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Abstract

The KDD Cup 2024 CRAG Challenge aims to provide a foundation for evaluating Retrieval
Augmented Generation (RAG) systems. RAG systems take natural language questions as input,
decide whether and how to use the facilitating information such as web pages and mock Knowledge
graphs, and return natural language answers. A good RAG system provides correct and useful
answers to questions without bringing in hallucinated information. In this report, we describe the
motivation for organizing this challenge, review the design for the benchmark and the competition,
discuss observations from the submissions, and reflect the learnings from hosting the challenge.

A Introduction to RAG and the CRAG benchmark

The rise of Large Language Models (LLMs) has revolutionized the field of natural language processing [22,
24, 53, 58], but these models still struggle with providing accurate and reliable answers to complex
questions. One major challenge is the tendency for LLMs to “hallucinate” or generate responses that are
not grounded in factual information [18, 34, 40, 42]. To address this issue, researchers have turned to
Retrieval-Augmented Generation (RAG) [6, 10, 13, 20], a technique that involves searching external
sources to gather relevant information and then using that information to generate more accurate answers
(Figure 50).

Figure 50: Given a question, a RAG system searches external sources to retrieve relevant information
and then provides grounded answers.

††The first four authors contributed equally.
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Figure 51: KDD Cup 2024 Meta CRAG challenge tasks.

However, existing datasets for evaluating RAG systems are limited in their scope and diversity, failing
to capture the complexity and nuance of real-world question-answering tasks. To address this limitation,
we developed the Comprehensive RAG (CRAG) Benchmark, a comprehensive evaluation framework
designed to assess the capabilities of RAG systems. The benchmark comprises over 4.4K question-answer
pairs, accompanied by mock APIs that mimic the process of searching the web and accessing knowledge
graphs. CRAG is across five domains (finance, sports, music, movie, and encyclopedia open domain),
and a diverse range of question types, including simple-fact questions, questions that require aggregation
and reasoning. CRAG further encompasses varied entity popularity from popular to long-tail and
temporal spans ranging from seconds to years. As such, it covers a broad spectrum of real user queries,
providing a realistic and challenging testbed for RAG systems [52]. By incorporating both web and
knowledge graph search, CRAG simulates realistic information retrieval scenarios, reflecting the common
practice of users seeking answers from multiple sources. Our evaluations using this benchmark revealed
substantial performance gaps in even the most advanced LLMs and RAG systems, highlighting the need
for continued research and development in this area.

The CRAG benchmark served as the foundation for the KDD Cup 2024 competition, which drew over
2.5K participants and 5.6K submissions from around the world. The winning solutions demonstrated
significant improvements over baseline methods. In this paper, we present key insights and takeaways
from the competition, including our learnings on the RAG landscape (Section C), learnings from the
CRAG winning solutions (Section D), and learnings from hosting the CRAG challenge (Section E),
suggesting directions for future RAG research.

B Challenge Overview

B.1 Challenge Tasks

A RAG QA system takes a question Q as input and outputs an answer A; the answer is generated
by LLMs according to information retrieved from external sources or directly from the knowledge
internalized in the model. The answer should accurately address the question while avoiding any
hallucinations.
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We designed three tasks, which share the same set of (question, answer) pairs but differ in the
external data accessible for retrieval to augment QA, as shown in Figure 51. Here, we provide the
content that can be leveraged in QA to ensure fair comparisons.
Task 1: Retrieval Summarization. In Task 1, we provide up to five web pages for each question.
These web pages are likely, but not guaranteed, to be relevant to the question. This task aims to test
the answer generation capability of a RAG system.
Task 2: KG and Web Retrieval Augmentation. In Task 2, we in addition provide mock APIs to
access information from underlying mock KGs. The mock KGs store structured data relevant to the
questions; answers to the questions may or may not exist in the mock KGs. The mock APIs take input
parameters, oftentimes parsed from the question, and provide structured data from the mocked KGs to
support answer generation. This task tests how well a RAG system 1) queries structured data sources
and 2) synthesizes information from different sources.
Task 3: End-to-end RAG. Similar to Task 2, Task 3 also provides both web search results and mock
APIs as candidates for retrieval but provides 50 web pages, instead of 5, as candidates. The larger set of
web pages increases the likelihood of providing relevant information to answer the question, but they
also tend to contain more noise. As such, Task 3 in addition tests how a RAG system ranks a larger
number of retrieval results.

The three tasks, each adding upon the previous one, allow testing different capabilities of the
end-to-end RAG systems.

B.2 Data and System Requirement

The challenge used the CRAG benchmark as described in Section A. We split the data randomly into
validation, public test, and private test at 30%, 30%, and 40%, and released the validation and public
test sets for the challenge. The final winners were determined by evaluating against the held-out private
test set.

