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Abstract

The UK government and the public wish to see the National Health Service (NHS) use data and Artificial
Intelligence for public good [13][16]. However, there is a major challenge in making health data available
for research whilst respecting patient privacy. Synthetic data generation is an emerging technique that
enables access to data that, in some way, shares the characteristics of the original data. In this paper
we introduce SqlSynthGen (SSG), a method for generating synthetic relational datasets. SSG offers a
human-readable, risk-guided approach to refining data fidelity while managing disclosure risk. This paper
presents SSG, specifically focusing on its application for generating synthetic data from NHS hospitals.

1 Introduction

Hospitals electronic health record systems are typically built using relational databases containing millions of
records. While hospital staff access this data for their clinical duties, other professional communities— scientists,
software engineers and educators — rightly must follow lengthy processes to be granted access. Controls are
in place to ensure patient data —which is both sensitive and valuable [28]— is accessed for only legitimate
reasons. Current practices involve preparing employee contracts, implementing de-identification or anonymisation
mechanisms to remove personal information, and accessing data only via Trusted Research Environments [14].

While protecting patient privacy is of utmost importance, these processes impede collaboration and engage-
ment, and introduce delays to researchers already working to arduous grant deadlines. For instance, researchers
can use data to improve diagnostic accuracy, refine our understanding of diseases, or develop personalised
treatments [30]. Patient data can be used to train the next generation of healthcare practitioners and researchers.
Synthetic data is an accelerator: it can provide a simulcrum with the characteristics of patient data that can be
shared onwardly. This can be used to support education and training, to quality control applications and code, and
to test reproducible analytical pipelines in the open. This will accelerate academic progress for patient benefit.

In order to both protect user privacy and control access, current techniques employ mechanisms including
data agreements, de-identification or anonymisation, aggregation over the original data, and provision of trusted
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research environments (TRE) for access by third parties. While these techniques provide an extra layer of
protection, they are not immune to vulnerabilities [21]. For example, de-identified data releases are still
susceptible to linkage attacks. Aggregation requires releasing only aggregate population metrics, such as counts
or averages, but outliers remain vulnerable to identification [30]. Instead of releasing real patient data —either
partial or aggregate— an option is to release synthetic patient data.

Synthetic data is data that is manufactured, as opposed to real data that is collected from real-life events
and people. Synthetic data generators (SDG) use algorithms to produce synthetic data entries while preserving
statistical properties of the real dataset. There are multiple SDG approaches in the literature, each one targeting a
specific data type, such as tabular data or time-series data [17]. SDGs can, when appropriately constructed, offer
mathematical guarantees of the preservation of user privacy [19, 8] by incorporating differential privacy.

In this paper, we describe our work on developing a new SDG approach at the University College London
Hospitals (UCLH) NHS Foundation Trust. Each year, UCLH admits 100,000 patients and stores their data in a
relational database. Broadly, we discover that these are their requirements regarding their utilisation:

• REQ-1: The synthetic datasets should be in the form of relational datasets for any given relational schema

• REQ-2: The generator can manufacture synthetic data by utilising aggregates and statistical properties
extracted from real patients

• REQ-3: Ensure that information disclosed about real patients are easily understandable by humans.

Listing 1: Requirements for Synthetic Data Generation at UCLH Trust

We developed SQLSYNTHGEN [12] to meet the requirements in Listing 1. SQLSYNTHGEN is an open-source
Python package that can replicate the database schema of a relational database. Once the replica is in place,
SQLSYNTHGEN can generate synthetic samples at different levels of fidelity: from low-fidelity random values
compliant with the database schema, to high-fidelity samples from probability distributions learned from real
data.

SQLSYNTHGEN uses a white-box approach where information extraction from real data are expressed as
SQL queries in human-readable format, rather than black-box approaches, such as deep generative models with
thousands of parameters [6]. For ensuring patient privacy, SQLSYNTHGEN supports differential privacy (DP)[10]
to add quantifiable noise to the information extracted from the real data.

2 Sharing Patient Data

This section starts by enumerating motivations for sharing patient data. An understanding of motivations is
important because these determine the requirements of appropriate data sharing mechanisms. The reasoning for
sharing data dictates what minimum data needs to be shared, and this in turn defines the requirements to be met if
the data is to be shared reasonably safely.

We then survey the current privacy preservation practices currently adopted by hospitals to enable collaborators
controlled access to hospital data. We show that these are a) linked to inadequate privacy protection measures [21,
30], or b) a cause of unnecessary friction to analysis [23]. While synthetic data is considered a potential solution
to overcome the above challenges, many patient datasets are organised as relational databases. Current synthetic
data generators have limitations: a) they do not address the unique challenges of the relational structures [22][32];
b) they require users to specify dataset schemas [29]; or c) they can achieve differentially private, explainable,
high-fidelity synthetic data for relational databases but currently face limitations in scalability. [8].
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2.1 On the Benefits of Sharing Patient Data

Enhancing Research Quality and Innovation: Collaboration can lead to more comprehensive research studies,
allowing healthcare practitioners and researchers to test hypotheses or observe trends across a broader dataset
than is available internally. How well a dataset represents the true distribution matters more than simply dataset
size[2]. In the medical domain, where lack of data is a common occurrence, the amalgamation of diverse datasets
has a better chance of representing true underlying distributions.

Access to Specialised Expertise: External collaborators bring specialised knowledge and skills that complement
the in-house capabilities of a hospital. For example, collaborations with methodology researchers can lead to
state-of-the-art data analysis and interpretation, thereby improving both method development and treatment
outcomes. Software engineers and machine learning operations engineers can build customised cyber-physical
infrastructure to support analysis of patient data in real time[14].

Accelerating Medical Discoveries: By pooling resources and data between hospitals, research can proceed at
a faster pace[2], potentially leading to quicker discoveries in disease mechanisms, treatment effectiveness, and
development of new therapies or medical technologies. Sharing patient data can facilitate the recruitment of
participants for clinical trials, ensuring a diverse and adequate sample size. This can be crucial in studying rare
diseases or sub-types of common diseases, especially in hospitals that offer specialisations not commonly offered
elsewhere in the world.

Expanding Research Funding Opportunities: Collaborative research often has better chances of securing
funding[31]. Funding bodies frequently encourage or require collaboration across institutions as a criterion for
grants, viewing it as a way to maximise the impact of their investment.

Bench-marking and Quality Improvement: Comparing data across institutions can help identify best practices
and areas for improvement in patient care and management. This bench-marking is used to drive quality
improvement initiatives within a hospital[33].

Education and Training: Collaborations provide educational opportunities to clinical research employees at
hospitals, researchers and students at universities and research institutions, exposing them to different perspectives,
methodologies, and cutting-edge research through joint ventures and knowledge exchanges.

Building Networks and Reputation: Collaborations can enhance a hospital’s reputation in the medical and
scientific community[31]. They extend the hospital’s influence and recognition, which can attract top talent and
more collaborations in the future.

2.2 Current Practices For Sharing Patient Data

De-identification and Anonymisation of Patient Data: De-identification is the process of obscuring or
replacing personal identifiers to prevent the direct association of data with an individual. Common de-identification
methods include explicit removal, masking or pseudonymisation of direct identifiers, and aggregating data to
remove specificity eg. binning.

Anonymisation aims to ensure that data cannot be linked back to an individual by any means. Anonymisation
strips datasets of all personal identifying information but it is not provable when this has been achieved. Con-
servative measures will strip a lot of information thereby heavily affecting the value of the dataset, and we still
cannot be certain that there is not some way to de-anonymise.
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For example, the removal of timestamps from a medical dataset as part of an de-identification or anonymisation
process is performed because timestamps can be used to re-identify a patient by linking a patient’s records over
multiple de-identified datasets. The pattern of timestamps can disclose information about a patient’s health, as
well as their frequencies away from home.

However the stripping of timestamps from a medical dataset erases important information because medical
information is highly time-contextual. Part of the richness of medical data is its time-series nature. Medical data
that has been stripped of time stamps has reduced richness of data and is limited what can be learnt from it.

Effectiveness of both de-identification and anonymisation techniques is highly dependent on context, which
includes the dimensionality, volume, and statistical properties of data. Other important aspects that need to
be considered include which types of applications or analyses the data are to be used for, whether the data
will be released publicly or with additional access control, and whether the data are tabular, relational, or have
longitudinal or transactional characteristics.

Trusted Research Environments: Trusted Research Environments (TREs) are an important part of the data
sharing mechanism ecosystem. TREs are the secure infrastructure and governance model that allows researchers
to access and analyse data; they are often used in conjunction with other data-sharing mechanisms.

TREs play a major role in controlling data access levels. Initially, data access is controlled through secure
authentication and authorisation mechanisms. This means that only approved researchers can access the data, and
they can only access specific datasets approved for their role and research projects. Activities in TREs are closely
monitored and logged.

In addition, TREs provide both physical and virtual security. Data in TREs are often stored in physically
protected facilities. Virtual security measures such as firewalls, intrusion detection systems and regular penetration
testing maximise protection against external threats. Finally, to ensure no privacy leakage, data egress from TREs
is restricted. Researchers can analyse data within TREs but cannot take it out.

This means that working with data within TREs is far from a comfortable experience [23]. In order to
provide security measures, computational resources can be limited and the list of approved software packages
for analysis is restricted and not easily updated. There is significant process overhead generated by the need
for detailed authentication into remote machines, activity logging, monitoring and compliance checks. There
is a steep learning curve in working within a TRE, and new users are heavily dependent on support staff for
technical assistance. Finally, the inability to egress data limits the sharing of interim findings and prevents close
collaboration on ongoing data analysis.

Honorary contracts and data agreements: In order for non-hospital/clinical staff to work with medical data,
they typically either need to become honorary employees of a trust or their current institution need to enter into a
data sharing agreement with the trust. Both are lengthy and restrictive.

The process of obtaining an honorary contract typically begins with an initial inquiry and application to the
relevant department or clinical group at the hospital. This is followed by credential verification and background
checks, including border security investigations. Once these checks are satisfactorily completed, the relevant
departments can grant approval.

To get a data agreement signed between two institutions, the first step is to identify the need for data sharing,
specifying what data will be shared and how it will be used. Next, security requirements for storing, protecting,
and accessing the data must be agreed upon by both parties. All these elements need to comply with relevant
regulations. Finally, the agreement must be reviewed by the legal and compliance teams of both institutions to
ensure all requirements are met and all parties are protected.
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3 From Sharing Real Data to Sharing Synthetic Data

Real data is recorded from real life. Synthetic data is manufactured data, and can be created such that data
elements are random, structurally or type accurate, or have distributions that mirror statistical properties of
another dataset. In the last case, statistical properties can be directly or indirectly observed, to inform the data
manufacturing process. When any properties of one dataset is used to guide the manufacturing process of another
dataset, the first dataset is referred to as the ’real’ or ’original’ data. In the use case presented in this paper, ’real’
data is hospital patient data. Our manufactured data is commonly referred to as ’synthetic’ data.

While manufactured patient data is not about real individuals, it is a fallacy to imagine that adoption of
synthetic data in data sharing practices prevents disclosure of sensitive information. This section shows how
synthetic data generators can manufacture outputs which disclose more, or less sensitive information, and how
this affects the ways in which outputs can be used.

3.1 Synthetic Data Generators

Synthetic data generators (SDG) manufacture data. There is a tension observed in the process of manufacturing
synthetic data which involves three factors: fidelity, utility and privacy. Fidelity measures the extent to which
synthetic data resembles the real dataset. Utility is the measure of the usefulness of synthetic data to a given task.
Privacy is a measure of the information disclosed about the real dataset during generation of the synthetic dataset.
These three factors inform the manufacturing process and limit the ways its outputs can be used. Synthetic data
which is very similar to the real dataset (high fidelity) risk leaking information about real patients (low privacy).
Conversely, low fidelity datasets typically contain little information relating to the real data, so individuals are
unlikely to be identified. However, this low fidelity also limits the dataset’s utility. For instance, medical data
stripped of personal identifiers such as timestamps loses its richness and reduces the scope of insights that can be
derived from it.

