over the
n items/candidates. Traditionally, producing the final ranking involves aggregating potentially conflicting
preferences from multiple individuals, and is known as the rank aggregation problem [1, 16, 26]. Our goal is
to minimally change the aggregated output to enable fairness. We will study p-fairness [7, 25] that ensures
proportionate representation of every group based on a protected attribute in every position of the aggregated
ranked order. The classical problem in this context is known as the Chairman Assignment Problem [5, 25]
which studies how to select a chairman of a union every year from a set of r states such that that at any time
the accumulated number of chairmen from each state is proportional to its weight. p-fairness generalizes other
notions of fairness [19] that were considered in prior work, including the existing popular group based fairness
definition statistical parity [15].

4.1.1 Research Directions
Consider rankings of the items in a set V . Each such ranking can be viewed as a permutation. We will use the
terms ranking and permutation interchangeably.
Kendall-Tau and Kemeny distances. Given two rankings �, ⌘ : V ! [1..n], the Kendall-Tau distance between
the two rankings is the sum of pairwise disagreements between � and ⌘ (bubble-sort distance)

K(�, ⌘) =
X

{u,v}✓V

(�(v)��(u))(⌘(v)�⌘(u))<0.

For a set of rankings {⌘1, ⌘2, . . . , ⌘m} the Kemeny distance of the ranking � to this set as

(�, ⌘1, ⌘2, . . . , ⌘m) =
mX

i=1

K(�, ⌘i).
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Spearman’s footrule distance. Given two rankings �, ⌘ : V ! [1..n], the Spearman’s footrule distance between
the two rankings is the sum of the absolute values (`1 distance) of the differences between rankings � and ⌘.

S(�, ⌘) =
X

u2V

|(�(u)� ⌘(u)|

For a set of rankings {⌘1, ⌘2, . . . , ⌘m} the Spearman’s footrule distance of the ranking � to this set is the sum
of the pairwise distances.
Rank aggregation. The aggregated ranking of a set of m rankings {⇢1, ⇢2, . . . , ⇢m} for a given distance function
is a ranking that minimizes the distance to this set.
p-fairness for a ranking. For a permutation �, k 2 [1..n], p 2 [1..`], let P (�, k, p) denote the number of elements
with protected attribute value p among the k top ranked elements in �. A ranking � is proportionate fair or p-fair
if

8k 2 [1..n] 8p 2 [1..`] : P (�, k, p) 2 {bf(p) · kc , df(p) · ke}.

We formalized two optimization problems, individual p-fairness or IPF and the rank aggregation problem
subject to proportionate fairness (RAPF) considering binary (` = 2) and multi-valued (` > 2) protected attributes.
These problems and associated algorithmic results could be found in [28].

4.1.2 Open Problems
We plan to investigate the following open problems.
p-fairest aggregate ranking (PFAR). The PFAR problem is defined as follows. Given a set of m rankings
choose the “p-fairest” ranking among all rankings that minimize the Kemeny distance to this set. We need to
define “p-fairest” ranking or a distance measure to a p-fair ranking. We propose the following distance measure
(using the notations defined above). For an integer d � 0, a ranking � is at distance d from a p-fair ranking if

8k 2 [1..n] 8p 2 [1..`] : P (�, k, p) 2 {bf(p) · kc � d, df(p) · ke+ d}.

