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Letter from the Editor-in-Chief

In this issue, we begin with a timely opinion piece by Chirag Shah and Ryen White summarizing a recent
Microsoft workshop on task-focused information retrieval in the era of generative AI. The workshop
brought together diverse participants to explore how generative AI is transforming information access
and task completion, highlighting the pressing need for advances in this rapidly evolving field.

As information systems evolve to meet these emerging challenges, Retrieval-Augmented Generation
(RAG) has emerged as a promising paradigm shift in information retrieval, offering a novel approach to
accessing and synthesizing knowledge from heterogeneous data sources and formats. By combining the
precision of retrieval systems with the generative capabilities of large language models (LLMs), RAG is
uniquely positioned to address the challenges of modern data management and information retrieval. Its
potential to seamlessly integrate text, structured data, images, and other modalities sets the stage for
breakthroughs in answering complex queries, contextualizing information, and providing deeper insights
across diverse domains. As the data landscape continues to evolve, RAG’s ability to adapt and process
such multifaceted information will drive significant innovation in both information retrieval (IR) and
database management systems (DBMS).

We extend our gratitude to Dr. Luna Dong for curating this special issue, which features high-
quality contributions from leading researchers in the field. The papers selected for this issue collectively
showcase the transformative power of RAG in addressing real-world data challenges. From enabling the
construction and enhancement of knowledge graphs to refining trustworthiness in question answering,
these contributions highlight the field’s ongoing commitment to pushing the boundaries of what RAG can
achieve. Dr. Dong’s thoughtful curation has ensured a comprehensive exploration of RAG’s applications,
innovations, and challenges, providing a valuable resource for researchers and practitioners alike.

The papers in this issue address key questions in the development of RAG systems, with contributions
spanning several domains. For instance, the paper on RAG-based question answering over heterogeneous
data highlights techniques for unifying structured and unstructured information to handle complex
queries. Symphony demonstrates a robust framework for trust and verification, particularly in multimodal
data lakes, while ReFIT introduces mechanisms to incorporate user feedback during inference to improve
relevance. Across these contributions, there is a shared focus on enhancing RAG’s ability to address
multi-step queries, which require reasoning, reflection, and "System 2" approaches. These developments
also tackle critical issues like reducing hallucination and improving the interpretability of LLM-powered
systems, making strides toward reliable and trustworthy AI applications.

Haixun Wang
EvenUp
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Letter from the Special Issue Editors

How convenient would it be to have an AI assistant to share the latest updates for your favorite sports
team, or to present you the recent sales trend for your business with a single natural language query.
Retrieval Augmented Generation (RAG), bringing latest and targeted information into Large Language
Models (LLMs), makes this desire come true.

How to build a RAG system for trustworthy Question Answering (QA)? Some of the challenges
that we need to solve are the following. First, we shall evaluate and debug RAG systems to draw
insights and iterate quickly. How to measure the quality of RAG systems? How to conduct evaluation
with minimum manual efforts and affordable costs? How to do error attribution easily so that we can
understand the system and iterate development quickly? Second, we need to conduct retrieval effectively
and efficiently. For a given query, shall we trigger retrieval or leave it to the LLM to answer? How do we
retrieve information effectively from different sources: unstructured text, structured text, multi-modal
data? How to handle ambiguity and context understanding? And how to achieve all the above within a
given latency and computation budget? Last but not the least, we need to be able to use the retrieved
information effectively to power answer generation. An ideal RAG system should be able to provide
correct answers when useful information is retrieved without adding any hallucination. Practically, this
requires selecting and/or ranking relevant information from large volumes of data, oftentimes with the
presence of irrelevant, noisy, or even conflicting information, to fit in the context window.

This issue collects a set of papers around RAG shedding lights on how to address the aforementioned
challenges. We start with two papers for addressing the first challenge – evaluation: Yang et al.
provided an overview and reflection for the KDD Cup 2024 CRAG Challenge. It discussed the rationale
behind the benchmark and challenge design, highlighted the winning solutions, and shared learnings
from hosting a large-scale challenge for RAG. Liu et al. introduced GraphEval for large-scale factuality
evaluation. It attempted to address the scalability and domain-agnostic challenges in existing evaluation
methods, by integrating KGs for question generation and a lightweight judge model for evaluation.
We then present 2 papers focusing on the second challenge – retrieval: Reddy et al. introducing
ReFit, a method to leverage re-ranker to improve retriever’s recall in a Retrieval - Reranking pipeline.
Christmann et al. presents the Quasar system for QA over unstructured text, structured tables, and
knowledge graphs, with unified treatment of all sources and innovative design for question understanding
and evidence re-ranking. Finally, we offer 4 papers for building RAG systems from different angles and
also discussing the third challenge. Tang et al. introduced Symphony, a system designed for trustworthy
QA over multimodal data lakes, aiming to use RAG to improve QA system’s accuracy via reasoning
and verification. The next two papers focused on understanding Knowledge Graphs (KGs) with RAG:
Sequeda et al. tried to understand to what extent KGs can increase the accuracy of LLM-powered
QA systems, on SQL databases in particular. Yang et al. discuss the co-learning of KGs and LLMs,
through LLM-aided KG construction, KG-guided LLM enhancement, and knowledge-aware multi-agent
federation, emphasizing the RAG paradigm, towards fully utilizing the value of complex data. The last
paper is by Rahman et al., which proposed to shift from a “fast, intuitive thinking” system to a “slow,
deliberate, analytical thinking” to improve RAG in complex enterprise applications.

Overall, the above papers represent an interesting sample of the ongoing work on the recent research
on RAG. We hope that this special issue will further help and inspire the research community in its quest
to solve this challenging problem. We would like to thank all the authors for their valuable contributions,
as well as Haixun Wang for giving us the opportunity to put together this special issue, and Nurendra
Choudhary for his help in its publication.

Xin Luna Dong1, Meng Jiang2, Kai Sun1, Xiao Yang1
1 Meta, 2 University of Notre Dame
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Task-Focused Information Retrieval in the Generative AI Era

Chirag Shah1 and Ryen W. White2

1University of Washington, Seattle, WA, USA
2Microsoft Research, Redmond, WA, USA

chirags@uw.edu, ryenw@microsoft.com

Abstract

Generative Artificial Intelligence (GenAI) is revolutionizing how people access information and
how they tackle and complete complex information tasks. This report is a summary of a recent
workshop at Microsoft on this important and pressing topic. The event brought together a diverse
mix of attendees from different professions and at different career stages for an engaging day of
presentations and discussions. The emergent themes are described in detail in this summary.

1 Introduction

The second workshop on “Task-Focused Information Retrieval in the Generative AI Era" was held on
September 27, 2024 on Microsoft campus in Redmond, Washington. Around 60 participants from various
organizations – academic and industry – and various positions – students, faculty, professionals – from
across the United States came together for this one day in discussing issues related to information
retrieval and access systems in the context of GenAI, specifically GenAI tools such as Large Language
Models (LLMs). More information on the workshop, including the agenda, is available at https:
//ir-ai.github.io.

At the beginning of the workshop, the participants were asked to come up with a set of specific
questions or topics pertaining to the larger area of task-focused Information Retrieval (IR) systems
in the context of GenAI. Dozens of questions, ideas, and topics were posted on a large whiteboard
using sticky notes. Participants then arranged these notes into four broad categories: (1) theory, (2)
benchmarks and evaluation, (3) users and user experience, and (4) applications and integration.

For the remainder of the day, we organized breakout sessions where the participants used the notes
for the corresponding topics to stem their discussions and expand on their ideas. The groups took
notes in a shared document. The following sections summarize the key points from their notes and the
discussions.

2 Theory

While there were many threads of discussions on various theoretical constructs in GenAI, such as context,
language, and interactions, the groups spent a significant amount of time talking about relearning
(updating the model knowledge or capabilities based on new data or feedback), unlearning (removing
knowledge learned during training, e.g., for privacy, copyright, etc.), and readjustments for LLMs when
it comes to information access. This is particularly needed to address issues of privacy, bias, and toxicity
while also providing a more flexible architecture for further learning and refinements. For example, the
following approaches were discussed for unlearning in LLMs:
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1. Training the Foundational Model: This approach was found to be not feasible in most
situations due to the need to retrain the model for every data removal request.

2. Decoding Strategies: This will involve preventing generation of certain tokens. However, models
might find alternative ways to express similar intents.

3. Guardrails/Censorship: This idea requires implementing a layer to discourage certain topics
and training the LLM to provide more diplomatic answers instead of deleting information.

4. Reinforcement Learning from Human Feedback (RLHF): This popular technique to
align LLMs with human preferences [1] can be used after initial training to discourage specific
concepts/tokens.

Workshop participants also discussed alternative ways to train a foundational model for better, more
flexible and nuanced training, e.g.,

1. Speculative Decoding: This approach is based on student-teacher concept with a small and
large model where they decode tokens sequentially and a large model that verifies tokens as they
go. This approach improves efficiency and has been found that it does not affect accuracy [2].

2. Segmented Corpuses: This approach involves training different segments of a large corpus based
on expertise for specific motives.

3. Multi-agent Auditing: Use experts to prevent other LLMs from generating unlearned content.

4. Distributed Models vs. Single/Centralized Model: Mimic the human neuron system for
more efficient inference and storage.

5. Graph/Network of Models: Each node is responsible for a specific concept, requiring sufficient
common ground for communication.

3 Benchmarks and Evaluation

Two breakout groups focused on issues related to evaluation, datasets, and benchmarks for using GenAI
for information access applications. The participants emphasized the importance of reliability and
validity in evaluating and benchmarking LLMs. They noted that before establishing benchmarks, it is
crucial to ensure both the benchmarks and the LLMs themselves are reliable and valid. This foundation
is necessary to address issues of fairness, bias, and equity.

The groups highlighted the need for shared definitions of key terms and discussed how metrics should
evolve to be more meaningful within specific tasks. Benchmarks should be context-specific to provide
accurate evaluations.

When it comes to business use cases and personas, the discussion focused on evaluating person-
alization effectiveness in relation to human preferences, laws, and values. The participants explored
how to structure use cases, noting that product design often uses “personas" to capture diverse user
needs. However, it is challenging to cover all user differences with benchmarks, leading to questions
about grouping users and assessing personalization without creating echo chambers or experiencing
distribution collapse.

The groups also addressed the need for data to perform reliable evaluations. They discussed the
scarcity of comprehensive open-source data and suggested two solutions: using community data
collection and encouraging organizations to release data collaboratively. Maintaining the quality of
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human evaluation was another key point. The participants emphasized the importance of context-specific
questions to get accurate feedback.

On the topic of alignments and ethics, they discussed aligning safety and ethical principles,
evaluating alignment success, and maintaining privacy.

Finally, the groups touched on the concept of knowing—specifically, how to get models to acknowl-
edge when they do not know something. They suggested including confidence intervals in outputs and
having models confirm or paraphrase inputs to improve transparency and reliability.

The discussion also covered the potential to teach LLMs appropriateness through system-level content
moderation, including parental controls, flags, and guardrails. They considered the importance of
reading levels and the classification and generation of documents, noting that higher volumes of content
could bypass filters.

Evaluating appropriateness was another key topic. The group suggested using personalization
algorithms to measure what is appropriate, understanding negative feedback, and utilizing both explicit
and implicit user feedback to improve satisfaction. They also mentioned the importance of historical
behavior logs and cultural evaluation and alignment, noting that standards change over time.

Context was highlighted as crucial, with understanding intent being particularly challenging due
to fuzzy boundaries and user subjectivity. The ability to solve complex queries and provide feedback
interfaces for improvement was also discussed, along with fine-tuning for pluralistic alignment.

Finally, the group discussed setting contextual measures and measuring controllability, emphasizing
the need for dynamic and temporal evaluation and the ability of LLMs to evaluate higher-level constructs.

4 Users and User Experience

In the breakout groups for discussing users and user experience, participants delved into the intricacies of
enhancing user interaction and trust in LLMs. They began by emphasizing the importance of referring
to “people" instead of “users" to better capture the human aspect of these interactions.

The conversation then shifted to the typology of tasks that these people do, highlighting the need
for systems that can effectively respond to various goals and intentions. For instance, assisting someone
in learning how to apply for a green card requires a nuanced understanding of their needs, circumstances,
and queries.

The usefulness of LLMs was discussed, with a focus on how it depends on both the individual and
the system. Understanding the user involves considering the language used in queries, persona/user
modeling, and cultural sensitivity. The group debated whether to curate pretraining data for users or to
employ post-processing training methods.

Developing robust user simulators emerged as a critical point, as current interaction patterns with
LLMs are not well-defined. The challenge lies in creating a “good enough" user simulator that accurately
reflects real-world interactions.

Participants noted that while users may prefer simpler answers, which can increase the acceptance of
LLMs, this preference can also lead to misinformation. Balancing user engagement with well-being is
crucial.

Extending the issue of misinformation, the discussion steered towards ethical considerations. The
group explored who controls the data, ownership, and access, questioning whether LLMs should always
provide certifiable truths and discussing the broader social responsibilities of these models.

Building trust was identified as fundamental. It is essential for LLMs to acknowledge when they
do not know something. Using prompts to eliminate out-of-bound questions and effectively conveying
uncertainty were highlighted as vital strategies for building trust.
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The group also debated the necessity of pseudo-relevance feedback versus using LLMs to formulate
queries. They explored whether a new form of relevance feedback, more suited to the LLM era, is
needed.

Designing systems that provide balanced perspectives and defining diversity through user actions
were key topics. The group discussed democratizing information access and involving user preferences
before deploying models.

Understanding user behaviors and creating accurate user profiles were emphasized. The discussion
included improving existing user graphs (used to model and analyze connections between users, their
activities, and the resources they interact with) and addressing privacy issues related to personalization.

Educating users on how to interact effectively with LLMs was deemed crucial. The group debated
the benefits of long description queries and how to capture diverse user preferences to ensure the system
aligns with a broad user base.

Personalization was recognized as having inherent risks, such as creating echo chambers. The
group discussed whether the default mode should cater to general popular preferences or if users should
be nudged with information from diverse contexts.

Addressing the cold start problem and the influence of search systems/LLMs on query writing
were also key points. The extent to which ideal queries should be dictated by the system was debated.

Throughout the discussion, references to foundational works, such as Robert S. Taylor’s study
on question negotiation [3] and information seeking in libraries, and Nicholas J. Belkin’s concept of
Anomalous States of Knowledge (ASK) [4], provided a theoretical backdrop.

Establishing trust and creating mechanisms to escape the pitfalls of personalization were emphasized
as critical components for the future development of LLMs. The group concluded that ethical practices,
user education, and robust evaluation methods are essential for enhancing the effectiveness and reliability
of LLMs.

5 Applications and Integration

Finally, we had a breakout group for discussing multifaceted applications and integration of LLMs.
They began by comparing the merits of general-purpose LLMs with those fine-tuned for specific tasks,
weighing the benefits of versatility against the precision of specialization.

The conversation naturally flowed into the realm of multi-modal systems, where information
is conveyed through various formats such as text, images, and dynamic presentations. Participants
debated the criteria for selecting these modalities, using examples like exploratory search, which might
benefit from summaries, reference documents, and diverse outputs. They pondered whether LLMs
should generate both text and images or focus solely on summarization, drawing parallels to Wikipedia’s
multi-modal approach.

The potential for LLMs to guide users along learning paths was another key topic. Designing
interactions that support dynamic search was emphasized, contrasting with traditional recommendation
systems for movies and music, which can sometimes lead users into uninteresting rabbit holes. Unlike these
systems, LLMs require carefully designed feedback mechanisms to ensure relevance and engagement.
Learning, they noted, is not just about acquiring information on a specific topic; broader context
and serendipity play crucial roles. Multi-modality was seen as particularly beneficial in applications
such as claim verification, where processing images alongside text can provide a more comprehensive
understanding.

The group also discussed the limitations of chatbots as the primary interface for LLMs, suggesting
that generating websites or other content might be more effective in certain contexts. They explored the
concept of mixed-initiative systems, where the system takes some initiative by being proactive, and
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highlighted the challenges of controllability and the unpredictability of outputs when the system acts on
behalf of the user.

Operational control and the availability of datasets for training these models were also discussed.
Public datasets such as Microsoft’s Common Objects in Context (COCO) [5] were mentioned, but the
difficulty of experimenting and obtaining feedback was acknowledged. Risk assessment was highlighted
as a critical first step in any LLM application, with accountability extending to all involved in the
development process.