However, low-fidelity or coarse-grained datasets can still be useful, as utility is dependent on the context
or task. In some cases, low-fidelity datasets are valuable if they provide sufficient information for engineering
applications e.g. software testing. When paired with real data, multi-fidelity datasets can reduce computational
costs and prevent over-fitting in machine learning tasks [26][27][5]. Low fidelity datasets can remove blockers
at the beginning of research for initial exploration, building pipelines, and testing models. These tasks can be
conducted in a secure environment restricted to students and researchers, with scripts later ported to the hospital
for training on real data if the initial analysis proves promising.

This means that there is a class of low-fidelity datasets that is useful in common research and engineering
tasks. The benefits of using these datasets can be realised with little cost to patient privacy.

Figure 1: Shows the range of fidelity for synthetic data. High fidelity data can result in higher utility, but also
increased risk of identification. Sourced from UK Office of National Statistics[24].

The UK Office of National Statistics [24] have defined a spectrum of fidelity for synthetic data, shown in
Figure 1. In the context of healthcare relational datasets:

• Structurally correct datasets have the same column names, tables and relationships as real data.
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• Valid datasets imply that the values in the synthetic dataset are correct and valid, e.g. date of births are
valid dates.

• Plausible datasets imply that the relationship between values are realistic, e.g. a patient’s date of death is
not before their date of birth.

• Multivariate plausible datasets implies that the values are correlated across different variables, e.g. a
male patient is likely to be both heavier and taller than a female patient.

• Multivariate detailed datasets are more realistic than a multivariate plausible data set, but less than a
replica of the real data. An example are rows of data showing that a patient with a diabetes diagnosis has
more records of blood sugar readings than a patient with a broken bone.

3.2 Synthetic Data For UCLH NHS Trust

University College London Hospitals National Health Services Foundation (UCLH NHS) Trust is a pioneering
institution within the UK, renowned for its treatment care and specialist services not widely available in other
NHS Trusts. It is closely affiliated with University College London; this is a partnership that emphasises research
and education, integrating medical research and teaching at the undergraduate and postgraduate levels directly
into the clinical environment. As an institute that emphasises medical care, research and education, and as
custodians of highly sensitive medical data, UCLH NHS Trust are in a position to leverage research capabilities to
supercharge innovation if they can develop a process for thoughtful access to this data. However, consequences of
unintentionally releasing identifiable information include loss of individuals’ privacy, loss of institutional prestige,
as well as substantial legal fines.

3.2.1 Problem Statement

Machine learning (ML) infrastructure are deployed in hospitals to enable AI in healthcare delivery and adminis-
tration. ML infrastructure supports tasks such as structuring data from electronic health records into a format that
can be used as inputs to AI algorithms, deploying image analysis and predictive analysis tools, and presenting the
results to healthcare practitioners in a timely and useful format.

To achieve these tasks, engineers who build the infrastructure need to gain an understanding of the data
structures and data flow within the hospital. Researchers need to evaluate if target datasets meet their purposes
for hypothesis testing, and are adequate in terms of quality and quantity. It is onerous to issue contracts to entire
teams of engineers, researchers and students, but there are no other ways to share data with external collaborators.

However, what engineers and researchers need when working on early stages of exploratory analysis to
understand data in terms of content, structure and data flow is information about the data, rather than having
access to individual rows of data itself. Here is an opportunity to frame the problem as: What information can be
released about sensitive data, which is maximally beneficial to engineers and researchers, with minimal cost to
patient privacy?

3.2.2 Requirements

Listing 1 enumerates the requirements of building synthetic data generators for UCLH Trust. This section expands
on each requirement; the following section demonstrates how the design of SSG fulfils these requirements.

Produce relational datasets for any given schema: Many data holders, including hospitals, store patient
electronic health records in relational databases. Data is often structured within complex schema that capture
both single observations and time series data. These relational databases also include tables for vocabularies such
as definitions of drugs, observations and diagnoses.
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Under this requirement, a minimally useful synthetic dataset must at the very least a) be structurally correct.
That is, it will contain the same tables, columns, and data types as the real data, and b) meet foreign key constraints.
In order to increase analytical value as shown in Figure 1, the synthetic generator will need to generate values
which are valid and plausible, e.g. valid gender values and a plausible distribution of height and weight. A
multivariate plausible dataset will have values that correlate across multiple tables, e.g. the correlation between
gender and height are represented across the ‘Demographic‘ and ‘Observation‘ tables.

An additional complexity here is in generating synthetic time series data, e.g. blood pressure values every ten
minutes for a patient in intensive care unit. In order to be multivariate plausible, the data needs to contain the
correct frequencies for data collection as well as plausible values that depend on a patient’s physiology. This is
generated across multiple tables as well.

Generate synthetic data using statistical properties computed from real patients Hospitals are mandated or
encouraged by various information acts to release hospital information to the public. The main reasons for this
are a) allowing insights into quality of care provided by public or insurance funds and b) to enable patients to
make informed decisions regarding where to seek care based on hospital performance and specialisations[33].

The type of information that is released in the public domain includes quality of care indicators, patient
safety data, readmission rates and service availability. This includes aggregate data about patient outcomes,
infection rates, details on specialised services, bed occupancy, Accidents and Emergency (A&E) wait times as
well as statistical properties on patients returning for treatment within a period of discharge. This information is
published regularly and does not compromise individual patient privacy.

Synthetic data generators can use aggregate data and statistical properties of real data to generate datasets
which are measurably closer to real data. A synthetic dataset generated using public information is unlikely to
reveal any additional patient information beyond what is already publicly available.

Ensure that information disclosed about real patients are easily understandable by humans. Aggregates
and statistical properties are well-understood mathematical concepts. A comprehensive explanation of such
information extracted from real patients datasets for the purpose of generating synthetic data should cover the
following three points:

1. Extracted Information: Detail what specific information about patients has been extracted.

2. Computation Process: Explain how this information is computed.

3. Usage for Synthetic Data: Describe how this information is used to shape the synthetic data.

Providing this explanation in a single, human-readable source ensures consistency and prevents obsolescence
across multiple data generation iterations. This offers a clear audit trail of the generation process and helps
identify the disclosure risks of its outputs.

The concept of synthetic data is complex, people may not understand how data that does not represent real
individuals still needs privacy considerations. It is furthermore difficult to understand how the application of
differential privacy to aggregates and statistics can provide additional protection.

Differential privacy (DP) [10] is the gold standard that protects individuals within a dataset while still allowing
for the useful analysis of the aggregate data. Its internal mechanics of noise addition for the purpose of privacy
preservation can leave users without a clear understanding of its outputs and how to interpret them correctly[9].

The application of differential privacy to synthetic data compounds the explanations’ complexities. There is a
struggle to understand how DP offers probabilistic but not absolute guarantees. Explaining this to custodians of
highly sensitive data is difficult because privacy is expected but not always technically feasible.

However, this is an important discussion, there is a necessary understanding to be achieved here because the
interplay between privacy and utility governs the results of a differentially private synthetic data generator. The
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only people who can take the responsibility for managing the balance between privacy and utility are the data
custodians.

4 Generating Synthetic Data Using SQLSYNTHGEN

SQLSYNTHGEN (SSG) is a software package developed to meet the requirements outlined in Section 3.3. When
connected to an existing relational database, SSG builds a new empty database with the same schema. It copies
over the non-sensitive data, such as look-up tables, and generates structurally correct synthetic data with random
values. Optionally, SSG can refine these synthetic values using aggregates and statistical properties. SSG can
apply differential privacy to obfuscate the true values of these properties in a measurable way. The new database
is then populated with these synthetic values.

4.1 Technical Overview

The default output dataset from SSG is structurally correct and has no disclosure risk. These are datasets that sit
on the far left end of the spectrum in Figure 1. No information about the real dataset has been disclosed, beyond
the structure in which they are stored. This can already be useful e.g. for building software testing modules and
pipe-lining scripts, and can be safely released if vocabularies and schema can be shared. This meets REQ-1:
Produce relational datasets for any given schema.

SSG can be further configured to generate synthetic data that (in reference to Figure 1), can be as sophisticated
as multivariate plausible data. This is achieved by allowing the user to define SQL statements that extract
aggregate statistics and statistical properties from the real data. These extracted values are then used to shape the
distributions and marginals of the synthetic data. This meets REQ-2: To generate synthetic data using statistical
properties computed from real patients.

As part of its process, SSG generates a human-readable audit trail that details the entire data generation
process. This includes what information was extracted from real data, the methods used for extraction, the
computed results, and how these values were injected into the synthetic data generation. The audit trail is a human
readable file whose contents are incorporated directly into the SDG process. Ensure that information disclosed
about real patients are easily understandable by humans.

SSG pipeline design enables the selective production of synthetic datasets with varying levels of fidelity.
Users control the shaping of synthetic data by specifying which information is extracted from real data, how it
is computed, and how it is utilised. SSG’s configuration supports agile development, allowing for incremental
fidelity improvements as needed, while maintaining transparency, auditability, and control over privacy risks at
every stage. Additionally, users have the option to apply differential privacy to protect the marginals extracted
from the source data.

In order to support this design, SSG’s process for generating synthetic relational datasets can be broken into
three separate steps, as shown in Figure 2. They are as follows:

1. SSG builds a new database to store synthetic data. This new database will be populated by synthetic data
generated in the next steps. Look-up tables which do not have any privacy concerns are copied over entirely,
to maintain foreign key constraints.

2. By default, SSG generates random but structurally correct data.

3. As an option, SSG can refine random values for higher accuracy by using extracted statistics from real data,
with or without DP. For example, mean of height by age and gender can be extracted from real patients and
the correlation be used to generate higher fidelity data.

57



Figure 2: The processes of SQLSynthGen in order

For more information and tutorials about SQLSynthGen, please refer to our repository at https://github.
com/alan-turing-institute/sqlsynthgen. Our repository [12] contains installation instructions,
comprehensive documentation and trouble shooting guides to help get started with the software. The repository
also contains a simple tutorial using a Kaggle dataset [7] as well as an advanced example based on the Observa-
tional Medical Outcomes Partnership (OMOP)[25], which provides a standardised data model for observational
healthcare data.

In the following sections, we demonstrate the use of SSG in creating synthetic data based on a publicly
available AirBnB Kaggle dataset [7].

4.2 Building a Replica of a Real Dataset

In this example, let us consider that our dataset is contained in a database called ‘airbnb‘ in a local PostgreSQL
instance. We want to port the schema to a new ‘airbnb_synthetic‘ database, and populate the ‘airbnb_synthetic‘
database with synthetic rows that mirror some of the statistical properties of the ‘airbnb‘ dataset.

Build schema tables: We connect to the real dataset by setting connection credentials in environment variables.
We run a series of commands sqlsynthgen make-tables, sqlsynthgen create-tables and
sqlsynthgen make-generators to auto-generate two Python files.

The first file, ‘orm.py‘, outlines the structure of the PostgreSQL ‘airbnb‘ dataset by mapping each table
in ’airbnb’ to a corresponding Python class. Each column in these tables is represented as a class field. This
mapping is generated using SQLAlchemy[4], which is a SQL toolkit and Object-Relational Mapping (ORM)
library for Python. By using SQLAlchemy in SSG for mapping, users do not need to perform any additional
configuration to describe the schema of the real dataset. The ‘orm.py‘ file serves as a foundation for building
a new ‘airbnb_synthetic‘ PostgreSQL database, complete with the necessary tables, columns and data types.
Listing 2 shows a snippet from ‘orm.py‘ that demonstrates how the ‘users‘ table from the ‘airbnb‘ dataset is
mapped as a Python class.
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1 class User(Base):
2 __tablename__ = "users"
3

4 id = Column(String, primary_key=True)
5 date_account_created = Column(Date)
6 ...

Listing 2: Section of PostgreSQL table ‘user‘ represented as a Python class

Copy over lookup tables: A lookup table, or a vocabulary, is a table used to store a predefined set of values
that are referenced by other tables. They contain a finite and static set of values such as codes, names of categories
or descriptions. Look-up tables are a good practice adopted help normalise databases by removing redundancy
and enabling efficient data management. They work by using foreign key constraints to ensure values in related
tables are consistent and valid. These foreign key constraints need to be satisfied when generating synthetic data
in relational datasets. On their own, vocabularies provide only limited utility, since the more interesting aspects
of the data are usually found in the non-vocabulary tables.