We observe that PFAR is also NP-Hard as directly follows from the fact that unconstrained rank aggregation
is NP-hard when m � 4 [1]. For some fixed ↵ > 1, We would like to find an algorithm that finds the p-fairest
ranking among all rankings whose Kemeny distance from the set of input rankings is at most ↵ times the minimum
such distance.
Bi-criteria p-fair rank aggregation (BPFRA). The most general problem that we plan to consider in this context
is the bi-criteria optimization problem, that is, for a given pair (↵ > 1,� > 1) and a set of m rankings find a
ranking whose Kemeny distance to the set of rankings is at most ↵ times the Kemeny distance of the aggregated
rank from the set and its distance from a p-fair ranking is at most �, if such a ranking exists.
p-fair rank aggregation with affirmative action. We plan to consider a variant of p-fair rank aggregation that
involves “affirmative action”. This will be modeled by varying the proportion of the values of the protected
attribute in the p-fair aggregated rank. For example, consider a binary protected attribute with values A and B
each needs to appear the same number of times. Suppose that our goal is to promote the items with attribute value
A. In this case we can vary the proportion of A making it higher in the top ranked elements and lower in the lower
ranked elements so that overall items with attribute value A will appear the same number of times as items with
attribute value B.
The complexity of individual p-fair ranking (IPF). We plan to further investigate the IPF problem for multi
valued protected attributes as it is open whether it can be solved accurately in polynomial time. We conjecture
that this problem is NP-Hard. We also plan to look for improved approximation algorithms for this problem.
Better approximation of rank aggregation subject to p-fairness (RAPF). We plan to develop more sophisti-
cated RAPF algorithms with better approximation ratios, and to improve the computational aspects of the RAPF
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problem. This problem can be formulated as an Integer Programming (IP) problem. We plan to consider various
IP formulations as well as various rounding techniques to accelerate the computation.
Robust rank aggregation. It is known that rank aggregation under Kemeny distance is NP-hard. We will
explore other aggregation methods, such as Spearman’s footrule and Borda, and study how manipulable these
rank aggregation methods are – that is, if only x% of the preferences are allowed to be changed, how easy it is to
change the outcome.

4.2 Complex Constraints
Our goal is to optimize preference substitution to satisfy complex top-k fairness constraints, where the fairness
requirement is defined over a set R of protected attributes. One of the objectives we will consider is minimizing
the number of single ballot (ranking) substitutions that guarantee fairness in the top-k results. In a preliminary
work we defined the problem of finding the smallest number of single ballot substitutions to promote a set of k
candidates that satisfy fairness requirements defined over a set R of protected attributes to the top-k.

4.2.1 Research Directions
We assume that there are ` protected attributes , denoted A1, . . . , A`. For i 2 [1..`], attribute Ai has `i possible
values, denoted A[i, j], for j 2 [1..`i]. Each candidate is associated with a specific value from each attribute. In
addition, we are given target quantities a[i, j], for i 2 [1..`], and j 2 [1..`i], with property that all row marginals
sum to k. Namely, for every i 2 [1..`],

P`i
j=1 a[i, j] = k. A fair outcome should satisfy the fairness condition

that for i 2 [1..`], and j 2 [1..`i], exactly a[i, j] candidates whose Ai attribute value is A[i, j] are elected.
We note that one way to approach this problem is by converting the multiple protected attributes to a single
multi-valued protected attribute by computing joint distribution over the attributes assuming their independence.
For example, instead of considering two binary valued attributes A1 and A2 we consider a single attribute with 4
possible values and the requirement that the value i ⇤ j should appear a[1, i] · a[2, j]/k times, for i, j 2 {1, 2}.
The shortcomings of this approach are two-fold: First, this approach may yield that the problem is infeasible
while there is still a solution without assuming independence. A solution that assumes independence may be
inferior (require more substitutions) than a solution that does not assume independence.
In [20], we showed that the problem of finding the smallest number of single ballot substitutions (original
preference) to promote a set of k candidates that satisfy proportionate representation over a single protected
attribute is computationally easy for any domain size of the protected attribute. On the other hand the same
problem becomes computationally hard if we increase the number of protected attributes. When there are two
different protected attributes involved in outlining the fairness requirement, we proved that the decision version
of that problem is (weakly) NP-hard, For three (or more) protected attribute, even the question whether there
exists a set of top-k that satisfies the complex fairness constraint is strongly NP-Hard by a reduction from 3
Dimensional Matching. On the positive side for the case of two protected attributes we designed an efficient
algorithm that obtains a 2 approximation factor and runs in O(n2

` logm) time, where ` is the number of possible
attribute values. We also designed an exact algorithm with running time n

c, where c is the size of the Cartesian
product of all the attribute domains.