Ethical considerations, once again, were a significant part of the discussion. Examples such as the
United States Transportation Security Administration’s use of facial recognition and OpenAI’s decision
not to roll out emotion detection features in the European Union due to risk illustrated the ethical
dilemmas and potential stifling of development. The group debated the use of foundation models for
tasks that currently require extensive experimentation and iteration.

The participants then discussed how effective feedback mechanisms are essential for refining
LLMs. Ideally, models should immediately incorporate feedback, but current practices often involve
RLHF or fine-tuning phases. The challenge of maintaining memory across chat sessions and deciding
whether feedback should apply to the current session or persist indefinitely was also discussed.

The potential for extreme personalization in a privacy-preserving manner was seen as a significant
benefit of LLM applications. Participants considered what context should be local versus cloud-based
and noted the inconsistency in LLM behavior, which can make it difficult to restrict certain types of
responses.

The group noted that there has been a shift in consumer expectations, with some tolerance for LLM
errors. However, reliability remains an issue, as illustrated by the need for specific output formats in
tasks such as the National Institute of Standards and Technology’s Text REtrieval Conference (TREC)
and the reluctance to answer certain types of questions.

The group debated whether the creators of LLMs should decide what is appropriate, referencing
comprehensive experiments by organizations such as Anthropic. The concern was that a small number
of people making content moderation decisions could impact everyone.

Overall, the discussion highlighted the complexities and challenges of integrating LLMs into various
applications. Ethical considerations, robust feedback mechanisms, and careful design are essential to
ensure effective and reliable user interactions, paving the way for the future development of LLMs.

6 Futures

There is clearly a wealth of opportunity for research in the area of task-focused information retrieval,
and information access and use in general, in the era of GenAI. In our forthcoming edited book [6],
derived from discussions in the first event in this workshop series (held at Microsoft in 2023) we dive
into some of these issues in more depth. However, there are also other issues that are gaining more
traction that are covered in this report (e.g., applications and integration), signifying the rapid pace
of change, the growing opportunities in this area, and in the case of applications and integration, the
realities of deploying GenAI technologies in applications at scale. Information access is essential for an
informed citizenry. GenAI can make this access more effective. We hope that this summary is useful
and that it inspires researchers and practitioners to engage on some of the topics highlighted, and help
to realize the full potential of GenAI to assist with people’s complex information challenges.
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Knowledge Graph and Large Language Model Co-learning via
Structure-oriented Retrieval Augmented Generation

Carl Yang∗, Ran Xu, Linhao Luo, Shirui Pan

Abstract

Recent years have witnessed major technical breakthroughs in AI– facilitated by tremendous
data and high-performance computers, large language models (LLMs) have brought disruptive
progress to information technology from accessing data to performing analysis. While demonstrating
unprecedented capabilities, LLMs have been found unreliable in tasks requiring factual knowledge and
rigorous reasoning. Despite recent works discussing the hallucination problem of LLMs, systematic
studies on empowering LLMs with the ability to plan, reason, and ground with explicit knowledge are
still lacking. On the other hand, real-world data are enormous and complex, coming from different
sources and bearing various modalities. Data professionals have spent tremendous efforts collecting
and curating countless datasets with different schemas and standards. Transforming the separate
datasets into unified knowledge graphs (KGs) can facilitate their integrative analysis and utilization,
but these processes would often require strong domain expertise and significant human labor. In
this paper, we discuss recent progress and promise in the co-learning of KGs and LLMs, through
LLM-aided KG construction, KG-guided LLM enhancement, and knowledge-aware multi-agent
federation, particularly emphasizing a structure-oriented retrieval augmented generation (SRAG)
paradigm, towards fully utilizing the value of complex data, unleashing the power of generative
models, and expediting next-generation trustworthy AI.

1 Introduction

Large language models (LLMs) have reshaped AI research and implementations, with unprecedented
capabilities widely shown in various language-related tasks [1–7], bringing humans ever close to general
AI [8–10]. Recent research on multi-agent systems has further magnified LLMs’ advantages of broad
knowledge, language comprehension, and generalizability through conversational collaborations, showing
strong promise for further human-model collaboration for critical applications [11–15]. Recent studies
have also revealed the limitations of LLMs regarding their lack of planning [16–20], fuzzy inference
[21–25], and hallucination [26–33]. Specifically, in many real-world application scenarios, the lack of
accurate planning can be caused by the lack of access to high-quality domain knowledge, especially the
rapidly evolving new knowledge; the fuzzy inference nature can lead to difficulties in conducting reliable
comprehension and stable predictions for complex questions; and hallucination creating factual errors
and misinformation can cause fatal and life-threatening problems in critical applications [34–39].

Knowledge graphs (KGs) have been widely studied across academia and industry, due to their
advantages in storing accurate knowledge, facilitating explicit inference, and allowing easy editing of
the knowledge [40–43]. However, the creation of KGs relies much on the standardization of data, which
requires significant schematic designs and human efforts. In many application domains, researchers and
professionals have spent decades collecting, processing, and curating various types of data towards the

∗Corresponding author (j.carlyang@emory.edu); Department of Computer Science, Emory University, Atlanta, GA
30322, USA
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Figure 1: Overview of the proposed knowledge graph and large language model co-learning framework.

construction of KGs [44–53], which are widely used to support downstream application such as search and
ranking [54–56], user modeling and recommendation [57–59], basic science research [60–65], healthcare
[66–68] and education [69, 70]. Nevertheless, KGs still suffer from incomplete knowledge coverage, due to
the stringent requirements on data standardization and limited data volumes compared to unstructured
data in the wild, while specific algorithms are often needed to fill their gaps to applications. Moreover,
real-world data are noisy and complex, where entities and relations come from various sources such as
institutions using different data schemas and naming conventions [71–73], and the data can also include
multiple modalities such as tables, texts, images, and time series [74–85]. While such multi-source
and multi-modality data hold great promise in integrative and comprehensive analysis, unifying and
extracting high-quality knowledge from them is non-trivial.

Recently, significant research attention has been drawn to the synergies between KGs and LLMs
[86–92], due to their naturally complementary advantages (Figure 1). The construction and modeling of
KGs have often relied on advances in natural language processing (NLP), with recent efforts intensively
exploring language models towards the embedding [93–98], completion [99–111] and construction [112–
140] of KGs. Studies in the recent years have also bloomed to explore the utilization of KGs for enhancing
LLMs through providing new sources of knowledge during pre-training [141–179] or inference [180–207],
and enabling knowledge-based interpretation and evaluation [21, 22, 208–217]. Finally, pioneering studies
have also been conducted to explore LLM-based multi-agent systems, mostly through prompt-based
role-plays to simulate human collaborations [218–226].

In this paper, we re-emphasize the promise of KG and LLM co-learning, especially through a
structure-oriented retrieval augmented generation (SRAG) paradigm, where LLMs extract structured
knowledge from unstructured data, which can be further retrieved to enhance the capabilities and
reliabilities of LLMs during applications. Specifically, we give examples and discuss several natural
and promising use cases where LLMs can be utilized to automate the construction of high-quality KGs.
Furthermore, we summarize and highlight several limitations of current LLMs that can be potentially
mitigated through the utilization of KGs. Finally, we envision a federated multi-agent system where
models and data are disentangled while humans and knowledge are deeply engaged. Future directions
are further discussed in the end.
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2 LLM-aided KG Construction

In this section, we study and establish the advantages of utilizing LLMs for the construction of KGs,
by demonstrating their effectiveness in improving the accuracy, consistency, coverage, and freshness
of knowledge. Popular KGs such as Freebase [227], Yago [228] and Wikidata [229] contain hundreds
of millions of real-world entities like people, places, and things, along with their multi-typed relations.
However, since the KGs are collected and curated by different platforms and institutions, they do not
use a unified coding system or thesaurus. The varying terminologies due to different conventions or
abbreviations can lead to high degrees of duplication and inconsistency when multiple KGs are directly
put together. Moreover, the sheer amounts of data in existing KGs are enormous, but the knowledge
is still never comprehensive enough to serve various needs of real-world applications, especially those
requiring rapidly updated knowledge. Recently, pioneering studies including ours have demonstrated
strong promise of utilizing LLMs to automate the construction, integration, and enrichment of KGs
[112–122]. In the following, we give several examples of promising attempts of these kinds and discuss
more natural use cases of LLMs and multi-modal foundation models (MMFMs) toward constructing
high-quality KGs as promising future directions.

2.1 Integrating existing KGs

KG integration, also known as knowledge fusion or knowledge alignment, represents a fundamental
challenge in the broader landscape of knowledge engineering, which involves integrating multiple KGs
that originate from varied sources and formats [230, 231]. While individual KGs often excel in specific
domains or use cases, their true potential can be unlocked through effective integration, enabling more
comprehensive and robust knowledge representation [47, 232]. As the number and diversity of KGs
continue to grow, the need for effective integration methods becomes increasingly critical.

However, the integration of existing KGs faces several key challenges: (1) semantic heterogeneity
across sources: Different KGs often use varying terminologies, definitions, and contextual frameworks
to represent similar concepts [233]; (2) varying granularity levels in knowledge representation: KGs
may differ in the detail and depth with which they describe entities and relationships, impacting the
consistency and usability of integrated data. Although several neural approaches have been proposed for
entity alignment on KGs [234–236], these methods generally depend heavily on labeled data for training.
However, obtaining sufficient labeled data often involves substantial manual effort and can be rather
costly.

LLMs have emerged as a promising solution to these challenges with unique advantages: First,
their strong natural language understanding capabilities enable them to capture semantic relationships
among concepts that may be missed by traditional string-matching or embedding-based approaches
[109]. Second, LLMs can draw on their extensive knowledge acquired during pre-training to aid in
disambiguating entities and mapping relationships across different KGs [237]. Third, LLMs possess
robust few-shot learning abilities, making them particularly valuable for specialized domain applications
where labeled data are limited [8, 238].

Recent work has demonstrated the effectiveness of LLM-based approaches in KG integration. For
example, Lu et al. [239] developed HiPrompt (framework shown in Figure 2), which aligns entities
between biomedical KGs and standardized hierarchical entity taxonomies. This task poses significant
challenges due to the scarcity of available pairs and the inconsistent naming conventions between KGs
and entity taxonomies. Their two-stage approach combines traditional information retrieval techniques
(BM25) with LLM-based re-ranking using hierarchy-oriented prompts, achieving superior performance in
few-shot biomedical knowledge-graph integration. Building on this direction, Xie et al. [240] developed
PromptLink, a framework that leverages both domain-specific language models and GPT-4 for cross-
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Figure 2: The overall framework of Hiprompt.

source biomedical concept linking. The framework employs a two-stage prompting mechanism by first
eliciting the biomedical prior knowledge from the LLM for the concept linking task and then enforcing
the LLM to reflect on its own predictions to further enhance their reliability. PromptLink’s success in
zero-shot scenarios illustrates the potential of LLMs to generalize across diverse data sources without
extensive training data.

In contrast to the two LLM approaches that primarily use LLMs for ranking candidate sets, AutoAlign
[241] employs off-the-shelf LLMs to construct a predicate-proximity graph that captures relationships
between entity types rather than individual entities. It then aligns the entity embeddings of two KGs
into a common vector space by calculating similarity based on entity attributes.

These advances suggest several promising future directions for LLM-aided KG integration. For
example, LLMs could potentially facilitate the continuous integration of new knowledge into existing
KGs dynamically and automatically by identifying and resolving conflicts between new and existing
information, while maintaining consistency across the integrated knowledge base. Such real-time data
integration is especially beneficial for dynamic applications like live event monitoring and real-world
decision-making. Furthermore, integrating KGs with LLMs remains challenging due to the risk of
generating false or untrustworthy information [242]. To mitigate this issue, there is a growing need for
improved human-in-the-loop systems. Specifically, enhanced interfaces [243, 244] can enable experts to
more effectively verify and interpret LLM-generated recommendations, ensuring greater reliability and
transparency.

2.2 Constructing and Completing KGs

KGs have high-standard requirements on the quality of knowledge, regarding accuracy, consistency,
coverage and freshness. No matter constructed through manual curation, NLP tools, or their combinations,
KGs can unavoidably include erroneous knowledge. Moreover, when multiple KGs are integrated,
conflicting knowledge can emerge. Finally, new knowledge is constantly generated from new experiments
and research, making existing knowledge inaccurate and incomplete. LLMs have emerged as a promising
solution, leveraging the vast and adaptable knowledge acquired during pre-training to overcome these
limitations [208, 245–247]. The key advantage of LLMs for KG construction and completion is their
ability to generate novel, semantically coherent information with minimal reliance on additional labeled
data.

Recent studies have highlighted the effectiveness of LLM-based approaches for KG construction and
completion. Zhu et al. [112] utilize in-context learning capabilities of LLMs to complete tuples with
missing entities or relations to generate new knowledge triplets for augmenting existing KGs. Wei et
al. [248] and Wang et al. [249] tackle KG completion as a candidate identification and ranking task,
proposing a “retrieve-rank” pipeline where LLMs are used to rerank top-retrieved entities, thus creating
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additional knowledge triplets.
An alternative approach to prompting LLMs involves using code-based prompts, rather than natural

language, to incorporate new entities into existing KGs [250, 251]. Code LLMs, extensively trained on
structured data such as programming code, are inherently well-suited to the structured nature of KGs.
Using a code-based interface enables more effective handling of graph-like structures, logical relationships,
and precise reasoning [252–254]. Specifically, Bi et al. [250] first encoded the schema of KGs by modeling
code definitions, to capture the structural information inherent in the data. They then employed chain-
of-thought prompting to produce accurate knowledge triples. This methodology demonstrates improved
performance over traditional natural language-based prompts. Similarly, Zeng et al. [251] proposed
CodeTaxo, which represents entities within a base ’Entity’ class, mirroring hierarchical relationships
in programming constructs. This approach enables LLMs to efficiently create taxonomic structures by
leveraging syntactic capabilities commonly used in code tasks, thus enhancing the organization and
completeness of KGs.

The above methods primarily focus on prompting LLMs for KG construction and completion. While
these methods show promise, they fall short in fully adapting LLMs to target tasks and can suffer
from hallucination issues. To address these limitations, several studies aim to improve the quality
of LLM-generated content for KG tasks. Zhang et al. [116] presented a three-phase framework for
constructing KGs with LLMs to enhance contextual understanding and schema alignment. It starts
with open information extraction to identify relation triplets from unlabeled textual corpora, followed
by schema definition where LLMs generate contextually relevant descriptions for schema components.
Finally, the extracted triplets are aligned with the schema. To further enhance the quality of the
extracted triplets and minimize the risk of misinformation, a schema retriever is used to generate a list
of candidate entities and relations to guide the triplet extraction steps. This approach works for both
predefined schemas and situations where the schema needs to be inferred from the context. Additionally,
various studies explored fine-tuning LLMs specifically for KG completion. Zhang et al. [255] proposed
KOPA that first applies structural pre-training to create embeddings of entities and relations in KGs,
and project embeddings into the textual space as virtual knowledge tokens. These tokens act as prefixes
in LLM input prompts, enabling structure-aware reasoning that leverages both the generative power of
LLMs and the retrieval of structured KG information to improve the accuracy and completeness of KG
completion tasks. Jiang et al. [256] introduced KG-FIT for using open-world knowledge from LLMs
to enhance KG embeddings. It initially constructs a semantically coherent, hierarchical structure of
entity clusters, guided by LLM-powered entity representations. It then fine-tunes these embeddings by
integrating the hierarchical structure with textual embeddings. This hybrid approach allows KG-FIT to
capture both the semantic depth of LLMs and the structural information intrinsic to KGs, resulting in
more comprehensive KG representations.

2.3 Enriching KGs with multi-modality data

Traditionally, specialized models and algorithms have been developed to process and analyze various
modalities of data such as tables, texts, images, and time series. These methods can hardly perform
integrative analysis across data modalities and generalize across different data platforms. Recently,
LLM-based multi-modality foundation models (MMFMs) have shown strong promise in analyzing
multi-modality data through the unified interface of languages [257–261]. Integrating multi-modal data
into KGs creates a more comprehensive representation of entities and their relationships, enhancing
performance in open-world applications like image classification and visual question answering [262].
Many studies focus on using MMFMs for specific tasks, such as entity extraction [263–265], relation
extraction [266–268], or event extraction [269, 270]. However, these works often isolate extraction tasks
without unifying entities and relations into a structured KG. A pioneering approach in this direction is
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Figure 3: The overall framework of OpenVik consists of two main components: (1) an open relational
region detector, highlighted in the orange and purple panels, which includes a region regression loss (LRD)
and a regional description loss (LK), and (2) a format-free visual knowledge generator, incorporating
knowledge generation loss (LMLE) and diversity regularization (LV). These modules work collaboratively
to extract open visual knowledge, incorporating novel entities and diverse relations in a format-free
manner.