The fidelity of the synthetic dataset can be improved by ensuring the vocabulary tables have perfect fidelity
from the beginning, since they do not raise privacy concerns (although some vocabularies are copyright-protected).
In this section, we demonstrate how SSG addresses vocabulary tables by copying them in their entirety, thereby
eliminating the need for synthesis.

First we specify vocabulary tables in a config.yaml; the listing 3 below denotes ‘countries‘ as a vocabulary
table. All values in denoted vocabulary tables are copied to an auto-generated .yaml file. Listing 4 shows a
snippet of data from the ‘countries‘ table which has been copied to a auto-generated countries.yaml file.

tables:
countries:

vocabulary_table: true

Listing 3: A yaml section to demarcate table ’countries’ as a vocabulary table

- country_destination: AU
destination_km2: 7741220
destination_language: eng

:
- country_destination: CA
destination_km2: 9984670
destination_language: eng
distance_km: 2828.1333

:

Listing 4: Example of data rows copied from ‘countries‘ vocabulary table

The primary reason for copying vocabularies this way is to maximise transparency for auditing purposes.
Data holders can audit each value extracted from the real dataset, before creating any synthetic data. Note that we
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have to be careful in making sure that the tables marked as vocabulary tables truly do not hold privacy sensitive
data, otherwise catastrophic privacy leaks are possible, where the original data is exposed raw and in full.

The downside of this approach is clear when scaling up to address vocabulary tables which are very large.
Therefore our generator pipeline is modular to ensure that vocabularies need only be copied once when creating
more rows to add into a synthetic dataset.

Generate Random Values that are Structurally Correct: The second auto-generated file, ‘ssg.py‘, contains
Python code that generates random values matching the data types defined by the Python classes. This human-
readable Python code serves as part of the audit trail, demonstrating how values for populating each table column
are generated. For complex schemas with multiple tables and columns, the generator code for each column is
easily identifiable and can be customised independently of rest of the generator.

Listing 5 demonstrates the auto-generated Python code for generating ‘id‘ and ‘date_account_created‘ values
for the ‘User‘ table. ‘id‘ is assigned generic, password-like values, and ‘date_account_created‘ is assigned a
random date value.

class usersGenerator:
num_rows_per_pass = 1

def __init__(self, src_db_conn, dst_db_conn):
pass
self.id = generic.person.password()
self.date_account_created = generic.datetime.date()
...

Listing 5: A Python class for generating synthetic id and date_account_created values for Postgres table ‘User‘

Refine values using aggregate statistics: The default behaviour of SSG is to generate syntactically correct,
random values. This section shows how we incorporate aggregate and statistical properties of real data in order to
generate synthetic data that retain those properties.

We demonstrate an example to generate normally distributed synthetic values to populate a ‘users.age‘ column,
with reference to the mean and standard deviation values of the real data. The user begins by defining SQL
statements in the ‘age_stats‘ section of a ‘config.yaml‘ file. This is demonstrated in listing 6. SSG uses the
credentials provided to authenticate to the database and execute SQL statements to compute the required values.
Computed values are recorded in an auto-generated src-stats.yaml file, demonstrated in listing 7. These
can be can be referenced by the Python data generators. Listing 8 shows the Python provider function that
generates a distribution of values to meet the statistical properties computed and recorded in ‘config.yaml‘ and
‘src-stats.yaml‘.
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src-stats:
- name: age_stats
query: >
SELECT AVG(age)::float AS mean, STDDEV(age)::float AS std_dev
FROM users
WHERE age <= 100

tables:
users:

row_generators:
- name: airbnb_generators.user_age_provider
kwargs:
query_results: SRC_STATS["age_stats"]

columns_assigned: age

Listing 6: A section of the config.yaml file that shows an SQL statement to compute mean and average of column
‘users.age‘. Results are stored as ‘age_stats‘.

age_stats:
- mean: 36.54434029695572
std_dev: 11.708339792587486

Listing 7: Example of mean and standard deviation values computed from ‘users.age‘ column

import random
def user_age_provider(query_results):

mean: float = query_results[0]["mean"]
std_dev: float = query_results[0]["std_dev"]
return random.gauss(mean, std_dev)

Listing 8: A provider function

The primary reason for extracting information using SQL statements and documenting it in ‘config.yaml‘
is to maximise transparency for auditing purposes. Similar to vocabularies, users can audit information that is
disclosed about real data by reviewing the human-readable ‘config.yaml‘ and ‘src-stats.yaml‘ files. Multiple
properties, such as marginals, percentiles, and skewness, can be used simultaneously to enhance the fidelity
of synthetic data. These computations can be resource-intensive with large datasets. To address this, the SSG
generator process is modularised: properties are computed and stored once, allowing subsequent generators to
reference these values, which will be reliable provided the real dataset has not changed significantly.

Introduce differential privacy into aggregate statistics: Differential privacy is arguably the most popular
technique for providing privacy guarantees on SDGs. Let us imagine two datasets:

• A synthetic dataset B generated with information of person X .
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• A synthetic dataset A generated without information of person X .

If both datasets were generated using a differentially-private mechanism, performing a query on dataset A
should provide the same, or almost the same, result as performing the same query on dataset B [19]. Differentially
private mechanisms hide the presence or absence of person X —or one any individual— in the dataset, which
implies strong protection of their privacy [21]. To accomplish this, these mechanisms inject random noise to the
synthetic data. The amount of noise is a function of the privacy parameter epsilon " that measures how similar the
datasets A and B are required to be. " needs to be chosen carefully to provide the required privacy guarantee.

One of the most common fundamental techniques for generating synthetic data in a differentially private
involved 3 steps: 1) select, or choose, some queries over the original data, 2) measure, or execute, those queries
using a differentially private mechanism, and 3) generate synthetic data using these measurements [20].

SQLSYNTHGEN enables the select and measure steps by supporting differentially private SQL queries in
‘src-stats.yaml‘ (Listing 9).

src-stats:
- name: age_stats

dp-query: >
SELECT AVG(age) AS mean, STDDEV(age) AS std_dev
FROM query_result

epsilon: 0.5
delta: 0.000001
snsql-metadata:
max_ids: 1
id:
type: string
private_id: true

age:
type: float
lower: 0
upper: 100

Listing 9: A differentially-private SQL query.

Internally, SQLSYNTHGEN uses SMARTNOISE SQL [1] to execute differentially private queries. As seen in
Listing 9, SMARTNOISE SQL needs additional information besides the SQL query for applying a differentially
private mechanism, including the privacy parameter epsilon ". Regarding the final generate step, the query results
are made available to provider functions —demonstrated in Listing 8— so SQLSYNTHGEN users can use these
measures for data generation.

5 Discussion

The proliferation of research on synthetic data over the past five years underscores its significance in addressing
data scarcity and sensitivity issues in machine learning. With 25,600 papers published from 2023 to mid-2024
alone, these studies span diverse domains, including computer vision, natural language processing, and healthcare
[11], primarily focusing on the generation, evaluation, and application of synthetic data, particularly using GANs
[3]. Originally research-driven, these methods are now being translated into practical applications, revealing new
challenges and considerations [18].
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Our development of a Synthetic Data Generator (SDG) for sharing sensitive hospital information has
highlighted these key challenges:

There is a lack of generators developed for relational data: The development of synthetic generators
commonly explore image, text data, or tabular data. Our experience is that synthetic data generators overlook
the relational data format, possibly because of the foreign key constraints satisfaction criteria. This is a problem
because hospital datasets are often stored in relational formats.

There is a lack of explainability in privacy preserving mechanisms: Explainability in synthetic data
generators is a crucial issue for custodians of sensitive data, especially in hospitals. The lack of explainability
undermines discussions between hospital data stakeholders, including both staff and patients. One discussion
impacted by the lack of explainability is that of maintaining a balance between privacy guarantees and the utility
of the synthetic data. While ensuring that synthetic data generators do not leak sensitive information is essential,
explaining the privacy preservation mechanisms involved can be complex. Furthermore, the processes used by
generators based on GANs and deep neural networks are opaque, making it difficult to assure stakeholders of
the synthetic data’s reliability and safety. Finally, both generators and metrics (e.g., fidelity, diversity) used to
evaluate the quality of synthetic data are not easily interpretable.

We specifically addressed this explainability challenge in a series of workshops with patient and public
involvement, and using SSG as an exemplar. There were two key messages from our stakeholders. Firstly, they
were reassured to understand the distinction in the source of the data. Anonymised data is processed from the
original data whereas synthetic data is generated de novo. Secondly, they valued using a language that talked
about sharing information (with synthetic data) in contrast to sharing data (with anonymisation). There was
recognition that information is already shared and tools like SSG are trustworthy because they are transparent
about what information is used to generate the synthetic data.

Despite its design to address these challenges, our SQLSYNTHGEN tool has several limitations:

Lack of Autonomous Model Discovery: Unlike GANs-based [3] or Bayesian-based [8] generators, SSG
cannot autonomously discover underlying models or relationships. Users must predetermine the models, limiting
the tool’s adaptability and the transferability of algorithms trained on its outputs to real-world data.

Need to Ensure Security: The design of SSG includes copying vocabulary tables in their entirety and executing
SQL statements on real data based on user configurations, makes it a powerful tool. However, these features
introduce risks of user errors. Accidental copying tables with sensitive data could lead to severe data breeches.
Executing SQL statements without proper access controls could damage real patient information.

Lack of Evaluation: SSG allows users to selectively disclose information used to shape synthetic data outputs
but it lacks an integrated evaluation mechanism. Since each piece of information is independently disclosed, there
is an opportunity here to iteratively fine-tune the balance between fidelity and privacy by combining SSG with an
evaluation tool such as TAPAS [15].

6 Conclusion

The number of research papers on synthetic data has surged significantly, indicating its growing importance in
addressing data scarcity and sensitivity issues in machine learning. There is a notable gap in the development of
synthetic data generators specifically for relational data structures. Most exciting developments on generators
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focus on time-series, graph, audio, imaging or tabular data structures, often neglecting the complexities associated
with relational databases, such as foreign key constraints. This limitation is significant because many practical
applications, particularly in healthcare, rely heavily on relational data formats.

Aside from the oversight in provision for relational data, the lack of explainability in privacy-preserving
mechanisms is a critical challenge. For synthetic data to be trusted and widely adopted, especially in sensitive
domains like healthcare, stakeholders need to understand how privacy is preserved. The opacity of deep learning
models and GANs currently used in generating synthetic data makes it difficult to provide this assurance, which
can hinder stakeholder discussions and acceptance.

The direction for future work on the application of synthetic data generation in sensitive data context is clear:

1. Development of Relational Data Generators: There is a clear need for synthetic data generators that can
handle relational data formats effectively, addressing issues like foreign key constraints.

2. Improving Explainability: Enhancing the explainability of synthetic data generation processes will be
crucial for gaining stakeholder trust and facilitating broader adoption by custodians of sensitive data.

3. Integrated Evaluation Frameworks: Combining synthetic data generators with comprehensive evaluation
or attack frameworks can help explainability as well as ensuring an optimal balance between fidelity and
privacy.

By addressing these challenges and focusing on these future directions, the practical application of synthetic
data can be significantly enhanced, making it a more viable solution for real-world problems, particularly in
sensitive domains such as healthcare.
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Abstract

Time series are extensively used in finance, healthcare, IoT, and smart cities. However, in many applica-
tions, time series often contain personal information, so releasing them publicly can pose privacy risks.
Differential privacy has recently emerged as the state-of-the-art approach for safeguarding data privacy.
Unfortunately, adapting differential privacy to time series presents unique challenges compared to other
data types due to their large volume, temporal correlations, and dynamic nature. To address users’
demands for time series analysis while simultaneously protecting privacy, a significant body of research
works have been proposed. The aim of this survey is to summarize these works and provide a holistic view
of the DP mechanisms under differential privacy. Furthermore, we will discuss the challenges associated
with time series release, especially in one of its most prevalent applications — location based services.
Finally, we will explore open challenges and shed light on directions for future research.