4.2.2 Open Problems
There propose two possible ways to extend these problems.
Improved approximation ratio in the case of 2 protected attributes. Since the problem of minimizing the
number of single ballot substitutions in the case of 2 attributes is currently proven to be weakly NP-Hard, it
may admit a PTAS (Polynomial Time Approximation Scheme). We plan to investigate the existence of a better
approximation algorithm. Alternatively, we will try to improve the hardness result and show that this problem is
strongly NP-Hard or Max-SNP Complete.
Relaxed solutions in the case of 3 or more protected attributes. Clearly, the hardness result of even checking
the existence of a solution in case of 3 or more attributes precludes the existence of any approximation algorithm
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for this case. We plan to design an algorithm that will generate a relaxed set of items/candidates. The relaxation
may be in two dimensions: (i) the generated set will be a top-k set of candidates but the fairness requirements
will not be fully satisfied for all protected attributes. (ii) the generated set will have size larger than k but it will
satisfy the (lower bounds of the) fairness constraints for top k. Clearly, the larger the generated set is the easier
the problem. We will find the smallest such extended set that guarantees the fairness constraints imposed by all
protected attributes.

5 Multi Round Rank based Preference Aggregation
We study algorithmic challenges to satisfy output constraints in multi-round rank based preference aggregation
methods, popularly known as ranked choice voting or (RCV) [12].

5.1 Research Directions
We start by describing the STV (single transferable vote) method [10, 13] that generalizes the IRV method, and
selects a set of k items/candidates as the winners. STV is gaining popularity as an electoral system. It is used to
elect candidates to the Australian Senate, in all elections in Malta, in most elections in the Republic of Ireland,
and in Cambridge, MA. There are also plans to use STV in other USA localities. As mentioned in Section 3 this
method of preference aggregation is also applicable in other settings.

The input to an STV preference aggregation method consists of m either complete or partial rankings of the
items/candidates. Suppose that the total number of items/candidates is n out of which k items need to be elected.
The preference aggregation process requires a predefined quota. In most cases this quota is Droop quota [22]
defined as

j
n

k+1

k
+ 1. The aggregation is done in rounds. In each round every item/candidate is associated a

tally. Initially, the tally of every item is the number of rankings in which it is ranked highest. A round starts by
considering the items whose tally is at least the quota. These items are elected in non-increasing order of their
tally, as long as k items/candidates have not been elected (which always holds for Droop quota). When an item is
elected their “surplus” (the number by which their tally exceeds the quota) is distributed to the next preferred
item in their ranking (that has not been eliminated yet). The exact way this “surplus” is allocated varies. In a
most cases, this allocation is done either fractionally or by a random selection of the surplus rankings out of all
the rankings in which the elected item is top ranked. This is repeated as long as there are items whose tally is at
least the quota (and k items/candidates have not been elected). Then, if less than k items/candidates are elected,
the item/candidate with the smallest tally is eliminated from all the rankings, and the tallies are updated based
on the new rankings. If the number of items/candidates remaining (not elected and not yet eliminated) equals
the number of items/candidates left to be elected, these candidates are elected and the STV process terminates,
otherwise the process repeats.

