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Abstract

Large Language Models (LLMs) are promising technology to support Question Answering on
enterprise SQL data (i.e. Text-to-SQL). Knowledge Graphs are also promising technology to enhance
LLM-based question answering by providing business context that LLMs lack. However, it is not well
understood to what extent Knowledge Graphs can increase the accuracy of LLM-powered question
answering system on SQL databases. Our research aims to understand and quantify this extent.
First, we introduce a benchmark comprising an enterprise SQL schema in the insurance domain, a
range of enterprise queries encompassing reporting to metrics, and a contextual layer consisting of
an ontology and mappings that define a Knowledge Graph. The experimental reveals that question
answering using GPT-4, with zero-shot prompts directly on SQL databases, achieves an accuracy of
16%. Notably, this accuracy increases to 54% when questions are posed over a Knowledge Graph
representation of the enterprise SQL database. Second, we present an approach that leverages the
ontology of the Knowledge Graph to deterministically detect incorrect queries generated by the LLM
and repair them. Experimental results show that the accuracy increases to 72.55%, including an
additional 8% of “I don’t know" unknown results. Thus, the overall error rate is 20%. The conclusion
is that investing in Knowledge Graph provides higher accuracy for LLM powered question answering
systems on SQL databases.

A Introduction

Business users and executives would like to have an AI assistant that understands their business, available
to them at all times, in order to ask questions and receive accurate, explainable and governed answers.
This challenge, known as Question Answering, which is the ability to interact with data using natural
language questions and obtaining accurate results, has been a long-standing challenge in computer
science dating back to the 1960s [12–14, 28]. The field has advanced throughout the past decades
[6, 27, 31], through Text-to-SQL approaches, as a means of facilitating chatting with the data that is
stored in SQL databases[9, 17, 21, 24, 29, 33]. With the rise of Generative AI and Large Language
Models (LLMs) in early 2023, the interest increased dramatically. These question answering systems
hold tremendous potential for transforming the way data-driven decision making is executed within
enterprises.

Knowledge Graphs (KGs) have been identified as a promising solution to fill the business context
gaps in order to reduce hallucinations, thus enhancing the accuracy of LLMs. The effective integration of
LLMs and KGs started to gaining traction in academia in the past several years1[23]. From an industry
perspective, Gartner stated in July 2023 that, "Knowledge graphs provide the perfect complement to

1https://github.com/RManLuo/Awesome-LLM-KG
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LLM-based solutions where high thresholds of accuracy and correctness need to be attained."2.
Our hypothesis is that Knowledge Graphs play a critical role in LLM powered Question Answering

systems on SQL databases. However, at the time that we started this research in July 2023, it was not
clear to what extent. The starting point of our work is to understand the role of Knowledge Graphs for
accuracy, given that hallucinations became one of the largest concerns in the industry. Our work comes
in two parts.

First, we seek to understand the accuracy of LLM-powered question answering systems with respect
to enterprise questions, enterprise SQL databases and the role knowledge graphs play to improve the
accuracy. Our first contribution [25, 26] is a benchmark with experimental results showing that by using
GPT-4 and zero-shot prompting, enterprise natural language questions over enterprise SQL databases
schema and generating a SQL query achieved 16.7% accuracy. This accuracy increased to 54.2%
when a SPARQL query was evaluated over a Knowledge Graph representation of the SQL database
in the form of an OWL ontology and R2RML mapping, thus an accuracy improvement of 37.5%. The
benchmark can be found here: https://github.com/datadotworld/cwd-benchmark-data.
This contribution has made an impact in the industry. The benchmark and the results were initially
independently reproduced and validated by dbt Labs3. Several semantic layer vendors have further
validated our results4 5 6 7 8 9. The GraphRAG Manifesto by Neo4j argues that one of the benefits of
GraphRAG relative to vector-only RAG is due to higher accurate responses, citing our benchmark and
results10.

Leveraging the learnings from our first contribution, namely understanding what happened with
inaccurate queries, our intuition is that accuracy can be further increased by 1) leveraging the ontology
of the knowledge graph to check for errors in the LLM generated SPARQL queries and 2) using the
LLM to repair incorrect queries. Our second contribution [3, 4] is a two-part approach consisting 1)
Ontology-based Query Check (OBQC), which checks in a deterministic manner if the query is valid by
applying rules based on the semantics of the ontology. If the OBQC detects an error, we could either
determine to not return the result thus terminate or we could try to repair the query, and 2) LLM
Repair, which repairs the detected incorrect SPARQL query generated by the LLM. The result is a new
query which can then be passed back to the OBQC. By grouping all the questions in the benchmark, the
OBQC and LLM Repair increased the accuracy 72.55%. If the repairs were not successful after three
iterations, an unknown result was returned, which occurred 8% of the time. The result is an error rate
of 20%.

The conclusion of our work is that Knowledge Graph provides higher accuracy for LLM powered
question answering systems on SQL databases. Therefore, enterprises that are considering to use LLMs
for question answering on their SQL databases must invest in knowledge graphs.

