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Abstract

Retrieve-and-rerank is a prevalent framework in neural information retrieval, wherein a bi-encoder
network initially retrieves a pre-defined number of candidates (e.g., K=100), which are then reranked
by a more powerful cross-encoder model. While the reranker often yields improved candidate scores
compared to the retriever, its scope is confined to only the top K retrieved candidates. As a result,
the reranker cannot improve retrieval performance in terms of Recall@K. In this work, we propose to
leverage the reranker to improve recall by making it provide relevance feedback to the retriever at
inference-time. Specifically, given a test instance during inference, we distill the reranker’s predictions
for that instance into the retriever’s query representation using a lightweight update mechanism.
The aim of the distillation loss is to align the retriever’s candidate scores more closely with those
produced by the reranker. The algorithm then proceeds by executing a second retrieval step using
the updated query vector. We empirically demonstrate that this method, applicable to various
retrieve-and-rerank frameworks, substantially enhances the retrieval recall across multiple domains,
languages, and modalities.

A Introduction

Information Retrieval (IR) involves retrieving a set of candidates from a large document collection given
a user query. The retrieved candidates may be further reranked to bring the most relevant ones to the
top, constituting a typical retrieve-and-rerank (R&R) framework |1, 2|. Reranking generally improves the
ranks of relevant candidates among those retrieved, thus improving on metrics such as Mean Reciprocal
Rank (MRR) [3] and Normalized Discounted Cumulative Gain (nDCG) [4], which assign better scores
when relevant results are ranked higher. However, retrieval metrics like Recall@K, which mainly evaluate
the presence of relevant candidates in the top K retrieved results, remain unaffected. Increasing Recall@K
can be key, especially when the retrieved results are used in downstream knowledge-intensive tasks

[5] such as open-domain question answering [6—8], fact-checking [9], entity linking [10—12] and dialog
generation [13, 14].

Most existing neural IR methods use a dual-encoder retriever [15, 16| and a subsequent cross-encoder
reranker [17]. Dual-encoder' models leverage separate query and passage encoders and perform a

late interaction between the query and passage output representations. This enables them to perform
inference at scale as passage representations can be pre-computed. Cross-encoder models, on the other
hand, accept the query and the passage together as input, leaving out scope for pre-computation. The
cross-encoder typically provides better ranking than the dual-encoder—thanks to its more elaborate

'We use the terms bi-encoder and dual-encoder interchangeably in this paper.
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computation of query-passage similarity informed by cross-attention—but is limited to seeing only the
retrieved candidates in an R&R, framework.

Since the more sophisticated reranker often generalizes
b.etter at Ppassage scoring than the simpler, but more effi- 1) 151 Retrievl
cient retriever, here we propose to use relevance feedback 2) Re-ranking
from the former to improve the quality of query representa- Dual 3) Distillation
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the retriever’s corresponding query vector by minimizing " :
a distillation loss that brings its score distribution over ;
the retrieved passages closer to that of the reranker. The @ ! Update
new query vector is then used to retrieve documents for !
the second time. This process effectively teaches the re-
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model—for the given test instance. Our approach, RE- ! query vector CrossEncoder | Encoder
FIT? is lightweight as only the output query vectors (and »,_ Ranking Ranking

no model parameters) are updated, ensuring comparable :

. . . . N Passages
inference-time latency when incorporated into the R&R [N a : Voot 5 - HU””””]
framework. Figure 47 shows a schematic diagram of our ew uery ector ense index

approach, which introduces a distillation and a second
retrieval step into the R&R framework. By operating ex-
clusively in the representation space—as we only update
the query vectors—our framework yields a parameter-free
and architecture-agnostic solution, thereby providing flex-
ibility along important application dimensions, e.g., the
language, domain, and modality of retrieval. We empiri-
cally demonstrate this effect by showing improvements in
retrieval on multiple English domains, across 26 languages
in multilingual and cross-lingual settings, and in different modalities such as text and video retrieval.
Our main contributions are as follows:

Figure 47: REFIT: The proposed method
for reranker relevance feedback. We intro-
duce an inference-time distillation process
(step 3) into the traditional retrieve-and-
rerank framework (steps 1 and 2) to com-
pute a new query vector, which improves
recall when used for a second retrieval step
(step 4).

e We propose REFIT, an inference-time mechanism to improve the recall of retrieval in IR using
relevance feedback from a reranker.

e Empirically, REFIT improves retrieval performance in multi-domain, multilingual, cross-lingual
and multi-modal evaluation.

e The proposed distillation step is fast, considerably increasing recall without any loss in ranking
performance over a standard R&R. pipeline with comparable latency.