There is evidence that IRV and thus also STV preference aggregation methods are computationally hard to
manipulate. It is NP-Hard to decide whether an IRV method can be manipulated even by adding one complete
ranking [6]. On the positive side, [9, 11, 23] suggested branch and bound algorithms that use Integer Programming
to compute the Margin of Victory (MOV) in IRV.
Approximating the number of ranking substitutions in multi round methods. We plan to develop approxi-
mation algorithms with proven performance for IRV and STV. The first step is to design such an algorithm for
the simplest case which is approximating the minimum number of ranking substitutions required to change the
outcome of an IRV preference aggregation method when every user is limited to input only two top items. From
there we hope to be able to generalize to the IRV problem with no restriction on the ranking size, and eventually
to the more general STV.
Improved computational frameworks for minimizing number of ranking substitutions in multi round
methods. As mentioned above most of the existing computational frameworks are based on branch and bound
algorithms. We plan to investigate other methods and possibly alternative formulation of the respective Integer
Programming model that may result in more efficient computational frameworks.
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Heuristic algorithms for minimizing the number of ranking substitutions in multi round methods. Another
way to tackle the complex computational problem of minimizing number of ranking substitutions in multi round
methods is designing heuristics for this task, analyzing and benchmarking these heuristics. One approach for
designing such a heuristic for the problem of minimizing the number of ranking substitutions in STV to guarantee
an elected set of k items with a given requirement on their protected attribute is by first identifying the desired
elected set and then computing the number of substitutions required to achieve this set. One way of fixing the
desired set is as follows. Run the STV process, and whenever the number of the currently elected items/candidates
with a given value of their protected attribute reaches its bound, eliminate all the items/candidates with this value
of their protected attribute. A naive implementation of this rule may not even guarantee a feasible solution and
thus we also need to add the option of reintroducing items/candidates that were already eliminated. Analyzing
such an algorithm is a challenge.

6 Non-rank based Preference Aggregation
Our goal is to study preference models that allow users to elicit their choice not as a ranked order. When the input
preferences are not ranked, the output produces a set of k items that best reflects the users preferences. Akin
to the previous two sections, our goal is to investigate which preference aggregation methods are suitable for
such elicitation models, how to handle output constraints, and understand their computational implications. We
identify the following research directions.

6.1 Research Directions
We begin by considering simple Boolean preference elicitation models, as“only likes”, “likes and dislikes” , or
“only dislikes”. Indeed, such preference elicitation models are realistic in a wide variety of applications, such as
providing preferences over products, news articles, movies, songs, social media posts, to name a few.

The simplest form of preference elicitation comes in the following form - each user u(i) provides �i as
preference, which is a Boolean vector of 1’s and 0’s over the set of n items, and the underlying application only
objective is to find a set of k-items that are “most liked” by all the users. We propose to use Jaccard similarity or
overlap similarity [24] for measuring similarity (inverse of distance) between two vectors in such cases. Given
two vectors �i,�j their overlap similarity S�i,�j =

P
8`2[n][�i` ^ �j` ], the number of positive bits that are shared

between �i,�j . When the users provide both “likes” and “dislikes” and both have to be accounted for, we will
use Hamming Distance which measures the minimum number of substitutions required to change �i to �j .

We have explored two alternative preference aggregation methods [3, 24] in the past that serve as the basis of
this study.

• Aggregated Voting. Produce �, such that F(�,�1) + F(�,�2) + . . .F(�,�m) is minimized.

• Least Misery. Produce �, such that Maximum{F(�,�1),F(�,�2), . . .F(�,�m)} is minimized.

The goal is to produce �, which is also a vector of length n with exactly k number of 1’s and remaining 00s that min-
imizes the Inverse of overlap similarity/Hamming Distance, denoted F(·, ·), between � and {�1,�2, .... . . . ,�m}.

We realize that the overlap similarity function is monotone, as when a new item is considered in the mix, the
overlap similarity can never decrease (or inverse overlap similarity can never increase). This is likely to make
preference aggregation computationally tractable and give rise to polynomial time solution to produce optimal �.
Under Hamming distance, however, finding � considering either of the preference aggregation models is likely
to be NP-hard, as a known NP-Complete problem Median String Problem could be reduced to a variant of this
problem [14].
Satisfying Output Constraints. The output constraints in this case are defined on the top-k items/candidates
and involve one or more protected attributes. When the output criteria is simple (designed on a single attribute),
the Preference Aggregation Problems Considering Constraints defined in Section 3 for aggregated voting under
Overlap Similarity is likely to give rise to computationally tractable problem for all three variants - Constrained
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optimization, Optimization under budgetary constraints, and Bi-criteria optimization. On the other hand, these
problems are likely to be computationally harder for least misery under Overlap Similarity. We will study how
to exploit the monotonicity property of overlap similarity to see if it is possible to design greedy algorithms
with provable approximation factors. Under Hamming Distance, irrespective of the underlying aggregation
method, the Preference Aggregation Problems Considering Constraints are likely to be NP-hard, since the
Preference Aggregation under Hamming Distance itself is NP-hard. We intend to study the possibility of
designing approximation algorithms as well as efficient heuristics for these problems.

