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Abstract

Differentially-Private Stochastic Gradient Descent (DP-SGD) established itself as the most prominent
technique for training neural networks with formal privacy guarantees. Almost a decade after its
introduction, DP-SGD has become the de-facto standard for privacy-preserving learning from large
datasets with individual records. However, important research and engineering issues remain open to more
accurate and efficient solutions. Existing approaches either require large amounts of privacy budget to
train accurately, and incur high overheads in terms of computational and memory resources consumption.
In this article, we provide a critical review of some of the most prominent DP-SGD approaches, and
discuss their relative strengths and weaknesses. Specifically, we look at several adaptive approaches that
attempt to improve the privacy-accuracy trade-off during learning, by dynamically adjusting parameters
such as clipping threshold, learning rate or budget allocation. We also provide an overview of important
data management aspects in DP-SGD, which influence significantly its computational and memory
overhead. Finally, we review a novel approach to support heterogeneous privacy requirements, i.e.,
individualized privacy settings.

1 Introduction

The past decade witnessed the emergence of machine learning, and in particular neural networks, as the tool of
choice for a broad area of application domains, e.g., healthcare, social media, computer vision, cybersecurity, etc.
For neural network to perform accurately, large input datasets are required to train them. Often, these datasets
consist of individuals’ data, e.g., user profiles and purchasing records, patient records, user browsing history,
etc., which if not carefully handled, may disclose sensitive data regarding one’s health status or personal lifestyle
details.

To address individual privacy concerns, differential privacy (DP) [1] emerged as the de-facto standard in
data protection. The main strength of DP is that it provides formal protection guarantees, and it allows one to
derive statistically-significant patterns from large amounts of user-centric data, without allowing an adversary to
determine whether the data of any targeted individual has been used or not in the model’s training set. In the
context of training neural networks, DP has been implemented in conjunction with the popular Stochastic Gradient
Descent (SGD) approach, resulting in its privacy-preserving version DP-SGD [2]. While DP-SGD is a powerful
tool, it still presents challenges with respect to the trade-off between privacy and utility of learned models,
as well as a number of performance concerns. A significant number of research contributions [3, 4, 5, 6, 7],
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focused on how to adapt DP-SGD and tune it such that utility is increased. In this paper, we provide a review
of some of the most prominent adaptive DP-SGD approaches, and we also look at several novel techniques
that explore personalized individual requirements [8, 9]. In addition, we explore several data management and
performance issues that arise when privately training large models using sizeable datasets. Finally, we provide
a brief experimental benchmarking of some of the reviewed approaches, with the purpose of comparing their
performance head-to-head on common datasets and under similar parameter settings.

The rest of the article is organized as follows: Section 2 presents fundamental concepts and definitions.
Adaptive strategies are overviewed in Section 3. Section 4 focuses on data management and performance issues
in DP-SGD. Section 5 looks at approaches for individualized privacy constraints. We perform a comparative
experimental analysis of some of the considered approaches in Section 6 to better understand their relative
performance, followed by conclusions in Section 7.

2 Background

2.1 Differential Privacy

Dalenius’ 1977 principle for statistical databases aimed to ensure individual privacy [10], but achieving it akin
to semantic security turned out to be impossible, posing risks even to those not included in the database. More
recently, Differential Privacy (DP) emerged as the preferred model for quantifying the added privacy risks for
datasets of individual records. The concept of differential privacy was first introduced by Dwork et al. [1], who
provided a mathematical framework for quantifying the privacy guarantees provided by a given algorithm.
Differential privacy ensures that attackers cannot discriminate between any two “sibling” inputs by looking at
query outputs even when taking into account arbitrary background information. It was proposed in order to offer
a statistical guarantee that publicly available aggregate data would not disclose the identity of any individual from
the dataset. The exact definition of sibling datasets is provided by the neighboring concept, which in machine
learning is best-defined as the neighboring relationship on unstructured data as follows.

Definition 1: [Neighboring Unstructured Data] Two unstructured datasets [US]i and [US]j are said to be
neighboring if the Hamming distance between their aggregated real-valued data representations xi and xj is at
most m [11], where m is the maximum allowed difference, typically set to 1:

d(xi, xj)  m

Assume we have two neighboring datasets, D1 and D2, that differ only by a single data item. When we
interact with the data via a randomized mechanism M , we say that M is ✏-differentially private if the probability
of observing a given output of M does not vary by more than exp(✏) between any two input different datasets,
where ✏ is defined as the privacy budget.

Definition 2: [✏-Differential Privacy [11, 12]] A randomized mechanism M satisfies ✏-differential privacy if for
every output S ✓ range(M) and for all D1 ⇠ D2 2 D

n, the following holds:

Pr[M(D1) 2 S]  exp(✏) · Pr[M(D2) 2 S].

The indistinguishability constraint has later been relaxed to include a � additive term, changing the definition
to (✏, �)- differentially privacy. The additional parameter allows for a very small probability (bounded by �) that
the algorithm might deviate from the strict privacy guarantee of ", providing a trade-off between privacy and
accuracy.
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Definition 3: [(✏, �)-Differential Privacy [13, 4]] A randomized mechanism M satisfies (✏, �)-differential privacy
if for every output S ✓ range(M) and for all D1 ⇠ D2 2 D

n, the following holds:

Pr[M(D1) 2 S]  exp(✏) · Pr[M(D2) 2 S] + �.

The Gaussian mechanism is a noise-addition mechanism that satisfies (✏, �)-DP (for � > 0). Through this
approach, the L2 sensitivity of the query function is adjusted with Gaussian noise [13].

Definition 4: [L2 Sensitivity [13]] Let f : X n
! Rd be a query function. The L2 sensitivity of f , denoted by

�2(f), is defined as:
�2(f) = max

X⇠X0
kf(X)� f(X 0)k2

Definition 5: [Gaussian Mechanism [13]] For any arbitrary ✏ from the interval (0, 1) and a query function q
with L2 sensitivity �2(q), the Gaussian Mechanism ensures (✏, �)-differential privacy. This mechanism adds
Gaussian noise N(0,�2) to q(D), where � satisfies

� �
�2(q)

✏

s

2 ln

✓
1.25

�

◆

Another variation of the differential privacy definition is Rényi Differential Privacy (RDP) [14]. A generaliza-
tion of the Kullback-Leibler divergence [15], Rényi divergence serves as the foundation for RDP. Conventional
DP quantifies the privacy guarantee by means of the privacy loss parameter ✏, which limits the probability ratio
of a mechanism’s outputs in the presence of two adjacent datasets. Conversely, RDP offers a more flexible and
fine-grained measure of privacy by including a parameter, ↵ (the order of Rényi divergence), in addition to ✏.

Definition 6: [Rényi Divergence [4, 14]] For two probability distributions P and Q and a parameter ↵ > 1, the
Rényi divergence of order ↵ is defined as:

D↵(PkQ) =
1

↵� 1
log

 
X

x

P (x)↵Q(x)1�↵

!

Definition 7: [Rényi Differential Privacy [4, 14]] A randomized mechanism M is said to be (↵, ✏)-RDP if for
any two neighboring datasets D1 and D2:

D↵(M(D1)kM(D2))  ✏

In differential privacy, tracking the cumulative privacy loss, or privacy budget, is crucial, particularly in
scenarios involving multiple applications or complex compositions of privacy mechanisms. Traditional methods
often struggle to provide tight and accurate bounds on this cumulative privacy loss. To address this, a sophisticated
method known as the Moments Accountant (MA) has been developed. The MA leverages the framework of
Rényi Differential Privacy (RDP) to achieve precise tracking of the privacy budget. By calculating the moments, or
expected values of powers, of the privacy loss random variable, it quantifies the degradation of privacy guarantees
over successive computations. This method utilizes RDP to evaluate the Rényi divergence between the output
distributions of the mechanism for neighboring datasets at each step, allowing for a more refined and accurate
assessment of the privacy-utility trade-off.
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2.2 Differentially Private Stochastic Gradient Descent (DP-SGD)

Stochastic Gradient Descent (SGD) is a popular optimization technique employed in the training of machine
learning models. SGD iteratively adjusts model parameters by leveraging the gradients of a loss function, which
are computed based on a randomly selected subset of the training data, known as a batch [16, 17]. The specific
rule for updating the model parameters is given by:

✓t+1 = ✓t � ⌘rJ(✓t;x
(i), y(i))

where ✓t denotes the model parameters at iteration t, ⌘ is the learning rate, and J(✓t;x(i), y(i)) represents the
loss function evaluated on the current batch (x(i), y(i)).

DP-SGD extends Stochastic Gradient Descent (SGD) to provide differential privacy guarantees while training
machine learning models on sensitive data. In DP-SGD, gradient clipping is performed before adding noise to the
gradients to ensure that the gradients remain bounded.