B Related Work

Pseudo-relevance feedback: Our method has similarities with Pseudo-Relevance Feedback (PRF)
[18=20] in IR: [21, 22] use the retrieved documents to improve sparse approaches via query expansion or
query term reweighting, [23, 24| score similarity between a target document and a top-ranked feedback
document, while [25] train a separate query encoder that computes a new query embedding using the
retrieved documents as additional input. In contrast, our approach does not require customized training

2REFIT stands for Reranker Feedback at Inference Time
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feedback models or availability of explicit feedback data, as we improve the query vector by directly
distilling from the reranker’s output within an R&R framework.

Further, previous approaches to PRF have been dependent on the choice of retriever architecture and
language; [25]’s PRF model is tied to the retriever used, [26]| explore cross-lingual relevance feedback,
but require feedback documents in target language and thereby could only apply to three languages,
while [27] explore interpolating relevance feedback between dense and sparse approaches. On the other
hand, our approach is independent of the choice of the retriever and reranker architecture, and can be
used for neural retrieval in any domain, language or modality.

Distillation in Neural IR: Existing approaches primarily leverage reranker feedback during training
of the dual-encoder retriever, to sample better negatives [28|, for standard knowledge distillation of the
cross-attention scores [29], to train smaller and more efficient rankers by distilling larger models [30],
or to align the geometry of dual-encoder embeddings with that from cross-encoders [31]. Instead, we
leverage distillation at inference time, updating only the query representation to replicate the cross-
encoder’s scores for the corresponding test instance. A key implication of this design choice is that unlike
existing methods, we keep the retriever parameters unchanged, meaning REFIT can be incorporated
out-of-the-box into any neural R&R framework. In contrast, extending training-time distillation to new
languages or modalities would require re-training the bi-encoder.

More recently, TOUR [32] has proposed test-time optimization of query representations with two
variants: TOURparg and TOURgog. TOURparq optimizes the marginal likelihood of a small set of (pseudo)
positive contexts. REFIT shares similarities with TOURg.s, which uses the normalized scores of a
cross-encoder over the retrieved results as soft labels. Crucially, TOUR relies on multiple iterations
of relevance feedback via distillation, where each iteration runs until the top-1 retrieval result has the
highest reranker score (in TOURgog;) or is a pseudo-positive (in TOURparq). This makes inference highly
computationally expensive, as each additional iteration involves labeling top-K retrieval results with a
reranker and then retrieving again. REFIT improves efficiency over TOUR, by requiring only a single
iteration of feedback that simply updates the query vector for longer, foregoing additional retrieval
and reranking steps. More specifics on the inference process of the two methods can be found in §E.4.
ToUR was evaluated only on English phrase and passage retrieval tasks, while we demonstrate REFIT’s
effectiveness in multidomain, multilingual and multimodal settings, with an empirical comparison with
TouR in §E.4.

C Method

Here we discuss the standard retrieve-and-rerank (R&R) framework for IR (§C.1) and how our proposal
fits into it (§C.2). While our approach can be applied to any R&R framework, we consider a text-based
retriever and reranker for simplicity while elaborating our method. A multi-modal R&R. framework is
described in §E.3.

C.1 Retrieve-and-Rerank

R&R for IR consists of a first-stage retriever and a second-stage reranker. Modern neural approaches
typically use a dual-encoder model as the retriever and a cross-encoder for reranking.

The Retriever: The dual-encoder retriever model is based on a Siamese neural network [33], containing
separate Bert-based [34] encoders Eg(.) and Ep(.) for the query and the passage, respectively. Given a
query g and a passage p, a separate representation is obtained for each, such as the CLS output or a pooled
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Algorithm 1: REFIT

Input: Query ¢ and its representation @), retrieved passages P and their representations p.
Output: Updated query representation Qg n

1: Initialize query vector Qg0 = Qq
2: Compute reranker distribution Deg(q, P) (Eq. 10) for i in 0 to n do

Compute retriever distribution DQW(P) (Eq. 11)
Compute loss £ (Eq. 12)
Update Qq7i+1 = Qq,i — a%{mﬁ

return Qg n

representation of the individual token outputs from Eg(q) and Ep(p). The question-passage similarity
sim(q,p) is computed as the dot product of their corresponding representations: query/passage.