In order to make the systems more comparable and to encourage open source development, we require
all submitted systems to be based on Llama 2 [44] or Llama 3 [3] models in this challenge. Participants
can also fine-tune their models using publicly available data as long as the data were not generated by
proprietary models.

The challenge was hosted on the AICrowd competition platform, and results were posted on a
leaderboard. All submissions were run on AWS G4dn.12xlarge instances equipped with 4 NVIDIA T4
GPUs with 16GB GPU memory. Since neither the Llama 2 70B or Llama 3 70B models in full precision
can be directly run on these T4 GPUs, participants needed to use quantization or other techniques to
make their system runnable on the inference platform. Also, network connection was disabled during
the challenge to ensure all participants can access an equal set of retrieved contents, and to prevent
leak of the private test set data. Moreover, each example had a time-out limit of 30 seconds and was
truncated to 75 BPE tokens [38] in the auto-evaluation. In human-evaluation, graders examined the
first 75 bpe tokens to find valid answers, but reviewed the whole response to judge for hallucination. See
section B.3 for more details about the evaluation.

B.3 Evaluation

Metrics

We use a scoring method to assess the performance of RAG systems. For each question in the evaluation
set, we first label the answer with perfect, acceptable, missing, or hallucination, according to the
following criteria.

Perfect. The response correctly answers the user’s question and contains no hallucinated content.
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Acceptable. The response provides a useful answer to the user’s question but may contain minor
errors that do not harm the usefulness of the answer.

Missing. The response is “I don’t know”, “I’m sorry I can’t find ...”, a system error such as an empty
response, or a request from the system to clarify the original question.

Hallucination. The response provides wrong or irrelevant information to answer the user’s question.
We then use a scoring method Scoreh with score 1, 0.5, 0, and �1 for each perfect, acceptable,

missing, and hallucinated answer, respectively, where we penalize hallucinated answers because users
would prefer the model to admit “I don’t know" than providing an hallucinated answer when it does not
know how to answer the question. We then define Truthfulness as the average score from all examples
in the evaluation set for a given RAG system. Concretely,

Truthfulnessh = Perfect rate + 0.5 ⇤ Acceptable rate � Hallucination rate.

Evaluation Method

We employ a hybrid evaluation system that includes both human evaluation (human-eval) and model-
based automatic evaluation (auto-eval). In the former, we use manual grading to judge perfect,
acceptable, missing, and hallucinated for each answer. In the latter, we merge perfect and acceptable,
call it accurate, and use a three-way scoring Scorea with 1,�1, 0 for accurate, hallucinated, and
missing answers. And in this case,

Truthfulnessa = Accuracy � Hallucination rate.

We design a two-step method for automatic evaluation: if the answer matches the ground truth
exactly, it is considered accurate; otherwise, we use LLMs to determine whether the response is accurate,
hallucinated, or missing. To avoid the self-preference problem [31], we experimented with two families of
LLM evaluators: ChatGPT (gpt-3.5-turbo-0125) [29] and Llama 3 (llama-3-70B-instruct) [3]
and reported the average accurate, hallucinated, missing rates, and scores from the two models for
benchmarking the straightforward solutions [52]. This two-step method yields an accuracy of 94.5% for
ChatGPT and 99% for Llama 3 compared to human-eval. We adopted ChatGPT as the auto-evaluator
in the challenge due to its low cost.

B.4 Challenge Schedule and Outcomes

The challenge was announced on March 15, 2024. Submissions were accepted starting on April 1, 2024,
simultaneously with the release of the starter kit. Baseline models were released a week after. The
challenge had two phases: in Phase 1, each team can make up to six submissions per week for all three
tasks together during a two-month period, and check their results directly on the leaderboard based on
auto-eval; in Phase 2, each team can submit up to six times for the three tasks together in total. The
submitted solutions in Phase 2 were first evaluated by auto-eval. Then the top-15 teams from each task
were sent for human-eval to determine the final winners. Phase 2 ended on June 22, 2024, and the final
results were announced on July 28, 2024.

The challenge awarded the top-3 teams that obtained the highest Truthfulness scores in each task.
It also provided seven additional prizes for teams that achieved the highest scores for each of the seven
complex question types. In the end, twelve teams won the prizes (See Table 32 for the list of the winning
teams.), among which six winning teams were invited to present in the KDD 2024 CRAG workshop1.
All participating teams were encouraged to submit a technical report for their solutions.

1Please see more information about the workshop at: https://kddcup24.github.io/pages/benchmark.html
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The challenge attracted more than 2,500 participants, 384 teams and more than 5,600 submissions.
After the challenge was complete, we held a workshop during the ACM KDD 2024 conference. The
workshop featured three keynote speeches, six winning-team presentations, and attracted more than 130
onsite audiences. It also published 11 technical reports from the participating teams afterwards.