The clipped gradient r̂f(✓, Dt) for one sample of data Dt is computed as:

r̂f(✓, Dt) = Clip(rf(✓, Dt), C)

where:

• rf(✓, Dt) is the gradient of the loss function with respect to the model parameters ✓ computed on data
sample Dt,

• C is the clipping threshold, which limits the magnitude of the gradients.

Clipping plays a pivotal role in the DP-SGD process in balancing the trade-off between privacy and utility.
Clipping the gradients is needed to prevent outliers (extreme or unusually large gradients) and it limits their
sensitivity, preventing the model from learning more than a set quantity from any given sample, which prevents
inadvertent leakage of information during training and thus satisfies differential privacy. It is important to note
that the way clipping is performed can vary, and the method of clipping can end up affecting the algorithms
performance. In the original implementation of DP-SGD done by Abadi et. al. [2], a random sample from a
mini-batch is used to compute gradients. For each sample gradient, a check is performed to see if the magnitude
of the gradient is larger than the clipping threshold. If the magnitude of the gradient is determined to be greater
than the clipping threshold, it gets scaled down to its L2 norm C as follows:

ḡt  gt(xi)/max(1,
||gt(xi)||2

C
)

where max(1, ||gt(xi)||2
C

) is the maximum value between 1 and the magnitude of the gradient divided by the
clipping threshold. If the magnitude of the gradient is less than the clipping threshold, the gradient would end up
being divided by 1, thus preserving the original gradient. If the gradient is larger than the clipping threshold C,
the value of ||gt(xi)||2 will ends up being greater than 1, and the original gradient is divides to scale it down to
the clipping threshold.

After clipping the gradients, noise is added to ensure differential privacy:

r̃f(✓, Dt) = r̂f(✓, Dt) +N (0,�CIn)

where:

• N (0,�CIn) is the noise term drawn from the Gaussian distribution with mean 0 and scale parameter
�CIn,

• ✏ is the privacy parameter, controlling the privacy strength.
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After adding noise to the clipped gradients, the model parameters are updated using the noisy gradients:

✓t+1 = ✓t � ⌘r̃f(✓, Dt)

The use of privacy budgets is a crucial component of DP-SGD. Because SGD is iterative, if one applies the
traditional sequential composition theorem [18], which states that the total budget for the learning process is
equal to the sum of the budgets used in each iteration, the budget consumption can increase significantly. The
moments accountant (MA) introduced in [2] offers a tighter bound on privacy budget consumption using Poisson
sampling.

The trade-off between privacy and utility in DP-SGD encapsulates the delicate balance between preserving
the privacy of sensitive data and maintaining the effectiveness of the trained machine learning model. DP-SGD
introduces noise to the gradients during the training process to ensure that individual data points do not unduly
influence the model updates, thereby providing strong privacy guarantees. However, this noise addition can
degrade the quality of the learned model, leading to a reduction in its performance on the task at hand. Figures 1
and 2 illustrate the difference in the algorithm structure between SGD and DP-SGD.

Figure 1: Conventional (non-private) SGD workflow

Figure 2: DP-SGD workflow

3 Adaptive DP-SGD Approaches

The performance of ML algorithms is highly-dependent on the properties of the data. In the case of private
learning, the constraints imposed by DP create additional challenges, and hence having fixed parameter settings is
even less likely to perform well, leading to low accuracy or high privacy budget consumption (i.e., low protection).
A significant amount of research explored the idea of adapting parameter values to the training data, or to other
inputs such as number of iterations, batch size, privacy budget, learning rate, etc. [5, 7, 19].

In this section, we review several adaptive DP-SGD approaches, which fall mainly into three categories:
tuning the privacy budget over time, varying the clipping threshold, or changing the learning rate. Adjusting these
parameters offers several advantages. For instance, once can directly control the privacy budget consumption,
which in DP-SGD is an output of the noise injection procedure (whereas the input is represented by noise magni-
tude). Furthermore, the privacy/accuracy trade-off of DP-SGD [20] can be better controlled, as hyperparameter
values can significantly affect the performance of trained models [6]. However, in the case of private learning,
selecting optimal hyperparameter values is a lot more challenging than in non-private learning, due to the fact
that any information used in tuning them has to be itself sanitized, potentially leading to additional privacy
budget consumption. In contrast, with non-private learning, one can rely on trial-and-error approaches to do an
exhaustive search of the hyperparameter space. Although some existing works have explored the problem or
private hyperparameter tuning, they typically do not guarantee optimality of parameters, and they often increase
the privacy budget consumed [21].
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3.1 Privacy Budget Adaptation

Perhaps the most challenging task in DP-SGD is striking a good trade-off between privacy and utility. DP-SGD
injects noise into the gradient values during the training process to ensure that individual data points do not
significantly influence the model updates in a way that allows re-identification. However, the noise addition
process also degrades the quality of the learned model, leading to a reduction in its performance on the task
at hand [2]. Hence, a delicate balance must be achieved between preserving the privacy of sensitive data and
maintaining the effectiveness of the trained machine learning model. Next, we review three directions in which
this trade-off can be controlled.

3.1.1 Noise Decay

The first study that addressed adapting the DP-SGD privacy budget [20] proposed a solution based on the idea
that, as the model converges, the gradient is expected to have a lower magnitude, thus allowing the learning
process to converge faster to a local optimal, and achieve higher accuracy. To this end, a set of methods for privacy
budget allocation were defined in [20] that dynamically reduce the noise scale as the training time increases.

• Adaptive Schedule Based on Public Validation Dataset: As mentioned earlier, one challenging aspect
when making data-dependent decisions with private algorithms is that one must consume privacy budget
when accessing any data-derived intermediate results. When public datasets are available, this challenge is
averted, as one does not need to protect the inputs of the parameter tuning strategy algorithm.

The main idea in this approach is to continuously check the validation error on the public dataset while
training on the private one, and dynamically reduce the noise scale whenever the validation accuracy
improves by less than a set threshold �. In such cases, the noise scale is reduced by a factor of k and this
continues until the total privacy budget is consumed. The evaluation intervals where validation is carried
out are termed validation epochs.

Let �e denote the noise scale for the DP-SGD training in validation epoch e, and Se represent the
corresponding validation accuracy. The adjustment of the noise scale for subsequent epochs is contingent
upon the discrepancy in accuracy between the current epoch e and the preceding validation epoch e� 1.
Initially, S0 = 0.

The formula for adjusting the noise scale is:

�e =

(
k�e, if |S � Se�1|  �

�e, otherwise

This adjustment ensures that the noise scale adapts based on the performance change observed between
validation epochs. If the accuracy difference Se�Se�1 is less than the predetermined threshold �, the noise
scale is attenuated by a factor of k (0 < k < 1). To improve training effectiveness, the moving average
of the validation accuracy is considered in the decision process, as there are cases where the validation
accuracy does not increase monotonically within the training progress, and any fluctuations may result in
unnecessary reduction of noise scale, which in turn consumes privacy budget.

• Pre-defined Schedules: In cases where a public validation dataset is not available, an alternative solution
proposed in [20] calculates a fixed, data-independent schedule according to which the noise scale decreases
over time. Four such decay strategies are presented:

a) Time-Based Decay: the noise scale is adjusted using the formula �t = �0/(1 + kt), where �0 is the
initial noise scale, t is the number of training epochs so far, and k > 0 is the decay rate. When k < 1,
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this method is referred to as “search-then-converge”, and the noise scale decreases linearly during the
search phase when t is less than the “search time” 1/k; afterwards, the noise scale decreases by a
factor of 1/t.

b) Exponential Decay: The noise scale decreases exponentially with each epoch, according to the
expression �t = �0e�kt, where k > 0 is the decay rate.

c) Step Decay: The noise scale decreases by an exponentially-increasing factor every few epochs,
according to expression �t = �0 ⇤ kt/period. The decay rate k is chosen such that 0 < k < 1.

d) Polynomial Decay: The noise parameter follows a polynomial decay function over a specified number
of epochs period. Specifically, �t = (�0 � �end) ⇤ (1� t/period)k + �end where k > 0 is the decay
rate and t < period. When k = 1, this is referred to as a linear decay function.

3.1.2 Optimal Step Size Search

The previous approaches looked solely at how to adapt the privacy budget allocation throughout the learning
process using different decay functions over time. Next, we look at an approach [13] that adapts both the
privacy budget and the learning rate (while we dedicate a separate section to learning rate adaptation approaches
in Section 3.3, we discuss this hybrid method here). At the core of the proposed technique from [13] sits a
privacy-preserving algorithm for computing the noisy maximum among the values in a set. The NoisyMax
algorithm adds independent Laplace noise to each set value and returns the index of the largest one, thereby
providing differential privacy guarantees [13].