OpenVik [271] (framework shown in Figure 3). It first trains an open relational region detector to locate
image regions containing relational information. It then employs a visual knowledge generator to create
format-free knowledge descriptions by prompting a large visual language model. Through the use of
MMFM, OpenVik advances KG completion by integrating rich visual context, expanding knowledge
coverage, and enhancing the accuracy of representation within the resulting KG. Application-wise,
Yang et al. [272] proposed an automated approach to constructing product KGs from raw images in
e-commerce. This method first employs vision-language models (VLMs) to extract detailed image
information and then uses an LLM to reason and infer additional KG properties not visually present,
hierarchically expanding, and linking nodes to develop comprehensive, scalable KGs without human
input.

3 KG-guided LLM Enhancement

LLMs have shown impressive communication and question-answering capabilities, demonstrating strong
promise in various applications [238, 261, 273–288]. However, to reliably model domain-specific data
and generate factual and accurate answers, LLMs still face the challenges of lacking domain knowledge,
fuzzy inferences, and hallucination [16–33]. Retrieval augmented generation (RAG) [289], which aims
at retrieving query-relevant evidence and generating evidence-based answers, has strong promise in
evidence-critical domains. However, effective and efficient RAG for complex queries is still challenging
which requires LLMs to be able to (1) generate logical plans for retrieving multiple pieces of relevant
evidence from complex data, (2) conduct valid reasoning and inference to compose the pieces of evidence
towards generating coherent answers, and (3) reliably guarantee the detection and removal of errors. In
the following, we discuss how these challenges can be addressed with well-designed planning, reasoning,
and reflection frameworks with the help of KGs.
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3.1 Planning with domain knowledge

While LLMs excel in many NLP tasks [8, 290], they still face challenges in acquiring domain knowledge.
To address this issue, many attempts seek assistance from KGs, which are often constructed to represent
knowledge in specific domains, such as medicine [50], law [291], and finance [292]. The integration of
KGs and LLMs has shown promising results in various applications, such as question answering [181],
recommendation [186], and dialogue systems [293]. Despite the success, there are still challenges in
effectively obtaining useful information from KGs and incorporating them into LLMs.

Existing methods typically depend on a retriever to obtain relevant triples. For example, Baek et al.
[294] proposed a direct retrieval method to retrieve relevant triples from KGs. However, the retriever
may not always retrieve the most relevant triples, leading to suboptimal performance. Additionally, KGs
contain a wealth of domain-specific knowledge, making it challenging for LLMs with limited domain
expertise to comprehend and utilize this information. To further unleash LLMs’ capabilities of leveraging
domain knowledge, the plan-and-solve paradigm [295] has been proposed, in which LLMs are prompted
to first generate a plan. Based on the plan, LLMs can retrieve the relevant domain knowledge and
conduct reasoning to generate answers [296]. However, existing methods are incapable of handling the
complex structured knowledge in KGs to enable effective planning and reasoning. To address this issue,
we propose a planning-retrieval-reasoning framework named RoG that enables LLMs to plan and reason
on KGs [182]. The overall framework is illustrated in Figure 4.

KG

Q: Who is the spouse of
the ex-president of USA?

LLM 1. Planning
Relation path 

Step 1. Find the ex-president of USA.
Step 2. Find the spouse of that person.

2. Retrieval

Reasoning path 

Execute the plan on KGs to retrieve reasoning paths.

3. Reasoning

Step 1. The ex-president of “USA” is
“Donald Trump”

Step 2. “Donald Trump” is the spouse of
“Melania Trump”

Thus, the answer is “Melania Trump”.

Figure 4: The overall framework of planning and reasoning on KGs (RoG).

RoG first generates several relation paths that are grounded by KGs as plans. Relation paths, which
capture semantic relations between entities, have been utilized in many reasoning tasks on KGs [297, 298].
Based on relation paths, we can always retrieve the latest knowledge from KGs with a simple constrained
breadth-first search. Therefore, relation paths can serve as faithful plans to guide the retrieval and
reasoning on domain-specific KGs. Additionally, by treating relation paths as plans, we can make sure
the plans are grounded by KGs, which enables LLMs to retrieve relevant knowledge and conduct faithful
reasoning. To this end, we formulate our RoG as an optimization problem that aims to maximize the
probability of reasoning the answer from a KG G w.r.t the question q by generating relation paths z as
the plan:

Pθ(a|q,G) =
∑
z∈Z

Pθ(a|q, z,G)Pθ(z|q), (1)

where θ denotes the parameters of LLMs and a denotes the final answer. To enable accurate planning
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with domain knowledge, we design two instruction tuning tasks: 1) planning optimization, which distills
the knowledge from KGs into LLMs to generate faithful relation paths as plans; 2) retrieval-reasoning
optimization, which enables LLMs to reason based on the retrieved reasoning paths. The final objective
function of RoG is the combination of the planning optimization and retrieval-reasoning optimization,
which can be formulated as

L = log Pθ(a|q,Z∗
K ,G)︸ ︷︷ ︸

Retrieval-reasoning

+
1

|Z∗|
∑
z∈Z∗

logPθ(z|q)︸ ︷︷ ︸
Planning

, (2)

where we use the shortest paths Z∗ ⊆ Z between q and a in KGs as supervision signals. We maximize
the probability of LLMs generating faithful relation paths through distilling the knowledge from KGs.
In this way, with the proposed RoG, LLMs can effectively retrieve domain knowledge from KGs with
planning, which significantly enhances the reasoning capability of LLMs.

3.2 Reasoning with structured knowledge

KGs capture abundant factual knowledge in a structured format, which provides a faithful knowledge
source for improving the reasoning abilities of LLMs [87]. Nevertheless, because of the unstructured
nature of LLMs, directly applying them to reason on structured KGs is challenging. Early works focus
on fine-tuning LLMs together with structured knowledge from KGs to enrich the knowledge of LLMs for
better reasoning [152, 159]. For example, KEPLER [89] directly employs both KG embedding training
objective and Masked token pre-training objective into a shared transformer-based encoder. Through
fine-tuning, LLMs can better understand the structured knowledge in KGs for reasoning. However, the
fine-tuning process is computationally expensive and incapable of efficiently adapting to the evolving
real-world knowledge.

Recently, researchers have combined the strengths of retrieval-based methods with the prompting
technique to enable LLMs to reason on KGs [181, 289]. CoK [25] and KD-CoT [299] retrieve facts
from an external KG to guide the CoT performed by LLMs. To capture graph structure, GNN-RAG
[148] adopts a lightweight graph neural network to effectively retrieve knowledge from KGs, which
are formatted as a sentence path to elicit the reasoning process of LLMs. Mindmap [196] builds a
prompt-based method that endows LLMs with the capability of comprehending KG and reasoning with
it. Despite the success of these methods, they still face challenges in designing principled prompts to
represent KGs and conduct reasoning. Moreover, LLMs still have limited capabilities in understanding
the graph structure and reasoning with the text-based graph prompts [300].

Different from existing efforts that require a computationally expensive fine-tuning phase or design
ad-hot prompts for LLMs, we recently introduced a KG-constrained reasoning (GCR) paradigm [301].
GCR connects unstructured reasoning in LLMs with structured knowledge in KGs, seeking to achieve
efficient and effective reasoning on structured knowledge. The overall framework is illustrated in Figure 5.

Graph-constrained reasoning, inspired by the concept that LLMs reason through decoding [302],
incorporates the KG structure into the LLM decoding process. This enables LLMs to directly reason on
graphs by generating reliable reasoning paths grounded in KGs that lead to correct answers. Specifically,
given a question, we first adopt a retrieval module to find a relevant KG that is helpful for reasoning.
Then, we convert the KG into a structured index, KG-Trie, to facilitate efficient reasoning on KG
using LLMs. Trie is also known as the prefix tree [303] that compresses a set of strings, which can
be used to restrict LLM output tokens to those starting with valid prefixes. KG-Trie encodes the
reasoning paths in KGs as formatted strings to constrain the decoding process of LLMs. Then, we
propose graph-constrained decoding that employs a lightweight KG-specialized LLM to generate multiple
KG-grounded reasoning paths and answers. With the constraints from KG-Trie, we ensure faithful
reasoning while leveraging the strong reasoning capabilities of LLMs to efficiently explore paths on
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Figure 5: The overall framework of KG-constrained reasoning (GCR).

KGs in constant time. In this way, GCR bridges the gap between structured knowledge in KGs and
unstructured reasoning in LLMs, allowing for efficient reasoning on KGs via LLM decoding.

3.3 Reflecting with atomic knowledge

LLMs have shown impressive capabilities in encapsulating massive knowledge and conducting reasoning.
However, they still face challenges in generating factually correct and faithful responses, especially in the
presence of hallucinations [304]. KGs store atomic knowledge in a structured format, which can be used
to verify the correctness of generated responses and detect hallucinations [305]. To incorporate the factual
knowledge from KGs into LLM hallucination detection, Guan et al. [200] proposed a retrieval-based
method called KG-based retrofitting (KGR). KGR retrieves relevant facts from KGs during the LLM
reasoning process, which are used to mitigate factual hallucination by retrofitting the initial responses.
KGR enables an autonomous knowledge verifying and refining procedure with the factual knowledge
retrieved from KGs, which significantly improves the reliability of LLMs.

The hallucination of LLMs is usually attributed to the lack of factual knowledge of LLMs. To
systematically evaluate the factual knowledge inside LLMs, as shown in Figure 6a, we propose a
novel framework to automatically assess the factual knowledge in LLMs by using KGs [214]. Unlike
conventional methods that rely on human-annotated question-answering datasets, we systematically
generate valid and diverse questions from KGs with different difficulties while also ensuring knowledge
coverage. Specifically, we retire the atomic knowledge from KGs as sets of triples. Then, we utilize
different question generation methods, e.g., template-based and LLM-based methods, to convert the
triples into question-answer pairs. The generated pairs are used to evaluate the factual knowledge of
LLMs by comparing the generated answers with the ground-truth answers. The evaluation results can
be used to reflect the factual knowledge of LLMs. In this way, we can systematically evaluate the factual
knowledge of LLMs and provide insights into the hallucination behavior of LLMs, which can be used to
improve the reliability of LLMs in various applications.

Apart from the factual knowledge, the structure of KGs can be also utilized to justify the reasoning
process of LLMs. Minh-Vuong et al [306] designed a framework that delves deeper into the CoT reasoning
capabilities of LLMs in multi-hop question answering by utilizing KGs, as shown in Figure 6b. The
framework contains two evaluation modules: discriminative evaluation and generative evaluation. The
discriminative evaluation aims to analyze whether the LLMs possess enough knowledge to conduct
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faithful reasoning. It feeds both valid and invalid reasoning paths retrieved from KGs into LLMs and
asks them to predict the validity of these paths. The generative evaluation, on the other hand, aims to
evaluate the faithfulness of the reasoning process of LLMs by grounding it on KGs. Given a reasoning
process generated by LLMs, the generative evaluation module retrieves the facts from KGs, which are
compared with the ground-truth reasoning paths. The evaluation results can be used to reflect the
reasoning capabilities of LLMs and provide insights into the faithfulness of LLM reasoning. Based on
the findings, although LLMs have shown impressive reasoning capabilities, they still face challenges in
conducting faithful reasoning, especially in multi-hop question answering.
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Figure 6: The illustration of LLM reflection with KGs. (a) The evaluation of the factual knowledge
inside LLMs. (b) The evaluation of the reaosning process of LLMs with KGs.

4 Knowledge-aware Multi-agent Federation

While KGs and LLMs can mutually enhance each other, data are properties and many real-world datasets
are privately collected and owned by different institutions, which cannot be simply put together to
train more powerful models. Moreover, many real-world applications require domain-specific knowledge
that may not have been captured by general-purpose KGs and LLMs yet, and such knowledge can
also be private properties. Finally, while the development of KGs and LLMs is highly automated
and data-driven, the values and needs of different human stakeholders may not have been properly
reflected in the data and models. Federated learning (FL) provides a robust and principled framework for
privacy-protected multi-site collaboration, but proper implementation of FL in the new era of generative
AI remains unclear; the further incorporation of domain knowledge and human participation is also
highly under-explored. In the following, we will envision an innovative Federated Multi-Agent System
(FedMAS) for multi-site privacy-protected, knowledge-infused, and human-engaged KG-LLM co-learning
scenarios.

Nowadays, while common practices in AI applications still largely resort to in-house development
of models based on public and local data, the successes of generative AI, where complex models are
trained with large-scale data, have demonstrated a strong need to collaboratively utilize local data
towards obtaining powerful models that can generalize across institutions, finding and utilizing deep
data patterns underlying common and rare use cases. Towards protecting local data privacy during
collaborative model training, FL provides a promising solution [307, 307, 308, 308–310]. However,
existing FL frameworks, by merely preventing the direct sharing of training data, are not effective in the
scenarios of KG-LLM co-learning, because (1) as the construction of comprehensive KGs necessitates the
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incorporation of knowledge discovered from local data, private information may get reversely inferred from
the collaboratively constructed KG; (2) as powerful generative models like LLMs can easily memorize
training data, collaboratively trained LLMs may expose private information facing deliberately composed
jailbreaking prompts [311–313].

In our pioneering studies on FL for graphs [314–321], we developed several novel algorithms for
different graph separation scenarios. In FedDEP [317], we developed a prototype-based embedding
sharing algorithm with local graph differential privacy (DP) guarantees, and demonstrated its utility in
FL for global graph embedding models across private local subgraphs; in FedR [319], we showed that
sharing relation embeddings across local KGs can help FL for global KG embeddings with less privacy
leakage. These studies have laid the foundations for our envisioned framework here, which will build on
the private embedding sharing algorithms to construct multi-view KGs that can facilitate multi-site
knowledge sharing with minimum risks of exposing local private data.

Figure 7: The envisioned framework of a federated multi-agent system (FedMAS).

As illustrated in Figure 7, our envisioned FedMAS will include a multi-view KG and various LLM
agents. The federation on KG will be implemented by collectively constructing a multi-view KG by
all participating sites, where knowledge from public resources is integrated into the global view, and
knowledge from private resources is kept in each site’s local view only visible to itself. For each site,
entities in its local view are linked with the global view, and only the embeddings related to these linked
entities are shared with the server and other sites, via privacy-guaranteed embedding sharing algorithms
such as those developed in FedDEP [317] and FedR [319]. In this way, each local site can compute
embeddings on its local view and the public view as if they can see all other sites’ local views, allowing
them to effectively adjust their local knowledge and further enhance their local LLMs, all without
actually seeing the other sites’ local views (knowledge). The server will periodically adjust knowledge in
the global view also based on the shared privacy-guaranteed embeddings, and apply additional privacy
checks to make sure no sensitive knowledge gets propagated into the global view.

To rigorously protect the more sensitive patient data during the federation on LLM, it is possible
to train multiple LLM agents in each site with different functions and let them collaborate through
conversations instead of traditional model sharing, so the system can strictly control the level of private
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data each agent can access and monitor or moderate their collaborations. Specifically, since the retrieval
agents need to access all local patient data, one plan is to implement programmable guardrails [322] on
its conversations with all other agents within the same site and forbid them from directly communicating
with agents from other sites. Since all other agents can only access patient data indirectly through the
retrieval agents, it is possible to adapt techniques such as our recently developed GuardAgent [323] based
on the clear goals and typical outputs of each agent to monitor all cross-site conversations, detecting
and removing any suspicious private information.

When applying FedMAS to specific application domains such as finance, law, education, and
healthcare, it is promising to leverage the knowledge-based data sharing mechanism to incorporate
existing domain knowledge towards further alleviating knowledge gaps and mitigating potential biases.
Built on recent promising results from LLM-based data annotations as discussed in Section 2, FedMAS can
utilize specialized LLM agents to perform comprehensive extraction of structured knowledge from existing
guidelines and tutorials and automatically integrate them with existing general and domain-specific KGs.
For example, in healthcare, one type of important domain-specific entity is social determinants of health
(SDOH) [324–326]. The system can start with a set of known SDOH such as defined by WHO [327, 328],
and further extend the set and discover their impacts and relationships with various risk factors by
investigating relevant healthcare literature. The KGs enhanced through these steps are supposed to
facilitate the alleviation of various health disparities when utilized by subsequent LLM agents in the
FedMAS.