Qq = Pool(Eq(q)) (6)

P, = Pool(Ep(p)) (7)

sim(q,p) = S(Qqa Pp) = QqTPp (8)

Since Eq. 8 is decomposable, the representations of all passages in the retrieval corpus can be
pre-computed and stored in a dense index [35]. During inference, given a new query, the top K most

relevant passages are retrieved from the index via approximate nearest-neighbor search.

The Reranker: The cross-encoder reranker model uses a Bert-based encoder Eg(.), which takes the
query g and a corresponding retrieved passage p together as input and outputs a similarity score. A
feed-forward layer F' is used on top of the CLS output from Egr(.) to compute a single logit, which is
used as the final reranker score R(q,p). The top K retrieved passages are then ranked based on their
corresponding reranker scores.

C.2 Reranker Relevance Feedback

The main idea underlying our proposal is to compute an improved query representation for the retriever
using feedback from the more powerful reranker. More specifically, we perform a lightweight inference-time
distillation of the reranker’s knowledge into a new query vector.

Given an input query ¢ during inference, we use the following output provided by the R&R pipeline:

e Query representation (), from the retriever.

e Retrieved passages P = {p1,p2,...,px } and their representations pP= [Pp1, Ppys oy Ppy | from the
retriever.

e The reranking scores R(q, P) = [R(q,p1), ..., R(q, pK)]-
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Step (Device) Retrieve & Rerank REFIT
K=100 K=125 | (K=100)
1st Retrieval (CPU) 40ms 40ms 40ms
© Rerank (CPU) | | 1540ms  1925ms | 1540ms
Rerank (GPU) 360ms 450ms 360ms
~ Distillation (CPU) | - - 30ms
2nd Retrieval (CPU) - - 40ms
Total (CPU) 1580ms 1965ms 1650ms
Total (GPU) 400ms 490ms 470ms

Table 23: Comparison of inference times (in milliseconds) for different approaches, utilizing both CPU-
only and GPU configurations (when reranking K passages).

Note that P above is directly obtained from the passage index and is not computed during inference.
The proposed reranker feedback mechanism begins with using the reranking scores R(q, P) to
compute a cross-encoder ranking distribution Dog(q, P) over passages P as follows:

Dep(q, P) = softmax([R(q, p1), -, B(¢, pK)]) (10)

The query and passage representations from the retriever are used to compute a similar distribution

A

Dq,(P) over P:

Dg,(P) = softmax([QI P,,, ..., QL P, ,.]) (11)

Next, we compute the loss as the KL-divergence between the retriever and reranker distributions:

L = Dgr(Dor(g; P)||Dg,(P)) (12)

which is then used to update the query vector via gradient descent. The query vector update process
is repeated for n times, where n is a hyper-parameter. A schematic description of the process can be
found in Algorithm 1.

Finally, the updated query vector @, is used for a second-stage retrieval from the passage index.
From dual-encoder retrieval with the updated @4, we aim to achieve better recall than with the initial
(4, while obtaining a ranking performance that is comparable with that of the reranker.

D Experimental Setup

D.1 Distillation Process

We observe that the output scores from the dual-encoder and the cross-encoder models are not bounded
to specific intervals. Hence, we do min-max normalization separately on the query vector’s scores QqTP
(from the dual-encoder) and the cross encoder’s scores R(q, P) to bring the two scoring distributions
closer. Further, the cross-encoder tends to have peaky scoring distributions, hence we use a temperature
T (= 2 after tuning) while computing the softmax Dcg(q, P) over the cross-encoder scores. After tuning
on the MS Marco dev set, we set the number of updates n=100 with learning rate a=0.005.
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BM25 ANCE ; RocketQA RocketQA RocketQA RocketQA Contriever Contriever Contriever