C Learnings on RAG landscape

Solution Accuracy Hallucination Missing Truthfulness Latency (ms)

LLM-Only Llama 3 32.3% 28.9% 38.8% 3.4%
GPT-4 33.5% 13.5% 53.0% 20.0%

Straightforward RAG Llama 3 40.6% 31.6% 27.8% 9.1%
GPT-4 43.6% 30.1% 26.3% 13.5%

CRAG KDD Cup Winners ? Top-3: vsluy-team 43% 24.9% 30.1% 18.1%
Top-2: APEX 48.6% 13.7% 36.3% 34.9%
Top-1: db3 53.3% 17.1% 28.0% 36.2%

Industry SOTA ?? Perplexity.ai 60.2% 25.3% 10.1% 34.9% 4,634
Meta SG 57.4% 16.0% 21.8% 41.4% 3,431
ChatGPT Plus 66.5% 25.0% 1.9% 41.5% 6,195
Gemini Advanced 65.9% 16.6% 12.5% 49.3% 5,246
Copilot Pro 68.5% 17.9% 7.8% 50.6% 11,596

Table 31: Truthfulness scores on CRAG. (?: the score is obtained by human evaluation and the others
are obtained by automatic evaluation; ??: in addition, different accesses to retrieval contents. [52].)

Table 31 summarizes the performance in truthfulness score of baselines (the LLM only and straightforward
RAG solutions), the KDD Cup winner solution, and the best-performing industry state-of-the-art (SOTA)
system on CRAG. We have the following observations and details can be found in [52].

1. The LLM-only solution performs poorly on CRAG, with truthfulness ranging from 3% to 20%.

2. Although RAG can help answer more questions, adding RAG in a straightforward manner does not
necessarily reliably outperform the LLM-only solution (truthfulness ranging from 9% to 13%). This
is because careless summarization in baseline RAG solutions can introduce more hallucinations
generated from irrelevant retrieval results.

3. The CRAG KDD Cups winning solutions improve the truthfulness significantly to 36%, but still
falls short of perfection in terms of answer accuracy and latency. We will describe the solutions in
more detail in Section D.

4. Industry SOTA systems, which likely leverages better models and retrieval systems (e.g., web and
KG search engines), achieved 51% truthfulness. The systems that achieved the highest truthfulness
and that had the lowest latency were different, reflecting the quality-latency tradeoff. There is still
much room for improvement on quality and latency.

D Learnings from the winning solutions

More than 2500 participants took part in the CRAG competition. Four teams won top-three positions
across three tasks, and seven additional teams scored high points for individual question types (see
Table 32).
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Table 32: CRAG competition winning teams and team placements. For each task we awarded top-3
teams for overall scores, and top-1 team for each question type.

Team name Task 1 placement Task 2 placement Task 3 placement

db3 [49] 1st place 1st place 1st place
APEX [30] 2nd place 2nd place
md_dh [11] 2nd place 3rd place

Set
Aggregation
Post-processing

vslyu-team [51] 3rd place
ElectricSheep [55] 3rd place Simple with condition

Set
Aggregation
Multi-hop
Post-processing

dRAGonRAnGers [32] Comparison
Post-processing

Comparison Comparison

ETSLab False premise Multi-hop
dummy model [16] Simple with condition

Set
Aggregation

bumblebee7 [56] Multi-hop
Future [9] False premise
StarTeam [48] Simple with condition
Riviera4 [43] False premise

168



Most winning solutions adapt a general RAG system design that comprises two main stages (see
Figure 52): (1) Knowledge Retrieval components that retrieve and process relevant information from
web or knowledge graphs, and (2) an Augmented Generation component that leverages an LLM to
incorporate retrieved information and provide an answer to the question.

No team trained the overall pipeline in an end-to-end fashion. Instead, each component is optimized
separately, where sub-systems are tailored to the specific tasks or question types. The teams leverage
both off-the-shelf solutions (e.g., Beautifulsoup for HTML parsing, BGE encoders for ranking) and
customized solutions (e.g., fine-tuned LLM to reduce hallucination). In the following we deep dive to
learnings from each component.

Figure 52: Conceptual overall architecture from winning solutions.

D.1 Knowledge Retrieval from Web

Given a query, this component retrieves supporting material from the web repository (task 1, 2 and 3).
An ideal retrieval system finds relevant knowledge efficiently (high recall) without including too many
noises (high precision). There are several key challenges: 1) raw HTML contains inconsistent structures,
making it challenging to extract clean text; 2) long web pages exceed LLM’s input length constraints; 3)
webpages often contain contents that are irrelevant to the question that dilute signals and potentially
lead to hallucinations from summarizations.

To address these challenges, most winning solutions follow a workflow consisting of four steps to
obtain clean relevant information from webpages: HTML parsing, content chunking, relevance scoring,
and re-ranking. The teams heavily utilize off-the-shelf libraries as building blocks as listed in Table 33
below.