1 Introduction

Time series are being generated on a large scale across a wide range of application domains, such as IoT,
finance, healthcare monitoring, operational event logs, and smart home sensors. For example, smart home
devices such as thermostats and humidity sensors generate continuous time series on environmental conditions,
tracking temperature fluctuations and moisture levels to optimize home climate control based on user activities.
Additionally, trajectories represent a unique type of time series that contain both spatial and temporal information,
such as GPS data tracking the movement of vehicles or individuals. To facilitate the analysis of time series and
support various downstream tasks, numerous methods have been proposed, ranging from traditional statistical
techniques, such as ARIMA [1] and exponential smoothing [2], to advanced machine learning models, such
as long short-term memory (LSTM) networks [3]. However, a key issue in these time series applications is
privacy. Since many data sources such as smart home sensors and location trajectories contain individuals’
private information, the direct release or analysis of such time series can lead to significant privacy violations.
Consequently, developing privacy-preserving mechanisms for time series analysis is essential.

Differential privacy (DP) [4] is a paradigm of privacy-preserving mechanisms that provides a theoretical
privacy guarantee and has been further extended to the local setting to accommodate more general scenarios [5, 6].
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copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

* Dr. Qingqing Ye is the corresponding author.

67



Numerous DP mechanisms have been developed to support various queries [7, 8, 9], including estimating statistics
such as frequency [7, 10] and mean [11], ensuring that the privacy of individuals in the dataset is protected
even when aggregate information is released. Recently, research has shifted towards more complex applications,
such as graph data mining [12] and machine learning problems [13]. Techniques such as differentially private
stochastic gradient descent (DP-SGD) [14, 15] have been developed to train machine learning models with
differential privacy guarantees, enabling the use of private datasets for tasks like classification and prediction
without compromising individuals’ privacy. It is worth noting that differential privacy is also being explored
in the context of time series [16, 17, 19]. This involves developing new mechanisms capable of handling the
features of time series, ensuring that privacy is maintained.

Nevertheless, time series data present more challenges compared to other types of data due to their large
volume, temporal correlation, and dynamic nature. The large volume, in particular, poses significant issues for
privacy models, as protecting every element of a time series would degrade utility. To address this challenge,
three privacy levels have been proposed [19]: event-level privacy, which protects a single element in the time
series; w-event level privacy, which provides a privacy guarantee for w consecutive elements; and user-level
privacy, which protects all elements associated with an individual. To enhance utility, sampling and filtering-based
mechanisms [18], as well as privacy budget allocation strategies [19], have been suggested. Additionally, the
correlations between elements can lead to privacy breaches [20], necessitating countermeasures to confine these
correlations [21, 22]. Given numerous research efforts in this field, a taxonomy is necessary to summarize the
existing works and identify areas for future research.

However, to the best of our knowledge, there is no up-to-date and comprehensive survey specifically for time
series under differential privacy. Dwork and Roth [23] coauthored a comprehensive survey on differential privacy,
which seems outdated now in terms of state-of-the-art techniques. More recently, there are two surveys from Zhao
et al. [24, 25] focusing on the concepts and applications of differential privacy, but they do not extensively cover
time series. Miranda-Pascual et al. [26] conducted a survey on trajectory data publication, which mainly talks
about downstream tasks with little emphasis on privacy preservation. The most relevant survey on time series
under differential privacy is by Katsomallos et al. [27]. However, since it was published in 2019, the paper does
not reflect current technical trends, such as LDP, which now accounts for a crucial portion of privacy-preserving
time series research.

In this survey, we aim to provide a comprehensive review of research works on time series under differential
privacy. The main contents and paper organization are summarized as follows.

• Section 2: Fundamental concepts of time series and differential privacy. We first introduce the basic
concepts of time series and differential privacy, including the definitions of differential privacy and the
composition theorems. Additionally, we elucidate the three privacy levels specifically defined within the
context of time series.

• Section 3: Count queries and corresponding advanced queries. We begin with an introduction to count
queries, and then present two core techniques for their realization: the binary tree-based mechanism [17]
and the matrix mechanism [28]. Following this, we discuss advanced queries, such as frequency and
histogram estimations, which are based on count queries. Finally, we explore downstream applications
derived from count queries.

• Section 4: Sum/mean queries and downstream applications. We list sum and mean queries together due
to their inherent correlation. Following the introduction of sum and mean queries, we present the developed
mechanisms for these queries. Subsequently, we review the literature on downstream applications.

• Section 5: Time series release. We classify the literature into two categories: methods based on value
perturbation and methods based on synthesis. For value perturbation-based methods, we first review
privacy budget allocation strategies and then present the optimization strategies to improve utility. We
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then introduce the synthesis-based methods, including those based on statistics and generative models.
Additionally, we discuss the privacy models of the time series mechanisms and review a line of work that
perturbs the temporal order rather than the values to accommodate value-critical scenarios.

• Section 6: Location based services and trajectory release. Given that location based services are common
applications under differential privacy, we dedicate a section to discussing the relevant literature. To improve
the utility, geo-indistinguishability [29] was proposed to constrain the perturbation domain. Moreover, due
to the apparent temporal correlation, the relationships between locations need to be considered. Finally, we
present mechanisms designed for trajectory release based on perturbation and synthesis.

• Section 7: Open challenges. We present a few future research directions for DP-based time series in terms
of privacy model, potential correlation-based attacks, complex data type, and learning based problems.

2 Preliminaries

In this section, we first introduce the basic concepts of differential privacy and differential privacy for time series.
As for the latter, we mainly focus on different privacy levels of DP mechanisms used to analyze time series.

2.1 Differential Privacy

Differential privacy is a rigorous and practical formalization that provides a quantitative measure of privacy
leakage for an individual when participating in a database [4]. In the nearly 20 years since its inception, differential
privacy has become widely adopted as a privacy-preserving framework. Many companies, such as Microsoft [30],
Google [31], and Apple [32], utilize differential privacy to collect users’ data while providing privacy guarantees.
Additionally, the US Census Bureau adopted differential privacy for the 2020 decennial census [33].

Based on utilization scenarios, differential privacy can be broadly categorized into centralized differential
privacy (CDP) and local differential privacy (LDP) [6]. Centralized differential privacy requires a trusted third
party to act as the data curator, collecting data from users and releasing the processed results to the public. The
trusted third party is assumed to safeguard private information and not disclose it. However, in many situations,
such a trusted third party may not exist. Consequently, local differential privacy has been proposed, allowing
data to be sanitized locally before being uploaded. These two different scenarios are depicted in Fig 1, and their
formal definitions are provided below.

Untrusted Third PartyTrusted Third Party

Noised DataOriginal Data

Noised Result Result

Centralized Differential Privacy Local Differential Privacy

Figure 1: An illustration for centralized differential privacy and local differential privacy. In the context of
centralized differential privacy, a trusted third party collects original data from users and adds noise to the
processed result. In contrast, under local differential privacy, users add noise to their data locally before uploading
the noised data to the untrusted third party.
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2.1.1 Centralized Differential Privacy (CDP)

Before delving into the formal definition of centralized differential privacy, it is important to first elucidate some
underlying concepts. We start with the definition of neighboring datasets. [Neighboring Datasets [23, 24, 34]]
Two datasets D and D0 are neighboring if they only differ by only one record. In Unbounded CDP, D can be
obtained from D0 by adding or removing one record, whereas in Bounded DP, D can be obtained from D0 by
replacing one record.

[(✏, �)-Centralized Differential Privacy ((✏, �)-CDP) [23, 24, 34]] A randomized mechanism M satisfies
(✏, �)-centralized differential privacy if and only if for any two neighboring datasets D, D0, and any possible
output R ✓ Range(M), there is

Pr[M(D) = R]  e✏ · Pr[M(D0) = R] + �.

When � = 0, M satisfies ✏-centralized differential privacy.

2.1.2 Local Differential Privacy (LDP)

As we aforementioned, local differential privacy is adopted in a local mode. Compared with CDP, LDP requires
more added noise to ensure privacy but does not need a trusted third party. Therefore, neighboring datasets in LDP
can be any input from users. [(✏, �)-local differential privacy ((✏, �)-LDP) [24, 34]] A randomized mechanism A

satisfies (✏, �)-local differential privacy if and only if for any inputs v, v0, and any possible output r ✓ Range(A),
there is

Pr[A(v) = r]  e✏ · Pr[A(v0) = r] + �.

When � = 0, A satisfies ✏-local differential privacy which is also called pure-LDP [7].

2.1.3 Composition Theorems

Under differential privacy (both CDP and LDP), there are two useful composition theorems [34]: sequential
composition and parallel composition.

[Sequential Composition [34]] Given a dataset x, and two mechanisms M1, M2 satisfy (✏1, �1)-DP and
(✏2, �2)-DP, respectively, the mechanism M = (M1(x),M2(x)) satisfies (✏1 + ✏2, �1 + �2)-DP.

[Parallel Composition [34]] Given a mechanism M satisfy (✏, �)-DP, and the k disjoint separations of the
dataset x (i.e., x1 [ x2 [ · · · [ xk = x), the release M(x1),M(x2), · · · ,M(xk) satisfies (✏, �)-DP.

2.1.4 Pufferfish Privacy

When providing privacy guarantees for correlated time series, differential privacy faces the challenge of excessive
noise addition. Specifically, group differential privacy [23] necessitates adding O(T ) noise for a correlated time
series with length T , leading to significant utility degradation. To address correlated data, pufferfish privacy, a
generalized version of differential privacy, was proposed [35]. In addition to the privacy budget ✏, pufferfish
privacy requires three additional parameters [36]: a set of secrets S representing users’ private data, a set of secret
pairs Q ✓ S ⇥ S that must remain indistinguishable, and a class of data distribution ⇥ indicating the correlation.
[✏-Pufferfish Privacy [36]] Give the parameters S, Q, and ⇥, a randomized mechanism M satisfies ✏-pufferfish
privacy if 8✓ 2 ⇥ with X ⇠ ✓, 8(si, sj) 2 Q, 8w 2 Range(M), there is

Pr(M(X) = w|si, ✓)  e✏ · Pr(M(X) = w|sj , ✓),

when Pr[si|✓] 6= 0 and Pr[sj|✓] 6= 0.
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2.1.5 Differential Privacy Mechanisms

Given that noise addition from a distribution is a fundamental implementation of differential privacy, this technique
is extensively used for statistical estimation. Numerous applications rely on count queries, including frequency
estimation, histogram estimation, and top-k item mining. Korolova et al. [37] introduced a mechanism for
releasing search log histograms by adding Laplace noise. Xiao et al. [38] proposed a wavelet-based mechanism
to release range count queries. In the context of LDP, Wang et al. [7] reviewed existing mechanisms for frequency
estimation and introduced two optimized approaches. Li et al. [11] developed a mechanism for estimating
numerical data distributions. Wang et al. [9] proposed a prefix extension mechanism to identify the top-k frequent
items within a large domain. Beyond count queries, many applications focus on sum or mean queries. Wang et al.
[39] devised a mechanism with optimized perturbation probability for numerical data under LDP. Xue et al. [40]
introduced a mean estimation mechanism that supports personalized privacy budgets for each user. Zhou et al.
[41] developed a mechanism to estimate the mean of sparse vectors. To incorporate data knowledge, Wei et al.
[42] proposed an optimized mean estimation mechanism based on data distribution estimated in the initial phase
under LDP. Beyond statistical estimations, data release for downstream tasks is another critical application. Ye et
al. [43] proposed a mechanism to release edge information for clustering coefficient estimation. Ma et al. [44]
developed a mechanism to construct decision trees under LDP, enhancing utility through the adoption of public
data. Additionally, since the introduction of Differentially Private Stochastic Gradient Descent (DP-SGD) [14],
numerous privacy-preserving learning-based mechanisms have been proposed under differential privacy.

Across the various scenarios, time series represent a unique research field due to their sequential nature and
temporal dependencies. This adds complexity to ensuring differential privacy while maintaining data utility. In
the following sections, we will introduce the concepts of time series under differential privacy.

2.2 Differential Privacy for Time Series

In this subsection, we will introduce the concept of time series and the specific definitions of differential privacy
for time series, including various privacy levels. Additionally, we will provide a concise roadmap of this survey.

2.2.1 Time Series

In general, a time series is regarded an ordered sequence of values with finite length [45], while data streams are
continuously generated sequences with infinite length [46]. For ease of presentation, both are referred to as “time
series" in this paper, encompassing both finite and infinite settings.