2Adopt a Data Semantics Approach to Drive Business Value,” Gartner Report by Guido De Simoni, Robert Thanaraj,
Henry Cook, July 28, 2023

3https://roundup.getdbt.com/p/semantic-layer-as-the-data-interface
4https://www.atscale.com/blog/semantic-layers-make-genai-more-accurate/
5https://www.wisecube.ai/blog/optimizing-llm-precision-with-knowledge-graph-based-natural-language-qa-systems/
6https://blog.kuzudb.com/post/llms-graphs-part-1/
7https://delphihq.substack.com/p/delphi-at-100-dbt-semantic-layer
8https://cube.dev/blog/semantic-layers-the-missing-piece-for-ai-enabled-analytics
9https://www.stratio.com/blog/stratio-business-semantic-data-layer-delivers-99-answer-accuracy-for-llms/

10https://neo4j.com/blog/graphrag-manifesto/
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B Understanding the role of Knowledge Graphs on LLM’s Accuracy
for Question Answering on SQL

While question answering systems have shown remarkable performance in several Text-to-SQL bench-
marks [7, 8], such as Spider [30], WikiSQL[33], KaggleDBQA[19] their implications relating to enterprise
SQL databases remain relatively obscure. We argue that existing Question Answering and Text-to-SQL
benchmarks, although valuable, are often misaligned with real-world enterprise settings:

1. these benchmarks typically overlook complex database schemas representing enterprise domains,
which likely comprise hundreds of tables,

2. they also often disregard questions that are crucial for operational and strategic planning in
an enterprise, including questions related to business reporting, metrics, and key performance
indicators (KPIs), and

3. a critical missing link is the absence of a business context layer – metadata, mappings, transforma-
tions, ontologies, that provides business semantics and knowledge about the enterprise.

Recent benchmarks [20, 22] are attempting to address the first challenge. However, the second
and specially the third point have not been a focus of those new benchmarks. Without these vital
components, LLMs for enterprise question answering on SQL databases risk being disconnected from
the reality of enterprise data, leading to hallucinations and uncontrolled outcomes.

We investigate the following two research questions:
RQ1: To what extent Large Language Models (LLMs) can accurately answer enterprise natural

language questions over enterprise SQL databases.
RQ2: To what extent Knowledge Graphs can improve the accuracy of Large Language Models

(LLMs) to answer enterprise natural language questions over enterprise SQL databases.
The hypothesis is the following: An LLM powered question answering system that answers a natural

language question over a knowledge graph representation of the SQL database returns more accurate
results than an LLM powered question answering system that answers a natural language question over
the SQL database without a knowledge graph.

Enterprise SQL Schema The enterprise SQL schema used in the benchmark comes from the P&C
Data Model for Property And Casualty Insurance11, a standard model created by Object Management
Group (OMG), a standards development organization. This OMG specification addresses the data
management needs of the Property and Casualty insurance community.

Enterprise Questions The benchmark comes with 43 Question-Answer pairs as evaluation criteria,
where the input is the question, and the output is the corresponding answer to the question based on a
data instance. The questions are written in English, and refer to concepts covered by the data. Since
there can be multiple valid SQL queries for a given question, the determining accuracy factor is the
final output instead of a generated SQL query. In order to score the execution accuracy of an LLM, we
need to have a reference answer to each question. An "answer" in this situation is itself a query; it is a
query that was written by a human expert, which gives the expected correct answer to the question.
Each question has a reference query in SQL for the relational database, and SPARQL for the knowledge
graph. Naturally, each query gives the same response when run against the data.

The questions are classified on a spectrum of low to high complexity:
11https://www.omg.org/spec/PC/1.0/About-PC
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• Low question complexity: Pertains to business reporting use cases, aimed at facilitating daily
business operations. From a technical standpoint, these questions are translated into SELECT-
FROM SQL queries.

• High question complexity: Arises in the context of Metrics and Key Performance Indicators (KPIs)
within an organization. These questions are posed to make informed strategic decisions crucial for
organizational success. From a technical standpoint, these questions are translated to SQL queries
involving aggregations and mathematical functions.

Questions also depend on the number of tables required to provide an answer. Therefore, questions
are also classified on a spectrum of low to high schema:

• Low schema complexity: Small number of tables (i.e. 0 - 4), denormalized schema

• High schema complexity: Larger number of tables (5+), normalized schema, many-to many join
tables, etc.

By combining these two spectrums, four quadrants are defined which are used to classify the questions
as shown in Figure 32:

Figure 32: Four quadrants to classify questions: (1) Low Question/Low Schema Complexity, (2)
High Question/Low Schema Complexity, (3) Low Question/High Schema Complexity, and (4) High
Question/High Schema Complexity

This 43 questions of the benchmark can be found in [25] and on Github12. While 43 questions may be
considered small, the benchmark ensures coverage of key scenarios that reflect real-world enterprise data
usage and queries in the insurance domain. All the questions in the benchmark are building blocks to
answer one of the most important key metrics in the insurance industry: Loss Ratio. While benchmarks
with larger numbers of questions can provide generalizability to evaluate question answering systems and
setup leaderboards, the goal of this benchmark is to understand the role of Knowledge Graphs and to

12https://github.com/datadotworld/cwd-benchmark-data
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what extent the accuracy improves. The quadrant provides visibility on the type of extent. Furthemore,
the question quadrant can be considered as a framework to be applied for other domains; instead of
generating a laundry list of questions, categorize them in these quadrants.

Context Layer The context layer consists of two parts:

• Ontology: Business Concepts, Attributes, and Relationships that describe the insurance domain.

• Mapping: transformation rules from the source SQL schema to the corresponding Business
Concepts, Attributes, and Relationships in the target ontology.

For this current version of the benchmark, the context layer is provided in machine readable as RDF:
ontology in OWL and mapping in R2RML. The OWL ontology and R2RML mappings can be used to
create the Knowledge Graph either in a virtualized or materialized way.