The two main components of the algorithms are step-size selection and adaptive noise reduction. The goal
of step-size selection is to efficiently choose the per-iteration privacy budget. Adding noise to the gradients
may not guarantee the correct direction of the descent, in expectation. To alleviate this issue, a portion of the
privacy budget pnmax is used to check whether a given noisy estimate g̃t of the gradient gives the correct descent
direction. To accomplish this, a set ⌦ = {f(wt � ↵g̃t) : ↵ 2 �} is constructed, where each element of the set
is the objective value evaluated at f(wt � ↵g̃t) and � is a set of pre-defined step-sizes. Using the NoisyMax
computation, the algorithm calculates which step-size results in the smallest objective function value. Since an a
priori bound cannot be determined on a given loss function l, gradient clipping is applied to bound sensitivity.
This way, the first element of � is fixed to 0, to take into consideration the current objective value. Let i be the
index returned by the NoisyMax algorithm. If i > 0, the algorithm updates wt using the chosen step size ai.
However, if i = 0, �g̃t, it is likely that is not the correct descent direction, and none of the given step sizes will
lead to a decrease in the value of the objective function f . Hence, the adaptive noise reduction is applied.

A block diagram of the NoisyMax technique is illustrated in Figure 3. When the NoisyMax algorithm
determines that the current gradient direction is incorrect, the algorithm increases the privacy budget used in
noisy gradient approximation by a factor of 1 + y. Using the gradient averaging technique, a total privacy budget
of png˘pold is consumed to measure the new gradient with increased accuracy. The gradient averaging technique
is a method that recycles gradient estimates that were not useful by using the difference between two related
privacy budget values to measure a new gradient, which when combined with the old measured gradient can be
used to measure the final noisy gradient estimate at a lower privacy budget. Once the algorithm measures a new
gradient, it goes through the NoisyMax algorithm again to determine its direction. These steps repeat until a good
descent direction can be found.

As an extension to NoisyMax, the same authors proposed a more advanced approach called Noisy Backtrack-
ing Line Search (NoisyBTLS). Similar to NoisyMax, NoisyBTLS adapts both the learning rate and the privacy
budget, but in addition it also considers adaptive clipping (which is covered in more detail in Section 3.2).

This method focuses on adapting the learning rate in response to noisy gradient computation while also
adjusting the privacy budget using Sparse Vector Technique (also known as the “above-threshold” mechanism) [22,
23]. The approach first conducts a backtracking line search in a differentially private manner. Figure 3(b) illustrates
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Figure 3: (a) NoisyMax Technique; (b) NoisyBTLS Technique

this approach. The algorithm starts by introducing noise to the threshold T = 0, resulting in a noisy threshold
T = �, where � is randomly drawn from a Laplace distribution or alternatively, a Gaussian distribution. Next,
multiple iterations are performed, and in each one the following queries are evaluated:

q(⌘, D) = f(w)� f(w � ⌘rf(w))� ↵⌘krf(w)k2

with added noise ⌫ at each iteration. The result is compared with the noisy threshold T . If q(⌘, D) + ⌫ � T ,
the algorithm outputs ⌘ and halts; otherwise, it reduces the step size ⌘ by multiplying it with � and continues to
the next iteration, where � 2 (0, 1) controls the rate of step size reduction. This process repeats for a maximum
number of iterations. If no limit is set, depending on the noise used in the query, the iteration could lead to an
infinite loop or provide minuscule step sizes, which could end up increasing the objective function due to a lack of
progress. When the maximum number of iterations is reached, it statistically calculates whether a higher privacy
budget is needed, which it then adjusts depending on the results. Due to the use of SVT, the privacy budget
needed to find ⌘ is greatly reduced.

When NOISYBTLS fails to find a step size within the set maximum iteration count, it can lead to two
possibilities. The first one is that the current privacy budget pgrad is set too small, and the noise dominates the
gradient – Case (1) in the diagram. In this case, the privacy budget needs to be increased. The second possibility
is that the noise used in NOISYBTLS is too large and it can’t identify a step size with the right conditions – Case
(2) in the diagram. The remedy to this problem is to increase the privacy budget in order to compute a more
precise gradient. To identify which of these two cases are applicable, the algorithm maintains the moving average
of angles between two consecutive gradient values, which gets updated at every iteration:

✓  ANGLE BETWEEN(gt, g̃t)

✓ =  ✓ + (1�  )✓t�1

where  2 (0, 1) is a parameter controlling the decay rate of old information. When ⌘ = 0 is returned by
NOISYBTLS, the algorithm calculates another gradient g̃t2 using the budget of ⇢grad and measures the angle ✓
between g̃t and g̃t2). The value of ✓t2 is then compared with the moving average-based threshold ✓max, and if it
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is larger it would increase the privacy budget grad for calculating the gradient. Meanwhile, if ✓ is less than the
minimum threshold ✓min, the search might fail due to insufficient privacy budget ✏BT for the NOISYBTLS. The
threshold values ✓max and ✓min are calculated as follows:

✓max = �max ⇥ ✓, ✓min = �min ⇥ ✓

where �max > 1 and 0 < �min < 1 are hyperparameters. Empirically, this budget adaptation strategy is observed
to be particularly effective for convex optimization problems.

In addition to adjusting the privacy budget, it was found that a large clipping threshold is not necessary in the
later stages of the training process. Knowing this, the clipping threshold Cgrad and Cobj is adaptively decreased
when the algorithm finds it needs to increase the privacy budget pgrad during a single SGD update. Even if pgrad is
increased multiple times in a single SGD update, the clipping threshold will only be updated once per update.
The clipping threshold is updated as follows:

Cgrad  (1� ⇣)Cgrad, Cobj  (1� ⇣)Cgrad

where ⇣ is a hyperparameter that determines the rate of decrease. Since the condition is based on privately
released information, it does not consume any extra privacy budget.

3.1.3 Convergence Rate

Another recent approach to adapting the privacy budget consumption relies on convergence rates [24]. To assess
the effectiveness of Private Gradient Descent (PGD), this work utilizes the Expected Excess Risk (EER), a
common metric for evaluating the convergence of randomized algorithms. Given the presence of noise and the
constraint on learning iterations, optimization using private gradients is expected to lead to a higher loss (excess
risk) compared to the optimal solution without privacy constraints. Let ✓⇤ be the optimal solution obtained after
iterating an algorithm for T times. EER quantifies the expected utility degradation as:

EER = E[f(✓T+1
⌫ )]� f(✓⇤).

Due to the variety of loss functions and complexity of recursive iterations, a good estimation of EER in the
presence of noise is intractable for most functions. Instead, one can study the worst-case scenario, i.e., the upper
bound of EER, with the goal to minimize the upper bound. For consistency, we refer to the upper bound of EER
divided by the initial error as ERUB. Since the analytical form of EER is either intractable or complicated due to
the recursive iterations of noise, studying ERUB is a convenient and tractable alternative. The upper bound often
has convenient functional forms which are (1) sufficiently simple, so that they can be directly minimized, and
(2) closely related to the landscape of the objective depending on both the training dataset and the loss function.
As a consequence, it was used in previous literature for choosing hyperparameters. Denote by ERUBmin the
achievable optimal upper bound by a specific choice of parameters, e.g., noise magnitude � and T .

One can define the influence of noise magnitude � on EER as the derivative:

q⇤t =
@EER
@�t

.

Accordingly, one can approximate the EER shift as �� when � increases by ��. However, because the EER
is strongly data-dependent, the derived q⇤t on a given dataset may not generalize to another dataset. Instead, one
can consider a more general term based on ERUB, i.e., q⇤t = @

@ERUB
�t.

The work in [24] considers the class of loss functions satisfying the Polyak-Lojasiewicz (PL) condition,
which bounds losses by their corresponding gradient norms. It is more general than the m-strongly convexity
condition [25]. If f is differentiable and M -smooth, then m-strongly convexity implies the PL condition.
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The related method in [19] introduces a conceptual framework aimed at dynamically adjusting hyperparame-
ters over time by optimizing the privacy-utility ratio (PUR) at each step. This involves selecting the step size ⌘ and
noise standard deviation � to minimize the privacy loss per unit of utility improvement. The PUR is defined as the
ratio of the privacy cost to the utility gain, with utility incorporating convergence metrics like the gradient norm
or objective value. Minimizing the PUR enables adaptation of the privacy budget based on optimization progress,
with higher precision typically required in later stages as the gradient norm diminishes near the optimum.

Two selection strategies emerge:
1. Data-dependent selection: By assuming F is M -smooth, a descent lemma estimates the expected

improvement in the objective function given step-size and noise variance. Using this lower bound as utility
function, along with the privacy cost, one determines hyperparameters that minimize the privacy-utility ratio.
Specifically, the privacy-utility ratio is minimized by setting the noise standard deviation �t proportional to the
gradient norm and the step size ⌘t as a constant, given by:

�t =
krF (✓t)k
p
d

⌘t =
1

2M

2. Data-independent selection: A data-independent schedule can be derived based on the PUR-optimal
schedule, which is proportional to the gradient norm. This schedule exhibits similar convergence rates to non-
private gradient descent (GD), leveraging upper bounds on gradient norms as a proxy for the gradient norm
itself.