1 vl v2 vl+Rerank v14+REFIT + Rerank + REFIT
MS MARCO 65.8 85.2 88.4 88.7 89.4 90.0* 89.1 89.9 90.5*
Trec-COVID 49.8 45.7 : 48.5 46.4 52.0 52.9 40.7 43.8 51.5%
NFCorpus 25.0 23.2 26.9 25.9 27.4 29.2% 30.0 29.5 31.9*%
NQ 76.0 83.6 : 91.1 89.8 91.8 92.7% 92.5 93.3 94.2*
HotpotQA 74.0 57.8 69.8 67.7 71.4 73.3* 7.7 78.6 80.4*
FiQA 53.9 58.1 : 63.6 61.2 64.3 63.8 65.6 65.9 65.6
DBPedia 39.8 319 45.7 43.4 47.6 50.2%* 54.1 56.0 57.3%
Scidocs 35.6 26.9 ! 31.8 29.3 33.1 35.5% 37.8 38.3 40.1%*
FEVER 93.1 90.0 : 92.6 92.5 92.8 93.7*% 94.9 95.3 95.5%
Climate-FEVER | 43.6 44.5 | 47.4 48.7 49.3 53.6* 57.4 59.0 59.5
Scifact 90.8 81.6 : 88.1 85.4 89.0 89.9%* 94.7 94.4 95.2%
Average 58.9 57.1 ‘ 63.1 61.7 64.4 65.9% 66.8 67.6 69.0%*

Table 24: Recall@100 (in %) on the English BEIR benchmark. Performance of REFIT is shown for
different choices of underlying retrievers. RocketQAv2 [39]| corresponds to a training-time distillation
baseline. Improvements marked with * are statistically significant at p < 0.05 as per paired t-test.

D.2 Rerank Baseline

REFIT introduces the additional overhead of distillation and a second retrieval step into the R&R
framework. We note that distillation latency (in Algorithm 1) in linear in the number of updates n.
Table 23 compares the inference latency of our method with that of standard R&R, assuming K=100
passages are to be reranked and n=100 updates are used during distillation. We highlight that our
distillation process is lightweight and takes just 30ms on a CPU. We see that the additional distillation
and retrieval steps increase the latency of inference by roughly 17.5% when using a GPU (or 4.4% for
CPU);? in that same amount of time, vanilla R&R can process a total of 125 passages on the GPU (see
Table 23), to potentially increase Recall@100. Hence, and for fair comparison, we evaluate against a
Rerank baseline that is allowed to retrieve and rerank 125 passages. We note that both REFIT and the
Rerank baseline use the same retriever and reranker, and are evaluated on Recall@100.

D.3 Retriever and Reranker

We use Contriever [36] as the underlying retriever (unless otherwise mentioned), which has been pre-
trained with an unsupervised contrastive learning objective on a large-scale collection of Wikipedia and
CCNet documents. Contriever is a dual-encoder retriever that outperforms traditional term-matching
methods, BM25 and recent dense approaches e.g. DPR [15] and ANCE [37]. For retrieval in both English
and other languages, we use the publicly available version of Contriever, fine-tuned on MS MARCO |[38].
Our English? and multilingual® rerankers are based on sentence transformers.

E Results

E.1 English Retrieval in Multiple Domains

We evaluate English retrieval performance on the BEIR benchmark [10], comprising training and in-
domain test instances from MS MARCO and out-of-domain evaluation data from a number of scientific,

#24-core AMD EPYC 7352 CPU and 80GB A100 GPU.
4cross-encoder /ms-marco-MiniLM-L-6-v2
®cross-encoder /mmarco-mMiniLMv2-1.12-H384-v1
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mBERT XLM-R ; Contriever Rerank REFIT
Arabic 81.1 799 | 887 89.5 90.9*
Bengali 88.7 84.2 I 91.4 91.4 95.9%*
English 77.8 73.1 : 77.2 78.7 81.8%
Finnish 74.2 81.6 [ 88.1 88.9 91.0%*
Indonesian 81.0 87.4 : 89.8 90.5 93.7*
Japanese 76.1 70.9 I 81.7 82.5 85.2%
Korean 66.7 1, 782 81.0 80.2
Russian 77.6 74.1 \ 83.8 85.7 87.3
Swahili 74.1 73.9 : 91.4 92.0 90.5
Telugu 89.5 91.2 ‘ 96.6 97.0 97.5
Thai 57.8 89.5 : 90.5 91.6 93.3*
Average 76.8 79.7 1 87.0 88.1 89.7*

Table 25: Recall@100 (in %) on the multilingual Mr.TyDi benchmark. Rerank and REFIT use Contriever
as the underlying retriever. * corresponds to statistical significance at p < 0.05 (paired t-test).

biomedical, financial, and Wikipedia-based retrieval datasets®.

Firstly, we compare our inference-time distillation approach against a training-time distillation
method. We use RocketQAv1 [11] as the underlying retrieval model and RocketQAv2 [12] as the retriever
distilled at training time from the cross-encoder. We also compare with a Rerank (K=125) baseline,
which improves Recall@100 by reranking the top 125 passages (retrieved by RocketQAv1). Moreover, we
also demonstrate the effectiveness of REFIT with a different underlying retrieval model, in this case,
Contriever.