[Time Series [45, 46, 47]] A time series S is an ordered sequences of values, i.e., S = {St1 , St2 , St3 , · · · }.
For simplicity, the timestamp is usually omitted, and a time series is denoted as S = {S1, S2, S3, · · · }. If
any element Si 2 R, the time series is called a univariate infinite time series. Otherwise, the time series is a
multivariate infinite time series if Si 2 Rd, namely, each element is with d dimensions.

Note that if a time series has a finite length, it is called a finite time series. Otherwise, it is referred to as an
infinite time series.

2.2.2 Privacy Levels

In the context of time series, three major privacy levels have been proposed based on the privacy guarantees.
Event-level privacy only protects a single element within a time series, w-event level privacy provides a privacy
guarantee for a sequence of w consecutive elements, and user-level privacy protects the entire time series. The
corresponding definitions are provided below, with illustrations depicted in Fig. 2.

[Event-Level Adjacent Time Series [19]] For two time series S and S0, they are event-level adjacent if

1) There exists a timestamp i, Si 6= S0
i
;
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2) For any other timestamp j, Sj = S0
j
.

[Event-Level Privacy [19]] A randomized mechanism M satisfies (✏, �)-event-level differential privacy if and
only if for any two event-level adjacent time series S, S0, and any possible output R ✓ Range(M), there is

Pr[M(S) = R]  e✏ · Pr[M(S0) = R] + �.

When � = 0, M satisfies ✏-event-level differential privacy.
[w-Event Level Adjacent Time Series [19]] For two time series S and S0, they are w-event level adjacent if

1) There exists w consecutive timestamp {k, k+1, · · · , k+w�1} and for any i 2 {k, k+1, · · · , k+w�1},
Si 6= S0

i
;

2) For any other timestamp j, Sj = S0
j
.

[w-Event Level Privacy] A randomized mechanism M satisfies (✏, �)-w-event level differential privacy if and
only if for any two w-event level adjacent time series S, S0, and any possible output R ✓ Range(M), there is

Pr[M(S) = R]  e✏ · Pr[M(S0) = R] + �.

When � = 0, M satisfies ✏-w-event level differential privacy.
[User-Level Adjacent Time Series] For two time series S and S0, they are user-level adjacent if for all

timestamps tui
= {t1, t2, · · · , tk} from any user ui, there is Sj 6= S0

j
, 8j 2 tui

. Note that tui
can be infinite for

infinite time series.
[User-Level Privacy] A randomized mechanism M satisfies (✏, �)-user-level differential privacy if and only if

for any two user-level adjacent time series S, S0, and any possible output R ✓ Range(M), there is

Pr[M(S) = R]  e✏ · Pr[M(S0) = R] + �.

When � = 0, M satisfies ✏-user-level differential privacy.

Event-Level Privacy 𝒘-Event Level Privacy User-Level Privacy (CDP)

𝐷

𝐷′

…

…

Only one element is different

𝐷

𝐷′

…

…

𝒘 elements are different

𝐷

𝐷′

…

…
All elements from any user 

are different

𝐷

𝐷′

…

…
All elements from any user 

are different

User-Level Privacy (LDP)

Figure 2: An illustration for privacy levels. In terms of event-level privacy, there is only one element different in
the neighboring datasets. While for the w-event level privacy, there are w consecutive elements that differ in the
neighboring datasets. For user-level privacy, all the elements from any user can be different in the neighboring
datasets. Note that under LDP, the two user-level adjacent time series are from different users, which means the
elements could be entirely different.

Obviously, event-level privacy provides the lowest level of privacy but requires the least amount of noise.
Conversely, user-level privacy guarantees the strongest privacy but necessitates the largest amount of noise, which
can significantly degrade utility.
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2.3 Roadmap of This Survey

Since count queries and sum/mean queries are fundamental statistical operations, many advanced queries and
downstream applications are derived from them. This survey begins with a review on count queries, followed by
a discussion of sum/mean queries. Each subsection on these queries starts with an introduction to the concepts,
followed by a review of their downstream applications. Subsequently, we introduce data release mechanisms
designed to publicize data for downstream tasks. Given the popularity of location based services in time series
applications, we dedicate a separate section to trajectories, reviewing the literature on location perturbation,
temporal correlation issues, and trajectory release. To suggest future directions, we propose open challenges
related to privacy models, temporal correlation-based attacks, complex data types, and learning-based problems.
The roadmap for this survey is illustrated in Fig. 3.
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Figure 3: Roadmap of this survey.

3 Differential Privacy for Count Queries

In this section, we introduce the concept of count queries within the framework of differential privacy, a topic that
has garnered substantial research attention.

3.1 Essential Information of Count Queries

For a time series S comprising categorical values with length t (t can be 1), a count query can be formally
expressed as follow:

Fcnt(v, S) =
tX

i=1

1v(xi),

73



where 1v(xi) denotes the indicator function, defined below:

1v(xi) :=

(
1 if xi = v,

0 if xi 6= v.

Count queries are fundamental in the context of differential privacy, as they form the basis for other tasks, such
as frequency and histogram estimations. Compared with other scenarios, applying count queries to time series
presents unique challenges. Time series arrives as a continuous stream, necessitating the injection of a larger
amount of noise to provide the desired privacy guarantees due to continuous release of query results.

3.2 Core Techniques in Count Queries

For continuously releasing a finite time series, a naive approach is to release each element with the entire privacy
budget ✏ [17]. However, such a method would introduce substantial additive noise, leading to low utility with an
error bound of O(

p
T

✏
). Dwork et al. [16] proposed the first work to handle binary time series under event-level

CDP with a logarithm error bound. However, this mechanism is limited to time series with finite length T .
Subsequently, Chan et al. [17] improved the mechanism to support the release of infinite binary time series. Both
of these works employ a tree-based method to enhance utility. The binary tree mechanism [17], illustrated in
Fig. 4, ensures that each release influences at most one node at each level for finite time series. Consequently,
each node only needs to add noise corresponding to the privacy budget ✏

(log T+1) . To guarantee a logarithm error
bound for infinite time series [17, 48], more binary trees will be construed. Since the update of one element only
influences one tree, each tree will be allocated an entire privacy budget. More details can be referred to Fig. 4.

[1] [2] [3] [4]

[1, 2] [3, 4]

[1, 4]

[5] [6] [7] [8]

[5, 6] [7, 8]

[5, 8]
[1, 8]

Finite Time Series Infinite Time Series

[4] [5] [6] [7]

[4, 5] [6, 7]

[4, 7]

[2] [3]

[2, 3]

[8] [9] [10] [11]

[8, 9] [10, 11]

[12] [13] [14] [15]

[12, 15]

[1]
…

[12, 13] [14, 15]

[8, 11]

[8, 15]

Figure 4: Here is an illustration of binary tree mechanism for time series count query under event-level CDP. For
finite time series [1, 8] (i.e., T = 8), the count query result for the range [1, 6] is specified as F̂cnt(v, [1, 6]) =
Fcnt(v, [1, 4]) + Fcnt(v, [5, 6]) + 2Lap( log T+1

✏
), where Lap(·) is drawn from the Laplace distribution with

zero mean. For an infinite time series, multiple binary trees will be constructed. Since a change in any single
element only influences one tree, each tree will be allocated an entire privacy budget. The overall privacy budget
consumption of the mechanism is ✏, which can be calculated using parallel composition [34]. For example,
F̂cnt(v, [1, 12]) = F̂cnt(v, [1, 1]) + F̂cnt(v, [2, 3]) + F̂cnt(v, [4, 7]) + F̂cnt(v, [8, 11]) + F̂cnt(v, [12, 12]).

In addition to the tree-based structure, another approach to handle time series under differential privacy is
based on the matrix mechanism [28, 49]. Without privacy concerns, a count query M for binary time series x
with length n can be specified as

M(x) = Mx =

2

6664

1 0 0 · · ·

1 1 0 · · ·

1 1 1 · · ·

...
...

...
. . .

3

7775
x =

2

6664

x1
x1 + x2

...P
n

1 xi

3

7775
.

Based on this formulation, the matrix mechanism is employed to release data streams under (✏, �)-DP for
further error reduction. Given a workload matrix M , the strategy matrix R and reconstruction matrix L are first
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constructed, denoted as M = LR. The strategy matrix R is utilized to pre-process the input x. After adding a
Gaussian noise vector z to the processed term Rx, a post-processing step L is applied. In summary, for an input
time series x 2 Rn, the matrix mechanism is denoted as

ML,R(x) = L(Rx+ z),

where z ⇠ N(0, kRk
2
1!2C

2
✏,�

I) to ensure (✏, �)-DP, kRk
2
1!2 is the maximum of the 2-norm of the columns of

the strategy matrix R. The additive mean squared error err
`22

of the matrix mechanism is

err
`22
(ML,R,M, n) = max

x2Rn
E

1

n
kML,R(x)�M(x)k22

�
=

1

n
trace(LTL)kRk

2
1!2C

2
✏,�.

Hence, the matrix mechanism can be regarded as an optimization problem. For more comprehensive information,
we recommend reading the work by Henzinger et al. [49].

3.3 Advanced Queries Based on Count Queries

Query Ref. Type Privacy Level Method Primitive Error Bound

Binary Counting

[16] finite event-level CDP binary tree mechanism O( 1
✏
· (log1.5 t))

[17] infinite event-level CDP binary tree mechanism O( 1
✏
· (log1.5 t))

[48] infinite user-level CDP binary tree mechanism O((Dt)
✏

· log1.5 t · log1+✓((Dt)))

[49] infinite event-level (✏, �)-CDP matrix mechanism O( 4
✏2

( 49 + ln( 1
�

q
2
⇡
))(1 + ln(4n/5))

⇡
)2)

Frequency Estimation
[50] finite event-level zCDP multi-branch tree O(⌧ log T

p
2(s+ 1)(t� 1) log(6T/�))

[48] infinite user-level CDP binary tree mechanism O((Dt)
✏✓

· log1+✓((Dt))) · log(tR/�)

Distinct Elements Counting [51] finite user-level CDP bipartite maximum matching O( `⇤
✏
log( `max

�
)

Table 5: A brief summary of count-based queries, where t indicates the current timestamp, T is the length of
the time series, D represents the dataset, (Dt) denotes the maximum number of elements contributed by any
user, ⌧ is the privacy level of zero-concentrated differential privacy (zCDP) [52], ✓ is any small constant, ` is the
sensitivity (`⇤ represents the bounded sensitivity), and � is the confidence parameter. 1

Based on basic binary count queries, numerous other types of count queries have been proposed, including
frequency estimation, frequency moment estimation, and distinct element counting. A brief summary of the
literature is presented in Table 5. Cardoso et al. [50] introduced differentially private histograms in the continual
observation model with an unknown domain. To facilitate practical implementation, the authors propose a
mechanism that continually returns a noisy histogram by aggregating counts at each round and adding noise to
them. Dong et al. [48] proposed a mechanism to estimate frequency under user-level CDP. Since a user may
contribute multiple elements to the time series, the mechanism first estimates each user’s contribution and then
applies a truncation process to retain only a limited number of elements per user, marking subsequent items as
invalid. Furthermore, the proposed approach reduces the domain of elements to further enhance the utility of
frequency estimates. The work by [51] proposes a method to estimate the number of distinct elements in a time
series, and obtain the bounds on the true number of unique elements. The paper models the dataset as a bipartite
graph and reduces the unique counting process to a max-flow problem, allowing the utilization of standard
algorithms for bipartite maximum matching to solve unique counting problem. Furthermore, Kalemaj et al. [53]
proposed a mechanism that achieves a logarithmic error bound for releasing distinct elements with insertions
and deletions in a finite time series, under item-level differential privacy, which considers neighboring datasets

1The error bound of [49] in the table is the L2 norm error.
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differing by more than one element deletion. Epasto et al. [54] presented the first work to release differentially
private `p frequency moments, denoted as

P
i
fp

i
. Notably, when p = 1, the frequency moment reduces to distinct

counting. Practically, Zhang et al. [55] propose DP-SQLP, the first differentially private stream aggregation
processing system, which has been implemented for Google Shopping and is planned for future application to
Google Trends.