While FedMAS utilizes AI advances to automate multi-site data integration and modeling, compre-
hensive and trustworthy AI systems need to also incorporate the values and needs of various stakeholders,
who can have different and even contradictory perspectives. LLMs, especially in our multi-agent con-
versational environment, provide unique convenience for effective and efficient human participation,
where different stakeholders can verify, influence, and complement the decision processes and outputs of
different LLM agents, all based on natural languages as the interface. Specifically, we envision a novel
multi-stage intervention mechanism to efficiently enable the participation of different stakeholders in
the LLM-based multi-agent conversational environment. The potential stages could include (1) LLM
uncertainty quantification, where LLMs highlight their own uncertain outputs; (2) Rubrics-based rating,
where humans create rubrics to automatically rate the LLM outputs; (3) Focused human interactions,
where humans directly interact with LLMs, focusing on the problematic scenarios identified in the previ-
ous stages. The overall multi-stage mechanism is supposed to allow FedMAS to adapt to human values
through iteratively integrating the language-based feedback via interactions with various stakeholders.

5 Conclusions and Future Directions

In this paper, we discuss the trending efforts of co-learning KGs and LLMs. Through the lens of
SRAG, we showcase promising attempts to utilize LLMs to automate the construction, integration, and
enrichment of KGs, and discuss how KGs can help with planning paths, guide reasoning with structure,
and ground knowledge with reflection, enhancing the reliability of LLMs for downstream tasks. We
also envision a novel system of multiple agents collaborating in a conversational federated learning
environment based on the knowledge-infused, human-engaged LLMs. While the co-learning of KGs
and LLMs holds great potential, we envision several promising directions especially from the SRAG
perspective.

Effective evaluation of LLM-generated knowledge. To achieve effective knowledge enrichment for
KGs with LLMs, it is critical to evaluate and guarantee the quality of added and/or modified knowledge.
However, new knowledge is hard to evaluate in nature due to the lack of ground truth. Exhaustive
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human evaluation is costly, but LLMs can be utilized to lubricate the collaboration between humans
and machines toward efficient new knowledge evaluation. For example, humans can create guidelines
and rubrics for LLMs to screen and rate the new knowledge from different perspectives. LLMs can also
evaluate the quality of knowledge with confidence or uncertainty quantifications. Humans can then focus
on the LLM-flagged suspicious or uncertain new knowledge to conduct close manual evaluation.

Unified versus specialized KGs. Due to the diversity and breadth of knowledge, it might be difficult
to integrate all knowledge into a single unified KG, which might potentially harm the knowledge integrity.
As a potential alternative, it may become practical to construct specialized KGs depending on the
knowledge needs of different applications. It then remains an open problem regarding how to measure
the relevance of knowledge with respect to specific applications and decide what to include/exclude from
the specialized KGs.

More powerful KGs. Current KGs mostly include general, binary, and pair-wise relations. However,
when KGs are used in certain applications, the knowledge may not equally hold for every context. For
example, one drug may treat a disease for only certain groups of patients. In such scenarios, specific
mechanisms are needed to model the various contexts for knowledge. Moreover, relations are not always
binary and pair-wise (between pairs of entities). They can be true with a probability and involve more
than two entities. Such scenarios are ubiquitous in reality, so probabilistic KGs and n-ary KGs should
receive wider adoption and study.

Trade-off between effectiveness and efficiency of retrieval. Most existing retrieval-based methods
focus on developing an effective retrieval mechanism to accurately retrieve relevant knowledge from KGs
[180, 329]. However, they often overlook the efficiency of the retrieval process. In practice, the retrieval
process can be computationally expensive, especially when the KG is large. Meanwhile, real-world
application often requires prompt responses, which further exacerbates the efficiency issue. Therefore, it
is essential to strike a balance between the effectiveness and efficiency of the retrieval process [330].

Resolving knowledge conflicts (internal LLM knowledge versus external knowledge). LLMs
contain a vast amount of knowledge obtained via pre-training. However, the knowledge might be
inaccurate or outdated, which could conflict with the knowledge retrieved from KGs [331]. To resolve
the conflict, SPARE [332] utilizes the internal activations of LLMs to identify the conflict. AstuteRAG
[333] uses a novel RAG approach to adaptively elicit LLM internal knowledge and iteratively consolidate
internal and external knowledge. Despite the attempts, how to effectively identify and resolve the conflict
between the internal knowledge of LLMs and the external knowledge retrieved from KGs remains an
open problem.

Retrieval from multi-modal data. KGs store knowledge in diverse modalities such as text, image,
and video [334]. Existing KG retrieval methods mainly focus on retrieving textual knowledge. However,
the retrieval from multi-modal data is still under-explored. Knowledge from different modalities can
complement each other, which could potentially enhance the retrieval performance. Therefore, it is
essential to develop retrieval methods that can effectively retrieve knowledge from multi-modal data
[335].

Robustness/safety of SRAG for LLMs. The safety and robustness of LLMs are receiving increasing
attention due to their critical role in developing trustworthy AI systems. Previous research has primarily
focused on attacking the LLMs themselves [336]. However, integrating LLMs with KG retrieval systems
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expands the attack surface. Attackers could manipulate KGs and the retrieval systems to mislead LLMs,
potentially leading to severe consequences [337]. Therefore, enhancing the robustness and safety of the
combined KG and LLM systems is an important research direction.
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Abstract

Large language models (LLMs), despite their impressive capabilities in natural language under-
standing tasks in open-domain, often lack effectiveness with similar tasks in enterprise applications
due to potential hallucinations, weak multi-hop reasoning ability, and limitations in adapting to
heterogeneous data types, among others. Such issues primarily arise due to the absence of private,
on-premises enterprises from an LLM’s training corpus. Knowledge-intensive tasks in enterprise
often require multi-step reasoning, deep contextual understanding, and integration of information
stored and accessed in heterogeneous formats (e.g., tables, graphs, documents, and JSON), which
LLMs aren’t inherently equipped to handle without significant adaptation. To this end, retrieval
augmented generation (RAG) offers promise in instrumenting such adaptations on demand. While
RAG-based approaches focus on controlling the generation and mitigating hallucinations, existing
solutions are not sufficient for the requirements of the enterprise settings.

In this paper, we outline our approaches toward understanding and implementing a more effective
RAG workflow in the wild. To achieve the goal, we draw on the cognitive science concepts of
System 1 (fast, intuitive thinking) and System 2 (slow, deliberate, analytical thinking.) In particular,
we discuss how existing RAG approaches are more aligned to System 1 and propose to shift from
traditional single-model architectures to compound AI systems within a System 2 framework to
improve RAG, especially in complex enterprise applications. Such compound AI systems adopt a
more systematic approach by assigning specialized tasks to different intelligent agents, optimizing
retrieval and generation performance with a retrieval-augmented generation workflow.

1 Introduction

Large Language Models (LLMs), despite their impressive performance across various natural language
understanding tasks, exhibit significant limitations when applied to enterprise applications in the
wild. Primarily, these models may hallucinate—generating plausible-sounding but factually incorrect
content—when their parametric knowledge does not align with specific enterprise data [1–3] . An
LLM’s parametric knowledge depends on its pre-training corpus and can also be influenced by the
chosen training strategy and model architecture. This gap is especially problematic since enterprise
applications frequently use private, on-premises data, which may differ substantially from the domains
in LLMs’ pre-training corpora. Such domain misalignment can lead to severe inaccuracies, where the
LLMs produce unreliable or misleading information. In addition, enterprises often require consistency
and reliability in their outputs. However, LLMs can be sensitive to prompt wording [4], producing
inconsistent results even with minor phrasing changes, which undermines their reliability in high-stakes
enterprise tasks.

∗The first two authors contributed equally.
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Figure 8: Compared to the traditional RAG setup (above), where a fixed Retrieval-Augmentation-
Generation workflow is executed, a System 2 approach (below) involves more deliberate reasoning
and action based on critical analysis. For instance, given the same user query, the system must first
plan by analyzing the task and may decide to decompose it into smaller components, such as data
discovery, natural language-to-query translation, and actual query execution. During the planning
phase, constraints or budgets related to factors like time, cost, or quality, along with the nature of
the multimodal data sources, may influence the direction of the workflow. After the generation step,
a verification process is typically required to evaluate the outcome, which may lead to revisions in
subsequent iterations.

Another key challenge for LLMs in enterprise settings is their limited capacity for complex reasoning.
Many tasks in this domain require multi-step reasoning, deep contextual understanding, and coherent
integration across different data sources, models, and pipelines. LLMs are not inherently designed to
manage such complexities without extensive, task-specific adaptation and external grounding. These
limitations hinder adopting LLMs in enterprise fields where accuracy, consistency, and reasoning depth
are critical, such as healthcare, legal, HR, and data-driven decision-making applications.

Several approaches can help mitigate these limitations, including controlled generation, fact-checking,
and post-processing. Controlled generation seeks to constrain the outputs of LLMs by guiding the model
toward more reliable responses through techniques such as prompt engineering [5–7], fine-tuning [8, 9],
and reinforcement learning from human feedback [10]. Fact-checking [11, 12] involves verifying generated
content against highly credible sources to ensure accuracy, with any identified inaccuracies filtered out
or corrected during post-processing. Although these techniques offer improvements, they may still
struggle with domain-specific challenges and rapidly evolving knowledge. Among the various approaches,
augmenting LLMs with external information sources has emerged as one of the most widely adopted
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solutions for enhancing accuracy and robustness. This strategy enables LLMs to access up-to-date,
domain-specific knowledge, making them more adaptable to new fields or emerging topics. Techniques like
retrieval-augmented generation (RAG) [13] integrate external databases or knowledge graphs to ground
the model’s outputs in verifiable information. By incorporating external data, such as multi-modal
documents or enterprise-specific datasets, LLMs can produce more accurate and contextually relevant
responses, thereby reducing the likelihood of hallucinations and making them more suitable for critical
applications. However, simply using RAG approaches is not necessarily yet the definitive solution.
Challenges remain, such as ensuring the quality and reliability of the retrieved information, handling
ambiguous or conflicting data, and seamlessly integrating retrieval with generation to maintain coherent
and contextually appropriate responses. Consequently, there is still considerable room for improvement
in creating more robust and reliable AI systems.

As already shown in the literature, the idea of System 1 and System 2 [14], can be helpful to
contextualize the current capabilities and limitations of LLMs [15]. In cognitive sciences, System 1 refers
to fast, intuitive, and automatic thinking. This type of system can be characterized by fast thinking or
quick judgments and decisions that rely on heuristics and subconscious processing. System 1 is highly
efficient for everyday tasks that require intuitive, fast, unconscious, and immediate responses. System
2, however, is associated with slow, deliberate, and analytical thinking. It is more helpful and used
for complex problem-solving, critical analysis, and tasks that require conscious, sequential, algorithmic
planning and reasoning. System 2 is more resource-intensive and slower but more reliable for tasks
requiring careful consideration.

In this System 1/System 2 context, we argue that even though RAG approaches have strong potential
to contribute to reducing limitations of current LLMs (by playing a role more closely related to System
2), most current RAG approaches only weakly resemble System 2 thinking. The retrieval and generation
steps are often designed to be fast and instantaneous, aligning with System 1 thinking, rather than slow
and logical as in System 2, which presents challenges on both the data and model sides. For example,
research [16, 17] has shown that augmenting LLMs with retrieval without rigorously assessing necessity
may adversely impact overall performance.

Therefore, as illustrated in Figure 8, we advocate for a shift from traditional single-model architectures
to compound AI systems within a System 2 framework to enhance RAG, particularly in complex enterprise
applications. Compound systems enable a collaborative approach to problem-solving by distributing
specialized tasks across distinct agents, each optimized for specific functions, improving both retrieval
and generation performance in challenging real-world settings.

On the retrieval side, enterprise applications often involve complex, multi-step, and sometimes
ambiguous tasks that require deeper reasoning and structured workflows. A compound system can
enhance this by assigning specialized agents to handle diverse aspects of data, such as heterogeneous
formats (e.g., text, tables, graphs, parametric information) and noisy or incomplete data sources. This
allows for agents skilled in reconciliation and semantic querying to refine the retrieval process through
iterative, logic-driven interaction, improving both precision and relevance of context.

On the generation side, challenges like hallucination, fact verification, and adherence to context
remain key obstacles. In a compound system setup, individual agents can be tasked with verifying
facts, maintaining context alignment, and evaluating outputs for accuracy before finalizing responses.
This division of labor can be exploited towards reducing hallucinations and enhancing reliability by
enabling dynamic inter-agent evaluation, where each agent iteratively cross-checks and validates the
others’ outputs [18, 19]. For example, in domain-specific conversational AI, particularly in regulated
industries, compound AI systems offer a pathway to safer, more reliable, and robust deployments by
integrating domain expertise, context sensitivity, and rigorous validation at each step.

The paper is organized as follows. First, in section 1, we provide a brief overview of traditional RAG
models and highlight their limitations, especially in real-world, domain-specific applications. We then
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motivate more concretely the need for a System 2 RAG approach, in section 3. In section 4, several
approaches to enhance RAG adaptability to System 2 thinking are discussed. Finally, we present our
vision for future research in section 5, exploring the potential of compound AI systems as System 2
solutions to RAG.

2 Background

2.1 Traditional Approaches Towards RAG

Retrieval augmented generation (RAG) aims to address hallucinations and factual inaccuracies in
LLM-generated content. RAG infuses external knowledge [20, 21], such as knowledge bases and web
documents, while prompting LLMs to help generate responses grounded on relevant information. The
integration of RAG-based workflows in prompting LLMs has enjoyed widespread adoption, enhancing
the suitability of LLMs for real-world applications. Development of a RAG system often begins with an
indexing step, which involves cleaning and segmenting the documents — segmentation is required to
prepare chunks of information that carry meaningful and strong signals, and in addition, to fit into an
LLM’s context window (when using LLMs with limited context windows). Each chunk is then encoded
into a vector representation using an embedding model and stored in a vector database. This step is
essential for enabling efficient similarity searches in the subsequent retrieval phase. As shown in Figure 8,
the following are the standard phases of a traditional RAG workflow:
Retrieval. Given a user query, a RAG system employs an encoding model used during indexing to
transform the query into a vector representation and calculates the similarity scores between two vectors:
query and candidate text chunks within the indexed corpus. Based on these scores, the system retrieves
the top-K chunks with the highest similarity to the query, which are then used as the expanded context
for the next stage.
Augmentation. The selected chunks are incorporated into a prompt as expanded context to provide
additional relevant information. The goal of such enhancement is to reduce hallucination and improve
accuracy of the model’s response. By providing targeted context, the RAG system ensures the model
can ground its answer in the most pertinent retrieved data.
Generation. The user query, along with the augmented context of selected documents, is synthesized
into a coherent prompt, which is then provided to an LLM that will perform the final generation task.
Depending on the task requirements, the model may either draw upon its internal knowledge or limit its
response to information in the provided documents.

2.2 Limitations of RAGs

Traditional approaches to RAG do not directly apply to real-world scenarios due to the heterogeneity of
data, the complexity of workflows, and the strict constraints on expected task performances.

2.2.1 Lack of Robust Deliberation

Recent studies show how RAGs are not universally effective [22, 23]. Adding noisy or irrelevant passages
can override correct LM knowledge, leading to errors (see Table 1). An effective RAG should balance
accurate recall with selective retrieval. Identifying when to recall versus retrieve raises key questions: (a)
What factors impact an LM’s recall accuracy? (b) What influences RAG performance? (c) What error
patterns are common between LM and retriever responses?