Scoring The benchmark reports three scores: Execution Accuracy, Overall Execution Accuracy and
Average Overall Execution Accuracy.

• Execution Accuracy (EA): We follow the metric of Execution Accuracy (EA) from the Spider
benchmark [30]. An execution is accurate if the result of the query matches the answer for the
query. Note that the order or the labels of the columns are not taken in account for accuracy.

• Overall Execution Accuracy (OEA): Given the non-deterministic nature of LLMs, there is no
guarantee that given an input question, the generated query will always be the same thus providing
the same answer. Therefore, every question has a Overall Execution Accuracy (OEA) score which
is calculated as (# of EA)/Total Number of runs.

• Average Overall Execution Accuracy (AOEA): The Average Overall Execution Accuracy is the
average number of OEA scores for a given set of questions. This set could be for all the questions
in the benchmark or all the questions in a quadrant.

The benchmark serves as a framework for the results to be reproduced in an enterprise’s own setting
using their own enterprise schemas, questions and context.

B.1 Experimental Setup

The question answering system we evaluated was a zero-shot prompt to GPT-4, that is instructed to
generate a query, which is executed against the database. The resulting response is compared to the
response given by the reference query.

The particular parameters to the OpenAI API are as follows:

• max_tokens = 2048

• n = 1

• temperature = 0.3

Additionally, a timeout was set so that computations that take more than 60 seconds are considered
to be failures.

Note that the goal of our experiment is to understand the role of Knowledge Graphs on accuracy.
The focus of the experiment is not to understand how a certain LLM performs with a Knowledge Graph.
That is why we select only one LLM for our experiment, namely GPT-4. Naturally, future work should
include a comparison of multiple LLMs in order to understand how a Knowledge Graph can increase
accuracy on different LLMs.
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B.2 Question Answering System for SQL

The question answering system for SQL is shown in Figure 33. The question and the SQL DDL for the
database are provided as zero-shot prompt to GPT-4. These are combined together using the following
simple prompt template:
SQL Zero-shot Prompt

INSERT SQL DDL
Write a SQL query that answers the following question. Do not explain
the query. Return just the query, so it can be run verbatim from your
response.
Here’s the question:
INSERT QUESTION

We kept the prompt simple for this experiment, because we wanted to focus on the ability of the
contextual information (the DDL in the case of SQL) to provide necessary information for the formation
of the query.

The resulting query is sent verbatim to the SQL processor of data.world, which returns an answer
in a tabular form. This is converted into a Pandas DataFrame for comparison. At the same time, the
reference query for the question is sent to data.world, and its result is also converted to a DataFrame.
Once they are both in the form of DataFrames, it is a simple matter to compare them. Details of this
comparison are available from the Spider project[30].

B.3 Question Answering System for Knowledge Graph

The question answering system for the Knowledge Graph is shown in Figure 34. The question and the
OWL ontology are provided as zero-shot prompt to GPT-4. These are combined together using the
following simple prompt template:
SPARQL Zero-shot Prompt

As in the SQL case, we kept the prompt simple. The extra line about the SERVICE allows the LLM
to produce queries that invoke the data.world knowledge graph virtualization layer. In principle, this
adds some complexity to the SPARQL prompt, but in practice, GPT-4 seemed to handle it very well.

The resulting query is sent verbatim to the SPARQL processor of data.world, and the result converted
to a DataFrame, just as for the SQL case.
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Figure 33: Question Answering System for SQL

Figure 34: Question Answering System for Knowledge Graph
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B.4 Results

The results are presented in four parts 1) overall, 2) question quadrant, 3) partial accuracy and 4)
inaccurate results. In the results, we refer to

• SPARQL as question over Knowledge Graph representation of the SQL database and

• SQL as questions directly on the SQL databases without a Knowledge Graph.

Given that the OEA of a question is a percentage, the results are presented as a heatmap. Every
cell corresponds to a generated query for the given question. The value in the cell is the OEA for that
question. The green color corresponds to 100% OEA. The red color corresponds to 0% OEA. The color
scale goes from green to red.

The Overall and Quadrant results are presented in Table 18.

B.4.1 Overall

By grouping all the questions in the benchmark, SQL achieves an AOEA of 16.7%. In comparison,
SPARQL achieves an average OEA of 54.2% as shown in Figure 35. The heatmap that depicts the OEA
for each question is shown in Figure 36: Therefore, overall SPARQL accuracy was 3x the SQL accuracy.

Overall, Natural Language questions translated to SPARQL over a Knowledge Graph representation
of the SQL database achieved 3x the accuracy of natural language questions translated to SQL and
executed directly over the SQL database. Combining all the questions into one overall result is not
satisfactory because there are nuances to the types of questions. This is why we also present the results
in each of the quadrants.

B.4.2 Quadrant

0.0%

25.0%

50.0%

75.0%

100.0%

w/o KG (SQL) w/ KG (SPARQL)

Figure 35: Average Overall Execution Accuracy
(AOEA) of SPARQL and SQL for all the questions
in the benchmark

Figure 37 presents the AOEA scores for questions
in each quadrant. Figure 38 presents the heat
map for each quadrant. We observe the following
results:

• Low Question/Low Schema: SQL achieves
an AOEA of 25.5%. In comparison,
SPARQL achieves an AOEA of 71.1%. The
SPARQL accuracy is 2.8X the SQL accuracy.

• High Question/Low Schema: SQL achieves
an AOEA of 37.4%. In comparison,
SPARQL achieves an AOEA of 66.9%. The
SPARQL accuracy is 1.8X the SQL accuracy.