3.2 Gradient Clipping Adaptation

The clipping threshold parameter is used to bound the sensitivity of each gradient. A low clipping parameter
can result in information being destroyed, and may change the direction of the gradient step. Meanwhile, a high
clipping bound increases the sensitivity of training and requires more noise to be added [2]. It is difficult to
achieve a good fixed clipping parameter setting without looking at the training data. Furthermore, weight layers
and bias layers need completely different clipping values to be optimal. To tackle this issue, several approaches
proposed their own implementation of adaptive clipping. In Section 3.1.2 we briefly discussed one method that
pairs adaptive clipping with other adaptive parameters. One important aspect is that in a private setup, using
gradient norms for tuning requires them to be sanitized first, which means that a portion of the privacy budget
must be allocated in each step to protect the norms [6].

3.2.1 Norm-based Adaptive Clipping

One of the first proposals of adaptive clipping was introduced by Van der Veen et.al. [26] who recognized that
choosing a good clipping threshold C is difficult, especially when dealing with multiple layers. They proposed
that the clipping bound in the current batch be directly proportional to the l2-norm of the previous batch by a
constant factor ↵. This can be summarized in the equation below:

C l

t = ↵|L|�1(
X

i2Lt

clip(||glt�1(xi)||2) +N (0,�2
l2
C l

l2t
2)

clip(||y||2) = ||y||2/max(1,
||y||2
C l

l2t

)

where C l
t is the clipping bound of the current round t and layer l, gl

t�1(xi) equates to the individual gradient
of that layer in previous rounds and privacy parameters �l2 and C l

l2t
. To calculate the privacy parameter C l

l2t
, an
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adaptive procedure is performed similar to clipping, where they sanitize the l2-norm of the previous iteration,
C l
t�1, multiplied by a constant �, hence C l

l2t
= �C l

t�1. In this approach, it is required for the user to manually
set the values of ↵, �, and �l2, although it has been shown that changing the values of � and �l2 does not provide
meaningful results when measuring test accuracy.

3.2.2 Quantile Estimation Adaptive Clipping

The recent work of He et. al. [6] explores an adaptive clipping technique that uses a form of quantile estimation
in the context of per-layer clipping. A portion of the total privacy budget (r = 1% to 10% of total budget) is
allocated for estimating the target quantile for each layer’s gradient norms. The clipping threshold for each layer
C1, ..., CK is then set to the estimated quantile. The number of gradients clipped in each layer is recorded before
each parameter update, and the clipping threshold is then adjusted based on how many individual gradients have
been clipped previously. The fraction of clipped gradients needs to be sanitized according to DP, and an additional
noise multiplier is used to achieve this goal. This also affects the noise multiplier setting for parameter updates,
and the new noise multiplier is calculated as:

�new = (��2
�K(2�b)

2)�1/2

where �b is the additional noise multiplier for the sanitized clipped gradients fraction, � is the original noise
multiplier and K is the number of layers in the neural network (also known as number of groups).

The technique also uses different levels of noise in each layer. For example, let �1, ..., �k be coefficients for
scaling, and g̃k be the sum of clipped gradients for layer/group k. Applying the Gaussian mechanism to scaled
ĝ := (ĝ1, ..., ĝk), where ĝk := g̃k/�k, and rescaling back the sanitized values afterwards adds noise to g̃k with
standard deviation proportional to �k. There are two ways to choose (�1, ..., �K):

• Global strategy: �k = 1 for k 2 [K]. This strategy adds same amount of noise to all components.

• Equal budget strategy: �k = Ck for k 2 [K]. This strategy gives all the groups the same privacy budget.

Another method of adaptive gradient clipping has been explored in [3], this time in the context of federated
learning (FL). The main idea of the approach is to fix the quantile value of observed norms, and use gradient
descent to fit C to this value:

Let X 2 R be a random variable, and let � 2 [0, 1] be a quantile to be matched. For any C, define

l�(C,X) =

(
(1� �)(C �X), if X  C

�(X � C), otherwise

which implies

rl0y(C,X) =

(
(1� �)(C �X), if X  C

��, otherwise

Since the loss is minimum when Pr(X < C) = �, the loss function is convex and gradients are bounded by 1, it
is possible to get an online estimate of C that converges to the �th quantile of X using online gradient descent.
On a sample size m, with b being the proportions of elements lower than C, the average derivative of the loss for
that round can be simplified to b̄� �. This is captured by the following equation:

l̄0�(C;X) =
1

m

mX

i�1

(
(1� �), if xi  C

��, otherwise
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=
1

m
((1� �)

X

i2[m]

Ixi
 c� �

X

i2[m]

Ixi
> c) = b̄� �

For a particular learning rate ⌘c, the clipping bound can be updated through: C  C � ⌘c(b̄ � �). Since b
and � take values in [0,1] the update clipping bound changes by at most ⌘ ⇥ c in each step. This can be a
problem in two scenarios, one if C is very large, and the other when updates are coarse and may overshoot to
become negative if C is a lot smaller than ⌘c. The following geometric update rule can be used in this case:
C  C · exp(�⌘c(b̄� �)), which allows the update rule to quickly converge to the true quantile even if initial
estimates are largely different. Figure 4 illustrates the adaptive clipping algorithm using quantiles.

Figure 4: Adaptive Clipping Using Quantiles

3.2.3 Coordinate-wise Adaptive Clipping

The work of Pichapati et. al.[5] proposed another approach to adaptive clipping. The AdaClip algorithm adds
less noise compared to other methods by using coordinate-wise adaptive clipping of the gradient, as opposed
to norm-based, thus producing models with improved accuracy. The main idea in the approach is rather than
searching for a good clipping value, the gradients are centered and standardized before being clipped to 1 and then
noise is added to their value scaled according to the fixed sensitivity of 1. The noisy values are then transformed
back to their original mean and variance.

Denote by gt the stochastic gradient vector at iteration t, and let at and bt be auxiliary vectors. The gradient
vector gt is first translated by at obtaining (gt � at), then each dimension is divided by bt. This produces the
transformed gradient wt, given by wt = g

t�a
t

bt
. Sensitivity is bounded by clipping the transformed gradient at

norm 1, according to equation:

ŵt = clip(wt, 1)
�
=

wt

max(1, ||wt||2)

Noise is then added to the clipped gradient:

w̃t = ŵt +N t

N t
⇠ N (0,�2I)
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Finally, the noisy gradient is rescaled to the same scale as the original gradient by first multiplying with bt and
then adding at:

ĝt = btŵt + at

This produces the differentially-private approximation of gt. The main challenge consists in finding the optimal
choices of the auxiliary vectors at and bt. When testing the implementation of AdaClip with the original DP-SGD
implementation done by Abadi et al [2] on the MNIST dataset, AdaClip was found to produce higher accuracy
for the same settings of " and �.

3.3 Learning Rate Adaptation

The learning rate parameter controls the step size taken during the optimization process to update the weights of
the neural network. Choosing an optimal learning rate is very important: a small learning rate can result in the
model taking too long converge, or being stuck at a local optimum. Meanwhile, a learning rate that is too large
may result in a model that does not converge.

Adapting the learning rate is a concept that has been used in conventional, non-private machine learning,
in tasks involving large-batch training [27]. In the context of DP-SGD, adapting the learning rate is even more
important, as clipping and adding noise to gradients can change the direction of the gradient.

Figure 5: ADADP Update Mechanism

The most prominent approach using adaptive learning rate in private learning has been proposed in [7] by
Koskela et al. They proposed a method of adapting the learning rate by estimating the error against the gradient
flow when comparing the results after one step and two half-steps. Figure 5 provides an overview of how the
algorithm functions, and how the step size is adaptively tuned. The basis of the approach relies on numerical
extrapolation of ordinary differential equations (ODEs). Let g be a differentiable function g : Rd

! R. To find
the local minimum of function g, a first-order method called gradient descent (GD) is used. The gradient flow of
g can be described as the explicit Euler method with step size ⌘l applied to a system of ODEs. An estimation of
the error of the gradient descent can be performed by considering one step of size ⌘:

✓1 = ✓0 � ⌘rg(✓0)

An alternative approach is to employ two steps of size ⌘

2 :

✓1/2 = ✓0 �
⌘

2
rg(✓0) ✓̂1 = ✓1/2 �

⌘

2
(✓1/2)

It is thus possible to get an O(⌘3)-accurate estimate of the local error through the value 2(✓̂1 � ✓1). Using this
information, the estimation of the error at iteration l can be deduced from errl = ||✓̂l+1 � ✓l+1||. The local error
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of magnitude ⌧ to be desired is then set, which is used in the following proposed mechanism to update the step
size:

⌘l+1 = min(max(
⌧

errl
,↵min),↵max) · ⌘l

where the value of ↵min < 1 and ↵max > 1. When this mechanism is implemented in a DP-SGD setting, the
equation to determine the local error is changed instead to be the estimate of the `2-norm of the function err(✓, ✓̂)
as it was found to give better numerical results.

err(✓, ✓̂)i =
|✓i � ✓̂i|

max(1, |✓i|)

The way the adaptive DP algorithm works is that a random batch B1 is first drawn with probability q = |B|/N .
The gradient G1 is then calculated and clipped by C, before being evaluated at ✓l. The algorithm then performs
two different steps, one by step size ⌘l, ⌘l+1  ✓l�⌘lG1, and the other by half step size, ⌘l

2 , ⌘l+1/2  ✓l�
⌘l

2 G1.
A second set of batches B2 with probability q is then drawn, gradient calculated and clipped G2. This batch,
however, is only being evaluated with the half-step size ⌘l+1/2 performed in the first batch, and another half step
is performed, ✓̂l+1  ✓l+1/2 �

⌘l

2 G2. The error between the updates done by one step size, ✓l+1, and two half
step size, ✓̂l+1 is then evaluated using ||err(✓l+1, ✓̂l+1||. If the evaluated error is greater than the set tolerance
parameter ⌧ , the updated parameter is discarded. Regardless of whether the updated parameter was kept or
discarded, the next iteration step-size ⌘ is then calculated using equation (3.3).