Previous research on memorization in LMs and retriever performance has some limitations: (a) it
focuses only on entities, while real-world information includes both entities and relations [24, 25]. (b) It
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Triple: (Chicago, country, United States of America) Entity Popularity: 95.0%ile
Question: What country is Chicago located in? Entity-Relation Popularity: 97.4%ile
LM Answer: United States [Correct]
Context: The Chicago Municipal Tuberculosis Sanitarium was located in Chicago, Illinois, USA.. . . [Correct Retrieval]
RALM Answer: USA [Correct]

Triple: (George H.W. Bush, educated at, Yale University) Entity Popularity: 89.5%ile
Question: What educational institution did George H.W. Bush attend? Entity-Relation Popularity: 41.8%ile
LM Answer: Yale University [Correct]
Context: The George H.W. Bush Presidential Library is located on a site on the west campus of Texas A&M University
in College Station, Texas.. . . [Wrong Retrieval]
RALM Answer: Texas A&M University [Wrong]

Triple: (Ellen Litman, educated at, University of Pittsburgh) Entity Popularity: 10.3%ile
Question: What educational institution was Ellen Litman educated at? Entity-Relation Popularity: 17.9%ile
LM Answer: Stanford University [Wrong]
Context: Ellen Litman Ellen Litman (born 1973) is an American novelist. She received the Rona Jaffe Foundation
Writers’ Award in 2006. Born in Moscow, Russia, she emigrated with her parents in 1992 to Pittsburgh, Pennsylvania.
She was educated at the University of Pittsburgh and earned a B.S. in Information Science. . . . [Correct Retrieval]
RALM Answer: University of Pittsburgh [Correct]

Table 1: QA examples from WiTQA with predictions of varying popularity of question entity and entity-
relation pair. The predictions from LM (GPT-3.5) with no augmentation and RALM (GPT-3.5+BM25)
are shown. In the top row, both LM and RALM provide correct answers for the popular question. In the
middle row, LM generates correct answer but RALM provides incorrect answer due to retrieval errors.
In the bottom row, LM provides incorrect answer for an infrequent entity-relation pair.

examines either retrievers or LM recall independently, overlooking their interplay [26–28]. To address
these limitations, in previous work, [16] focused on the QA task and analyzed the performance of 10
LMs across 5 retrieval settings. They introduced WiTQA [16], a new dataset of QA pairs generated
from Wikipedia triples, selected based on entity and relation popularity, each paired with supporting
passages and popularity scores. The investigation of RAGs zero-shot performance on WiTQA yields
the following key findings (see Figure 9):
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• LMs can often recall frequently encountered entity-relation pairs from pre-training without retrieval,
but this depends on model size; larger models capture more long-tail relations for popular entities,
though accuracy drops for less common facts.

• For long-tail entity-relation pairs, retrieval performs better than LM recall, suggesting retrieval
augmentation benefits these cases but may introduce override issues with well-known pairs.

• LMs outperform retrievers on well-known entity-relation pairs involving long-tail entities, contrast-
ing prior studies where large LMs struggled with these pairs.

Using these insights, a selective memory integration module was designed, that applies retrieval augmen-
tation or LM recall based on entity-relation popularity. The main idea is closely related to a System 2
approach, in which before trying to answer a question, the system first tries to figure out (reasoning task)
whether it should use the retrieval mechanism or not. It was found it could improve QA performance by
up to 10.1% [16].

Another limitation of most current RAG models is characterized by their reliance on localized context
retrieval, making them less effective for tasks that require holistic reasoning—the ability to synthesize,
aggregate, and analyze information across multiple documents. For instance, when asked, “Which
company employed the most people?” traditional retrieval models may return individual statistics
for each company without a comprehensive comparison. This core limitation reveals that while RAG
systems are adept at fact retrieval, they falter with broader, cross-document reasoning. Bridging this
gap requires models capable of multi-document synthesis, comparative analysis, and extensive dataset
integration.

One alternative to to address these limitations of RAG models in holistic reasoning is to bypass
retrieval altogether and use long-context language models (LCLMs). These models are designed to
handle and process significantly larger chunks of information, enabling them to reason effectively over
extensive contexts or large sets of documents without the need for iterative retrieval steps. By eliminating
the dependency on retrieval mechanisms, LCLMs reduce the risk of retrieving irrelevant or incomplete
information, which can compromise reasoning quality. Furthermore, their ability to maintain coherence
across lengthy inputs makes them particularly well-suited for tasks requiring nuanced understanding,
cross-referencing of details, and synthesis of insights from diverse sources within a single reasoning
framework.

To investigate into this, [29] conducted a comparative study of LCLMs and RAG models using
HoloBench, a benchmark specifically designed to evaluate holistic reasoning capabilities. It compared
two large LCLMs, Llama-3.1-405b and GPT-4o, alongside a smaller LCLM, Llama-3.1-8b. For document
retrieval, the work employed BAAI/bge-large-en-v1.5, an effective embedding-based model that
retrieves the 2k tokens most similar to the query.

The findings in [29] reveal that as context length exceeds 4k tokens, larger vanilla LCLMs consistently
outperform RAG-based models, indicating their superior ability to manage longer contexts where
RAGs struggle to retrieve relevant information (see Figure 50). Interestingly, with smaller models like
Llama-3.1-8b, RAG performs better when context length surpasses 16k tokens. This aligns with previous
findings[16] that retrieval models can enhance the performance of weaker models by compensating for
their reasoning limitations, even in the presence of retrieval errors. A promising future direction would
be to adopt a System 2-based approach and integrate a dynamic mechanism for determining the optimal
amount of information to retrieve based on the query and context length, particularly when working
with weaker models for holistic reasoning.

2.2.2 Impact of Prompt Sensitivity

A notable limitation of LLMs is their sensitivity to the arrangement of components within prompts,
which directly influences their performance in understanding and reasoning on specific tasks. Prior
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research has shown that LLMs are affected by the ordering of few-shot demonstrations [30]. These
findings raise an important question: are LLMs similarly affected by the order of elements in prompts
across diverse tasks? For instance, in multiple-choice question (MCQ) answering tasks, does the order
of answer options impact LLM performance? Figure 11 (extracted from [31]) shows the sensitivity of
GPT-4 to options order using a sample from the common sense QA benchmark. Within this context,
[31] aims to address the following research questions: (1) To what extent do LLMs exhibit sensitivity to
the order of options in multiple-choice questions? (2) What factors contribute to LLMs’ sensitivity to
the order of options?

Original Order

LLM

hen house

Where would I not want a fox?
A) hen house
B) english hunt
C) mountains
D) outside bedroom window
E) england

After Reordering
Where would I not want a fox?
A) mountains
B) english hunt
C) england
D) outside bedroom window
E) hen house

Correct Response

outside bedroom 
window

Wrong Response

Figure 11: GPT-4 sensitivity to reordering options: Upon changing the order of choices, GPT-4 changes
its prediction from “hen house” to “outside of bedroom window” (the example is from the CSQA dataset).

To address the first question, [31] conducted experiments using GPT-4, InstructGPT (text-davinci-
003), and Llama-2-13b (chat version) across five multiple-choice question benchmarks. A surprisingly
high sensitivity gap of up to 85% in the zero-shot setting (see Table 2) was found. Furthermore, in the
few-shot setting, introducing demonstrations to the prompt led only to marginal gains in robustness, if
any improvement was observed.

Regarding the second question, it is hypothesized that this sensitivity arises from positional bias,
where LLMs display a preference for certain answer placements when uncertain. To investigate, [31]
analyzed instances where the models’ predictions shifted upon reordering answer options. Additionally,
was also found that increasing the number of options, while keeping the top possible answers, only
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Tasks GPT-4 InstructGPT Llama-2-13b

Vanila Min Max Vanila Min Max Vanila Min Max

CSQA 84.3 -12.6 +10.3 72.3 -24.0 +19.1 62.2 -28.9 +25.5
Logical Deduction 92.3 -8.1 +5.0 64.0 -39.4 +34.7 53.0 -30.7 +34.7
Abstract Algebra 57.0 -30.0 +23.0 33.0 -31.0 +39.0 32.0 -32.0 +53.0
High School Chemistry 71.9 -23.6 +18.2 44.8 -28.5 +38.0 40.6 -32.7 +45.6
Professional Law 66.1 -12.7 +12.1 48.6 -24.9 +25.7 43.8 -32.8 +32.9

Table 2: Zero-shot order sensitivity; all three LLMs display a notable level of sensitivity to the order
of options across various benchmarks.

Figure 12: Order sensitivity in the few-shot setting: The error bars represent the range of
minimum and maximum accuracy achievable in each task through oracle reordering. Our observations
are as follows: (1) The sensitivity gap consistently remains substantial in the few-shot setting. (2) As
performances improve, the sensitivity gap shrinks. (3) Adding more demonstrations does not necessarily
results in a reduction of the gap.

gradually affected performance, suggesting that positional bias rather than option count plays a larger
role in LLM sensitivity (see Figure 12).

Another interesting finding from [31] is that, instead of using the original order of the multiple-choice
options, one can adopt a "system 2" approach and reason before output the first answer generated by
the LLM. In this sense, before deciding on the final answer for the question, the same question can be
posed to the LLM multiple times (five times in the referenced study), each time with a randomly shuffled
set of choices. Afterward, the answers are aggregated through a reasoning mechanism (in the paper, a
very simple majority voting reasoning was employed). This approach has been shown to improve the
LLM’s overall performance.

2.2.3 Transparency and Accountability in Downstream Applications

To study the implications of trust and accountability of RAG pipelines in downstream applications,
[32] considers the task of generating natural language explanations of knowledge-intensive task (KIT)
decisions such as multiple-choice question answering. Given the setting for generating corroborating and
refutation complete rationales for KIT model decisions, the suitability of retrieval-augmented rationale
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Figure 13: (a) Irrespective of agreement or disagreement with the KIT model prediction, participants
indicated a more negative impression about the rationalization of the lower confidence model prediction.
(b) Participant feedback on the trust scale indicates lower confidence for lower accuracy model rational-
ization.

generation using LLMs is explored. The prompt to LLMs is enriched with relevant knowledge from
external sources to condition the rationale generation on facts. Three human subject studies were
conducted to evaluate the effectiveness of such rationales in communicating KIT model decisions.

More specifically, two studies were conducted, via crowdsourcing, to evaluate the preferability and
acceptability of such rationales to crowd-workers. In another study involving experts — motivated by
existing literature on trust in explainable AI [33, 34] — the implications of faithfully rationalizing KIT
model decisions irrespective of their correctness was explored. The crowd-sourced studies demonstrate
that, more often than not, crowd workers prefer LLM-generated rationales to crowdsourced rationales
in existing datasets, citing their factuality, sufficiency, and convincing refutation. Follow-up fine-
grained analysis reveals that LLM-generated rationales still have significant room for improvement along
dimensions such as insightfulness (i.e., providing new information), redundancy (i.e., avoiding repetitive
text), and generalizability (i.e., domain invariance.) The expert-sourced study confirms that faithful
rationalization of incorrect model predictions degrades humans’ trust in the generated rationales. The
work further explores the utility of instrumenting mechanisms to intervene in the incorrect predictions via
a review-then-rationalize pipeline instead of faithfully rationalizing and find that even simple strategies
may help intervene up to 71% of the incorrect predictions.

Figure 13a [32] summarizes the participants’ impression of a rationale immediately after viewing
the model prediction. When the participants disagreed with the model prediction, they exhibited a
stronger negative impression about the rationales for the 66% accuracy condition compared to the 90%
accuracy condition. Even when participants agreed with the model prediction, their impression of the
rationales remained more negative. The intuition is that the higher disagreement with the model coupled
with observing the faithful rationalization of the incorrect prediction negatively impacted participants’
perception of the reliability of the rationales. These observations are confirmed by analyzing the results
of the follow-up survey (see Figure 13b.) Unsurprisingly, participants for the 66% accuracy condition
rated their confidence in the generated rationales and the reliability of the rationalizer significantly lower
compared to the 90% accuracy condition.

3 Towards System 2 RAG in the wild

Towards productizing generative AI, there has been a shift from monolithic models to compound AI
systems [35] that incorporate various components other than LLMs for data retrieval, coordination,
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and utilizing proprietary models and services. Examples of such systems include Hiring Assistant by
LinkedIn [36], AI-BI Genie by Databricks [37], Agentforce by Salesforce [38], and Magentic-One by
Microsoft [39], among others. These systems are designed to ensure performance for complex tasks,
adaptability to heterogeneous data and use cases, and a higher degree of trust in the production setting.
Motivating example. Consider LinkedIn and Indeed, two global job-matching and hiring platforms
in the HR domain. These companies are employing RAG-based workflows for a multitude of tasks
in HR, such as matching, recruitment, and career guidance, among others [40, 41]. Given the task of
matching job seekers with job postings, a popular use-case of generative AI is communicating meaningful
explanations to job seekers about their relevance to the job. To support such a use-case, enterprises use
RAG to infuse domain-specific relevant information, which guides the generation of explanations using
LLMs [40]. Identifying the relevant information to be provided to the LLM in such a domain-specific
context can be challenging due to the heterogeneity and scale of the data. Moreover, within such a
production-oriented setting, enterprises have to remain cognizant of real-world constraints such as cost,
latency, accuracy, and trustworthiness.

3.1 Data Heterogeneity in the Wild

Within an enterprise setting, different teams in an organization manage project-specific sources of data,
collected and often transformed through various workflows over time. Such an observation is derived from
the authors’ experience working with enterprise data in the human resources (HR) domain at Megagon
Labs. For example, going back to the example of explaining job seeker and job posting match, a team
tasked with such work will be interested in unstructured resumes and job descriptions, structured data
extracted from the text and their representations, and HR domain-specific knowledge, i.e., , relationships
among different concepts such as jobs and benefits. Another team working on assisting job-seekers with
search (e.g., role and company) will be more interested in rather job market trends, company-specific
information and search logs, among others.

Figure 14: Conceptual data model for RAG in the wild.

We introduce the data model for such a setting in Figure 14: compound AI systems operating
over such enterprise data [3]. The data model is multi-granular and multi-modal. Each team-specific
data source DSi represents a collection of sources (Sm ∈ DSi) corresponding to different modalities
(m) — such as multiple tables and documents — created by specific teams. While enterprises may
contain data corresponding to other modalities such as audio, video, and image, we limit our scope to
documents (m = D), tables (m = T ), and graphs (m = G) in this case. Each data source is organized
in a hierarchical manner — at the coarse-grained level data is organized in data sources DSi. Within
each data source, data is organized in various collections Cm depending on the modality. Within each

56



collection, data can be stored and managed by different systems (Cmi) depending on the downstream
application such as data warehouse, data lake, and lakehouse systems [42, 43]. Therefore, the assumption
of traditional RAG where these data sources or collections or databases are known beforehand, breaks
down in such a setting. Rather a multi-step approach to data discovery (closer to System 2) is required
to identify the relevant coarse- and fine-grained data given a user query.

3.2 Rethinking RAG

To this end, a major consideration in moving a RAG pipeline from System 1 to System 2 thinking involves
shifting toward deliberate analytics and explicit reasoning. This transition means that decisions—such
as when and where to retrieve information, how much data to retrieve, and how to integrate retrieved
information into the generated response—should be made through rigorous reasoning. This reasoning
should carefully assess the unique characteristics of the task, data, tools, and available models to ensure
outcomes that are both optimal and context-aware. Note that recently released LLM such as o11

instruments slow thinking by executing some type of reasoning mechanism before generating the final
answer. Even though there has been discussions within certain research circles, which mentions the
possibility of having chain of thought and self-reflection empowering o1 models before they generate an
answer, it is important to state that no official documentation confirms the use of such techniques in
the o1 models) —- One consequence of this new reasoning capabilities of these models is the additional
time spent thinking, that makes it more effective for complex reasoning tasks, particularly in science
and mathematics. However, the additional step leads to higher latency during inference, which may
vary depending on the task. In addition to that, o1 is similar to the earlier monolithic LLMs where
the parametric knowledge remains abstract, thereby lacking transparency and controllability as no
affordances are provided to the users to interact with the decision-making process.

Given a knowledge-intensive task that requires complex reasoning and planning, a systematic approach
is necessitated to ensure transparency of the workflow, integrate user guidance at various steps, and
enable optimization under real-world constraints such as cost, latency, and accuracy. As illustrated in
Figure 8, at the core of the System 2 RAG pipeline lies a planner, which functions as a reasoning module.
This planner is grounded in specific tasks and budgets (e.g., time, cost, quality) and operates by foraging
and analyzing the properties of data and agents within the registries. Moreover, retrieval is expanded to
not only extracting information from documents but also other formats of raw data and data management
systems as outlined in Figure 14. Adaptation of retrieval to large-scale heterogenous data necessitates
reconciliation and reranking of retrieved information. With the presence of heterogeneous information,
the augmented generation requires further scrutinization through fact-checking and verification,

4 Design components

To achieve effective System 2 RAG pipelines, it is essential to address challenges in both data and
model aspects. System 2 decision-making relies on an organized, contextually rich data pool for
informed outcomes, making efficient identification and organization of relevant information critical. Data
enhancements, such as data discovery agents, play a key role by locating, structuring, and tagging
pertinent data to create a streamlined and accessible knowledge base. Similarly, selecting and configuring
models for each task is crucial. Choosing the right model, tuning it to align with user expectations, and
ensuring seamless integration with the data pipeline all contribute to achieving optimal performance. In
this section, we provide a high-level overview of our work in tackling these data and model challenges in
developing a System 2 RAG pipeline.