3.4 Downstream Applications Based on Count Queries

The application of differential privacy in count queries primarily involves releasing histograms and monitoring
anomalies. Recent research [56] has demonstrated that employing subsampling and filtering techniques can
reduce the sensitivity of real-time series, thereby enhancing the utility of differentially private mechanisms applied
to such data. To improve utility, these mechanisms [18, 57, 58, 59] typically employ sampling to reduce the
number of elements needing protection and filtering to mitigate the impact of added noise. Additionally, some
mechanisms leverage pufferfish privacy [60, 61], which introduces less noise while achieving similar privacy
guarantees. The details of these mechanisms are as follows. Fan et al. [18] introduced a mechanism for collecting
count query results under the FAST framework, which employs filtering and adaptive sampling techniques to
satisfy CDP. In a separate work, Fan et al. [57] applied the FAST framework for anomaly detection, specifically
for detecting epidemic outbreaks. Li et al. [58] proposed a mechanism that only releases the histogram when it
significantly differs from previous values, with the threshold adjusted according to feedback from the control
system. Wang et al. [59] proposed a framework called SecWeb, following the idea of FAST under w-event level
differential privacy. In addition to adaptive sampling and filtering, SecWeb incorporates dynamic grouping and
injects Laplace noise based on the groups rather than individual elements. Wang et al. [8] proposed the first
mechanism to achieve almost local differential privacy (LDP) under the w-event privacy model. Their approach
involves employing multiple agents to collect data from users and release sanitized data to an untrusted third
party. Liang et al. [60] introduced a mechanism for releasing web browsing histograms under the pufferfish
privacy framework, which is beneficial for perturbing correlated data. Their proposed mechanism includes a
model to quantify privacy leakage arising from temporal correlations and presents three strategies to enhance
the model’s efficiency: bounding the number of secret pairs, limiting the session length, and avoiding repetitive
computations. Ding et al. [61] proposed a mechanism within the framework of pufferfish privacy to make the
time and occurrence of an element indistinguishable.

Based on count queries, mechanisms proposed under the local differential privacy (LDP) framework are
commonly used to estimate statistics. To conserve the privacy budget under LDP, a memoization technique [62]
was proposed, which stores sanitized versions of all values for further release. [63] improved upon memoization
by incorporating hashing. However, memoization may leak privacy in the presence of a knowledgeable adversary
who can potentially derive changes without prior knowledge. Xue et al. [64] introduced a difference tree-based
mechanism that applies fresh perturbation at each timestamp under user-level privacy, enabling the aggregation of
statistics without violating changing points. Additionally, [65] proposed a method to reduce the item domain,
thereby enhancing utility. Beyond memoization based methods, He et al. [66] proposed a privacy budget allocation
strategy to enhance the utility of frequency release under w-event level condensed local differential privacy
(CLDP) [67]. In their approach, the allocated privacy budget depends on the predicted elements, determined via a
proportional-integral-derivative (PID) controller. In other applications, Feng et al. [68] proposed a mechanism to
estimate the distribution of infinite time series while satisfying user-level differential privacy. Their approach
achieves reasonable utility by bounding privacy leakage and optimizing the allocation of the privacy budget. Li et
al. [69] introduced the first work on collecting the top-k items from a time series while satisfying event-level
local differential privacy and adhering to a bounded memory space constraint. Their proposed mechanisms are
based on the HeavyGuardian data structure, which maintains the frequently occurring elements while evicting the
infrequent ones. Additionally, Gu et al. [70] introduced a mechanism under pattern-level privacy, which is similar
to w-event level privacy but does not require successions. To privately release critical patterns (i.e., subsequences
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of elements in a time series), their mechanism perturbs the existence of each element, thereby providing a privacy
guarantee.

4 Differential Privacy for Sum/Mean Queries

This section provides a comprehensive review of the literature concerning sum and mean queries within the
differential privacy framework. It explores the concept of sum/mean queries, the basic queries, and the downstream
applications.

4.1 Essential Information of Sum/Mean Queries

While preserving the occurrence of an element in a time series is important, maintaining the accuracy of the
element’s value is equally crucial. To ensure precise results for queries such as sum or mean, small deviations in
the perturbation process are necessary. Since the mean is directly correlated to the sum, we discuss sum and mean
queries together.

The sum query can be denoted as

Fsum(T, S) =
TX

i=1

Si,

where T represents the timestamp for sum release and S is the corresponding time Series. The range query on
sum is

Frsum((T1, T2), S) =
T2X

i=T1

Si,

where (T1, T2) represents the query range, and S is the corresponding time Series.
As for the mean query, it can be denoted as

Fmean(T, S) =
1

T

TX

i=1

Si,

where T represents the timestamp for mean release, and S is the corresponding time Series. Another common
mean query is to release the mean at a timestamp from users’ time series,

Frtm(t, S) =
1

n

nX

i=1

Sui

t
,

where Sui

t
represents the value at timestamp t from the user ui, and n is the number of users.

4.2 Basic Sum/Mean Queries

There have proposed a line of work to release sum/mean queries under differential privacy, with a brief summary
provided in Table 6. The pioneering work by Bolot et al. [71] was the first to study the continual decaying
sums problem. They explored three variants: the window sum (range sum query), which releases the sum
of W consecutive elements; the exponential decay sum, which releases the sum of elements weighted by an
exponential function; and the polynomial sum, which releases the sum of elements weighted by a polynomial
function. Henzinger et al. [72] also investigated the continual decaying sum problem. Their work introduced the
use of the Gaussian mechanism for adding noise and derived tighter error bounds. In contrast, Dong et al. [48]

2The error bound of [72] in the table is the L2 norm error.
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Query Ref. Type Privacy Level Method Primitive Error Bound

Sum [48] infinite user-level CDP binary tree mechanism O('(Dt)
✏✓

· log1.5(tR) · log1+✓('(Dt)) · log(1/�))

Window Sum
[71] finite event-level CDP binary tree mechanism O( 1

✏
logW 1

�
)

[72] finite event-level (✏, �)-CDP matrix mechanism O(2�2
✏,�

�2(1 + logW

⇡
+ 2

W
)2)

Exponential Decay Sum
[71] finite event-level CDP binary tree mechanism O( 1

✏
log ↵

1�↵

1
�
)

[72] finite event-level (✏, �)-CDP matrix mechanism O(�2
✏,�

�2(1 + 1
⇡
ST,2↵)2)

Polynomial Decay Sum
[71] finite event-level CDP binary tree mechanism ⌦(1� ✏

c�1

logc�1(1/�)
)

[72] finite event-level (✏, �)-CDP matrix mechanism O(�2
✏,�

�2(1 +
HT,2c�1

4 )2)

Table 6: The table provides a brief summary of sum-based queries, where '(Dt) denotes the maximum contri-
bution from any user at time t, ✓ is a small constant, W is the window length, � is the confidence parameter, ↵
indicates the exponential decay parameter, c represents the polynomial decay parameter, HT,2c is the generalized
Harmonic sum, ST,2↵ is a defined series sum with ↵ > 1.2

addressed sum queries by reducing them to count queries, as their approach could only handle the latter. For each
timestamp with value xi, they expand it into R steps, where the first xi(w.l.o.g., xi < R) steps are filled with
1, and the remaining steps are filled with a special symbol ?. However, this method requires prior knowledge
of the maximum value R that can occur in the time series. [73] proposed a method for answering sum queries
with a threshold under a multi-branch tree structure. The threshold is optimized based on the expected squared
error between the true result and the estimated one. Their proposed mechanism cannot handle infinite time
series, so they claim that most queries focus on a limited range, allowing for truncation of the infinite time series.
Additionally, their work introduced the first mechanism to release time series under LDP with a threshold for
value truncation. Instead of directly perturbing the values, the mechanisms proposed by Ye et al. [74, 75] perturb
the temporal order. This approach makes them naturally adaptable for sum/mean queries while preserving the
original values. These methods demonstrate superior performance for calculating moving averages.

4.3 Downstream Applications Based on Sum/Mean Queries

Due to utility considerations, existing mechanisms for downstream applications based on sum and mean queries
primarily operate under event-level privacy or w-event level privacy. Perrier et al. [76] introduced a differentially
private mechanism for publishing statistics of real-valued time series under event-level privacy, such as moving
averages derived from energy data collected through smart meters. Their approach addresses scenarios where
the bound on observations is either overly conservative or unknown, which is crucial for real-time monitoring
applications. The proposed mechanism optimizes utility by scaling the added noise to the threshold value instead
of a potentially larger bound, thereby improving accuracy. To enable real-time computation of the mean at any
timestamp from users’ time series under w-event LDP, Wang et al. [77] proposed sampling strategy to select
important elements and a privacy budget allocation strategy according to the importance of the elements. However,
the sampling process may inadvertently reveal some private information due to the intentional selection. Kurt
et al. [78] proposed an online anomaly detection method for networks based on the cumulative sum algorithm,
satisfying event-level (✏, �)-differential privacy. Their approach adds noise to the statistic at each timestamp from
each network node, operating under event-level privacy, and then derives the mean from the data of all nodes.
This allows for detecting anomalies by monitoring changes in the released means.

78



5 Differential Privacy for Time Series Release

Time series release aims to publicly share private time series while preserving privacy. Value perturbation methods
add noise to the data values, often using sampling and adaptive budget allocation for utility. While temporal
perturbation methods dispatch elements across timestamps to obfuscate event timings, avoiding value distortion
but risking empty releases or collisions.

5.1 Value Perturbation Based Methods

Time series release aims to directly publicize the time series for downstream tasks. Since time series release
focuses on preserving the accuracy of values, privacy budget allocation is critical for controlling added noise
and minimizing distortion. Therefore, a sampling-based method is often employed to select crucial elements
according to the tasks, reducing the number of points requiring privacy budget allocation and enhancing utility.
Additionally, to further improve the utility of the released data, a post-processing step can be adopted to correct
the noisy data using prior knowledge. The outline of time series release is summarized in Fig. 5.

Raw Time Series

DP noise

Noised Data

Post-processing

Calibrated Data

Downstream Task

Result

Figure 5: The outline of time series release under differential privacy.

5.1.1 Privacy Budget Allocation Strategies

User-level privacy protects the elements from any user but requires a larger privacy budget for reasonable utility,
particularly challenging for time series release. Conversely, event-level privacy safeguards individual elements,
yet may not suffice for comprehensive privacy guarantees. To balance the privacy levels, Kellaris et al. [19]
first proposed w-event level privacy under CDP. By leveraging w-event level privacy, sanitized time series can
offer better privacy guarantees than event-level privacy and higher utility than user-level privacy. To optimize
the advantages of w-event level privacy, Kellaris et al. [19] proposed two privacy budget allocation strategies.
Building upon the ideas of the budget distribution and absorption strategies in [19], Ren et al. [79] proposed
corresponding strategies under LDP framework. To mitigate the utility degradation caused by dividing the privacy
budget, the authors divide the users instead, with each user reporting only one timestamp within a w-length
window. Several sampling-based methods have been developed to reduce the number of elements requiring
a privacy budget, with adaptive budget allocation based on element importance. Wang et al. [80] introduced
RescueDP, a scheme for real-time publishing of spatio-temporal crowd-sourced data with w-event level CDP,
integrating adaptive sampling, privacy budget allocation, dynamic grouping, perturbation, and filtering techniques.
The adaptive sampling component adjusts sampling rates based on data changes, ensuring efficient resource
utilization. The privacy budget allocation mechanism dynamically distributes the privacy budget for sampling
points across successive timestamps. Zhang et al. [81] proposed Re-DPoctor, a real-time health data releasing
scheme ensuring w-event level CDP, enhancing utility with a partition algorithm safeguarding health data patterns
and improving privacy through adaptive sampling and budget allocation. He et al. [66] introduced a new privacy
concept using condensed local differential privacy (CLDP) [67] for w-event level privacy, aiming to enhance
utility. They save privacy budget from empty releases and reallocate it to released elements, and utilize a PID
controller-based method for adaptive budget allocation. However, this approach may inadvertently disclose
private information through omitted empty points.
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5.1.2 Optimization Strategies