• Low Question/High Schema: SQL was not
able to answer any question accurately. In
comparison, SPARQL achieves an AOEA of
35.7%.

• High Question/High Schema: SQL was not
able to answer any question accurately. In comparison, SPARQL achieves an AOEA of 38.7%.
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Per the hypothesis, SPARQL achieves higher accuracy than SQL in every quadrant. Furthermore, it
is surprising to observe that SQL was not able to answer any question in the High Schema Complexity
quadrants. These results by quadrant sheds further light on understanding the extent. In each quadrant,
SPARQL accuracy is higher than the SQL accuracy. While the SPARQL accuracy is 2.8X the SQL
accuracy for Low Question/Low Schema and 1.8X for High Question/Low Schema, it was unforeseen
that SQL was not able to accurately answer any questions for Low Question/High Schema and High
Question/High Schema. The results also lead us to understand when SQL starts to fail. When a question
requires more than 4 tables to provide then answer, the accuracy drops to zero.

w/o KG (SQL) w/ KG (SPARQL) Improvement
All Questions 16.7% 54.2% 37.5%
Low Question/Low Schema 25.5% 71.1% 45.6%
High Question/Low Schema 37.4% 66.9% 29.5%
Low Question/High Schema 0% 35.7% 35.7%
High Question/High Schema 0% 38.5% 38.5%

Table 18: Average Overall Execution Accuracy (AOEA) of Overall and Quadrant Results

B.4.3 Partial Accuracy

We manually analyzed the generated SQL and SPARQL queries and observed that a subset of queries
produced partially accurate results. We consider a partially accurate answer to be one where the returned
answers are accurate but incomplete. During the manual analysis, the following patterns for partially
accurate answers are observed:

• Overlap: the columns returned by the query are correct, however, they are a subset of the accurate
answer. In some cases, they include other columns that are not part of the expected answer. This
can be seen as a form of a semantic overlap[10].

• Return Identifier: An internal identifier was returned instead of the appropriate label.

Consider the question Return all the claims we have by claim number, open date and close date?
and the following generated SQL and SPARQL query:

SQL

SELECT Claim_Identifier, Claim_Open_Date, Claim_Close_Date
FROM Claim

SPARQL

SELECT ?claim ?claimOpenDate ?claimCloseDate
WHERE {

?claim a in:Claim ;
in:claimNumber ?claimNumber ;
in:claimOpenDate ?claimOpenDate ;
in:claimCloseDate ?claimCloseDate .

}
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Figure 36: Overall Execution Accuracy (OEA) of SPARQL and SQL for all the questions as a heatmap
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Figure 37: Average Overall Execution Accuracy (AOEA) of SPARQL and SQL for each quadrant
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Figure 38: Overall Execution Accuracy (OEA) of SPARQL and SQL for each quadrant as a heatmap

The answer for claim open date and claim close date are accurate and is a subset of the correct
answer. However in the SQL query, the Claim_Identifier column is being returned as the claim
number, when in fact, the claim number is actually the column company_claim_number. In the
SPARQL query case, the variable ?claim is returned which binds to the IRI that uniquely identifies
each claim. The claim number is not returned.

In practice, if a user is interacting with a system and the results are missing a column, they could
ask for the missing column or provide a label instead of an identifier. Therefore partial accuracy may be
acceptable for users. However this is an open question on how to define partial accuracy and how to
score it.

B.4.4 Inaccuracy

During the manual analysis of the generated queries, we also observed query characteristics that generated
the inaccurate answers. These characteristics were different for SQL and SPARQL.

SQL Inaccuracy The following three types of inaccuracies were observed:

• Column Name Hallucinations: Column names were generated that do not exist in the
corresponding table.

• Value Hallucinations: Generated value applied as a filter on a column where that value does
not exist in the database.

• Join Hallucinations: Generated joins that are not accurate.
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SPARQL Inaccuracy

• Incorrect Path: The generated query does not follow the correct path of the properties in the
ontology. The generated path goes from A to C when the correct path is A to B to C.

• Incorrect Direction: The generated query swaps the direction of a property. The generated
direction is B to A, when the correct direction is A to B.

The inaccuracy of SQL queries are based on hallucination while the inaccuracy of SPARQL queries
are based on path inconsistency. The SQL hallucinations are evident: column names that don’t exist in
a table and values that the LLM does not know if they exist in the data. The joins may seem plausible,
but they are not how the database was designed, thus returning empty results. For SPARQL queries,
the generated paths are indicative that the LLM knew what the correct starting and end node was and
the error was on defining the correct path from the start node to the end node. One could even argue
that the LLM appears to do some sort of reasoning but not always getting it correct. This observation
is what led us to the second part of our work.

C Ontologies to the Rescue

Consider the following knowledge represented in an ontology of a knowledge graph: a Policy is sold by
an Agent. If an LLM generated SPARQL query representing the statement an Agent is sold by a Policy,
it would be inconsistent because it does not match the semantics of the ontology (i.e. this doesn’t make
sense). Our intuition is two-fold. First, by leveraging the ontology of knowledge graph, we can check the
LLM generated SPARQL query and detect these types of errors. Second, we can also use the LLM to
repair incorrect SPARQL queries.