Table 33: Off-the-shelf libraries the winning solutions leveraged for web retrieval.

Component Libraries

HTML Parsing BeautifulSoup [35], Trafilatura [5]
Chunking CharacterTextSplitter [26] , ParentDocumentRetriever [26]
Relevance scoring bge-base [50], ms-marco-miniLM [27] , sentence-t5 [28], BM25 [36]
Re-ranking bge-reranker [8]
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The teams leveraged a variety of chunking strategies to partition web content into smaller segments.
Beyond the basic token-level chunking method, three solutions stand out in ensuring related contexts
are preserved in the same chunk, allowing the summarization model to access coherent information:

1. Db3’s [49] solution maintains a parent-child chunk relationship using the ParentDocumentRetriever
library. Once they identify smaller children chunks that are relevant to the question, they include
their associated parent chunks in the pipeline.

2. Md_dh’s [11] solution traverses the tree structure of HTML to identify chunks at node level,
minimizing segmentation of texts under a common tag such as header, table, sections.

3. ElectricSheep’s [55] solution first identifies questions in web pages by matching sentences that start
with “5W1H” key words (i.e. "Who", "What", "Where", "When", "Why" and "How") and end
with a question mark, and then ensures subsequent texts are grouped together with the questions.

For relevance scoring and re-ranking, the winning solutions mainly rely on off-the-shelf sparse (e.g.
BM25) and dense (e.g. bge-base) retrieval models and re-ranker models (e.g. bge-reranker) without
customized fine-tuning. Ablation study (md_dh [11]) shows that dense retrieval via cross-encoders has
a slight edge over sparse retrieval in terms of accuracy.

D.2 Knowledge Retrieval from KG

CRAG provides various domain specific APIs to access underlying KG data (task 2,3). The main tasks
for efficient retrieval from KG are three folds: 1) identifying the appropriate API(s), 2) generating
correct API parameters, and 3) processing API results to find relevant information.

The winning solutions for KG retrieval fall into three broad categories.

1. Build each retrieval step separately. Using APEX’s [30] solution as an example, this approach
invokes the following steps. It first leverages an LLM to identify named entities, followed by entity
linking via string matches or BM25 fuzzy matches. Then it identifies an appropriate API and its
parameters via domain-specific rules and calls the API. Afterwards, it filters the API results based
on the date of the query. Finally it converts the filtered results to markdown format and sent to
the final generation model.
This approach provides explicit control and insights of each step at the cost of integration
complexity.

2. Generate e2e API call directly. A few teams (db3 [49], md_dh [11], ElectricSheep [55] etc.)
prompt an LLM to directly generate API payload, where fine-tuned LLMs with API specific data
further improve the calling accuracy.

3. Regularized API. Another innovative solution came from team db3 [49]. Instead of building a
retrieval system around the original APIs provided by CRAG, the authors develop a new set
of “regularized” APIs that enhances the expressiveness of the original APIs. More specifically,
the solution built API wrappers to encapsulate filtering conditions (e.g.“year” == “2012”) and
aggregation logics (e.g. maximum, average). The following is an example comparing the original
API and the regularized API.

get_movie(movie_name) ! get_movie(movie_name, condition)[key_name] (13)
where “condition” is from a set of predefined rules, and “key_name” are indices to search in the
results. The expressive regularized APIs allow the team to obtain concise information via a single
API call generated by LLM.
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D.3 LLM Augmented Generation

LLM Augmented Generation incorporates upstream retrieved knowledge to generate a final answer.
All winning solutions put significant efforts in reducing hallucination in this step, partially because
hallucination is penalized more severely than a missing (e.g. “I don’t know") answer in the CRAG
scoring criteria.

The main strategies that the winning solutions adapt to reduce hallucinations are a combination of
chain-of-thought prompting, explicit confidence estimation, supervised fine-tuning, and manual rules.

1. Chain-of-thought. Teams (e.g., ElectricSheep [55], APEX [30]) show that prompting the LLM
to articulate intermediate thinking steps improve answering accuracy for complex questions and
significantly reduce hallucination. For instance, ElectricSheep [55] prompts the model to first
identify if a question has false premise, then whether the question can be answered by each retrieved
evidence, before generating the final answer.

2. Explicit confidence inference. Another approach is to estimate LLM answer’s confidence, then
only retain the answer at high confidence, and answer “I don’t know” otherwise. Winning solutions
either prompt the LLM directly to self produce a confidence level, or sample several answering
paths and approximate the confidence as the answer consistency. Both methods are effective in
their respective pipeline, but the self-consistency approach demands more computational resources.