Table 24 shows Recall@100 results on the BEIR benchmark. Firstly, we see that REFIT consistently
outperforms all baselines. Next, RocketQQAv2 shows improvement over RocketQAv1l on MS MARCO,
which is the dataset used for training-time distillation of RocketQAv2. However, RocketQAv2’s perfor-
mance degrades on out-of-domain datasets from the BEIR benchmark. This is unsurprising, since the
training-time distillation approach is limited to the bi-encoder seeing the cross-encoder’s relevance labels
only in the source domain, i.e. the domain used for training (MS MARCO in this case). As a result, the
training-time distillation approach may not generalize well to unseen domains (BEIR in this case). In
contrast, REFIT offers the key advantage of learning from target-domain pseudo labels provided by the
reranker at inference, which yields improved out-of-domain generalization.

E.2 Retrieval in More Languages
Multilingual Retrieval

We also evaluate on Mr. TyDi [43], a multilingual IR benchmark derived from TyDi QA [14], where
given a question in one of 11 languages, the goal is to retrieve candidates from a pool of Wikipedia
documents in the same language. Our underlying retriever is the multilingual version of Contriever.
Other baseline retrieval models are mBERT and XLM-R [15], in addition to the Rerank (K=125) baseline.
Table 25 shows Recall@100 for the different systems on Mr.TyDi. Here again, REFIT yields significant
improvement over all baselines on most languages.

Cross-lingual Retrieval

For our cross-lingual experiments, we used the MKQA benchmark [16]. MKQA involves retrieving
passages from the English Wikipedia corpus for questions that are posed in 26 different languages.

5We omit some datasets due to license & versioning issues.
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mBERT 57.9 742 440 517 55.7 482 574 639 62.7 46.8 517 63.7 59.6 65.2

XLM-R 59.2 734 424 577 53.1 486 585 629 675 469 615 66.9 60.9 62.4
" Contriever  65.6 756 533 666 604 554 647 700 708 596 635 720 666  70.1
Rerank 66.4 760 545 675 61.5 567 658 705 71.6 60.8 64.9 72.7 67.5 70.6
REFIT 68.2 76.6 ©58.0 68.8 64.7 59.3 68.4 725 73.1 629 66.5 74.1 70.1 72.5
it nl pl pt hu vi ms km no tr zh-cn  zh-hk zh-tw
mBERT 64.1 66.7 59.0 619 575 58.6 628 329 632 56.0 58.4 59.3 59.3
XLM-R 58.1 664 61.0 620 60.1 624 66.1 46.6 659 60.6 55.8 55.5 55.7
" Contriever 703 714 688 685 667 67.8 716 37.8 715 687 641 645 643
Rerank 70.8 720 699 693 675 687 720 386 723 69.3 65.1 65.4 65.2
REFIT 724 73.6 71.1 71,5 68.9 70.5 73.3 399 73.3 70.7 67.5 67.4 66.9

Table 26: Recall@100 (in %) on the cross-lingual MKQA benchmark. Rerank and REFIT use Contriever
as the underlying retriever. All improvements are statistically significant at p < 0.05 (paired t-test).

Following [36], we discard unanswerable questions and questions with a yes/no answer or a long answer,
leaving 6,619 queries per language in the final test set. Table 26 compares Recall@100 of different models
on MKQA. REFIT again outperforms, leading the nearest baseline (Rerank) by about 2 points on
average, and with improvements on all 26 MKQA languages.

E.3 Multi-modal Retrieval

A key advantage of REFIT is that it can operate independently of the choice of architecture for the
bi-encoder and the cross-encoder, and is therefore not limited to working on only text input. To
demonstrate this, we apply our method to retrieval in a multi-modal setting. Specifically, we consider
text-to-video retrieval, which involves retrieving videos that are relevant to a given textual query.