For example, assume the following question “return all the policies that an agent sold", resulted in
the following SPARQL query:

SELECT ?agent ?policy
WHERE {

?agent :soldByAgent ?policy .
?agent rdf:type :Agent

}

and given the following snippet of an OWL ontology

:soldByAgent a owl:DatatypeProperty;
rdfs:domain :Policy ;
rdfs:range :Agent .

we could determine that the generated query should be correct if the domain of :soldByAgent is
:Policy. However, per the query, the domain is :Agent and assuming they are disjoint, the generated
query does not match the semantics of the ontology, thus it is incorrect. Given an explaination of this
error, we could then prompt the LLM to try again.

We investigate the following research questions:
RQ3: To what extent can the accuracy increase by leveraging the ontology of a knowledge graph to
detect errors of a SPARQL query and an LLM to repair the errors?
RQ4: What types of errors are most commonly presented in SPARQL queries generated by an LLM?

The hypothesis is the following: An ontology can increase the accuracy of an LLM powered question
answering system that answers a natural language question over a knowledge graph.
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This first part of our approach is the Ontology-based Query Check (OBQC), which checks if
the query is valid by applying rules based on the semantics of the ontology. A set of rules checks the
semantics of the body of the query (i.e. the WHERE clause). Another set of rules checks the head of
query (i.e. the SELECT clause). It is important to clarify that the Ontology-based Query Check does
not use an LLM. It is a deterministic rule-based approach based solely on the semantics of the ontology.
If the OBQC detects an error, we could try to repair the query.

Repairing databases[1] and programs[11, 32] has been an long standing research area in computer
science. Recently, LLMs have been applied to repair programs[5, 18]. Inspired by these approaches,
consider the following example. Once a SPARQL query is detected to be incorrect, we can define an
explanation for the reason why it is incorrect. Per our running example, an explanation is the following:
The property :soldByAgent has domain :Policy, but its subject ?agent is a :Agent, which isn’t a subclass
of :Policy.. What if we can pass the incorrect SPARQL query, with this explanation and prompt the
LLM to rewrite the query?

The second part of our approach is LLM Repair, which repairs the SPARQL query generated by
the LLM. It takes as input the incorrect query and the explanation coming from the rule(s) that was
fired as an explanation to why the query is incorrect and re-prompts the LLM. The result is a new query
which can then be passed back to the OBQC. Our approach gives us the opportunity to understand
the capability of an LLM to repair a SPARQL query and thus further improve the accuracy. Figure 39
depicts the overview of our approach.

C.1 Ontology-based Query Check

Knowledge Graphs defined using the Semantic Web technology stack (specifically, RDF, RDFS, OWL
and SPARQL) have been built on a rigorous logical foundation. The exact meaning of a statement
(triple) in RDF is given in terms of predicate logic; the meaning of a model in RDFS or OWL is specified
according to a logical foundation [2, 15, 16]13. The meaning of a SPARQL query is specified in terms of
these logical foundations. A practical upshot of this theoretical framework is that it is possible to know
exactly what constraints a model in RDFS or OWL places on the correctness of a SPARQL query, and
these constraints can be described in an executable way in SPARQL. The approach takes two inputs: a
SPARQL query and an ontology. The output consists of a list of sentences that describe ways in which
the SPARQL query deviates from the specifications in the ontology.

The check system relies on the declarative nature of SPARQL, the structure of Basic Graph Patterns
and, the ability to query the ontology via SPARQL itself. If the generated query deviates from the
ontology, the approach outlines how. The approach to achieve this is threefold:

First, a SPARQL query consists of a pattern to be matched against the data (specified after the
keyword WHERE in the query); known as a Basic Graph Pattern (BGP) of the query. The process
begins with extraction of BGPs from the generated SPARQL query, replacing variables with resources
from a reserved namespace (prefixed with qq:). Some portions of the original query logic, including the
SELECT clause, subquery structures, filters, UNIONs, OPTIONAL and NOT clauses, aren’t considered
since the focus is on examining the compatibility of the BGP with the ontology structure. We leave that
for future work. However, note that violations of BGPs in an OPTIONAL or FILTER NOT EXISTS /
MINUS context are not ignored as they can also provide vital insights into the query understanding.

Second, a conjunctive graph14 is constructed by encapsulating two named graphs: :query and
:ontology, representing the SPARQL query’s BGP-turned-RDF and the ontology, respectively.

13For an introduction to knowledge graphs and semantic web technologies, we refer the reader to the textbooks “Semantic
Web for the Working Ontologist" and “Knowledge Graphs" https://kgbook.org/

14using RDFLib nomenclature
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Figure 39: Overview of our Ontology-based Query Checker and LLM Repair approach
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Third, the ontology consistency rules are applied guided by the formal logic of RDFS and OWL.
The rules are implemented in SPARQL which query the :query and :ontology graphs and identify
instances where the query diverges from the ontology.

Note that this ontology-based query check approach could be extended to other Knowledge Graphs
that lack a rigorous semantic foundation, such as property graphs. However, property graphs do not have
well-defined standardized schema language and an inference system. This would need to be explicitly
defined in order for our approach to be applied.

C.1.1 Rules

We defined two set of rules based on the body and the head of a query. The body rules check that the
Basic Graph Patterns of a SPARQL query (i.e. WHERE clause) matches the semantics of an ontology.
Our approach follows a subset of the RDF Schema (RDFS) semantics15. The body rules are:

• Domain: If the domain of a property p is a class C, then the subject of any triple using p as a
predicate must be a member of class C.

• Range: If the range of a property p is a class C, then the object of any triple using p as a predicate
must be a member of class C.

• Double Range: If two triples make conflicting requirements on the range of a property then error.

• Double Domain: If two triples make conflicting requirements on the domain of a property then
error

• Domain Range: If the object of a first triple is the subject of a second triple, then the range of the
property of the first triple should be the same as the domain of the property of the second triple.