3. Supervised fine-tuning. Several teams (e.g., db3 [49], md_dh [11], dRAGonRAnGers [32]) fine-
tune an Llama-3-8b model specifically targeting reducing hallucinations. The teams generated
training labels by first running the pipeline with a non-fine-tuned LLM generation model, then
prompts a separate LLM to automatically identify questions that are not answerable by retrieved
knowledge passages and labeled “I don’t know” for fine-tuning. The resulting fine-tuned model
answers “I don’t know” more frequently on questions that it tends to hallucinate originally.

4. Manual rules. Since dynamic questions are much more difficult to answer correctly than static
questions. Some teams opt to avoid answering dynamic questions all together to prevent getting
penalized with hallucinated answers.

D.4 Observations by Question Categories

CRAG categorizes questions along four dimensions: Topic domain (Finance, Sports, Music, Movie,
Open), Dynamism (Real-time, Fast-changing, Slow-changing, Static), Popularity (Web, Head, Torso,
Tail) and Question Type (Simple, Simple with condition, Set, Comparison, Aggregation, Multi-hop,
Post-processing, False premise). The strategies and performance of winning solutions vary significantly
across different dimensions, as shown in Figure 53 from task 3 winning teams.

Domain dimension Since each domain has its own set of APIs, most winning solutions develop
router to detect the topic domain of each question then use the results to select appropriate API calls
and construct domain specific prompts accordingly.

Among the domains, Finance questions prove to be the most challenging. This is mainly because
many financial questions are real-time or fast-changing (e.g., "can you tell me the opening stock price
of landp on the last Friday (question asked on 02/28/2024, 07:58:48 PT)?"), thus requiring finding
results precisely corresponding to the reference time. To tackle date-time parsing, APEX [30] leveraged
regex rules and Python libraries (pytz and datetime) to parse absolute datetime objects. One other
challenge is that Finance questions often require numeric reasoning. ElectricSheep [55] delegates numeric
calculations to an external Python interpreter, which reduces hallucination from LLM.
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Figure 53: Human-evaluated Truthfulness scores from Task 3 winners on the private test set across the
four question categories. The truthfulness scores reflect different strategies taken by different winning
teams. First-place winner for all three tasks Db3 [49], as an example, put in significant efforts for
improving the results on using the APIs, which gained them large margins in handling those KG-
supported questions.

Dynamism dimension Overall, winning solutions perform better in static and slow-changing questions
than fast-changing and real-time questions, mainly because of difficulties in temporal reasoning in both
the retrieval step and the summarization step. Some teams even implemented solutions to blankly answer
“I don’t know" for all dynamic questions to reduce hallucination penalties. One promising approach
was team db3’s [49] “regularized" APIs (see Section D.2), which improved the APIs’ expressiveness in
handling temporal information.

Dynamic questions are an area where RAG should excel over vanilla LLM. The fact that teams
struggle with dynamic questions suggests further opportunities in this area.

Popularity dimension In this dimension, the performance is largely correlated with entity popularity
as expected, due to sparsity of information for torso to tail questions.

Question Type dimension In this dimension, comparison questions (e.g., “who started performing
earlier, Adele or Ed Sheeran?”), post-processing questions (e.g., “How many days did Thurgood Marshall
serve as a Supreme Court justice?"), and multi-hop questions (e.g., “what school does Lebron James’s
youngest son attend?") are the most difficult types, mainly because they require retrieving information
of multiple entities and nontrivial reasoning over the retrieved results.

Team dRAGonRAnGers’s [32] solution won first place for comparison questions in all three tasks.
The authors hypothesized that their explicit chain-of-thought prompt contributed to the success by
generating rationals for each entities involved in the comparison then synthesizing a final answer.
Similarly, carefully engineered chain-of-thought prompts also improved reasoning for multi-hop and
post-processing questions, as Team ElectricSheep [55] and bumblebee7 [56] demonstrated.
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E Learnings from hosting the challenge

In this section, we reflect the experience from creating the benchmark, designing the challenge, and
finally hosting the challenge and workshop, and summarize our learnings from this one year journey.

E.1 How can we design a fair, informative and feasible challenge?

We strive to create an informative and engaging challenge, but also need to take into consideration the
fairness, accessibility, as well as time and budget constraints. We made several design decisions for the
challenge, which turned out to be critical for its success. We narrate these design choices next.

Creating equally accessible retrieval contents. Providing equally accessible retrieval contents
eliminates the unfair comparison induced by having access to different resources among the participants.
A RAG system theoretically can retrieve from the universe of all public and proprietary information
sources. Although it is interesting to test RAG systems in an end-to-end manner by allowing participants
to use all accessible APIs, it inevitably creates an advantage for large companies or entities that have
more resources. We therefore made a decision to provide equally accessible retrieval contents in the
benchmark for the challenge, so that all systems can be evaluated against the same set of facilitating
information, eliminating the potential unfairness introduced by having access to different amount of
retrieval sources. This design choice, although not completely testing the retrieval of the RAG systems,
still allows users to evaluate it by combining all the retrieved webpages as the retrieval pool.