1https://openai.com/o1/
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4.1 Data-level enhancements

4.1.1 Data Discovery

As an initial effort to understand the potential impact in the data discovery task, we adapted existing
datasets and benchmarks in open-domain — from question answering and complex reasoning tasks to
natural language querying over structured data — to evaluate coarse- and fine-grained data discovery and
task execution performance. Our experiments reveal the impact of data retriever design on downstream
task performance — 46% drop in task accuracy on average — across various modalities, data sources, and
task difficulty. The results indicate the need to develop optimization strategies to identify appropriate
LLM agents and retrievers for efficient execution of CASs over enterprise data. This need is well-aligned
with the System 2 type of thinking, in which before performing the retrieval, there is a need for reasoning
on what data is available and how it should be retrieved. After such a reasoning step, the retrieval (and
the RAG results in general) have the potential to improve.
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Figure 15: Task execution performance degrades due to poor data discovery despite the purported
proficiency of LLMs.

When we explored the impact of data discovery performance on the accuracy of downstream task
execution. Figure 15 captures the task execution accuracy for two scenarios: oracle and discovery. Oracle
is the case where the ground truth discoverable element is provided to the LLM (e.g., GPT-3.5 turbo) to
provide the final answer to a question. Discovery captures the scenario where elements retrieved by the
best-performing document, sub-graph, and table discovery models are provided to the LLM. We observe
a significant drop in performance from oracle to the discovery scenario, showcasing a 46% decrease in
accuracy.

4.1.2 Less is More for Evaluation

Evaluating text generation is crucial for creating high-quality systems. However, aligning automatic
evaluation metrics with human judgment remains challenging [44, 45]. While LLMs demonst rate
promising correlations with human evaluations, they encounter issues like high costs and the Lost-in-the-
Middle problem [46], where key information in the middle of lengthy documents is frequently overlooked
in summary evaluations.

To tackle these challenges, [47] introduced a straightforward yet effective approach known as Extract-
then-Evaluate. At run-time, this method begins by extracting significant sentences from a lengthy source
document and concatenating them until the extracted text reaches a predefined length. Subsequently,
it assesses the quality of the summary based on this extracted content using LLMs. Figure 16 shows
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Figure 16: Overview of the long document summary evaluation task by LLMs. Evaluating long document
summaries by LLMs is expensive and shows limited alignment with human evaluations. This study
demonstrates that extracting important sentences for evaluation in advance not only reduces evaluation
costs but also exhibits better alignment with human evaluations.

the overview of our approach. Notice that Extract-then-Evaluate brings a System 2 type of thinking.
The evaluation requires the analysis of the original document and the identification of the key elements.
Only after reasoning and identifying such key elements is the evaluation of the quality of the summary
performed.

The experiments explore various sentence extraction techniques, encompassing both matching-based
and model-based methods, such as LEAD, ROUGE, BERTScore, and NLI. Their performance is
evaluated across multiple datasets, including arXiv, GovReport, PubMed, and SQuALITY [48, 49]. The
main results are shown in Table 3. In the experiments, LLMs demonstrated a notable enhancement in
correlation with human judgment when compared to non-LLM baselines. However, this improvement
came with increased evaluation costs due to the full document prompt length. Extracting key information
before evaluation not only reduced costs but also improved performance, attributed to the Lost-in-
the-middle problem, where LLMs struggle with critical information in lengthy documents. This trend
showed that LLMs perform better with shorter, more informative documents. Lastly, even within a
limited budget, the approach delivered comparable performance to top configurations, achieving similar
results to the best extraction method while cutting evaluation costs in half.

Based on these observations, it is possible to conclude that effective data pre-processing can reduce
costs while allowing the model to concentrate on key information, ultimately enhancing performance.

4.2 Model-level enhancements

Despite ongoing advancements in LLM and RAG models and their continual scaling, there appears
to be no clear limit to their growth potential. As a result, integrated systems and workflows—often
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Consistency Relevance Faithfulness
arXiv GovReport arXiv GovReport PubMed SQuALITY

Methods r ρ £ r ρ £ r ρ £ r ρ £ r ρ £ r ρ £

Reference-based metrics

ROUGE-1 -0.08 -0.13 - -0.12 -0.11 - 0.29 0.25 - 0.53 0.52 - 0.32 0.30 - -0.33 -0.13 -
BERTScore -0.09 -0.10 - 0.00 -0.04 - 0.22 0.18 - 0.38 0.38 - 0.49 0.49 - -0.12 0.02 -
BARTScore 0.32 0.36 - 0.51 0.48 - 0.00 0.03 - 0.18 0.24 - 0.49 0.47 - -0.06 -0.17 -

Reference-free metrics

FactCC 0.22 0.19 - 0.28 0.27 - 0.13 0.13 - 0.05 0.04 - -0.09 -0.14 - 0.13 0.14 -
SummaC 0.32 0.32 - 0.39 0.38 - 0.09 0.08 - 0.05 0.04 - 0.51 0.55 - 0.18 0.24 -

Reference-free metrics with LLM (ours)

Full document 0.61 0.46 $0.15 0.33 0.34 $0.10 0.58 0.52 $0.15 0.12 0.11 $0.10 0.64 0.70 $0.11 0.51 0.38 $0.14
Best extraction 0.71 0.50 $0.05 0.62 0.60 $0.09 0.63 0.58 $0.07 0.36 0.40 $0.07 0.76 0.80 $0.07 0.85 0.81 $0.04
Pareto efficient 0.71 0.50 $0.05 0.60 0.61 $0.05 0.55 0.48 $0.04 0.37 0.37 $0.05 0.75 0.75 $0.05 0.85 0.81 $0.04

Table 3: Results for Pearson correlation (r), Spearman correlation (ρ), and the average evaluation cost
per instance (£) indicate that extracting important sentences before evaluation (Best extraction) can
yield a higher correlation. Even under a limited budget (Pareto efficient), these results show comparable
or even higher correlations compared to the full document setting, with lower costs.

called compound systems or agentic workflows—are emerging. These systems combine LLMs with
multiple components, including repeated model calls, retrievers, and external tools, through commercial
frameworks like LangChain, LlamaIndex, Auto-GPT, and AgentGPT. Such frameworks empower
developers to create agents with unique decision-making capabilities, specialized expertise, and integration
with proprietary systems or datasets, as well as build diverse applications ranging from customer service
chatbots to advanced decision-support systems. We now highlight several research efforts that showcase
compound systems designed to address complex NLP tasks and emphasize that the presence of a System
2 type enhances the performance in such complex tasks.

4.2.1 Multi-conditional ranking

Ranking items based on multiple conditions has wide-ranging applications across various fields. In
recommendation systems, for example, once top candidates are shortlisted, re-ranking them according
to specific conditions—like genre or category—can greatly enhance the user experience. Similarly, in
competitive job markets, this approach is essential for matching resumes to job postings, allowing
for prioritization by skills, experience, and other relevant factors. While there has been considerable
advancement in ranking extensive document collections given a query [50–52], the nuanced task of
ranking a smaller set of items based on multiple conditions has not been addressed in prior research.

To address this gap, [53] defines and investigates the task of multi-conditional ranking (MCR) through
the introduction of MCRank, a comprehensive benchmark that encompasses various item types and
ranking conditions for evaluating MCR performance. MCRank includes a diverse array of conditions,
including positional, locational, temporal, trait-based, and reasoning conditions. Specifically, MCRank
was developed by creating a dataset with 18 scenarios varying in item categories, number of conditions
(1, 2, or 3), and item set sizes (3, 5, or 7). Each scenario included 200 samples, generated by compiling
data and labels for different condition types, featuring randomly ordered item sets with correct rankings.
Positional conditions were sourced from Big-Bench’s auto-categorization task and Amazon reviews. For
scenarios requiring multiple conditions, additional criteria like character counts or positional conditions
were added to simulate realistic complexity. This process ensured a robust dataset for evaluating holistic
reasoning in scenarios that simulate situations close to real-cases in which users want to rank items
based on different conditions defined by their own needs.
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(a) Base Approach (b) EXSIR (Ours)

Figure 17: Overview of multi-conditional ranking. Instead of directly prompting LLMs to rank items
based on the given conditions, we first extract and sort the conditions based on their priority. Then, we
iteratively apply these sorted conditions to the item list.

Furthermore, we develop EXSIR, a novel decomposed reasoning method that iteratively refines
rankings. The process begins with extracting individual conditions from a given string and organizing
them into a coherent list. A sorting mechanism then arranges these conditions based on their assigned
priorities. Finally, the sorted conditions are applied iteratively to the item list, refining the rankings in
each cycle based on the current condition. Figure 17 illustrates the workflow of EXSIR along with an
example of MCRank.

Initial investigations into existing LLM performance on MCRank show a clear decline in accuracy
as both the number of items and conditions increase. Specifically, we observe a sharp drop in ranking
accuracy for LLMs like OpenAI o1-mini, GPT-4, ChatGPT (both turbo versions), Llama 3.1-70B, and
Mistral (7B) when tasked with three conditions and seven items, with accuracy nearing 0%. EXSIR
improves ranking accuracy on MCRank by up to 14.4%, outperforming strong baselines such as Chain-
of-Thought (CoT) (see Figure 18). These results demonstrate how the initial steps towards the System
2 type of thinking (present in the EXSIR approach) allowed to improve the performance of even very
strong baselines.

4.2.2 Trust but Verify

Motivated by the observations from the study reported in Section 2.2.3, we create a two-stage review-
then-rationalize (see Figure 19) pipeline to evaluate the impact of intervening incorrect model predictions
before rationalization. The pipeline instruments a reviewer module that employs another LLM (GPT-3.5
text-davinci-003 (temperature = 0)) to evaluate the correctness of the knowledge-intensive task
(KIT) model and refrain from rationalizing potentially incorrect decisions.

Depending on the task and data domain, the suitability of the reviewer model may vary. Given the
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Figure 18: Evaluating the impact of EXSIR against zero-shot CoT prompting for token-level items. We
additionally report SFR and RankGPT performances as representatives of existing rankers.

Figure 19: Self-consistency-based Reviewer—intervene for any disagreement with the KIT model
prediction.

complexity of knowledge-intensive tasks, we employ a self-consistency-based decoding strategy [54] where
the reviewer is asked the same question N (=5) times, and the final response is selected via majority
voting. The reviewer then compares the model’s prediction with its prediction, and The rationalizer is
utilized only when the KIT model and the reviewer agree.

Dataset Prediction Errors Errors Intervened
(Test Set) Greedy Decoding Self-consistency

CSQA 321 166 (51.71%) 187 (58.26%)
OBQA 155 102 (65.81%) 110 (70.97%)

Table 4: The review-then-rationalize pipeline helps intervene in incorrect predictions of a knowledge-
intensive task (KIT) model. The self-consistency-based reviewer outperforms the greedy decoding-based
reviewer.

As shown in Table 4, for knowledge-intensive tasks such as Commonsense QA and Openbook QA,
the proposed pipeline helps intervene up to 58% and 71% of the incorrect predictions. Unsurprisingly,
the self-consistency-based reviewer outperforms the greedy decoding-based reviewer. Overall, the results
draw attention to the importance of responsibly communicating LLM-generated rationales to humans
and, consequently, instrumenting guardrails as an effective intervention strategy.
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4.3 Orchestration Under Real-World Constraints

In real-world applications, RAG systems must operate under various constraints such as processing time,
resource limitations, and compliance requirements. Efficient orchestration of RAG pipelines, involving
the coordination of multiple processes (retrieval, generation, and post-processing), can be challenging but
offers unique advantages. We propose a blueprint architecture [35] where the key orchestration concept
is “streams” to coordinate the flow of data and instructions among components of varying compute
requirements.

Key components in the blueprint architecture include (Figure 52): (1) agents, agent and data
registries as key touch points and interfaces to seamlessly integrate with existing deployed models, APIs,
databases, and services, (2) streams to orchestrate data and instructions across components, and (3)
task and data planners to optimize for cost and quality constraints in task execution and data retrieval.
It is designed for seamless integration into existing infrastructure, enabling extensibility, customizability,
and reusability through well-defined touchpoints and interfaces. It supports externalized orchestration
and flexible task coordination via declarative plans, ensuring observability, controllability, and optimized
performance while meeting quality-of-service constraints.

Figure 20: Blueprint Architecture: Data and Agent Registries are touch points that define existing data,
models, APIs, and services in the enterprise for utilization by agents.

5 Challenges and Opportunities

The work discussed covers limited aspects of building an effective System 2 RAG solution. Numerous
intriguing research questions remain unanswered in the fields of NLP, AI, databases, and HCI, presenting
ample opportunities for interdisciplinary collaboration. Here, we will discuss some of these questions.
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5.1 Planning and reasoning

Despite emerging attempts to explore LLMs’ reasoning capabilities and use them as planners [55, 56] or
‘routers’ of existing tools and APIs [57–59], LLMs alone still cannot solve the planning problem [60, 61].
Key questions remain, including: How to exploit LLMs for planning, yet add verification and constraints?
How to perform planning over multi-modal (relational, graph, documents, parametric) data sources?
How to interact with the user in regards to planning, present and refine plans collaboratively? How to
learn feedback and attribute back to agents and operators?

In addition, Optimization is critical for planning for production both as a driver of QoS and business-
wise, as cost and performance affect the bottom line. Optimization is a well-studied subject, but new
questions emerge: How to perform cost estimation for (new) agents, given the dependence on data (size
and beyond)? How to handle uncertainty in sources such as LLMs? How to estimate the overall plan
cost? How to incorporate an accrued budget into planners?

Additional future research opportunities in reasoning and decision-making systems exist in addressing
the overhead introduced by deliberate, system 2 thinking processes, such as planning, which can be
slow and cause notable differences in enterprise setups. A promising direction involves alleviating this
burden by moving parts of the system 2 thinking process offline, continuously distilling and materializing
knowledge into diverse representations. Metaphorically, this is akin to learning to drive: while initial
skill acquisition requires deliberate system 2 reasoning, skilled drivers rely on system 1 instincts, reacting
fluidly without explicitly thinking about each action, as their expertise becomes ingrained like muscle
memory. Similarly, RAG systems can benefit significantly from insights derived from both online and
offline learning processes. These insights can extend beyond traditional model weights to include artifacts
like graphs, tables, and natural language documents. This calls for research in areas such as knowledge
distillation, insight extraction, and planning, with a focus on understanding when and where to trust
instinctual, system 1 insights versus when to engage in more rigorous, system 2 reasoning.

5.2 Multi-modal data

Enterprise environments often contain highly varied data sources, including databases, document
collections, graphs, and structured tables with heterogeneous schemas. RAG systems designed for
these environments must be capable of handling data from diverse formats while preserving contextual
coherence across data types. They face challenges ranging from architectural and representational
choices to managing ambiguity and uncertainty across modalities. How can RAG models balance
capturing detailed, structured knowledge from tables or graphs with synthesizing general information
from unstructured text? How should confidence levels and uncertainty be managed when retrieving from
different data types? And how should the relevance of retrieved information be measured when dealing
with multiple data types, given that existing metrics are often optimized for text-based retrieval?

5.3 From Data to Insights

A core opportunity in RAG systems lies in their ability to transform raw data into actionable insights.
This insight-driven retrieval allows systems to dynamically generate responses tailored to user-specific
needs or industry contexts. For example, RAG systems in human resources might leverage real-time job
market statistics to enhance job recommendations, improving matches based on current industry trends.
By deriving insights, systems can synthesize contextual knowledge from data, supporting more accurate
and adaptive output generation.

However, research challenges remain. For instance, how can RAG systems accurately capture and
prioritize real-time, evolving information from different data sources to ensure that insights remain
relevant and current? In dynamic fields such as job searching, the timeliness and accuracy of insights
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can be critical. Moreover, what methods can be developed to quantify and communicate the reliability
or confidence level of synthesized insights to end users? Trustworthiness becomes especially important
when RAG systems support high-stakes decision-making.

6 Conclusion

In this work, we explored the limitations of current Retrieval-Augmented Generation (RAG) models
and proposed that a System 2 perspective should be adopted to address the challenges faced by LLMs
in complex, domain-specific enterprise applications. Despite the advancements in integrating external
information for grounding LLM outputs, we highlighted the shortcomings of existing RAG approaches,
which often lack rigorous reasoning and deliberative analytics characteristic of System 2 thinking. Our
analysis is based on the literature review and results obtained in previous work on different aspects of
LLMs limitations and current RAG approaches, and it reinforces the necessity of transitioning from
monolithic LLM architectures to compound AI systems, which employ specialized agents to enhance
retrieval, ensure factual correctness, and mitigate issues like hallucination.