6.2 Open Problems

The applicability of the ordinal preference model is explored as one of the open problems - an ordinal value g

is defined on an s-point performance scale, that is totally ordered g1 � g2 � . . . � gs. Given m input ordinal
preferences and an output criteria, goal is to produce � (an ordered list of n items/ top-k ordered/unordered
set) that aggregates the preferences and satisfies the criteria. The input is studied as ordered sorting problem in
decision aid literature [18]. Concretely speaking, each user’s preference �i corresponds to assignment of each
item into a pre-defined ordered categories, such as excellent, good, average, poor and the aggregation problem
intends to find the best set of k-items �. When studied under output constraints, the general challenge is to
minimally change the original outcome so as to satisfy the constraints.
Preference Aggregation Methods. One key challenge in ordinal preference elicitation model is to identify
the appropriate aggregation method and/or distance functions. Per our initial investigation, we realize that an
ordinal preference elicitation could be expressed as a set of pairwise comparisons. As an example, if user
u(i) rates i1 as excellent, i2 as good, and i3 as fair, this gives rise to the following 3 pairwise comparisons:
i1 � i2, i2 � i3, i1 � i3. Given two preferences �i,�j , one can compute Kendall-Tau distance between these two
to quantify the number of inversions or distance between them. Given m input preferences �1,�2, .... . . . ,�m,
when the output is to produce an ordered outcome, the preference aggregation problem intends to produce a
ranking � that optimizes (minimizes) the Kemeny Distance [28] (sum of Kendall-Tau distance) between � and
{�1,�2, . . . ,�m}.

Additionally, we will study partial net score [18] of an item i (PNS(i)) that is proposed as an indicator
of computing the overall “worth” of an item in decision aid literature. Based on the aforementioned pairwise
representation, PNS(i) can be expressed as PNS(i) =

P
j2[n]\{i}

�
|u[i�j]|� |u[j�i]|

�
. Basically, PNS(i) is

the number of times item i is preferred over any other item j by any user (represented as u[i�j]) minus the number
of times these other items are preferred over i by any user (represented as u[j�i]). By computing partial net score
of each item one can design the outcome � easily and efficiently. If � needs to be ordered then the items will be
ordered in decreasing order of partial net score; when the goal is to produce a top-k set of items, this will contain
the items with the top-k highest partial net score.
Satisfying Output Constraints. We will study how to satisfy output constraints that are suitable to ordinal
preference models. We will study both simple and complex output constraints, defined over single and multiple
attributes, respectively. For the preference aggregation problem under output constraints, this is equivalent to
producing a � that minimizes the partial net score or Kemeny Distance between � and input preferences, while
satisfying the output constraints. When studied as an optimization problem under budgetary constraints B (B is
the upper bound of partial net score or Kemeny Distance), the goal will be to produce �, such that partial net
score or Kemeny Distance is at most B and C is optimized. We anticipate most of these problems to be NP-hard.
We will study how to design efficient approximation algorithms with provable guarantees, as well as effective
heuristic algorithms.
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7 Conclusion
The article lays a scientific foundation for systematically changing the outcome of a variety of preference
aggregation methods to satisfy additional criteria related to fairness and robustness. The article studies single-
round rank based, multi-round rank based, and non rank based preference aggregation methods that are suitable
to different preference elicitation models and investigates how to minimally modify them to promote fairness. It
identifies underlying computational and algorithmic challenges, proposes research directions, and formalizes
several open problems.
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