Another advantage of using fixed retrieval contents is to be able to compare over time. Search engines
evolve over time. People who use the benchmark questions later on can get better results just because
the search engine improves its results. Meanwhile, CRAG retrieval content is available for experiments.
Researchers who want to conduct a fair comparison do not need to reproduce the previous results, when
the results were reported on CRAG retrieval content. Otherwise, they would need to re-implement
existing SOTA systems to make sure the same version of search engines were used. This can be very
consuming and even infeasible (if the system involves proprietary implementation or data). We believe
providing equally accessible retrieval content can substantially facilitate the research for RAG, and are
striving to extend this practice to future studies. See Section G for more discussions.

Setting model constraints. We put the constraints on which model can be used to make the
challenge focus on RAG, instead of the base models. The participants can use vanilla or fine-tuned
Llama 2 or Llama 3 models as long as the data were publicly available and were not generated from any
proprietary model. This decision also ensures the results from the built systems are more comparable.

E.2 How can we ensure the cost is affordable?

There are a lot of cost involved in running a large-scale challenge. To ensure its sustainability, we
carefully planned to control two major costs: computation and evaluation.

Setting submission limit and hardware constraints. The computation cost mainly comes from
using GPUs to run the inference. We set limits on the number of submissions from each team during
the challenge to make sure the computation cost can be controlled. The challenge allows up to six
submissions for each team each week in phase 1, and up to six submissions for each team in total in
phase 2.

We also selected a more affordable GPU option: the AWS G4dn.12xlarge instance equipped with 4
NVIDIA T4 GPUs with 16GB GPU memory as the supported hardware for the inference. These GPUs
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have the limitation that they cannot run the Llama 2 70B or Llama 3 70B full precision models directly.
However, the price of those more powerful GPUs were several times higher and would not bring much
additional value. Therefore, we decided to choose the more economical option.

These submission limits, along with the selected hardware configurations, ensured that we can provide
enough room for the participants to develop and test their solutions while keeping the computation cost
under the budget.

Using auto-eval in Phase-1 and in Phase-2 initial selection. Although human-eval is the most
comprehensive way for evaluating responses from LLMs, it would be too slow and expensive to support
challenges that receive thousands of submissions. Therefore we made an early decision to develop
auto-eval solutions for the challenge. Phase 1 of the challenge was purely relying on auto-eval to support
the leaderboard. For phase 2, we first used auto-eval to select the top-15 teams for each task, and then
employed human manual evaluation to determine the final winners. This design substantially reduced
the time and expense (more than 100 times) needed for the evaluation.

E.3 How can we ensure the evaluation is reliable?

In order to guarantee the evaluation quality, we still need to ensure the auto-eval mechanism has high
accuracy, which we discuss next.

Ensuring auto-eval quality. We solve the auto-evaluation problem with an LLM task, where the
prompt asks the LLM to determine whether the generated answer is accurate, hallucinated, or missing
based on the ground truth information. This is a simple version of the NLP task —consistency check.

We conducted extensive experiments to make sure the auto-eval solution can have high accuracy [52].
We have two observations when developing the auto-eval solution. First, it is critical to provide high
quality ground truth answers for the auto-evaluator to work effectively. During the experiment, we
observed that some examples may not have a unique correct answer (e.g., a question about height can
be answered in either feet or meters.). Hence, we also provided alternative ground truth answers for the
benchmark questions whenever needed. It turned out that these alternative answers were very helpful
for reducing evaluation errors. Second, we don’t need the most powerful models to serve as the auto-
evaluator. Our experiment shows that the accuracy of using the Llama 3 (llama-3-70B-instruct)
model and the ChatGPT (gpt-3.5-turbo) are 99% and 94.5% respectively (for predicting accurate,
missing and hallucinated responses) [52]. See Table 34 for more detailed results.

In the final evaluation, among the nine top-3 winning teams selected by manual evaluation, six
of them were also selected by our auto-evaluation. Generally speaking, using LLM-as-a-Judge is a
common practice in evaluating language models’ performance. Procedures for measuring and resolving
the self-enhancement bias, position bias [57] and preventing prompt attacks play vital roles in ensuring
the reliability of the evaluation results.