Leveraging the correlations present in time series, the pre-processing or post-processing methods can be applied
to improve the utility of the perturbed data. Ren et al. [82] addressed privacy challenges in high-dimensional
crowdsourced data by proposing LoPub, an LDP data publication algorithm under event-level privacy. They use
expectation maximization (EM) and Lasso regression to efficiently estimate multivariate joint distributions, identi-
fying attribute correlations to reduce data dimensionality for distribution learning speed and utility improvements.
Wang et al. [83] proposed the methods, LoCop and DR_LoCop, for releasing high-dimensional crowdsourced
data under event-level LDP. The methods comprise four integrated components: a transformation component that
ensures LDP by hashing and randomizing the data, an estimation component that infers probability distributions
from the resulting Bloom filter strings, a computation component that derives marginal distributions and captures
dependencies among dimensions, and a sampling component that generates a new synthetic dataset based on the
computed distributions and dependencies. Fioretto and Hentenryck [84] introduced OptStream, a method for
releasing time series under w-event level, which extends to handling hierarchical streams like energy profiles,
making it applicable beyond its original energy domain. OptStream involves four key steps: sampling points for
private measurement, perturbing them for privacy, reconstructing non-sampled points, and post-processing with
convex optimization to improve accuracy by redistributing added noise. Zhang et al. [85] introduced a method for
releasing differentially private sequential data using first-order autoregressive processes under user-level privacy.
Their approach estimates unreleased data from previously released data by leveraging learned correlations, without
requiring prior knowledge. The estimated data is combined with the observed data and perturbed with calibrated
noise at each timestamp, facilitating real-time data release. Li et al. [86] proposed a framework for locally private
stream data release that employs shuffling and subsampling techniques. Their approach maintains utility in the
context of continual data collection by sampling a subset of users at each timestamp. An optimal sample size is
determined to reduce redundant data and enhance utility, and the framework incorporates pre-processing within
the shuffler to mitigate bias arising from distributed sampling. Besides pre- or post-processing methods, Bao et
al. [87] proposed a mechanism based on the assumption of data fluctuation. Since time series may not change
significantly over time, this mechanism formalizes the correlation between elements, allowing a later element to
be represented by previous elements. To protect privacy, noise is added to the correlation.

5.2 Synthesis Based Methods

Directly releasing users’ data poses significant risks of privacy breaches. An alternative approach is to train a
synthesis model under strict privacy conditions and then release the data generated by this model for downstream
tasks. To synthesize time series data under DP, one method involves first estimating the relevant statistics and
then generating the synthetic data based on these estimations. Additionally, the advent of Generative Adversarial
Networks (GANs) under DP [88, 89] has facilitated the use of deep learning algorithms to generate data, thereby
enhancing both privacy protection and data accuracy.

5.2.1 Synthesis Based on Statistics

Synthesis mechanisms based on statistical features first capture the statistical characteristics from datasets under
DP. Subsequently, new data is generated according to these estimated statistics. He et al. [90] introduced an
efficient polynomial-time algorithm for generating online differentially private synthetic data under event-level
privacy from a continuous time series within the hypercube [0, 1]d. The algorithm achieves near-optimal accuracy
bounds in 1-Wasserstein distance and extends previous work to include Lipschitz queries. By utilizing an online
hierarchical partitioning approach and a novel Inhomogeneous Sparse Counting Algorithm, the method maintains
strong privacy guarantees while ensuring high utility for infinite time horizons. To achieve a higher privacy
level, Bun et al. [91] focused on generating differentially private synthetic data through statistical estimation
under user-level CDP. They proposed algorithms that maintain the accuracy of fixed time window and cumulative
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time queries, ensuring minimal error while preserving privacy. Their approach involves a two-stage process that
combines noisy estimates with post-processing techniques to ensure consistency and accuracy in synthetic data
generation.

5.2.2 Synthesis Based on Generative Models

In addition to statistics-based mechanisms, another method for synthesizing time series is through Generative
Adversarial Networks (GANs). Unlike other data types, time series requires consideration of temporal correlations.
Frigerio et al. [92] presented a framework for releasing high-quality open data while ensuring user privacy through
DP, addressing both continuous and discrete data. By leveraging deep learning and generative models with long
short-term memory networks, the framework maintains data utility and correlations, introducing innovations
such as clipping decay to optimize performance. Wang et al. [93] introduced PART-GAN, a privacy-preserving
generative model designed for time series augmentation and sharing. PART-GAN combines Conditional and
Temporal Generative Adversarial Networks (CT-GAN) with differential privacy mechanisms, enabling the
generation of unlimited synthetic data that addresses issues of incomplete and irregularly sampled time series.
Torfi et al. [94] proposed a mechanism to generate high-quality synthetic health record data while ensuring
privacy using Rényi Differential Privacy (RDP). Their framework combines convolutional autoencoders and
convolutional generative adversarial networks (CGAN) to effectively handle both discrete and continuous data,
preserving temporal and feature correlations. For specific applications, Lamp et al. [95] introduced GlucoSynth,
a novel privacy-preserving GAN framework designed to generate high-quality synthetic glucose traces while
maintaining strong differential privacy guarantees. By focusing on preserving the relationships among glucose
events (motifs) and temporal dynamics, GlucoSynth addresses the unique challenges of synthesizing glucose data.

5.3 Discussion

The aforementioned release mechanisms modify the values of the original time series, which can degrade
utility in value-critical scenarios. For elements in a time series where occurrence indicates more sensitive
information, temporal perturbation can be employed to avoid distorting the original values. Ye et al. [74] first
proposed a method to achieve temporal perturbation in the local setting, maintaining the privacy guarantee while
enhancing utility. As illustrated in Fig. 6, unlike value perturbation that directly modifies the original values by

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 …𝑆

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 …𝑅

Value Perturbation 𝑅𝑖 = 𝑀(𝑆𝑖), where 𝑀 is a LDP mechanism

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 …𝑆

𝑆1 𝑆3 𝑆5 𝑆6 𝑆7 …𝑅

Temporal Perturbation

Figure 6: Value perturbation-based methods will perturb the original values by adding DP noise. In contrast,
temporal perturbation-based methods will dispatch the values to corresponding timestamps for release.

adding LDP noise, temporal perturbation dispatches elements across different timestamps. This obfuscates the
precise occurrence times, preventing adversaries from determining the exact event timings. However, temporal
perturbation can lead to issues such as delayed releases, empty releases (where no elements are dispatched to
certain timestamps), and element substitutions, resulting in missing data. To address these issues, Ye et al. [75]
proposed a bi-directional perturbation mechanism that eliminates collisions during the dispatching process,
ensuring that elements are only delayed. Furthermore, Mao et al. [96] extended the definition to a metric-based
version tailored for anomaly detection, aiming to reduce collisions involving anomalous elements. However, these
proposed mechanisms [74, 75, 96] primarily address event-level privacy concerns, leaving room for enhancements
to achieve higher levels of privacy.
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6 Differential Privacy for Location Based Services

Location Based Service (LBS) is a crucial application of mobile computing that provides personalized services
based on users’ geographical locations. These services, ranging from navigation assistance to location-based
recommendations, require continuous collection and analysis of users’ location data, often in the form of
trajectories.

A trajectory is a specific type of time series that comprises spatial-temporal data. It can be regarded as
a sequence of time-ordered points, denoted as T = {p1, p2, · · · , pT }, where pi represents a location and T
is the length of the trajectory. Compared with other time series, the correlations within trajectory data are
more pronounced due to the constraints imposed by spatial variation. Regarding privacy levels for trajectory
data, location privacy corresponds to event-level privacy, providing protection for individual locations, whereas
trajectory privacy safeguards the entire trajectory.

In this section, we introduce mechanisms for handling trajectory data under differential privacy, organized
according to utility improvement in location perturbation, privacy preservation against temporal correlation, and
trajectory release. These mechanisms ensure that the privacy of individual locations and movements is preserved
while maintaining the utility of the data for analysis and service provision.

6.1 Location Perturbation Based on Geo-indistinguishability

For meaningful outputs in LBS, the perturbed location should not deviate excessively from the actual one. As
illustrated in Fig. 7, constraining the perturbation domain is essential for improving utility; otherwise, a large
perturbation domain yields less useful results. For example, perturbing Paris to London is impractical [29].
Therefore, a metric-based privacy notion, ✏-geo-indistinguishability, is proposed. Specifically, a user’s level of
privacy is defined as ` = ✏r, where r is the radius of the perturbation domain, corresponding to ri in Fig. 7. Here
is the formal definition of geo-indistinguishability. [Geo-indistinguishability [29]] Given any two locations x and
x0 (d(x, x0)  r), a randomized mechanism M satisfies ✏-geo-indistinguishability iff

Pr[M(x) 2 Z]  e✏d(x,x
0)Pr[M(x0) 2 Z],

where Z ✓ Z is the possible output domain, where d(x, x0) represents a distance measure between x and x0.

𝑟1

𝑟2

𝑟3

Figure 7: A traditional DP mechanism (illustrated in the left-hand figure) involves a perturbation domain (green
area) for a location that is typically large, resulting in low utility for the perturbed location. To improve utility
while providing useful services, a metric-based privacy notion, geo-indistinguishability, is introduced to control
the perturbation (illustrated in the right-hand figure). A smaller distance ri leads to higher utility but offers less
privacy. Therefore, it is important to balance the trade off between utility and privacy when designing mechanisms
under geo-indistinguishability.

Since the inception of geo-indistinguishability, numerous enhancements have been made to improve the
privacy notion from various perspectives. To enhance the calculation efficiency, Bordenabe et al. [97] proposed
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a method to optimize the trade-off between geo-indistinguishability and service quality in location privacy,
employing linear programming to minimize service quality loss while ensuring optimal privacy guarantees. By
reducing the number of constraints from cubic to quadratic, their approach significantly improves computational
efficiency. Building on the concept of geo-indistinguishability, Weggenmann and Kerschbaum [98] introduced
the notion of directional privacy, a relaxation of pure differential privacy that performs effectively in the local
model. To enhance practical utility, Zhao et al. [99] proposed geo-ellipse-indistinguishability to protect individual
location data in directional distribution analysis. This method incorporates the covariance matrix to account for
dispersion and orientation of community locations, using elliptical noise instead of circular noise. The proposed
mechanisms, based on gamma and multivariate normal distributions, ensure higher probabilities of randomized
locations aligning with community location trends while maintaining statistical quality. Liang and Yi [100]
further advanced the concept of geo-indistinguishability by introducing concentrated geo-privacy, an update from
the CDP version. This approach supports advanced composition mechanisms for high-dimensional data and
achieves a lower noise scale, thereby enhancing overall privacy protection while maintaining utility. Zhao and
Chen [101] proposed vector-indistinguishability (vector-ind) to enhance location privacy by preserving distance
and direction dependencies between successive locations. They introduced four mechanisms using Laplace and
Uniform distributions to achieve vector-ind, maintaining data utility while ensuring CDP.

Several mechanisms have been proposed to address various privacy issues across numerous scenarios
based on geo-indistinguishability. Yu et al. [102] proposed PIVE, a dynamic differential location privacy
framework that integrates geo-indistinguishability and expected inference error to protect against inference
attacks. PIVE operates in two phases: First, it identifies a protection location set based on user-defined error
thresholds and prior knowledge; And then, it generates pseudo-locations within this set, ensuring differential
privacy. This approach enables adaptive, personalized privacy settings tailored to individual user needs and
location-based service requirements, thereby enhancing both privacy preservation and utility. Cao et al. [103]
extended differential privacy to define ✏-spatiotemporal event privacy and proposed a framework to quantify its
protection level in existing location privacy-preserving mechanisms. They demonstrated their framework by
adapting the Planar Laplace Mechanism for geo-indistinguishability to ensure spatiotemporal event privacy while
maintaining linear computational complexity. Niu et al. [104] introduced Eclipse, a mechanism that combines
geo-indistinguishability, k-anonymity, and expected inference error to protect location privacy against long-term
observation attacks. Eclipse obfuscates user locations within an anonymity set, minimizing privacy leakage while
maintaining service usability and correctness. Qiu et al. [105] tackled the Vehicle-based spatial crowdsourcing
Location Privacy (VLP) problem, aiming to minimize travel cost distortion while preserving location privacy
over road networks. They redefined geo-indistinguishability based on path distance and approximated the VLP
problem as a linear programming formulation through discretization. To improve time efficiency, they proposed a
two-layer optimization algorithm and analyzed the trade-off between privacy and quality of service. Haydari et
al. [106] proposed a differential privacy-based map-matching algorithm (DPMM) for protecting user privacy in
mobility data. DPMM generates privatized link-level location trajectories by incorporating road characteristics
such as capacity and functional role. The algorithm adaptively selects the noise level based on link density,
effectively balancing privacy preservation and trajectory accuracy.