The retriever and reranker for this experiment are based on BLIP [17], a state-of-the-art vision-
language model that comprises two unimodal encoders and an image-grounded text encoder. The
unimodal encoders encode image and text separately, akin to dual-encoders in text-to-text retrieval,
and are trained with an Image-Text Contrastive (ITC) loss. The image-grounded text encoder injects
visual information into the text encoder by incorporating a cross-attention layer, similar to a text-to-text
cross-encoder, and is trained with an Image-Text Matching (ITM) loss. We refer the reader to [17] for a
more detailed description of BLIP’s architecture and the pre-training objectives. BLIP can thus be used
for retrieval with the unimodal encoders (which we refer to as BLIP;p¢), and for reranking with the
image-grounded text encoder (which we refer to as BLIP ). We use the output from BLIP 7, as
the reranker distribution, which is then used to compute the distillation loss for updating the query
representation that is output by BLIP;7¢.

We evaluate using Recall@100 on the MSRVTT [18] text-to-video retrieval dataset, with BLIP jr¢
[17] being our primary retrieval-only baseline along with other baselines taken from [17]. The Rerank
baseline uses BLIP s to rerank K=125 videos retrieved by BLIP;pc. Table 27 compares performance
on the 1k test split of MSRVTT. We see that BLIP ;7 yields better ranking (as evident from higher
Recall@10) than BLIP;p¢ as expected, but shows only minor gains in Recall@100. Crucially, REFIT
improves Recall@100 over the already strong BLIP ;¢ retriever, without a noticeable drop in Recall@10
compared to the BLIP ;s reranker.
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Method R@10 | R@100 NQ EntityQ | BEIR | Mr.TyDi
MIL-NCE 32.4 - Retrieve 86.1 70.1 66.8 87.0
VideoCLIP 30.0 - Rerank 86.8 71.2 67.6 88.1
FiT 51.6 - ToURhard 87.0T 71.9F 68.4 88.7
" BLIPjp7e¢ | 690 | 921 TouRees | 87.2F 72.5% 68.1 88.1
Rerank (BLIP 1) 74.6 92.3 REFIT 87.6 72.6 69.2 89.7
REeFIT 74.7 92.9
Table 28: Recall@100 numbers for comparison of
Table 27: Recall of text-to-video retrieval REFIT with both variants of TOUR. T corresponds
methods on the MSRVTT benchmark. to numbers directly taken from [32].

E.4 Comparison with ToUR

In this section, we compare the performance of REFIT with TOUR on the passage retrieval benchmarks
used in [32], NQ [19] and EntityQuestions [50| as well as the multidomain BEIR and multilingual
Mr.TyDi benchmarks. For NQ and EntityQuestions, we use the same retriever |15] and reranker [51] as
in [32]. The retriever and the reranker for BEIR and Mr.TyDi are the same as described in §D.3. In
Table 28, we can see that REFIT consistently outperforms both TOUR variants across various datasets.
We believe that the lower performance of TOUR can be attributed to its early stopping criterion for
distillation updates. Specifically, TOUR, performs relevance feedback for 3 iterations, wherein in each
iteration, distillation into the query vector continues until the top-1 retrieval result has the highest
reranker score (for TOURgog) or is a pseudo-positive (for TOURpard). In contrast, REFIT makes more
distillation updates but for only one iteration (we do n = 100 updates, which has been tuned). This
makes it also considerably faster than TOUR, as each additional iteration of relevance feedback in TOUR
comes with a high computational overhead (§B3). We show in §F.4 that REFIT can further benefit from
multiple rounds of relevance feedback with continuous improvements over the course of three iterations.

E.5 REFIT for multi-vector dense retrieval

Our experiments thus far have been focused on single-vector

. . ColBERTv2 Rerank REFIT
dense retrieval, where queries and passages are encoded as NFCorpus 77 5.0 28.8
individual vectors. Multi-vector retrieval models like Col- FiQA 62.8 63.7 64.3
BERT [16, 52], on the other hand, compute token-level query  guigocs 358 36.6 38.5
and passage representations, subsequently employing a late- Scifact 89.4 90.2 90.1

interaction mechanism for scoring. This section explores the
application of REFIT to multi-vector retrieval, specifically,
ColBERTV2 [52]. In this case, distillation (Step 3 in Figure
47) updates embeddings of individual tokens in the query. We
present results in Table 29 on a subset’ of the BEIR dataset,
which clearly show that REFIT can be effectively extended to multi-vector dense retrieval, as it consis-
tently surpasses the performance of the ColBERTV2 retriever and outperforms the Rerank baseline (with
K = 125) in most cases. Notably, the training of ColBERTv2 [52] involved the use of a reranker’s scores
for supervision; our results in this section thus reinforce the finding of §E.1 that REFIT’s inference-time
distillation can be superior to ordinary knowledge distillation during training.