• Incorrect Property: All the properties in the query need to exist in the ontology.

The head rules check the head of a SPARQL query (i.e. SELECT clause). A common error for an
LLM is to include extra values in the SELECT clause or to leave some out. These errors have nothing
to do with the ontology. However, a very common error is to include a variable in the SELECT clause
that will be bound to an IRI (an identifier). The head rules are:

• Subject Output: if a query selects a variable that is the subject of a basic triple pattern, then it is
an IRI.

• IRI Output: if a predicate has a specified range which is a class, then the object of that triple is
an IRI.

For simplicity, in this paper we only provide an example of the Domain Rule. The description of the
implementation for all the rules can be found in [3, 4].

The Domain rule (rdfs:domain in RDF Schema) is defined in English as follows: If the domain of a
property p is a class C, then the subject of any triple using p as a predicate must be a member of class
C. The domain rule is formally defined as:

IF
?p rdfs:domain ?C .
?s ?p ?o .

THEN
?s rdf:type ?C .

15https://www.w3.org/TR/rdf11-schema/
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The following SPARQL query is a representation of this domain rule which detects a violation:

SELECT ?p ?domain ? s ? c l a s s WHERE {
GRAPH : query{

? s ?p ?o .
? s a ? c l a s s .

}
GRAPH : onto logy {

?p rd f s : domain ?domain .
FILTER ( ISIRI (? domain ) )

}
FILTER NOT EXISTS {

? c l a s s r d f s : subClassOf∗ ?domain .
}

}

The following example shows how the domain rule is used to check a BGP against an ontology.
Suppose the LLM generated the following query:

SELECT ? agent WHERE {
? agent : soldByAgent ? po l i c y .
? agent rd f : type : Agent

}

This query has a BGP consisting of two-triples:

?agent :soldByAgent ?policy .
?agent rdf:type :Agent

The BGP is turned into RDF graph by replacing the variables with resources from a reserved
namespace (prefixed with qq:):

qq:agent :soldByAgent qq:policy .
qq:agent rdf:type :Agent

Now, suppose the ontology includes the following definition of :soldByAgent:

:soldByAgent
rdfs:domain :Policy ;
rdfs:range :Agent .

The conjunctive graph in nquads is the following:

:query {
qq:agent :soldByAgent qq:policy .
qq:agent rdf:type :Agent .

}
:ontology {

:soldByAgent
rdfs:domain :Policy ;
rdfs:range :Agent .

}
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The first clause, on the graph :query, finds the precondition for rdfs:domain; there is a triple
with predicate (?p) whose subject is a member of some class. The second clause searches the ontology
for a relevant domain definition; that is, that same property ?p has a specified domain. This query
ignores domain definitions that are not IRIs, which would typically include domains that are UNIONs
or INTERSECTIONs of other classes. We have simplified the query for exposition in this paper, but it
would be easy enough to extend the query to deal with other OWL constructs. We leave this as future
work. Finally, the FILTER clause of this query checks to make sure that the class specified in the input
query (?class) is not included in the domain (?domain). If all of these conditions in the evaluation
query hold, then we have found a violation of the ontology in the query.

Continuing our example, in the :query graph, we have a match for the first clause, with the binding

?s -> qq:agent
?p -> :soldByAgent
?class -> :Agent

The second clause searches :ontology for a triple matching

?soldByAgent rdfs:domain ?domain

this matches, with ?domain bound to :Policy (which is indeed an IRI). Finally, we test whether

:Agent rdfs:subClassOf* :Policy .

Notice that the meaning of the * in SPARQL implies that this would succeed if :Agent were the
same as :Policy. But in this case, they are not the same, and there is no such triple, so the FILTER
NOT EXISTS condition succeeds, and the check comes up with a match, with the following bindings

?p -> :soldByAgent
?domain -> :Policy
?s -> qq:agent
?class -> :Agent

This information is not very understandable to a human, and might not be usable to an LLM. But it
can be formatted into a meaningful sentence in English as follows:

The property :soldByAgent has domain :Policy, but its subject ?agent is a :Agent, which
isn’t a subclass of :Policy.

For each check rule, we provide a template that can create this explanation. In this case, the template
is: The property {p} has domain {dom}, but its subject {s} is a {class}, which isn’t a subclass of {dom}

C.2 LLM Repair

The LLM Repair is a prompt that takes as two inputs: 1) the list of issues for which the query is
incorrect which is the output of the OBQC and 2) the incorrect SPARQL query. The prompt is the
following:
Explanation Zero-shot Prompt

The output is a new LLM generated SPARQL query, which is passed again to the OBQC. This cycle
repeats until the check pass, or an upper limit of cycles is reached. In our experiments, the limit is 3. In
this latter case, the query generation is said to be unknown; there is no point in sending a query that is
known to be faulty to the database.
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It is instructive to note that the LLM repair focuses on that task; we do not repeat the question
nor the ontology to the LLM. The ontology input was taken into consideration by the OBQC, and the
question is reflected in the query so far.

It is also noteworthy that there are two possible outcomes; we can achieve a query that we have
considerable confidence in (because it matches the semantics of the ontology), or we fail to create such a
query. In the latter case, we are aware of the failure of the system. In contrast to a pure LLM-based
system which is prone to hallucinations, when we get the wrong answer, we know it, and can report that
to the user.