One of the main advantages of this algorithm is that its privacy properties are simple to analyze. The complete
algorithm can be modeled as M̃ – a composite of two different mechanisms: MG1(X) and MG2(X). The SGD
approximation as well as the additive Gaussian noises are independent of each other, meanwhile, the sampling
ratio q is kept the same for both. By keeping parameters q,� and C the same for both mechanism, the composite
algorithm is able to run half as many iterations as DP-SGD to get the same privacy for the data.

One of the main difficulties in this implementation is choosing a good tolerance parameter ⌧ that allows the
accumulated additive noise to stay bounded as well as preventing any instabilities caused by the SGD gradient.
This can be achieved by setting ⌧ such that the accumulated DP noise after T iterations is approximately O(1)
element-wise.

3.4 Discussion

We explored several categories of techniques for adapting hyperparameters in DP-SGD, all targeting an improve-
ment in the privacy-accuracy trade-off of learning. Table 1 provides a synthetic classification of the different
methods covered in this section, and the papers in which they were introduced.

In the category of adapting the privacy budget, the advantage gained is achieved by fine-tuning the injected
noise at different stages of learning. In the first few iterations, larger gradients are expected, hence a large privacy
budget allocation may not help, but as the parameters approach their optimal values, gradients become smaller
and require finer-grained tuning, hence the noise should be reduced [13]. This aspect is further observed in the
noise decay approaches, where a simple budget allocation strategy is able to achieve higher accuracy under fewer
epochs compared to a uniform privacy budget [20]. However, that’s not to say the adaptive privacy budget is a
perfect solution. There are usually constraints on where this approach is effective. For example, adapting the
privacy budget based on the convergence rate requires making assumptions on the loss function, which is not
always possible [19]. Furthermore, some methods require a public validation dataset to be utilized, and when one
is not available, the alternative approach requires setting some additional parameters, which can be difficult to
optimize [20] and will consume budget otherwise allocated to computing gradients.

With adaptive clipping techniques, the main advantage gained is eliminating the need to fine-tune the clipping
threshold parameter during training. We discussed earlier in the section the importance of setting a good clipping
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Table 1: Summary Of Adaptive DP-SGD Approaches

Method Adaptive Hyperparameters
Privacy Budget Clipping Learning Rate

Noise Decay [20]
Optimal Step-Size Search [13],[4] [13],[4]

Privacy-Based [4]
Convergence Rate [24],[19]

Norm-Based [26]
Quantile Estimation [6],[3]

Coordinate-wise [5]
Error Tolerance [7]

threshold, especially taking into account the sensitivity of the training process. Adaptive clipping helps balance
the privacy-utility trade-off to a reasonable degree. In turn, this improves the stability of the training process,
preventing extreme cases such as gradient explosions [3]. In some cases, adaptive clipping is necessary to achieve
good accuracy results compared to a fixed clipping threshold, as observed with per-layer clipping [6]. It is also
important to look at the drawbacks associated with adaptive clipping. Some methods, e.g., quantile estimation,
require allocating some privacy budget to perform the necessary calculations [3, 6]. Furthermore, a lot of the
techniques used to implement adaptive clipping are dependent on additional hyperparameters in order to work,
and depending on the sensitivity of these hyper-parameters the algorithm can influence the performance of
adaptive clipping [5]. It is very difficult to choose an optimal value that can provide the best performance for each
method.

The last adaptive hyperparameter we discussed is learning rate. The main advantage seen in adaptive
learning rate is accelerating the convergence of the model during the training process. Dynamically adjusting the
learning rate based on the gradient updates allows the model to make significant progress in a smaller number
of iterations [7]. This is especially the case during the early stages of training, when large model updates are
beneficial as they accelerate convergence. However, it is important to factor in the additional computational
overhead needed to adjust the learning rate at each iteration. This can end up causing the training time to
significantly increase. Similarly to other adaptive techniques, some methods of adaptive learning rate are
dependent on more hyperparameters that need to be carefully tuned for performance [7]. It is also important
to note that the performance of adaptive learning rate is highly dependent on the datasets and tasks being
performed [13].

4 Data Management Solutions for DP-SGD

Memory management has always been a critical challenge in machine learning, particularly in the context of
private training. A significant part of the difficulty arises from the model itself, especially with the increasing
popularity of Large Language Models (LLMs), which can involve billions to trillions of parameters [28]. The use
of graphics processing units (GPUs) has become popular for training due to their parallel processing capabilities,
high throughput, and specialized hardware optimized for matrix calculations, which plays a pivotal role in
machine learning during the forward pass and backpropagation process. Despite these computational advantages,
leveraging GPUs to their full potential often presents substantial challenges.

Key issues include the limited memory capacity of GPUs, which restricts the size of models and batches that
can be processed [29]. Efficient memory partitioning is necessary to avoid fragmentation and out-of-memory
errors but becomes more complex with the additional requirements of DP-SGD, such as gradient clipping and
noise addition [2]. Data transfer overheads between CPU memory and GPU memory also pose significant
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challenges, exacerbated by the frequent updates needed for privacy-preserving operations. Additionally, while
multi-GPU training can alleviate some memory constraints, it introduces new complexities in synchronizing
gradients and privacy budgets across multiple GPUs.

Understanding and addressing these memory constraints is essential for optimizing the performance and
scalability of machine learning models, especially when implementing privacy-preserving algorithms like DP-
SGD. A significant challenge in memory management is handling the gradients. Since DP-SGD requires
manipulating gradients through clipping and noise addition to preserve privacy, it can significantly influence
the memory requirements for training. This section will explore different clipping techniques used in DP-SGD,
discussing their key processes and how they impact the memory requirements of training.

4.1 Flat Clipping

4.1.1 Per-example Processing

One significant drawback of DP-SGD is its perceived computational expense, mainly due to the process of
clipping per-example gradients. This process, along with the potential normalization of these gradients, imposes
substantial memory and time costs within standard machine learning frameworks [30]. As a result, private
machine learning techniques like DP-SGD become even more computationally and memory intensive compared
to their non-private counterparts [31].

The computational and memory cost of training depends on the technique being used in taking the training
data before performing the private training that would effect how the dataset gets clipped in each iteration. The
most basic one is per-example clipping, where only one example from the dataset is used in each iteration of
the training. Since only one example is being processed at any given time, this can end up easing the memory
requirement of the training process. However, it may still be prone to issues in terms of memory management. In
particular, these issues can arise from having a large model with billions of parameters, in which the advantage of
only processing one example at a time becomes negligible in terms of memory space. In such cases, a solution
would be to partition the model into different memory segments, or assign each partition to different GPU
units [32]. In the latter case, the overhead introduced in communicating and synchronizing the different GPUs
would also need to be considered. Furthermore, this issue can also arise when working with a model that contains
multiple layers. The aggregation of the gradient from these layers can end up not fitting in a memory, necessitating
to partition the gradients between different memory blocks. Since this issue mainly stems from needing to store
the per-example gradient in order to calculate the norm needed for clipping, alternative approaches to clipping
can be introduced which do not rely on the gradient norm. This would solve the overall need of storing the
per-example gradient in memory. However, it is important to note that per-example clipping tends to require the
least memory compared to other clipping techniques as only one example is being worked on at a time. The
downside consists mainly in its computational inefficiency, as more iterations are required to go through enough
of the training data, and difficulty of implementing parallelism in this method wastes some of the hardware
utilization potential.