Based on the results already obtained by the previously described approaches that incorporate
initial steps towards the System 2 type of thinking, we outlined a vision for the future, emphasizing the
design of compound systems that better align with System 2 principles, featuring coordinated, logic-
driven workflows capable of holistic reasoning and cross-document synthesis. While our work provides
a foundational perspective for these advancements, there are still open questions about optimizing
retrieval strategies, seamlessly integrating multiple data types, and fine-tuning decision-making modules.
Addressing these challenges will be crucial for deploying robust, trustworthy AI systems that meet the
high standards of reliability and precision required in enterprise contexts.
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Abstract

This article presents the Quasar system for question answering over unstructured text, structured
tables, and knowledge graphs, with unified treatment of all sources. The system adopts a RAG-based
architecture, with a pipeline of evidence retrieval followed by answer generation, with the latter powered
by a moderate-sized language model. Additionally and uniquely, Quasar has components for question
understanding, to derive crisper input for evidence retrieval, and for re-ranking and filtering the retrieved
evidence before feeding the most informative pieces into the answer generation. Experiments with three
different benchmarks demonstrate the high answering quality of our approach, being on par with or
better than large GPT models, while keeping the computational cost and energy consumption orders of
magnitude lower.

1 Introduction

Motivation and Problem. The task of question answering, QA for short, arises in many flavors: factual
vs. opinions, simple lookups vs. multi-hop inference, single answer vs. list of entities, direct answers vs.
long-form, one-shot questions vs. conversations, and other varieties (see, e.g., surveys [28, 29]). The
state-of-the-art for this entire spectrum has been greatly advanced in the past decade. Most notably,
incorporating deep learning into retriever-reader architectures (e.g., [2, 13, 18]) has boosted answering
quality, and most recently, large language models (LLM) [25, 40] have pushed the envelope even further
(e.g., [16]).

Today’s LLMs alone are capable of accurately answering many factoid questions, simply from their
pre-trained parametric memory which latently encodes huge text corpora and other online contents.
However, this critically depends on the frequency of evidence in the underlying contents and the
complexity of the information need. For example, asking for the MVP of the 2024 NBA season would
easily return the correct answer Nikola Jokic, but asking for the highest-scoring German NBA player or
the MVP of the 2024 German basketball league pose a big challenge. The reason is that LLMs alone do
not easily recall information about not so popular or even long-tail entities [17, 32], and that they are
mainly geared for direct look-ups as opposed to connecting multiple pieces of evidence [24, 39].

[10, 12, 21, 41] known as RAG, address these bottlenecks. In addition to cleverly crafted prompts and
few-shot examples, the LLM is provided with the top-ranked results of an explicit retrieval step, like web
search or knowledge graph (KG) lookups. The former is often necessary for freshness of answers, and the
latter may help with long-tail entities and also mitigate the notorious risk of hallucinations. Still, this
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generation’s RAG architectures are limited in how broad and how deep they tap into external sources.
Popular AI assistants like Gemini or ChatGPT seem to primarily retrieve from the text of web pages
(incl. Wikipedia articles), and academic research has additionally pursued knowledge augmentation by
enhancing prompts with facts from large KGs (e.g., Wikidata).

An additional content modality that is still underexplored are online tables: a wide range of tabular
data including HTML tables in web pages, spreadsheets and statistics, all the way to CSV and JSON
datasets that are abundant on the Internet. There is prior work on joint support for text and KGs and
for text and tables, but very little on all of these together – some notable exceptions being [3, 5, 27, 38].
Examples. All three heterogeneous types of sources are crucial not only for answering different questions
from different kinds of evidence, but also for combining multiple pieces of evidence of different modalities
to infer correct and complete answers. To illustrate the need for tapping all sources, consider the
following questions:

Q1: Which Chinese basketballers have played in the NBA?
Q2: Who was the first Chinese NBA player?
Q3: Which Chinese NBA player has the most matches?

Q1 can be cast into querying a KG, but the list there is not necessarily complete and up-to-date,
so additional evidence from text or tables would be desired. Q2 needs information about who played
in which seasons, found only in web pages or sports-statistics tables. Finally, Q3 may be lucky in
finding prominent textual evidence (e.g., in biographies, Wikipedia etc.), but this often faces divergent
statements, and resolving contradictions needs to dive into more evidence. Besides, when textual
evidence is rare and hard to find or not trustworthy enough, then information from multiple tables and
text snippets may have to be aggregated (e.g., totals of per-season counts). Some of this may perhaps
become feasible for an industrial LLM’s RAG capabilities in the near future, but there are always harder
scenarios by moving from Chinese NBA players deeper into the long tail, such as asking for Lithuanian
players in the German handball league.

Approach and Contribution. This paper presents a simple but powerful and versatile RAG system
with unified access to text, KG and tables. We call our method Quasar (for Question Answering over
Heterogeneous Sources with Augmented Retrieval). Its architecture is relatively straightforward: all
heterogeneous content is verbalized and indexed for retrieval; a retriever finds top-ranked results for the
given question (from different source types), and these are fed into the LLM for answer generation. This
is the unsurprising bird-eye’s view. Specific details that are key factors for the strong performance of
Quasar are:
i) automatically casting user questions into a structured representation of the information need, which

is then used to guide
ii) judicious ranking of search results, with multiple rounds of re-ranking and pruning, followed by
iii) extracting faithful answers from an LLM in RAG mode, with answers grounded in tangible evidence.

The paper presents experiments with three different benchmarks, covering various flavors of questions.
We focus on one-shot questions; conversational QA is out of scope here, but Quasar itself is well
applicable to this case, too. Our experiments demonstrate that our methods are competitive, on par
with big GPT models and often better, while being several orders of magnitude lower in computational
and energy cost. The experimental findings also highlight that question understanding, with structured
representation of user intents, and iterative re-ranking of evidence are crucial for good performance.

Overall, our contribution lies in proposing a unified system architecture for RAG-based question
answering over a suite of different data sources, with strong points regarding both effectiveness (i.e.,
answer quality) and efficiency (i.e., computational cost).
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Question
Understanding (QU)

Evidence
Retrieval (ER)

Re-Ranking &
Filtering (RF)

Answer
Generation (AG)

Structured Intent (SI):

...

Question:
first Chinese 
NBA player

Answer:   Wang Zhizhi

Evidence:

[1] Wang Zhizhi joined the
Dallas Mavericks in 2001

[2] Wang Zhizhi born in Beijing

Q: first Chinese NBA player

Ans-Type: person, basketballer
Entities: China, NBA
Time: first
Location: China
Relation: plays for

Figure 21: Overview of the Quasar system.

2 Related Work

The RAG paradigm came up as a principled way of enhancing LLM factuality incl. provenance and
mitigating the risk of hallucination [12, 21]. It is highly related to the earlier retriever-reader architectures
for QA [2, 18], especially when the reader uses the fusion-in-decoder method [13, 27]. Since its invention,
RAG methodology has been greatly advanced, introducing a wide suite of extensions, such as batched
inputs, interleaving retrieval and generation steps, and more (see the recent surveys [10, 41]).

On question answering (QA), there is a vast amount of literature including a wealth of differently
flavored benchmarks (see, e.g., [28]). The case of interest here is QA over heterogeneous sources, tapping
into both unstructured content and structured data. A variety of works has pursued this theme by
combining knowledge graphs with text sources, using graph-based methods, neural learning and language
models (e.g., [30, 31, 37]).

Most relevant for this article is the research on jointly leveraging all different sources: text, KGs,
and tables (incl. CSV and JSON files). This includes the UniK-Qa system [27], the Spaghetti/SUQL
project [23, 38], the Matter method [19], the STaRK benchmarking [34], and our own prior work [3, 5]
(without claiming exhaustiveness). Out of these, we include UniK-Qa, Spaghetti and our own systems
Convinse and Explaignn as baselines in the experimental evaluation. Their architectures are similar
to ours, but UniK-Qa and Spaghetti do not have our distinctive elements of question understanding
and iterative re-ranking (originally introduced in Explaignn [5]).

3 Methodology

The Quasar system is a pipeline of four major stages, as illustrated in Figure 21. First, the input
question is analyzed and decomposed, in order to compute a structured intent (SI) representation that
will pass on to the subsequent steps, along with the original question. Second, the SI is utilized to
retrieve pieces of evidence from different sources: text, KG and tables. Third, this pool of potentially
useful evidence is filtered down, with iterative re-ranking, to arrive at a tractably small set of most
promising evidence. The final stage generates the answer from this evidence, passing back the answer as
well as evidence snippets for user-comprehensible explanation.

The second and fourth stage, Evidence Retrieval (ER) and Answer Generation (AG), are fairly
standard. Such a two-phase architecture was called a retriever-reader architecture [42]. With a modern
LLM replacing the earlier kinds of neural readers, this is the core of every RAG system [10].

Stages 1 and 3 are unique elements of our architecture, judiciously introduced to improve both
effectiveness (i.e., answer quality) and efficiency (i.e., computational cost). Question Understanding
(QU) provides the ER component with crisper and semantically refined input, and the Re-Ranking &

73



Filtering (RF) stage is beneficial for distilling the best evidence from the large pool of retrieved pieces.
The following subsections elaborate on the four stages of the pipeline, emphasizing the Quasar-specific
steps QU and RF.

3.1 Question Understanding (QU)

To prepare the retrieval from different kinds of sources, including a KG, ad-hoc tables and text documents,
it is useful to analyze and decompose the user question. In this work, we aim to cast a question into
a structured intent (SI) representation: essentially a frame with faceted cues as slots, or equivalently,
a concise set of key-value pairs. Figure 21 gives an idealized example for the question about the first
Chinese NBA player. The facets or keys of potential interest here are:
• Ans-Type: the expected answer type (or types when considering different levels of semantic refine-

ment),
• Entities: the salient entities in the question, and
• Relation: phrases that indicate which relation (between Q and A entities) the user is interested in.

In addition, as questions can have temporal or spatial aspects, the SI also foresees slots for:
• Time: cues about answer-relevant time points or spans, including relative cues (e.g., “before Covid”)

and ordinal cues (e.g., “first”), and
• Location: cues about answer-relevant geo-locations.

The ideal SI for example question Q2 would look like:

Ans-Type: person, basketballer; Entities: China, NBA; Time: first; Location: China;
Relation: plays for.

Note that the values for these slots can be crisp like entity names or dates, but they can also take the
form of surface phrases. The SI purpose and value lie in the decomposition. In practice, many questions
would only lead to a subset of faceted cues, leaving some slots empty. For the example in Figure 21, an
alternative SI could simply consist of

Ans-Type: person; Entities: China, NBA; Time: first.

Even this simplified SI can be highly beneficial in guiding the subsequent evidence retrieval.
To generate the SI from a user question, we employ a (small-scale) LM, specifically BART [20],

a Transformer-based auto-encoder with 140M parameters.1 BART is pre-trained for language repre-
sentation; its power for our purpose comes from fine-tuning. To this end, we generate (question, SI)
pairs by using an instruction-trained LLM like GPT-4, with few-shot in-context learning (following
our earlier work [15]). Note that this is a one-time action; at inference-time we only use much smaller
LMs. The generated silver-standard pairs are then used to fine-tune BART. In the experiments in this
article, we leverage pre-existing collections of silver pairs, based on the training data of the CompMix
benchmark [6], comprising 3,400 such pairs.

Although this paper focuses on single-shot questions, the Quasar architecture is also geared for
conversational QA. In that setting, the SI can play an even bigger role, as (follow-up) questions are often
formulated in a rather sloppy manner – all but self-contained. For example, a conversation could start
with a clear question When did Wang Zhizhi join the NBA?, followed a few dialog steps later, by a user
utterance like Which teams did he play for? or simply Which teams?. In such an informal conversation,

1https://huggingface.co/facebook/bart-base
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the system needs to contextualize each user utterance based on the preceding turns in the dialog (e.g.,
inferring the relevant entities Wang Zhizhi and NBA from the conversational history). For details on
conversational QA, based on our architecture, see our earlier works [3, 5].

3.2 Evidence Retrieval (ER)

The ER stage taps into a knowledge graph, a corpus of text documents, and a collection of web tables.
Specifically, for the experiments, we use the Wikidata KG, all English Wikipedia articles, and all tables
that are embedded in Wikipedia pages (incl. infoboxes, which can be seen as a special case of tables).

Retrieval from KG: To retrieve evidence from the KG, we utilize our earlier work Clocq [4], which
provides entity disambiguations and a relevant KG-subgraph for a given query. Unlike most other works
on QA-over-KG, Clocq fetches all KG-facts that are relevant for a given entity in a single step. For
example, when querying for NBA players, it can traverse the KG neighborhood and pick up top teams,
also considering so-called qualifier nodes in Wikidata which are often used for temporal scopes. As the
disambiguation of entity names onto the KG can be tricky and noisy (e.g., China could be mapped
to Chinese sports teams in all kinds of sports), Clocq considers several possible disambiguations [4]
(typically in the order of 10 result entities). The queries for Clocq are constructed by concatenating
all slots of the question’s SI. For the example query about the first Chinese NBA player, good result
entities would be Dallas Mavericks, lists about NBA seasons, MVP awards etc., and their associated
facts. These provide cues, but are likely insufficient to answer the question.

Retrieval from Text and Tables: The disambiguated entities returned by Clocq form anchors for
tapping into text and tables. Quasar first identifies relevant text documents and tables that refer to
the anchor entities. With focus on Wikipedia, these are simply the articles for the respective entities.
Quasar then constructs a keyword query that concatenates all available fields of the SI. The query is
evaluated against a linearized and verbalized representation (see below) of all sentences and all table
rows in the selected documents. This returns a set of sentences and and individual table rows, ranked
by BM25 scores.

Evidence Verbalization: All results from the different data sources are uniformly treated by linearizing
and verbalizing them into token sequences. For KG results, the entity-centric triple sets are linearized via
breadth-first traversal of the mini-graph starting from the entity node. For tables, results are individual
rows, which are contextualized by including labels from column headers and from the DOM-tree path of
the article where the table comes from. For example, a table row about Wang Zhizhi playing for Dallas
(Mavericks) in the 2000-2001 season, would be expressed as:

Wang Zhizhi / NBA Career / Season: 2000-2001, Team: Dallas, Games Played: 5 . . .
Finally, results from the text corpus are already in the form of token sequences, but we can additionally
prefix these with the DOM-tree labels. We can think of this entire pool of evidence as an on-the-fly
corpus of potentially relevant pseudo-sentences, forming the input of the subsequent RF stage.

Result Ranking: Overall, the ER stage compiles a substantial set of evidence, possibly many thousands
of entities, text snippets and table rows. Therefore, we practically restrict the pool to a subset of
high-scoring pieces, like the top-1000. For scoring, a simple BM25 model (a classical IR method) is
applied. By default, we treat all evidence pieces uniformly with global scoring, no matter whether they
come from KG, text or tables.
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3.3 Re-Ranking and Filtering (RF)

With a pool of top-1000 evidence pieces, we could invoke an LLM for answer generation. However, that
would face a large fraction of noise (i.e., misleading evidence) and incur high costs of computation and
energy consumption.

For both of these reasons, we have devised light-weight techniques for iteratively reducing the
top-1000 pieces to a small subset, say top-30 or top-10, that can be fed into an LLM at much lower cost
(as LLM computations and pricing are at least linear in the number of input tokens). The difficulty is,
of course, to do this without losing good evidence and reducing answer presence. Our techniques for this
task are based on graph neural networks (GNNs) [35] or cross-encoders (CEs) [7, 22].

GNN-based RF. Given a large pool of evidence pieces from all sources, a bipartite graph is con-
structed:
• nodes being evidence pieces or entities that occur in these pieces, and
• edges connecting an evidence piece and an entity if the entity occurs in the evidence.

The task for the GNN is to jointly score the evidence and the entity nodes in a multi-task learning
setup. The latter are the answer candidates, and the evidence should give faithful explanation for an
answer. We build on our earlier work on explainable QA [5].

The node encodings are initialized with cross-encoder embeddings (see below) for node contents
and the SI of the question. The inference iteratively adjusts the encodings based on message passing
from neighboring nodes. The GNN is trained via weak supervision from question-answer pairs: evidence
nodes are labeled as relevant if they are connected to a gold answer. More technical details are given
in [5].

Quasar invokes the GNN in multiple rounds, iteratively reducing top-k to top-k∗ nodes with k∗ ≪ k.
In practice, we would typically consider two rounds: re-ranking top-1000 and pruning to top-100, and
then reducing to top-30 or top-10, which are passed to the answer generation stage. Note that this keeps
the GNN at a tightly controlled size, so that its computational costs at inference-time are much smaller
than those of an LLM.