C.3 Results

The results consider three cases: 1) accurate queries (that get the right answer), 2) inaccurate queries
(that get the wrong answer), and 3) unknown queries, queries that we know are incorrect and are not
able to repair. As we summarize the results, we follow the metric of Execution Accuracy (EA) from the
Spider benchmark [30].

We report the following metrics for a SPARQL query generated by an LLM:

• Execution Accuracy First Time: if the OBQC returns true the first time which results in an
accurate execution.

• Execution Accuracy with Repairs: if the OBQC returns false the first time and the LLM Repair
results in an accurate execution.

• Execution Unknown with Repairs: if the OBQC returns false the first time and the LLM Repair is
unable to repair after three attempts.

C.3.1 Accuracy Results

By grouping all the questions in the benchmark, the Average Overall Execution Accuracy with Repairs
is 72.55%. This is an increase of 29.67% based on the Average Overall Execution Accuracy First Time
which is 42.88%. The Average Overall Execution Unknown with Repairs is 8% which implies that the
LLM Repair is usually able to repair the queries and is still able to identify when queries can not be
repaired. By combining the Average Overall Execution Accuracy with Repairs and Average Overall
Execution Unknown with Repairs, the error rate is 19.44%. Based on the results shown in Table 19, we
observe that the Ontology-based Query Check and LLM Repair favorably increased the accuracy and
reduced the error rate in two areas:

• Questions on High Complex Schema: the Ontology-based Query Check and LLM Repair positively
impacts the accuracy of all types of questions that are on a high schema complexity.

• Combining Accuracy and Unknowns: “I don’t know" is a valid answer and arguable a better answer
than an inaccurate answer. By combining accuracy and unknown, the error rate reduces, notably
making a bigger impact in Low Question/Low Schema.

We observe the following details for each quadrant:

• Low Question/Low Schema: the Ontology-based Query Check and LLM Repair increased the
accuracy by 25.48%. The Execution Unknown with Repairs was the highest in this quadrant,
12.87%. Combined, this implies that the error rate is 10.46%, the lowest of all the quadrants.
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Average
Overall

Execution
Accuracy

First Time

Average
Overall

Execution
Accuracy

with
Repairs

Average
Overall

Execution
Unknown

with
Repairs

Average
Overall

Execution
Accuracy +

Unknown
with

Repairs

Error Rate

All Questions 42.88% 72.55% 8% 80.56% 19.44%
Low Question
/ Low Schema 51.19% 76.67% 12.87% 89.54% 10.46%

High
Question /
Low Schema

69.76% 75.10% 6.02% 81.12% 18.88%

Low Question
/ High
Schema

17.20% 76.33% 3.45% 79.79% 20.21%

High
Question /
High Schema

28.17% 60.62% 8.40% 69.03% 30.97%

Table 19: Average Overall Execution Accuracy (AOEA) of Overall and Quadrant Results

• High Question/Low Schema: the Ontology-based Query Check and LLM Repair increased the
accuracy by 5.34% which was the lowest increase of the quadrants. It is not clear why. The final
error rate is 18.88%.

• Low Question/High Schema: the Ontology-based Query Check and LLM Repair had a substantial
impact by increasing the accuracy by 59.13% with an error rate of 20.21%.

• High Question/High Schema: the Ontology-based Query Check and LLM Repair had a meaningful
impact by increasing the accuracy by 32.45% with an error rate of 30.97%.

Comparing to the results with our first contribution, the accuracy increase is notable. The Average
Overall Execution Accuracy of the same zero-shot Text-to-SPARQL prompt on a Knowledge Graph
representation of the SQL database, reported in our previous work, was 54.2%, indicating an error rate
of 45.8%. With our Ontology-based Query Check and LLM Repair, the error rate is reduced to 19.44%.
Figure 40 depicts these results for all the questions in the benchmark. Figure 41 depicts these results for
all questions in each quadrant.

A follow up question to understand the extent is the following: How much of the possible execution
accuracy improvement was achieved? In other words, given the number of times the system achieved
an accurate answer on the first time, and the total number of runs, we know how much is left for
improvement. Therefore, how much of that improvement was achieved? For example, given a total of 10
runs, where 2 of them were accurate on the first try achieving a First Time Execution Accuracy of 20%,
means that there are 8 runs left where the OBQC and LLM Repair to repair a query in order to achieve
100% Execution Accuracy with Repairs. Let’s say that the system is able to accurately repair 4 times,
therefore the Execution Accuracy with Repairs is 60%. The achievable improvement is 50% because the
accurate repair occurred 4 times out of the 8 possible times. Achievable Improvement is calculated as
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Figure 40: Average Overall Execution Accuracy (AOEA) of SPARQL and SQL for all the questions in
the benchmark compared to OBQC and LLM Repair

Figure 41: Average Overall Execution Accuracy (AOEA) of SPARQL and SQL for all questions in each
quadrant compared to OBQC and LLM Repair
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(Number of Accurately Repaired Queries) / (Total Number of runs - Number of First Time Executed
Accurate queries). The results of achievable improvement are shown in Table 20

Average Achiev-
able Improve-
ment

All Questions 55.57%
Low Question/Low
Schema 49.30%

High Question/Low
Schema 40.45%

Low Question/High
Schema 72.23%

High Question/High
Schema 57.70%

Table 20: Average Achievable Improvement of Over-
all and Quadrant Results

The results indicate that the OBQC is able to
successfully repair queries half of the time. Thus,
we are halfway there and there is still room for
improvement. Recall that OBQC mainly checks
the body of the query and just two checks in the
SELECT clause determine if IRI identifiers are
returned. We postulate that a set of inaccurate
queries are due to the overlap type of partial ac-
curate queries: the columns returned by the query
are correct, however, they are a subset of the ac-
curate answer. Therefore possible repair rules can
be defined to check the head of the query. Ad-
ditionally, this may indicate the need for more
expressive ontologies.