4.1.2 Minibatch Clipping

Mini-batching processes a subset of examples from the dataset (a minibatch) at the same time for each iteration.
Compared to per-example clipping, minibatching has the advantage of being more computationally efficient, as
less iterations are needed to process the same number of examples. Hardware utilization is also more efficient due
to allowing parallelization and vectorized operations [33]. However, it is widely acknowledged that minibatch
clipping will require more memory usage compared to other techniques. Not only do all the examples need to be
stored, but the related activation function result and gradient would end up needing to be stored to perform the
clipping. As seen for per-example clipping, if the model itself ends up taking a large amount of memory space,
this problem would be exorbitantly worse in the minibatch setting. The overall memory size requirement can be
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dictated by the batch size multiplied by the size of each example in the batch, meaning the bigger the batch size,
the more memory is required [34]. Additional temporary memory buffers must be allocated for the aggregation of
the gradients in the minibatch before noise can be added and the parameters can be properly updated. However,
if small batches are used to reduce memory overhead, it would result in lower computational performance as it
limits the capabilities of parallelization [35].

To ease the memory requirement, the aggregation of the gradients can be done from the start, eliminating the
need to store the per-example gradients of the batch, but realistically this is applicable only for clipping techniques
that do not rely on the gradient norm. Alternatively, the idea of gradient accumulation can be implemented to
reduce the memory needed [36]. The concept works similarly to microbatching, which is explained later. Similar
to previous steps, a small batch is taken and the gradients in the batch are clipped and aggregated into one memory
block. The next batch is then drawn and gradients of the batch are clipped again, but this time instead of storing
them separately from the first batch, they would all be accumulated in one running sum. This repeats for a number
of steps before performing the gradient step with noise addition to do the parameter updates. This technique
allows for an arbitrarily large batch while requiring a fixed amount of memory.

4.1.3 Microbatch Clipping

Microbatching takes mini-batching further, by dividing the minibatches to even smaller sub-batches called
micro-batches. This technique eases up the memory requirements of minibatching, by working with fewer inputs
at any given time. Assume a minibatch with a size of 32, meaning that 32 activations and gradients need to be
stored simultaneously. Assume we introduce microbatching and split the minibatches into 4 microbatches of size
8 each, we would then only need to hold 8 instances of activation and gradients at the same time. Once the current
microbatch has finished, only the final aggregated gradient of the microbatch needs to be stored, and the memory
to store the previous gradients would then be used for the next iteration. These microbatch gradients would all
be accumulated in one memory block that stores the overall aggregated gradient of the microbatch. Figure 6
shows a comparison between the differences of minibatch clipping and microbatch clipping. One of the main
advantages is the ability to add noise to each micro-batch as opposed to the aggregated gradient in mini-batching,
allowing tighter control over the DP mechanism and allowing more precise tuning to the privacy required [36].
However, this additional noise can also result in reduction in the model’s utility. Microbatching also results
in higher runtime compared to traditional minibatching, as it limits the capabilities of the hardware utilization
compared to traditional minibatching due to the need to process the micro-batch sequentially [34]. It may seem
counter-intuitive to use microbatching, given that minibatching offers greater computational advantage and there
is the option to simply reduce the batch size to handle the memory problem, but in some cases microbatching
is the only alternative solution that is available. For example, a single GPU may not be sufficient to support
large batch sizes. By utilizing micro batching, the peak memory required is significantly reduced, allowing the
handling of larger batch sizes with limited resources [37].

To combat the high memory and computational demands of DP-SGD, several works investigated solutions
that ease the cost of DP-SGD, especially in the contest of large-scale models. McMahan et al. [38] modified
federated learning techniques for DP-SGD and distributed the training process to different mobile devices that
share the same model. Dupuy et al. [31] proposed another technique for group-wise clipping involving the use of
GPUs. Since DP-SGD is computationally expensive because each batch requires its own gradients, these batches
can instead be divided into micro-batches and assigned their own GPU. This reduces the computational cost of
computing the overall gradient as the work is divided between the GPUs.

4.2 Group-wise Clipping

He et al. [6] investigated group-wise clipping for its memory and processing advantage compared to traditional
flat clipping, regardless of the size of the model. Two group-wise clipping techniques were considered: per-layer
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Figure 6: Minibatch Clipping vs Microbatch Clipping

clipping and per-device clipping.

4.2.1 Per-layer Clipping

Figure 7: Per-layer Clipping

In per-layer clipping, per-example gradients of each layer in a neural network are clipped separately. Param-
eters of a neural network are grouped together and each of the K layers in the network is prescribed its own
clipping threshold, Ck. This brings the main advantage of per-layer clipping, in which gradient clipping for a
particular layer can be done as soon as the backpropagation returns the output gradient of that layer, allowing
clipping to be done together with backpropagation, as opposed to flat clipping which requires backpropagation to
completely finish first. Additionally, the process of summing and clipping of the per-example gradient can be
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combined as soon as the input activation, output gradients and per-example gradient norms are known. Figure 7
shows the entire training cycle and how each layer performs its gradient computation, as well as how each layer’s
gradients are stored separately to perform the parameter updates corresponding to each individual layer. Besides
the computational advantage, this method does not require instantiating the per-example gradients in memory,
and instead can be computed as needed. This technique is referred to as ghost clipping [39].

However, even though a computational advantage is noticed for per-layer clipping, utilizing a fixed clipping
threshold for each layer ends up making the model perform worse compared to the traditional flat clipping method
in certain scenarios. Observations during training reveal significant fluctuations in the magnitudes of per-layer
gradients throughout the process. While gradients may initially be uniformly low, they tend to increase notably
for layers closer to the input as training progresses. It is suggested that employing a fixed layer-wise clipping
threshold eliminates the structural relationship between gradients of different layers, introducing an additional
source of bias on top of the inherent bias associated with flat clipping techniques. As a solution to the performance
problems of fixed per-layer clipping, adaptive clipping thresholds can alleviate the structural bias that comes with
clipping gradients of different layers separately. In this case, the adaptive clipping technique focuses a quantile
estimation, as discussed in Section 3.

4.2.2 Per-device Clipping

Another group-wise clipping technique explored in [6] is per-device clipping. The main motivation for this
method is to make use of larger/better pre-trained model as past works have shown using them improves the
privacy-utility trade off. The problem is that size of the model makes it so that the model weights cannot be fit in
a single device (GPU), making it a difficult computational problem. The solution to this problem revolves around
pipeline parallelism popularly used in non-private training [40]. The model is first partitioned into consecutive
blocks/layers which is then assigned to its own accelerator (i.e., GPU). Forward computation is performed on
micro-batches (split mini-batches) that chain together the local computations done on each model partition by
communicating activation outputs between the GPUs. Backpropagation reverses this process but on each GPU,
and intermediate forward computations are performed to reduce peak memory usage. Furthermore, parallel
computation is enabled across GPUs to reduce overall training time. Once all micro-batches finish their forward
and backward computation, SGD performs its parameter updates, and the GPUs are synchronized.

Since flat clipping requires computing per-example gradient norms in order to get the scaling factors for
computing gradients, it becomes necessary to have additional communication between devices to get the per-
example norms of their local gradients. This ends up adding extra overhead to the pipeline parallelism process [6].
There are three potential approaches to reduce communication, however both of them result in non-trivial
slowdowns and increased complexity in the implementation. The first approach is to synchronize all the devices
after the full backward pass is finished for each micro-batch. This allows each device to have the same gradient
norms for computing the clipping scaling factor, but it ends up requiring as many synchronization steps as the
amount of micro-batches in a mini-batch, which further reduces efficiency when micro-batches are large. The
second option is to offload the unclipped local per-example gradients to the CPU, and to transport them back
during synchronization. The problem here is the slow CPU-GPU data transfer rates ends up being costly. The last
option is to re-materialize the local per-example gradient during synchronization, which ends up being costly as it
requires a second backpropagation step to be performed.

4.3 Quantifying Memory Requirements

Knowing the different ways clipping can be performed, it is important to quantify how much memory is required
by each technique. Yousefpour et. al. [34] estimated the memory requirements in a per-example setting that uses
the minibatching technique as follows:

Mnon-DP = bC + 2L
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(a) Per-layer Clipping (b) Mini-batch Clipping

Figure 8: Per-layer Clipping Memory vs Mini-batch Clipping Memory

MDP = bC + (1 + b)L

where L is the number of trainable parameters with each one being of size 1, C is the size of the features, label,
and model output for a single data point, and M is the total memory usage for one forward and one backward
pass on a batch of size b. The labels and outputs for b data points are expected to occupy memory of size bC and
the model itself occupies memory of size L. In a non-private setting, the gradients are expected to occupy an
additional memory of size L, meanwhile, for a private setting, the gradients are expected to occupy a memory of
size bL due to the need to store per-sample gradients. If the batch size is greater than or equal to 1, it’s possible to
get an estimate of how much memory private training requires compared to non-private as a ratio of the number
of trainable parameters and the size of the model input/outputs. This is given as:

MDP

Mnon-DP
=

8
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>:
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He et. al. [6] compared the memory requirements between the per-layer clipping and the approach in [34]
and found that per-layer clipping occupies a similar amount of memory as the non-private setting. This result is
expected, given that the ghost clipping technique used in per-layer clipping eliminates the need to store per-sample
gradients, making the memory requirement of storing the gradient independent of the batch size. This means that
the traditional mini batching technique would require double the memory size compared to per-layer clipping,
as traditional mini batching scales with the batch size twice, as opposed to only once with per-layer clipping.
Figure 8 shows a comparison between the scaling factor with the batch size in terms of memory for per-layer
clipping and mini-batch clipping. As an example, assume L and C both uses a memory unit of size 1, and training
uses a batch size of 100. Using the equation above, we can estimate the memory required for traditional mini
batch clipping with per-sample gradients to be 201. Meanwhile, for per-layer clipping, we would need a memory
block of size 102 only. The difference will keep growing bigger with larger batch size, especially when we
consider private training of large-scale models that require the use of multiple GPUs.