Table 29: Recall@100 (in %) on a subset
of the English BEIR benchmark, with
Rerank and REFIT using ColBERTv2
as the underlying retriever.

"Owing to the substantially larger index size inherent to multi-vector dense retrieval, we restrict this study to subsets
of BEIR with < 100k passages in the retrieval corpus.
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Figure 48: t-SNE plots for some examples from BEIR, with the query vectors shown alongside the
corresponding positive passages. The updated query vectors after REFIT are now closer to the positive

passages (in green).

Query

Initial Retrieval (within Reranker Top-5)

Newly Retrieved Positive

treating tension
headaches with-
out medication

Most intermittent tension-type headaches are
easily treated with over-the-counter medications,
including: 1 Aspirin. 2 Ibuprofen (Advil, Motrin
IB, others) 3 Acetaminophen (Tylenol, others)

Instead of popping a pill when you get a headache, toss
some almonds. For everyday tension-type headaches , al-
monds can be a natural remedy and a healthier alternative
to other medicine.

who drives the
number 95 car
in nascar

announced
moving to

On October 2013, it was
that McDowell would be

Leavine Family Racing’s No. 95 Ford for

Michael Christopher McDowell is an American professional
stock car racing driver. He currently competes full-time in

the Monster Energy NASCAR Cup Series , driving the

the 2014 NASCAR Sprint Cup Series season. No. 95 Chevrolet SS for Leavine Family Racing .

McDowell failed to qualify for the Daytona 500.
In 2005, she was cast in her breakout role in the
ABC series Grey’s Anatomy, as Dr. Addison

Kathleen Erin  Walsh is an  American ac-
tress and businesswoman. Her roles include

Dr. Addison Montgomery on the ABC television

who plays addi-
son shepherd on

grey’s anatomy
Montgomery , the estranged spouse of Derek

Shepherd. dramas Grey’s Anatomy and Private Practice.

Table 30: Examples of how initial retrievals highly ranked (top-5) by the reranker (middle) helps retrieve
new positives (right) via the updated query vector, due to important lexical and semantic overlap
(highlighted in green). The text that contains the answer to the query is shown in red.

F Discussion and Analysis

This section describes additional experiments, providing further insights into REFIT.

F.1 Query vectors: the original and the new

To better understand how the updated query vector after reranker relevance feedback improves recall,
we take a closer look at the query and passage vectors computed for a set of BEIR examples. Figure 48
shows t-SNE plots for four such examples, where each dot represents a vector, and the distance between
any two points is their cosine distance. As the figure shows, the reranker feedback brings the query
vector in each case closer to the corresponding positive passage vectors, making the query align with an
increased number of relevant passages and consequently improving recall. Across different datasets in
BEIR, we observed that the new query vector is also closer to the initially retrieved positives by 5-16%.

We observe that the new positives discovered by the updated query vector are closest to a passage
in the reranker’s top 5 in 26% of the cases (38% for top 10; 55% for top 20), confirming an effective
transfer of the reranker’s knowledge into the query vector. Table 30 provides some examples, showing
how specific words and phrases in a passage within the reranker top-5 help retrieve additional candidates
with lexical /semantic overlap (highlighted in green) via relevance feedback. Interestingly, in the fourth
example, an incorrect passage highly scored by the reranker leads to the subsequent retrieval of an
actual positive candidate.
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Figure 49: Variation of REFIT performance with distillation updates n (left), reranked passages K used
for distillation supervision (center) and relevance feedback iterations (right). A corresponds to change
in latency with respect to the standard R&R framework with K=100 (CPU-only configuration).

F.2 How much additional latency does our approach introduce?

Our proposed method introduces a distillation and an additional retrieval step into the standard R&R
framework. While retrieval takes constant time with respect to the number of updates n in Algorithm
1, the latency of distillation is directly proportional to n. Figure 49 (left) demonstrates the effect of
varying n on both the latency and performance of our approach. The extra latency is computed with
respect to a standard R&R framework that runs with K=100. With a mere 4.4% increase in latency
(for when n=100), our method produces a gain that is significantly larger than a more computationally
expensive reranking of K=125 candidates which in turn corresponds to 24.3% increase in latency on a
CPU. Thereby, we demonstrate that, under latency constraints, our approach can be made faster by
simply lowering the number of updates, while still surpassing the conventional strategy of reranking a
larger pool of candidates for improving recall.

F.3 How do smaller K values affect results?