C.3.2 Error Type Results

In our experiments, we kept count of the number
of times a rule was invoked by the OBQC. Table
21 presents the percentage of usage of each rule in
the OBQC. Notably, 70% of the repairs were done
by the Body rules checks while 30% of the repairs were done by the Head rules. The rules exclusively
related to domain were invoked 42.16% of the time and surprisingly, rules exclusively related to range
were invoked less than 1% of the time. The Domain Range rule contributed to 22.78% of the repairs.

Rule Usage
Double Domain 37.47%
Domain Range 22.78%
IRI Output 18.40%
Subject Output 11.91%
Domain 4.69%
Incorrect Prop-
erty 4.26%

Range 0.43%
Double Range 0.06%

Table 21: Rule usage in the Ontology-based Query
Check

A surprising result is that the domain related
rules had the largest impact in repairs. These
results may shine some light on what is happening
underneath the hood inside an LLM, namely the
relationship between english language and triples
of a graph. English is written and read from left to
right. The domain of a property has a relationship
to the left side of a triple. If the LLM writes
a query which is wrong, it would most probably
get it wrong at the beginning of a sentence/triple.
This may be an explanation on why the domain
related rules were the most impactful.

D Conclusion

We are now able to provide answers to our research
questions:
RQ1: To what extent Large Language Models
(LLMs) can accurately answer Enterprise Nat-
ural Language questions over Enterprise SQL
databases.
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Answer: Using GPT-4 and zero-shot prompting, Enterprise Natural Language questions over
Enterprise SQL databases achieved 16.7% Average Overall Execution Accuracy. For Low Question/Low
Schema, the Overall Execution Accuracy was 25.5%. For High Question/Low Schema, the Overall
Execution Accuracy was 37.%. However, for both Low Question/High Schema and High Question/High
Schema, the accuracy was 0%.
RQ2: To what extent Knowledge Graphs can improve the accuracy of Large Language Models (LLMs)
to answer Enterprise Natural Language questions over Enterprise SQL databases.

Answer: Using GPT-4 and zero-shot prompting, Enterprise Natural Language question over a
Knowledge Graph representation of the enterprise SQL database achieved 54.2% Average Overall
Execution Accuracy. The overall SPARQL accuracy was 3x the SQL accuracy and the accuracy
improvement was 37.5%.
RQ3: To what extent can the accuracy increase by leveraging the ontology of a knowledge graph to
detect errors of a SPARQL query and an LLM to repair the errors?

Answer: By using the same zero-shot prompting on GPT-4 and adding the Ontology-Based Query
Check and LLM Repair, that new accuracy is 72.55%. That is over a 4x accuracy improvement compared
to the zero-shot promting with SQL. Given that we consider an unknown result in our approach because
the LLM Repair is not able to repair and the Ontology-Based Query Check catches the error, the overall
error rate is 19.44%.
RQ4: What types of errors are most commonly presented in SPARQL queries generated by an LLM?

Answer: 70% of the repairs were done by the Ontological checks while 30% of the repairs were
done by the SELECT Clause checks. The domain related rules had the largest impact in repairs, being
invoked 42.16% of the time. An interpretation of this result is that if the LLM writes a query which is
wrong, it would most probably get it wrong at the beginning of a sentence/triple and the domain of a
property has a relationship to the left side of a triple.

The answers to our research questions are evidence that supports the main conclusion of our work:
Knowledge Graph provides higher accuracy for LLM powered question answering systems on SQL
databases.

What is evident is that context is crucial for accuracy and these results further emphasizes the need
to invest in business context. The point to be made here is a call to action that investing in context
of SQL databases is required to increase the accuracy of LLMs for question answering over the SQL
databases. In this work, the context was presented in the form of a knowledge graph consisting of an
ontology that describes the semantics of the business domain and mappings that connect the physical
schema with the ontology which are used to create the knowledge graph. The ontology can also include
further semantics such as synonyms, labels in different languages, which are not expressible in a SQL
DDL.

Arguably, our work has influenced the wider data industry to acknowledge the need to invest in
semantics and knowledge graphs in this new AI era. Our work has been reproduced and validated by
multiple independent vendors1617 18 19 20 21 22, and contributed to rise of GraphRAG23.

The takeaway for enterprises is that in order to provide trustworthy question answering systems that
results in highly accurate results, they must make an investment in business context and semantics.

16https://roundup.getdbt.com/p/semantic-layer-as-the-data-interface
17https://www.atscale.com/blog/semantic-layers-make-genai-more-accurate/
18https://www.wisecube.ai/blog/optimizing-llm-precision-with-knowledge-graph-based-natural-language-qa-systems/
19https://blog.kuzudb.com/post/llms-graphs-part-1/
20https://delphihq.substack.com/p/delphi-at-100-dbt-semantic-layer
21https://cube.dev/blog/semantic-layers-the-missing-piece-for-ai-enabled-analytics
22https://www.stratio.com/blog/stratio-business-semantic-data-layer-delivers-99-answer-accuracy-for-llms/
23https://neo4j.com/blog/graphrag-manifesto/
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This context needs to be effectively managed in metadata managements systems such as data catalog
and governance platforms built on a knowledge graph architecture.
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