5 Individualized Privacy Budget

The majority of DP-SGD techniques assume a fixed privacy requirement (i.e., budget ") for all data contributors,
and focus on various adaptations of learning rate or budget consumption throughout the learning process to
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improve the privacy-accuracy trade-off (see Section 3). The privacy budget used in the training must adhere to the
most stringent privacy requirement among all data contributors. However, in practice, various data contributors
may have differing privacy expectations [41]. Data points from contributors with lower privacy requirements
could potentially offer more valuable information for training machine learning models. Consequently, setting a
uniform privacy budget across all data points may unnecessarily lower the training accuracy.

Recently [42], a novel research direction has surfaced, which focuses on supporting the enforcement of
heterogeneous privacy constraints across the training dataset. Data points are partitioned into several groups,
each with its own privacy budget. Essentially, the concept involves allocating greater privacy budgets to less
sensitive data points and lower budgets to more sensitive ones. In this section, we review the several approaches
for individualized privacy budget assignment.

The idea of individualized privacy constraints has been considered in the differential privacy literature even
before DP-SGD emerged, in the context of statistical queries. The early work by Jorgensen et. al. [43] proposed
two directions. The first one involves a two-step process: non-uniform sampling based on each tuple’s specific
privacy requirements, followed by applying a differentially private mechanism to the sampled dataset. This
method effectively combines randomness from both steps to achieve personalized privacy guarantees. The second
approach, inspired by the exponential mechanism developed by McSherry and Talwar [44], offers a more direct
route to achieving Personalized Differential Privacy (PDP).

Later on, the work done by Li et. al. [45] explored two partitioning methods aimed at achieving PDP
while optimizing individuals’ privacy budgets and enhancing utility. These methods, termed privacy-aware and
utility-based partitioning, group records with diverse privacy budgets into different bins. Each bin undergoes DP
aggregate computation using its minimum privacy budget, and the perturbed results are aggregated in the final
output.

A recent study [46] took an adaptive approach to PDP. The proposed adaptive framework for personalized
differential privacy (AdaPDP) dynamically selects noise generation algorithms and determines parameters such
as sensitivity and noise magnitude based on query functions, data distributions, and privacy settings, in order to
maximize data utility. Additionally, AdaPDP conducts multiple rounds of utility-aware sampling to meet diverse
privacy requirements for individual users.

Most studies emphasize two key directions to achieve individualized privacy: sampling and grouping. In
the former approach, sampling probabilities are assigned to data points inversely proportional to their privacy
concerns, ensuring that records with higher privacy demand are sampled less frequently. In the latter, points with
equal privacy concerns are clustered together, with higher-privacy groups undergoing more noise addition than
lower concern groups. Figure 9 illustrates the two approaches.

The upsampling approach is a technique introduced in [42] in conjunction with the Private Aggregation of
Teacher Ensembles (PATE) algorithm. PATE is an alternative to DP-SGD for training machine learning models
on sensitive data while preserving individual privacy. It involves training multiple teacher models on disjoint
subsets of the data, aggregating their predictions with differential privacy, and then training a student model using
the noisy aggregated labels. PATE allows for effective model training while ensuring privacy protection, making
it suitable for various applications in fields like healthcare and finance [8].

The upsampling mechanism relies on duplicating sensitive data such that overlapping data-subsets can be
allocated to different teachers. Thereby, data with higher privacy budgets are used to train a higher number of
teachers, thus revealing more information from data points with less restrictive privacy needs, and restricting
the level of information derived from points with higher demands [42]. The algorithm ensures that points are
duplicated by an integer according to the privacy budget ratios. Algorithm 1 shows how the upsampling factor is
calculated for each data point.
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(a) Sampling (b) Grouping

Figure 9: Sampling Approach vs Grouping Approach

Algorithm 1: Upsampling method in PATE [42]
Input: Privacy budgets {"d} for each data point d, precision p 2 N
Output: Upsampling factor ud for each data point d
{"1, . . . , "j} unique({"d}) ; // Get unique budgets
for each "j do

"̄j  "j · 10p ; // Upscale budgets
end
D  Greatest Common Divisor("̄1, . . . , "̄G);
for each "̄j do

ud  
"̄j

D
;

end
Using the same upsampling technique, the work in [9] proposed a method that relies on sampling data

points with different sample rates q1, ..., qP depending on their individual privacy budgets. In this case, the noise
multiplier �sample is fixed. Data points with higher privacy budgets (weaker privacy requirements) are assigned
higher sampling rates than those with lower privacy budgets. This modifies the Poisson sampling process for
DP-SGD to sample data points with higher privacy budgets within more training iterations. Using the minimum
privacy budget of ✏1, the algorithm begins by initializing the �sample with � from conventional DP-SGD, which
is the noise multiplier needed for the privacy group G1, which has the strongest privacy requirement of all groups.
This is equivalent to instantiating �sample using the overall privacy groups’ upper bound noise. Next, they employ
a getSampleRate function to determine the sample rates for the specified privacy parameters. The algorithm
then reduces �sample repeatedly by a scaling factor that is marginally smaller than 1, and recalculates q1, ..., qP
until their weighted average approaches q (the traditional unified sampling rate).

The grouping approach is another technique used for individualized privacy budget assignment, which
clusters together training examples with similar privacy requirements. In PATE, this step takes the form of a
weighting mechanism [42] which adjusts how the aggregation of teacher votes is performed. It does this by
assigning higher or lower weights to individual teachers’ votes based on the privacy requirements of their training
data points. Consequently, data points with similar privacy budgets "j , referred to as a privacy group gj , must be
assigned to the same teacher(s). Algorithm 2 outlines the process of assigning weights wi to the teachers.
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Algorithm 2: Weighting mechanism in [42]
Input: Privacy budget "j and number of teachers nj for each privacy group j, j 2 {1, . . . , G}, and total

number of teachers k
Output: Weight wi for each teacher ti
E  

P
G

j=1 "j ;
for each privacy group gj do

"̄j  
"j

E
; // Relative privacy budget

n̄j  
nj

k
; // Relative group size

w̄j  "̄j · n̄j ;
end
W  

P
G

j=1 w̄j ;
for each privacy group gj do

wj  
w̄j

W
· k ; // Make sum of weights match k

for each teacher ti with data from j do
wi  wj ;

end
end
Based on grouping, the work in [9] proposes a scaling method that adjusts the noise added to each gradient

based on the privacy constraint of each data point. Current implementations of DP-SGD typically add noise to
the sum of per-example clipped gradients over an entire mini-batch, resulting in the same amount of noise being
added to all gradients. Instead, the authors of [9] introduce individualized clipping bounds c1, ..., cP for each
privacy level, effectively adjusting the scale of noise added on a per-example basis by modifying the sensitivity
(clipping bound) of each example with a multiplier. Data points with higher privacy budgets (weaker privacy
requirements) receive lower noise and higher clipping norms. As indicated in Equation (1) below, the clipping
bound c does not directly impact the obtained "; instead, the individualized privacy in the scaling approach results
from the individual noise multipliers �1, ...,�P . The privacy guarantee " depends on noise multiplier �, sample
rate q, the number of training iterations I , and the RDP order ↵ [9]. This translates into utility gains thanks to the
overall increase in the signal-to-noise ratio during training.

"  I · 2q2
↵

�2
(1)

However, directly implementing individual noise multipliers per privacy group in scaling degrades training
performance, because noise is added per mini-batch, while sampling and gradient clipping are performed per
data point in DP-SGD. Restricting mini-batches to contain only data points from the same privacy group, which
share the same noise multiplier, would lead to a loss of gains in the privacy-utility trade-offs resulting from
subsampling. Therefore, while relying on mini-batches that contain data points with different privacy requirements
(i.e., different noise multipliers), one can specify a single fixed noise multiplier � scale.

To overcome this limitation, the work in [9] does not set noise multipliers �1, ...,�P directly, but instead
obtains them indirectly through individualized clipping bounds c1, ..., cP . In conventional DP-SGD, a gradient
clipped to c obtains noise with standard deviation � ⇤ c. In the scaling approach, gradients are clipped to
cp = sp ⇤ c with a per-privacy group scaling factor sp, obtaining noise multiplier �pcp. Noise is added according
to �scalec to all mini-batches. Thus, the effective noise scale �p of each data point becomes �p = 1

sp
⇤ �scale.