Preventing evaluation attacks. We found three decisions very helpful for protecting the evaluation
from hacks. The first one was to keep a held-out test set for the final competition (phase 2). We initially
ran the leaderboard in phase 1 using the released public test set, but soon found the leaderboard was
filled with 100% accuracy. This was because some teams tried to test the evaluation system and created
a map with (query, answer) pairs based on the released data, from which they looked up answers for
the test queries during the submission. This issue was remedied by replacing the leaderboard test set
with a subset of the held-out dataset. The second decision was to hold out the exact prompt used in
the auto-eval to avoid prompt attack. We released an example evaluation prompt to illustrate how the
auto-eval works in the starter kit, and later on received questions from the challenge forum calling out
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F1 Score Accuracy

Model Correct Missing Hallucinated

ChatGPT-3.5 Turbo 92.0% 100.0% 92.0% 94.5%
Llama 3.0 8B Instruct 94.6% 100.0% 90.7% 95.3%
Llama 3.0 70B Instruct 98.9% 100.0% 97.9% 99.0%
Llama 3.1 70B Instruct 98.2% 100.0% 96.8% 98.4%

Table 34: Auto-eval performance for using different models as the evaluator. The first three columns
show the F1 scores on the accurate, missing and hallucinated responses. The last columns shows the
overall accuracy on all examples in the CRAG public test set. Llama 3.0 70B and Llama 3.1 70B models
achieve accuracy around 99%. Llama 3.0 8B, although being much smaller, attains accuracy 95.3%,
on par with ChatGPT-3.5 Turbo. All models have 100% on the missing answers because we require
all missing answers to be answered as “I don’t know", and we use exact match to judge for missing
responses during the evaluation.

ways to hack the prompt for obtaining high scores. During the final competition, we also noticed some
submissions that tried to fool the auto-evaluator achieved very high scores. Although the final winners
were selected by the manual evaluation, recall that a team needed to be among the top 15 in the auto-eval
to be eligible for human-eval. Keeping the evaluation prompt private significantly reduced the risk of
prompt attack and also reduced the overhead needed for manual checking after the evaluation. The
third one was to disable network connection during the inference. The choice of providing pre-fetched
retrieval contents (discussed in Section E.1) allowed us to avoid using live web connection during the
challenge. This also helped reduce the risk of leaking the private test data during the evaluation stage.

F Related work

F.1 RAG Benchmarks

We compare and highlight the strengths and limitations of existing retrieval-augmented generation (RAG)
benchmarks across several critical dimensions, as demonstrated in table 35 in CRAG [52]. QALD-10 [46]
focuses primarily on knowledge graph search over Wikidata but does not incorporate web retrieval,
limiting its capacity to test models in unstructured environments. It lacks mock APIs or dynamic
question capabilities, reducing its ability to simulate real-world, evolving knowledge scenarios. MS
MARCO [4], while widely used for open-domain question answering, primarily emphasizes passage
retrieval and lacks integration with knowledge graphs. It also fails to test for long-tail facts, as it
predominantly handles popular, factoid-based information sourced from common queries, limiting its
coverage of less frequent, tail facts. Natural Questions [19] focuses on more complex and long-form
queries but remains heavily constrained to Wikipedia-based knowledge and lacks dynamic or API-driven
retrieval. RGB [7], on the other hand, introduces a focus on long-tail facts but does not fully test
retrieval beyond specific domains, missing integration with KG searches or dynamic question handling.
FreshLLMs [47] excels in testing models’ ability to retrieve and update real-time knowledge but remains
narrow, lacking domain diversity and focus on structured retrieval such as knowledge graphs.

Despite having smaller question size than MS MARCO and NQ, CRAG [52] stands out by combining
web retrieval, knowledge graph search, and mock APIs, simulating diverse retrieval environments. It
goes beyond Wikipedia, tackling dynamic questions and ensuring comprehensive coverage of both torso
and tail facts across multiple domains, making it a more robust and versatile benchmark for evaluating
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Table 35: Comparing CRAG to existing benchmarks for factual question answering.

Benchmark Web
retrieval

KG
search

Mock
API

Dynamic
question

Torso and
tail facts

Beyond
Wikipedia

Question
size

QALD-10 [46] 7 X 7 7 7 7 0.8K
MS MARCO [4] X 7 7 not explicitly not explicitly X 100K
NQ [19] X 7 7 not explicitly not explicitly 7 323K
RGB [6] X 7 7 7 7 X 1K
FreshLLM [47] 7 7 7 X 7 X 0.6K
CRAG [52] X X X X X X 4.4K

next-generation RAG systems.

F.2 RAG Systems

RAG systems have evolved significantly over time, focusing on improving large language models (LLMs)
by integrating retrieval mechanisms for enhanced knowledge access. Talmor et al. [41] pioneered the
use of the web as a knowledge base to answer complex questions, emphasizing retrieval for reasoning
tasks. Lewis et al. [21] formally introduced RAG, combining dense retrieval with generative models to
solve knowledge-intensive NLP tasks, setting a strong foundation for subsequent models. REALM [14]
improved this by incorporating retrieval into pre-training, making retrieval part of both the learning
and fine-tuning process, which was further extended by Fusion-in-Decoder (FiD) [17], fusing multiple
retrieved documents into the generation process for improved question answering. Mallen et al. [25]
explored the effectiveness of parametric and non-parametric memory mechanisms to determine when
models should rely on internal versus external knowledge. Similarly, Sun et al. [39] investigated whether
LLMs could replace traditional knowledge graphs, assessing how well LLMs store and retrieve structured
knowledge. QA-GNN [54] integrated retrieval-augmented methods with reasoning from knowledge
graphs, combining structured and unstructured knowledge for better question answering. Meanwhile,
Mallen et al. [25] focused on trust in LLMs, analyzing the limitations of parametric knowledge and
advocating for non-parametric memory integration. Recently, FreshLLMs [47] refreshed LLM knowledge
using search engine augmentation to maintain up-to-date responses. These works collectively contribute
to a growing body of research that refines LLM performance by bridging the gap between parametric
knowledge and external, retrievable information.