6.2 Privacy Preservation Against Temporal Correlation

Due to the intrinsic features of location data, temporal correlations pose significant privacy issues when handling
locations. Specifically, an adversary can infer information about a location based on its preceding or succeeding
elements. For instance, Shao et al. [20] proposed iTracker, a framework designed to recover multiple trajectories
from differentially private data using a structured sparsity model. iTracker leverages interdependencies among
locations to enhance recovery accuracy, effectively challenging existing Laplace perturbation-based location
protection mechanisms. To address privacy risks posed by temporal correlations in location data, numerous
mechanisms have been proposed. Xiao and Xiong [107] introduced a solution that preserves location privacy with
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rigorous differential privacy guarantees by proposing �-location set, which accounts for temporal correlations in
location data. They also introduced the sensitivity hull to capture geometric sensitivity in multidimensional space
and presented the planar isotropic mechanism (PIM), an efficient location perturbation method that achieves
optimal utility while meeting differential privacy requirements. Cao et al. [21] first investigated the privacy loss
of CDP mechanisms under temporal correlations and introduced the concept of Temporal Privacy Leakage (TPL).
They proposed an efficient algorithm to calculate TPL and designed methods to convert traditional DP mechanisms
to ones that mitigate TPL, ensuring privacy over continuous data releases by bounding the leakage within a
defined parameter ↵. Xiao et al. [22] proposed LocLok, a system that protects user locations with differential
privacy by modeling temporal correlations using a hidden Markov model and applying PIM for optimal noise
addition. LocLok generates possible locations via the Markov model, perturbs them with PIM, and infers true
locations within a set of all possible locations, ensuring robust local privacy even when adversaries have access to
historical location data. Liu et al. [108] protected location privacy by analyzing the impact of temporal-spatial
correlations and proposing new privacy definitions, introducing Bayesian-based geo-indistinguishability to better
evaluate and enhance privacy levels. Their method optimally allocates noise among spatially and temporally
correlated locations, effectively protecting sensitive locations within a trajectory while achieving differential
privacy. Ma et al. [109] proposed RPTR under w-event level CDP to protect real-time vehicle trajectory data.
They employed dynamic sampling and ensemble Kalman filters, utilizing a position transfer probability matrix to
infer correlations and ensure accurate predictions while balancing data availability and privacy. Additionally,
they introduced a regional privacy weight mechanism to enhance protection in high-density areas, thereby
ensuring higher prediction accuracy and adaptability across different scenarios. Cao et al. [110] propose a
post-processing framework to enhance the utility of differentially private streaming data releases by leveraging
temporal correlations. They modeled the problem as a maximum a posterior estimation, transformed it into a
nonlinear constrained programming problem, and used a transition matrix to incorporate both probabilistic and
deterministic constraints. Ahuja et al. [111] proposed a method to release histogram information from trajectories
under user-level CDP. To enhance utility, they introduced a method based on variational autoencoders to refine
the histograms by utilizing the correlations of histograms.

6.3 Trajectory Release Based on Perturbation or Synthesis

As location-based services (LBS) become increasingly integral to everyday applications, ensuring the privacy
of users while maintaining the utility of location data remains a critical challenge. Various mechanisms have
been proposed to address this issue, each focusing on different aspects of location privacy and data utility. Wang
et al. [112] introduced L-SRR, the first LDP framework for location-based services, enhancing utility while
ensuring strict privacy. The proposed staircase randomized response mechanism perturbs user locations using
optimized probabilities, significantly improving utility for applications such as traffic density estimation and
k-nearest neighbor queries. Cunningham [113] introduced a locally differentially private mechanism for trajectory
data sharing that integrates public knowledge to enhance utility while ensuring privacy. This mechanism perturbs
hierarchically-structured n-grams of trajectory data to capture spatio-temporal relationships, leveraging public
data without compromising privacy. Zhang et al. [114] proposed a trajectory perturbation mechanism under
user-level LDP that enhances privacy by using adjacent direction information to connect neighboring points.
They introduce a two-stage pivot sampling process utilizing bi-directional clues from pivots, and an anchor-based
method to restrict the spatial region of trajectories.

Synthetic trajectory generation has emerged as another promising solution, allowing for the publication of
useful data without compromising individual privacy. Gursoy et al. [115] presented DP-Star, a framework for
publishing trajectory data that ensures differential privacy while maintaining high utility. DP-Star normalizes
raw trajectories using representative points, constructs a density-aware grid to preserve spatial densities, and
employs a private Markov mobility model to maintain correlations and intra-trajectory mobility. This results in
synthetic trajectory datasets that are both privacy-preserving and useful for various data mining tasks. Moreover,

84



Gursoy et al. [116] presented AdaTrace, a scalable location trace synthesizer that achieves statistical privacy,
deterministic attack resilience, and strong utility preservation. AdaTrace generates differentially private synthetic
traces through a four-phase process: feature extraction, noise injection, and utility-aware synthesis. The synthetic
traces preserve utility-critical information and are robust against Bayesian inference, partial sniffing, and outlier
leakage attacks, ensuring privacy without significant utility loss. Du et al. [117] introduced LDPTrace, a locally
differentially private framework for synthesizing realistic trajectories with minimal computational cost and strong
privacy guarantees. LDPTrace captures key movement patterns from users’ trajectories, ensuring robust statistical
privacy and resilience against attacks. Extensive evaluations demonstrate that LDPTrace generates authentic
trajectories without external knowledge, outperforming existing methods in terms of utility and privacy protection.
Hu et al. [118] introduced RetraSyn under w-event level LDP, aimed at real-time trajectory synthesis while
ensuring data privacy. RetraSyn leverages mobility patterns from trajectory streams and incorporates a global
mobility model, dynamic update mechanisms, and Markov-based synthesis to generate realistic trajectories. This
framework effectively captures complex spatial-temporal contexts and employs adaptive privacy budget allocation
strategies, ensuring authenticity and practicality in diverse real-world scenarios. Sun et al. [119] proposed SPRT,
a method for synthesizing private and realistic vehicle trajectories by incorporating geographic structures into
differential privacy mechanisms. SPRT constructs a geography-aware grid to capture accurate mobility patterns
and defines a moveable constraint based on real-world conditions, enhancing both summary-level statistics and
individual-level mobility patterns.

7 Open Challenges

Although many mechanisms have been proposed to handle time series under differential privacy, several issues
still need to be addressed. In this section, the challenges will be introduced according to privacy model, potential
attacks, data type, and learning based problems.

7.1 Privacy Model

The privacy model is a crucial factor in differential privacy. As aforementioned, there are three privacy levels when
handling time series [19]. Event-level privacy guarantees the privacy of a single element in a time series, making
it easier to implement since the sensitivity of an individual element in neighboring datasets is simpler to measure.
In contrast, user-level privacy provides a higher privacy guarantee and is more practical in real-world applications.
However, bounding the sensitivity of a single user’s participation is challenging, making the allocation of the
privacy budget more complex. Additionally, utility issues become more pronounced when dealing with infinite
time series.

Several research works have explored handling infinite time series under user-level privacy with specific
conditions. Dong et al. [48] introduced mechanisms for basic queries such as count and sum. These mechanisms
are based on event-level privacy approaches and are adapted to user-level privacy by bounding the maximum
changes of a single user in a time series. For LDP, Xue et al. [64] proposed a mechanism for count queries, but it
requires that the time series does not fluctuate significantly. Feng et al. [68] proposed a strategy that randomly
allocates the privacy budget according to a converging sum series.

Therefore, improving the utility of infinite time series under user-level differential privacy is an intriguing
future direction. Beyond basic queries, efforts can be made to accommodate specific queries or applications.
Key challenges include accurately measuring data sensitivity and effectively allocating the privacy budget.
Overcoming these challenges can enhance the practical utility of differential privacy mechanisms for managing
infinite time series under user-level privacy.
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7.2 Temporal Correlation Based Attacks

Compared to other data types, the correlation in time series is more pronounced. Due to the inherent sequential
nature of time series, each element is often directly influenced by its predecessors. Various works have employed
the Markov model to capture and represent these correlations under DP [21, 22, 115]. In the context of the Markov
model, an element is directly influenced only by its immediate neighboring element. Consequently, the influence
of previous elements is implicitly carried forward through the chain of direct dependencies between neighboring
elements. Since time series are always modeled explicitly, this simplicity can result in the model overlooking
long-term information that extend beyond immediate neighbors. To capture such information, more complex
models like the long short-term memory network [3] are needed. Moreover, for specific types of time series such
as trajectories, public knowledge can introduce additional privacy issues. For example, certain perturbations may
be impossible due to physical world limitations. In summary, compared with single data points, elements in time
series are at a greater risk of privacy leakage. This suggests a potential direction for research: attacking existing
privacy mechanisms by exploiting these correlations and to design new mechanisms that account for the inherent
dependencies in time series.

7.3 Complex Data Type

Most current works can only handle simple time series with high utility, such as one value at each timestamp.
However, real-world data are more complex, and mechanisms should be designed to handle this complexity. Here
are two examples:

First, sensor data are often multi-dimensional and correlated across each dimension. This complexity requires
mechanisms capable of managing and analyzing data with multiple interacting variables. Traditional methods
that handle single-dimensional elements at each timestamp are insufficient for capturing the nuances of multi-
dimensional sensor data. For example, environmental sensors may collect temperature, humidity, and air pressure
simultaneously. Analyzing these factors independently can miss critical interactions and patterns, such as how
temperature changes might influence humidity levels during users’ activities. Therefore, advanced methods must
be developed to process and interpret multi-dimensional sensor data effectively.

Second, the element at each timestamp can be intricate. For instance, social networks change over time,
making real-time analysis of such dynamic networks complicated. Managing the evolution of relationships and
interactions within the network adds a layer of complexity beyond time series analysis. Additionally, privacy
concerns in such contexts extend beyond the temporal dimension to include graph privacy, encompassing node-
level privacy and edge-level privacy. Mechanisms must account for these additional privacy requirements to
ensure data protection while enabling real-time analysis.

7.4 Learning Based Problems

Current DP mechanisms are primarily designed for basic queries, such as count, mean, and frequency. However,
time series without privacy concerns are often used for more complex downstream tasks, such as classification
and clustering. These tasks require a deeper understanding and manipulation of the data, going beyond simple
statistical queries. To accommodate more practical downstream tasks, it is essential to develop DP mechanisms
that can support these sophisticated operations effectively, ensuring both the utility and privacy of the data.

A reasonable solution is to generate synthetic time series from the real dataset. Synthetic approach allows
the fundamental features of the time series to be captured while protecting the privacy of the underlying data.
Since the features of time series are complex and extend beyond basic statistics, traditional statistical methods are
insufficient for capturing these intricate patterns. For example, critical patterns such as seasonal trends, cyclic
behaviors, and sudden anomalies are vital in time series analysis but are not adequately addressed by basic
statistical methods.
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Therefore, learning-based methods are preferable for generating synthetic time series. These methods can
model and replicate the complex dependencies and structures inherent in time series. For instance, the method
proposed by Lamp et al. [95] for synthesizing glucose traces exemplifies how deep learning can be applied
to generate realistic and privacy-preserving synthetic data. Predictably, more and more application-specific
mechanisms will be proposed.

8 Conclusion

In this paper, we present a comprehensive survey on handling time series under differential privacy. We begin by
introducing the basic concepts of time series and differential privacy, along with relevant definitions. Our survey
starts with an exploration of two basic queries: count queries and sum/mean queries. For each query type, we first
explain the concept of the basic query, then review the core techniques or developments related to the queries,
and finally discuss the advanced queries derived from the basic ones. At the end of each query section, we review
the downstream tasks based on these queries. Subsequently, we introduce mechanisms for time series release,
categorizing them into value perturbation based methods and synthetic generation based methods. Additionally,
we dedicate a separate section to location-based services (LBS), as they are common application scenarios for
time series. We review relevant papers for LBS according to two popular privacy issues and the demands of
trajectory release. Finally, we illustrate four open challenges and suggest future directions.
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