Data points with higher privacy budgets have sp > 1, receiving lower noise multipliers, and vice- versa for lower
privacy budgets.

Assuming all users in the training dataset have equal privacy concerns, certain training examples contribute
more significantly to the learning process than others. This discrepancy means that some examples may pose
higher privacy risks than others. A recent study by [47] introduces a novel approach to privacy assurance termed
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output-specific individual differential privacy. This method is designed to analyze the privacy guarantees of
individual data points within models trained using DP-SGD. Investigations from [47] reveal that many data points
benefit from stronger privacy guarantees than initially anticipated under the worst-case scenario, and that there is
a robust correlation between a data point’s privacy level and its associated training loss.

The fundamental concept behind output-specific (✏, �)-DP involves defining the privacy parameter ✏ as a
function of both the outputs and the specific target data point. In essence, for a given data point d and a subset
of outcomes A ⇢ O, an algorithm A : D ! O satisfies output-specific individual (✏(A, d), �)-DP for d at A if
certain predefined conditions are met. To operationalize this approach, an algorithm is introduced to compute
per-step RDP for each example using estimated individual gradient norms. Additionally, this algorithm facilitates
the updating of individual gradient norms and the accumulated RDP. Furthermore, to streamline the computational
cost associated with individual privacy assessment, two parameters are introduced: the frequency K for computing
batch gradient norms and the decision of whether to round individual gradient norms using a small constant r.

6 Experiments

We conducted a brief benchmarking of the various studied techniques for adaptive and individualized DP-SGD,
the purpose of which is two-fold: first, some of the experimental runs in the original papers introducing these
techniques were conducted under different datasets and/or different parameter settings, making it difficult to
directly compare approaches head-to-head. Second, we wanted to validate the results presented by the authors in
their papers, and thus conduct a reproducibility study. For all experiments, we use the RDP moments accountant
as defined by Abadi et. al. in [2], based on the concept of Renyi Differential Privacy discussed in Section 2.

We used two prominent datasets in our runs:

• MNIST: introduced by LeCun et al. [48] in 1998, consists of handwritten digit images. Specifically, it
contains 60,000 training examples and 10,000 test examples, where each example is a 28×28 grayscale
image.

• CIFAR-10: Developed by Krizhevsky and Hinton in 2009 [49], it consists of color images classified into
ten distinct classes, including objects like airplanes, cars, and birds. It includes 50,000 training images and
10,000 test images, with each image being a 32×32 pixel RGB image.

6.1 Adaptive DP-SGD Results

First, we investigated three prominent techniques for noise magnitude decaying discussed in Section 3.1.1: Time
Decay, Exponential Decay and Polynomial Decay [20]. These experiments were performed using the same
parameters settings as in the original work from 3.1.1 (�initial = 10 for all decaying strategies) on the MNIST
dataset. Figure 10 and Table 2 summarize the results. Our experiments show that these techniques assign very
low privacy budget (✏) to the earlier iterations with a controlled increase over time, allowing the training gradients
to be injected with higher noise at the start of training, and reducing the noise in later iterations, as training
converges. Figure 10 illustrates the privacy budget consumption rate for all mentioned techniques along with
standard DP-SGD for �fixed = 8. Among all approaches, Time Decay consumes the most privacy-budget, and at
the highest rate. Table 2 presents the testing accuracy achieved using the above-mentioned decaying strategies.
Time Decay achieves the highest accuracy of 91.50% after consuming approximately ✏ = 1.0 while Polynomial
Decay and Exponential Decay achieved 90.66% and 89.00% respectively, for the same aggregate privacy budget
consumption.

Next, we experimented with adapting learning rate (⌘) and clipping threshold (C), according to the method-
ology described in [7] and [3] (described in Sections 3.2.2 and 3.3, respectively). Noise magnitude was set at
� = 2.0. Figure 11 shows the test accuracy of each technique when training on the MNIST dataset. Among the
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Table 2: Accuracy Comparison of Noise Decay Strategies

Stopping Cri-
terion

Stopping
Threshold

Polynomial
Decay

Time Decay Exponential
Decay

Epochs 100 91.67% 92.18% 87.41%
✏ 1 90.66% 91.50% 89.00%

Figure 10: Adaptive Privacy Budget Consumption Rate

three, adaptive learning rate produced the best accuracy (91.90%) after consuming privacy budget ✏ = 1.0, while
adaptive clipping achieved 85.37% accuracy with overall privacy budget consumption of ✏ = 0.83 – a tighter
privacy guarantee than standard DP-SGD which achieved accuracy of 86.00% after consuming ✏ = 1.0.

For comparison purpose, we tested the performance of the noise magnitude time decay methodology discussed
earlier using the same parameters that have been used for the latest adaptation experiments. The noise magnitude
time decay seems to be the most promising among all, as it yielded an accuracy of 92.05% with ✏ = 1.0 in a
shorter training time.

We conducted the same experiment on the CIFAR-10 dataset, using the same architecture and parameters
used in [7], and � = 1.2 for all techniques except for the exponential noise decaying approach, for which we
used �initial = 2.0, in order to prevent very high privacy budget consumption. Figure 12 summarizes the results.
Experiments on CIFAR-10 confirm the superiority of learning rate adaptation, which obtained the highest accuracy
of 62.52% with ✏ = 2.0 going up to 64.97% with ✏ = 3.0. Clipping threshold adaptation produced slightly
better improvements with an average of 7% additional accuracy when compared to standard DP-SGD at similar
privacy levels. One important observation from this set of experiments is the performance of noise magnitude
decay. Specifically, exponential noise decay is able to achieve only marginally better accuracy compared with the
standard DP-SGD under similar budget consumption.

6.2 Individualized Privacy Budget Results

We evaluate two different individualized privacy (IDP) approaches proposed by Boenisch et. al. in [9], namely
grouping and sampling. We divide the training dataset into three partitions according to the privacy requirements
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Figure 11: Accuracy of Adaptive Techniques on MNIST

illustrated in Table 3. The two distributions correspond to the settings used in [9] and [50], respectively.
First we present results obtained on the MNIST dataset. According to [9], the sampling approach uses

individual sampling rates = {0.005, 0.009, 0.013} for the three different privacy level groups respectively, with
�sample = 1.368. In the scaling approach, the corresponding individual clipping thresholds are {0.141, 0.236,
0.299} with �scale = 1.545. After training the model using both approaches, scaling obtained accuracy of 97.63%
while sampling achieved 96.79% accuracy, both outperforming previously mentioned DP-SGD related approach.
The results match the ones presented in the original IDP work from [9].

We also investigated results on CIFAR-10, which were not reported previously. We include two more extreme
cases of privacy requirements, cases 2 and 3 in Table 3. Case 1 is the only one used in the original work from [9].
The second case has a more pronounced variability in privacy concerns, with one group having very tight privacy
requirements, while the others are more loose. Finally, the third case has two groups with relatively tight privacy
requirements, and a third with almost no privacy concerns.

Figures 13 and 14 show the privacy consumption rates for each group in case 1. As shown in Figure 15
and Table 4, both grouping and sampling approaches were able to deal with the extreme cases, with the scaling
approach giving better performance in cases 2 and 3. The most extreme cases lead to slowest convergence in
training. This is a result of overfitting, as the sampled examples originate mostly in group 3, and thus the model
finds it difficult to generalize results to less seen examples in groups 1 and 2.

7 Conclusions

In this article, we reviewed several categories of prominent DP-SGD techniques with respect to several criteria,
such as strategies for adaptive hyperparameter tuning, data management considerations, and individualized
privacy requirements. With the current advent of machine learning in virtually all application domains, DP-
SGD is expected to become increasingly deployed in practice. Therefore, it is important to understand well its
privacy-accuracy trade-off, its underlying influential factors, and how to adapt private learning to obtain a good
compromise between protection, accuracy and performance. In future work, we plan to extend our review to
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Figure 12: Accuracy of Adaptive Techniques on CIFAR-10

Table 3: Individualized Data Distributions

Group # Percentage of
Data

Case 1 Case 2 Case 3

Group 1 (High
Privacy)

34% ✏ = 1.0 ✏ = 1.0 ✏ = 1.0

Group 2
(Medium
Privacy)

43% ✏ = 2.0 ✏ = 10.0 ✏ = 2.0

Group 3 (Low
Privacy)

23% ✏ = 3.0 ✏ = 20.0 ✏ = 20.0

Table 4: Performance of IDP-SGD on CIFAR-10

Approach Case 1 Case 2 Case 3

Sampling 59.03% 59.49% 59.7%
Scaling 58.26% 67.64% 63.07%

techniques for private learning in large language models, which present a different set of challenges, due to the
multiple ways in which unstructured language from individuals can carry sensitive information into the final
model.
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