F.3 RAG System Evaluation

In recent developments for evaluating RAG systems, multiple frameworks have proposed solutions aimed
at addressing key challenges like retrieval relevance, truthfulness, and the efficiency of the evaluation
process. ARES [37] offers an automated evaluation approach by generating synthetic data and fine-tuning
lightweight language models, allowing for scalable assessments of retrieval relevance, answer faithfulness
and answer relevance. However, ARES may face issues with domain adaptation, as its synthetic data may
not always represent the nuances of diverse real-world datasets. RAGAS [12] introduces a reference-free
evaluation method, providing metrics for context relevance without relying on ground truth annotations,
reducing human labeling costs. Nevertheless, its heuristic-based measures may struggle with capturing
deeper semantic nuances and can exhibit biases in complex scenarios. CoFE-RAG [23] performs an
exhaustive evaluation across the entire RAG pipeline, employing multi-granularity keyword-based
assessment of the retrieved context. RAG-QA Arena [15] proposes a pairwise preference evaluation
framework with truthfulness as the primary criterion, leveraging ground truth to gauge the evaluation

176



system quality.

F.4 RAG Competitions

More recently, the TREC 2024 RAG Track is proposed, featuring Ragnarök [33], an open-source, end-
to-end evaluation framework with MS MARCO V2.1 collection and industrial baselines like OpenAI’s
GPT-4o and Cohere’s Command R+. The framework provides a web-based interface for benchmarking
pairwise RAG systems through a RAG battle arena.

Various domain-specific competitions, such as the Zindi RAG challenge [2] for public services, the
FinanceRAG competition [1], and the Trustbit Enterprise RAG Challenge [45], push the boundaries
of RAG applications. These challenges emphasize tailored RAG systems that retrieve domain-specific
information and generate context-aware responses, demonstrating the potential of RAG to enhance
service delivery in public administration, financial analysis, and business document comprehension.

G Discussion and future work

The KDD Cup CRAG 2024 competition established a benchmark for evaluating Retrieval-Augmented
Generation (RAG) systems with three challenging tasks: retrieval summarization, knowledge graph
and web retrieval, and end-to-end RAG. Questions covered various domains, dynamism levels, types,
and entity popularity. Key learnings from hosting the challenge (Section E) emphasized the need for
standardized retrieval content and retrieval access, controlled model constraints, maintaining a private
test set, and mixed automated and human evaluation strategies to ensure fairness and manage cost.

CRAG highlighted persistent challenges in RAG systems. First, reducing retrieval noises from
the web and from KG is critical as irrelevant or contradicting information degrades answer quality.
Second, handling real-time or fast-changing questions remains difficult due to the need for nuanced
temporal reasoning. Third, questions that require aggregation, multi-hop reasoning or post-processing
are challenging as they require complex logic to integrate knowledge across multiple sources. Lastly,
reducing hallucinations in summarization remains essential. To address the above challenges, winning
teams leveraged a variety of solutions (Section D). For example, developing multi-step pipelines to parse,
chunk, and rank web contents reliably, creating regularized APIs to enhance KG retrieval expressiveness,
incorporating external libraries to improve temporal reasoning, leveraging chain-of-thought techniques to
break down complex queries, and fine-tuning LLM and implementing confidence estimation component
to reduce hallucinations. The practical applications of these findings have significant implications for
improvements in industry-grade RAG systems.

The CRAG competition highlights several promising directions for future RAG research: Enhancing
web retrieval quality via better handling of structured and semi-structured data, improving temporal
reasoning for real-time queries, and refining methods for multi-hop and aggregation tasks can improve
response reliability. Additionally, targeted fine-tuning may be essential to effectively reduce halluci-
nations. Looking ahead, future CRAG-style competitions could expand the question sets to include
multimodal, multi-turn questions, integrating text with images or structured data for a more realistic
RAG environment. As researchers pursue these directions, they will also need to address key scalability
challenges in building RAG systems that can handle real-time and multimodal data, including ensuring
data consistency across diverse sources and achieving low-latency processing of real-time multimodal
data. By tackling these challenges, researchers can unlock the full potential of RAG systems and improve
response reliability.
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