Our experiments described thus far are run in the standard setting of K=100: 100 passages are retrieved,
reranked and subsequently used to distill the reranker score distribution into the new query. Here
we investigate how REFIT performs as we vary K. Smaller values of K correspond to a faster R&R
pipeline (as lower number of candidates are reranked), but it comes at the expense of the target teacher
distribution now providing lesser supervision. Figure 49 (center) shows Recall@100 of the post-relevance
feedback retrieval step on BEIR for different values of K. While a higher K expectedly leads to a higher
recall in general, we observe performance improvements over directly reranking 125 passages, even when
considerably smaller number of passages are used for distillation. Our approach can thus be easily tuned
to achieve different accuracy-speed trade-offs depending on the requirements of the target application.

F.4 Can multiple iterations of relevance feedback further improve results?

Our relevance feedback approach improves recall when the updated query vector is used for a second
retrieval step. Here we examine if further improvements are possible from more iterations of relevance
feedback, i.e., running the following operations in a loop: (1) rerank the retrieval results from the
previous iteration, (2) update the query vector via distillation from the reranker distribution, and (3)
retrieve again. We note that this experiment operates under the assumption of a relaxed time budget, as
the computationally expensive reranker must be executed N times. Figure 49 (right) shows performance
on BEIR from N iterations of relevance feedback, with N = 0 corresponding to baseline retrieval. We
can see that recall improves with each additional round of relevance feedback; the biggest gain comes in
the first round (/N = 1) and performance saturates after N = 2.
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F.5 Further Discussion
The curious case of zero initial positives:

In §F.1, we presented an example where our method leverages a close negative among the initially
retrieved candidates to later retrieve a positive passage. We find that in 24% of the cases where the
first-stage retriever retrieves no positive passages, our method can improve recall in a similar fashion.
Among all cases where recall improves, however, 75% have at least one positive in the top retrieved
results. These results indicate that while the presence of positive candidates in the initial retrieval is
useful, our relevance feedback approach can also generally leverage informative negatives to update the
query vector in the right direction.

Choice of Reranker:

In the experiments comparing our approach to the R&R framework, we used an efficient (yet high-
performing) reranker both in the baseline model and as the teacher model for distillation. Would the
results have been different if we used a more powerful (but computationally expensive) reranker instead?
To find an answer, it is essential to note that the final recall of an R&R engine is inherently limited by
the underlying retriever. For instance, the Recall@100 of an R&R pipeline with K=125 cannot exceed
the Recall@125 of the underlying retriever, irrespective of the quality of the reranker. The Recall@100 of
REFIT (BEIR: 69.2, Mr. TyDi: 89.7, MKQA: 68.2 and MSRVTT: 92.9) is consistently higher than the
Recall@125 of the baseline retriever (BEIR: 68.9, Mr. TyDi: 88.2, MKQA: 66.9 and MSRVTT: 92.8).
These results clearly suggest that even the best reranker baseline would fail to attain the recall of our
method. Further, we can expect a better reranker to improve the recall of REFIT since leveraging a
stronger teacher model for distillation should lead to a better student (retriever query vector).

G Conclusion and Future Work

We demonstrate that query representations can be improved using feedback from a cross-encoder reranker
at inference time for better performance of dual-encoder retrieval. This work proposes for distillation
using relevance feedback from the reranker as a better and faster alternative to the traditional strategy
of reranking a larger pool of candidates for improving recall. REFIT is lightweight and improves
retrieval accuracy across different domains, languages and modalities over a state-of-the-art retrieve-and-
rerank pipeline with comparable latency. Future work will focus on the potential integration of textual
relevance feedback from large language models (LLMs). Additionally, a promising area of exploration
lies in enhancing the interpretability by examining how relevance feedback influences the significance of
individual query terms within the query representation.

H Limitations

REFIT introduces an additional latency into a traditional retrieve-and-rerank framework. The distillation
time is only dependent on the number of updates, and is unaffected by the model architecture and
number of retrieved passages; the overall additional latency (as per Table 23) amounts to an extra 17.5%
on GPU (or 4.4% on CPU) when the number of retrieved passages K=100. However, it is noteworthy
that REFIT remains faster and exhibits superior performance compared to the standard approach of
reranking a larger pool of candidates for improving recall. Moreover, the efficacy of our approach is
contingent upon the reranker providing a better ranking than the retriever. We anticipate that our
method might provide minimal gains in situations where the retriever performs similar to the reranker.
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