CE-based RF. An alternative to the GNN inference is to employ a cross-encoder for scoring and
re-ranking the evidence pieces. These are transformers (typically with a small LM like BERT) that are
fine-tuned for scoring the relatedness between a query and a document [26]. In our case, the comparison
is between the question SI and the evidence piece. In our experiments, we make use of two different
cross-encoders, both trained on the MS-MARCO benchmark for passage retrieval [1], and fine-tuned on
the respective benchmark (leveraging the same weak supervision data as for the GNNs), the difference
being in model size.2 We use the smaller model to reduce top-1000 to top-100, and the larger model to
go further down from top-100 to top-30.

3.4 Answer Generation (AG)

The last stage follows mainstream practice to invoke an LLM in a retrieval-augmented manner. We
call a ‘small-scale‘ LLM, specifically a fine-tuned LlaMA-3.1 model (8B-Instruct)3, with a prompt 4

consisting of:
• the concatenated SI of the original question, and
• the top-30 (or other top-k∗ with small k∗) evidence pieces.

2https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-4-v2 and
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

3https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
4The specific prompt is “SI: <concatenated SI> Evidence: <evidence pieces>”.
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By the previous down-filtering of the original pool of evidence pieces, this last step has affordable
cost in terms of computation time and energy consumption.

Fine-Tuning the LLM: We considered adding an instruction to the prompting, such as “answer this
question solely based on the provided evidence snippets”. However, this turned out to be ineffective.
The reason why the model works well without such instructions is our task-specific fine-tuning. We
perform this by running the training data of benchmarks through the Quasar pipeline, and training
the AG stage with the top-30 evidence pieces as input. Thus, the fine-tuning makes the model learn the
role of evidence for RAG-based QA.

Explanations: The top-30 evidence pieces can be used to provide users with explanation of answers.
Optionally, these could be reduced further for comprehensibility. Alternatively, we can fine-tune the
LLM to provide both answers and concise explanations. Since we can infer which evidences in the input
mention the annotated ground-truth answers, our method could be fine-tuned to provide such answering
evidences as well (cf. [11]).

4 Experiments

4.1 Experimental setup

Benchmarks. We run experiments on three benchmarks with different characteristics of questions.
• CompMix. CompMix [6] is a benchmark which was specifically designed for evaluating QA systems

operating over heterogeneous sources. The dataset has 9,410 questions, out of which 2,764 are used
for testing. Answers are crisp entity names, dates, or other literals.

• Crag. We further evaluate on a subset of the Crag [36] dataset, which was recently released as a
testbed for RAG-based QA systems. We utilize the same pipeline and sources as outlined in Section 2,
without using the web snippets or APIs provided with Crag. This way we focus on entity-centric
questions that do not require access to live web data (e.g., news feeds), and disregard cases where the
results would be up-to-date quantities. This restricts the test data to 436 entity-centric questions,
still enough for a proof of concept.

• TimeQuestions. To showcase the generalizability of our pipeline, we conduct experiments
on TimeQuestions [14], a benchmark for temporal QA. The dataset requires temporal understanding
and reasoning, which are well-known limitations of LLMs [8]. TimeQuestions has 16,181 questions
(3,237 for testing).
Typical examples for the questions in these three benchmarks are:

CompMix: Which player won the most number of Man-of-the-Match titles in the FIFA world
cup of 2006?
Crag: What was the worldwide box office sales for little hercules?
TimeQuestions: Which club did Cristiano Ronaldo play for before joining Real Madrid?

Baselines. As competitors or reference points to Quasar, we study the performance of the following
methods:
• Generative LLMs. We compare Quasar against out-of-the-box LLMs: Gpt-3 (text-davinci-003),

Gpt-4 (gpt-4) and Llama3 (meta-llama/Llama-3.1-8B-Instruct). The same prompt
is used for all LLMs, consistent with previous work [6, 38]: “Please answer the following question by
providing the crisp answer entity, date, year, or numeric number. Q: <question>”.
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• Heterogeneous QA methods. Convinse [3], UniK-Qa [27], Explaignn [5] are QA methods
designed to integrate heterogeneous sources: text, tables and KG. All of these integrate the exact
same sources as Quasar.

• State-of-the-art. For CompMix and TimeQuestions, we also compare against state-of-the-
art methods from the literature: Spaghetti [38] and Un-Faith [15], which are among the best
performing systems.
Results are taken from the literature whenever applicable. On Crag, we use the models trained on
CompMix for Quasar and heterogeneous QA baselines.

Metrics. We measure precision at 1 (P@1) as our main metric [29] on all benchmarks. On Crag,
we manually annotate answer correctness, as the ground-truth answer formats vary (e.g., entity name
variants, lists, sentences).

We also compute the number of neural parameters aggregated over all sub-modules (#Parameters).
Parameter counts for GPT-models are taken from [25] (Gpt-4 might have less active parameters during
inference).

For further analysis we measure answer presence (AP@k), i.e. whether the answer is present in the
top-k ranked evidence pieces, and mean reciprocal rank within the top-k evidences (MRR@k).

Configuration. Our implementation uses the Llama3.1-8B-Instruct model for the AG stage. For
the QU, ER and RF stages we adopt code from the Explaignn project.5 For the ER stage, we use
Clocq, setting its specific parameters to k = 10 and p = 1,000.

As default, we use the GNN technique for the RF stage. For efficiency, we use light-weight models
for initializing the GNN encoders – the same models used for the CE-based RF.6 The GNNs are trained
for 5 epochs with an epoch-wise evaluation strategy, i.e. we choose the model with the best performance
on the respective dev set. We train the GNNs on graphs with a maximum of 100 evidence and 400 entity
nodes (as scored by BM25). During inference, the first GNN is applied on graphs with 1,000 evidence
and 4,000 entity nodes, shrinking the pool of evidence pieces to the top-100. The second GNN then runs
on graphs with 100 evidence and 400 entity nodes. The factor of 4 entities per evidence (on average)
holds sufficient for the observed data, and enables batched inference. Other parameters are kept as is.

The AG model, based on Llama3.1-8B-Instruct, is fine-tuned for 2 epochs with a warm-up
ratio of 0.01 and a batch size of 8, again with an epoch-wise evaluation strategy. Other parameters are
set to the default Hugging Face training parameters.7

4.2 Main results

Quasar is competitive on all benchmarks. Main results of our experiments are shown in Table 5.
First of all, we note that Quasar achieves competitive performance across all three benchmarks.

On CompMix, baselines for heterogeneous QA and Llama3 perform similarly, whereas GPT-based
LLMs can answer more than 50% of the questions correctly. Quasar exhibits substantially higher
performance, on par with the state-of-the-art method Spaghetti [38] (which is based on Gpt-4).

On the Crag dataset, P@1 drops for all methods except for Gpt-4. The benchmark includes realistic
questions, which can be ambiguous/confusing (“who was the director for the report?”), on “exotic” entities
with answers in social media (“how many members does the teknoist have?”), or require up-to-date

5https://explaignn.mpi-inf.mpg.de
6https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-4-v2 and

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
7https://huggingface.co/docs/transformers/v4.46.2/en/main_classes/trainer#transformers.

TrainingArguments
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information (“when did chris brown release a song or album the last time?”), and other cases that are
challenging for all methods.

Finally, Quasar establishes new state-of-the-art performance on the TimeQuestions benchmark.
Interestingly, all of the tested LLMs show greatly reduced performance on this benchmark, which
inherently requires temporal understanding and reasoning – a known weakness of stand-alone LLMs.

Method ↓ / Benchmark → CompMix Crag TimeQuestions #Parameters

Gpt-3 0.502 − 0.224 175,000 M
Gpt-4 0.528 0.633 0.306 1,760,000 M
Llama3 [33] (8B-Instruct) 0.431 0.385 0.178 8,030 M

Convinse [3] 0.407 0.298 0.423 362 M
UniK-Qa [27] 0.440 0.280 0.424 223 M
Explaignn [5] 0.442 0.303 0.525 328 M

State-of-the-art 0.565 − 0.571 −
(Spaghetti [38]) (Un-Faith [15])

Quasar (ours) 0.564 0.362 0.754 8,218 M

Table 5: End-to-end P@1 of Quasar and baselines on three benchmarks. Results for Gpt-3 and Gpt-4
are taken from the literature [6, 15]. Gpt-3 is not accessible anymore, hence no results on Crag.

Integration of heterogeneous sources is vital. Quasar integrates evidence from text, KG and
tables into a unified framework. We aim to better understand how this affects the answering performance
of the method. Table 6 shows end-to-end answering performance of Quasar with different combinations
of the input sources. The results clearly indicate that all types of sources contribute, with option
Text+KG+Tables performing best, with a large margin over tapping only single source types.

4.3 Analysis

Unified retrieval enhances performance. In the RF stage, we re-rank and filter evidence from
different source types, and feed the unified top-k* into the AG stage. We conduct a comparison in which
we consider the top-10 evidence pieces from each source type individually. This gives equal influence
to KG, text and tables, whereas our default is based on global ranking. Table 7 shows the results for
this analysis, showing our default choice performs better. The reason is that different questions require
different amounts of evidence from each of the source types.

Quasar works well with small amounts of evidence. We investigate the influence of the number
of evidence pieces fed into the AG stage, varying it from 5 to 100. Results are shown in Figure 22. As
the curve shows, there is a sharp increase in precision as we add evidence up to 30 or 40 pieces, which is
around our default of top-30. This indicates that a certain amount of evidence is needed, to overcome
the inherent noise and arrive at sufficient answer presence. As we increase the amount of evidence
further, we observe a saturation effect, and eventually a degration of performance. Too much evidence
not only has diminishing returns, but can actually be confusing for the AG stage. This reconfirms our
heuristic choice of top-30: enough for good answering while keeping computational costs reasonably low.

Ablation study on re-ranking. For more insight on the possible configurations of the RF stage, we
conducted an ablation study with different options, including solely relying on the initial BM25 scoring
without explicit re-ranking. The results are shown in Table 8. We observe that the iterative reduction in
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Benchmark → CompMix TimeQuestions

Input sources ↓ / Metric → P@1 AP@100 AP@30 P@1 AP@100 AP@30

Text 0.455 0.563 0.531 0.539 0.515 0.487
KG 0.481 0.677 0.637 0.724 0.701 0.674
Tables 0.432 0.501 0.482 0.536 0.347 0.328

Text+KG 0.537 0.749 0.706 0.745 0.776 0.748
Text+Tables 0.503 0.632 0.594 0.567 0.578 0.549
KG+Tables 0.524 0.728 0.692 0.743 0.731 0.703

Text+KG+Tables 0.564 0.759 0.724 0.754 0.776 0.749

Table 6: Answer presence and answering precision of Quasar with different combinations of input
sources (on the respective test sets).

Input evidences ↓ / Metric → P@1 AP@30

Top-30 Text+KG+Tables (ours) 0.574 0.710
Top-10 Text + Top-10 KG + Top-10 Tables 0.560 0.709

Table 7: Answer presence and precision of Quasar for different choices of top-30 (on CompMix dev
set).

two steps is slightly better than the single-step variants (going down from top-1000 to top-30 in one
RF step). Between the two options of using a GNN or a CE, the differences are negligible. A notable
effect is that our RF techniques retain the answer presence at a very high level, only a bit lower than
for the initial top-1000. The last two rows of Table 8 demonstrate that RF is crucial: without explicit
re-ranking, the technique of just picking smaller top-k from the original BM25 model leads to substantial
degradation in both answer presence and precision.

Quality of SI. To assess the quality and robustness of the Structured Intents, we inspected a sample of
questions and their SIs. Table 9 gives three anecdotic examples. We show SIs generated by Quasar,
which makes use of the pre-existing collection from the CompMix benchmark for training. This training
data was obtained via different heuristics, which can be a limiting factor when user intents become more
complex.

Therefore, we also looked at SIs derived via in-context learning (ICL) using Gpt-4 with 5 handcrafted
examples. As shown in our earlier work on temporal QA [15], such data can be used for training smaller
models (e.g., BART), which can greatly boost the completeness and overall quality of the generated SIs.

From the sampled set, we observed that the ICL-based SIs are more complete with all slots filled,
whereas the BART-based SIs focused more on the main slots Answer-type, Entities and Relation.
However, both approaches achieve very high quality in filling the slots, capturing the user’s information
need very well.

Interestingly, when questions get complicated, with nested phrases, the ICL-based variant succeeds
in decomposing the questions, based on only 5 ICL examples. For example, for the question “which
German state had the most Corona-related death cases in the first year after the outbreak?” the Time
slot becomes “first year after Corona outbreak”, which can be resolved to identify the temporal scope.
In general, we believe that such question decomposition, beyond simple temporal constraints, would be
an interesting theme for future work.

Refraining from answering. We can train our model to refrain from answering in scenarios where the
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Figure 22: Performance of Quasar on the CompMix dev set with different numbers of evidence.

CompMix (dev set)

RF Method ↓ / Metric → P@1 AP@100 AP@30 MRR@100

GNN: 1000 → 100 → 30 0.574 0.738 0.710 0.572
CE: 1000 → 100 → 30 0.573 0.740 0.721 0.553

GNN: 1000 → 30 0.567 n/a 0.710 0.567
CE: 1000 → 30 0.570 n/a 0.715 0.558

BM25: 100 (w/o GNN or CE) 0.490 0.652 n/a 0.259
BM25: 30 (w/o GNN or CE) 0.468 n/a 0.534 0.259

Table 8: Ablation study for different RF strategies of Quasar on the CompMix dev set. The answer
presence in the RF input with top-1000 evidence pieces is 0.760.

provided evidence does not contain an answer to the question. Specifically, during training, when the
answer is not present in the evidence, we change the target answer to unknown. This variant is referred
to as Quasar(faithful).

We measure the ratio of questions for which unknown is provided as answer, and the P@1 restricted
to questions that are answered. The accuracy of refraining from answering is measured as well, based
on whether the answer is present in the evidence or not. We conduct this experiment on CompMix
and TimeQuestions, for which we can compute answer presence exactly. We also compute results for
Llama3, which is already instructed with the option to answer “don’t know”. Table 10 shows the results.
For CompMix, we observe that Quasar has high accuracy on refraining when appropriate, whereas
Llama3 tends to be overconfident with a very small rate of unknowns, leading to incorrect answers.

5 Insights, Limitations, and Challenges

Benchmark Performance. Our method, RAG-based Quasar with an 8B LLaMA model, outperforms
much larger LLMs like Gpt-4 on two of the three benchmarks, with a very large margin for temporal
questions. Obviously, pre-trained LLMs have only limited sense of properly positioning “remembered”
facts on the timeline even with training data that exceeds ours by several orders of magnitude. This
confirms our intuition that LLMs alone are not good at “recalling” higher-arity relations that require
combining distant pieces of evidence. This is a sweet spot for RAG. Only for the Crag benchmark,
Quasar is substantially inferior to a full-blown LLM. This is likely due to the nature of the questions:
not necessarily the complexity of the information needs, but the need for more web sources (beyond
what our experiments tap into).
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Question Current SI by Quasar SI via ICL

what was disneys first color movie? Ans-Type: animated feature film Ans-Type: film, animated film
Entities: disneys Entities: Disney
Relation: was first color movie Relation: first color movie

Time: first

at the oscars, who won best actor in
2018?

Ans-Type: human Ans-Type: person, actor

Entities: at the oscars Entities: Oscars, 2018
Relation: who won best actor in 2018 Relation: won best actor

Time: 2018

which German state had the most
Corona-

Ans-Type: state Ans-Type: location, state

related death cases in the first year after Entities: Germany, Corona Entities: Germany, Corona-related
deaths

the outbreak? Relation: which state had the most re-
lated

Relation: highest count of death cases

death cases in the first year after the
out-

Location: Germany

break Time: first year after Corona outbreak

Table 9: Examples for pairs of question and generated SI.

CompMix TimeQuestions

Metric → P@1 P@1 Refrain Refrain P@1 P@1 Refrain Refrain
Method ↓ (answered) rate accuracy (answered) rate accuracy

Llama3 0.431 0.471 0.089 n/a 0.177 0.276 0.392 n/a
Quasar (faithful) 0.497 0.713 0.303 0.838 0.597 0.804 0.257 0.864

Table 10: Performance of Quasar with option to refrain from answering (“don’t know”).

Cost/Performance Ratio. The most important take-away from our experiments is that Quasar
achieves its competitive performance at a much lower cost than the full LLMs. Assuming that the
consumed GFlops are proportional to the number of model parameters, Quasar achieves a cost reduction
by a factor of 200x for Gpt-3 and 2000x for Gpt-4. This does not only mean less computation, but
also a massively lower electricity bill and climate impact.

Role of Question Understanding. We did not systematically investigate the influence of the
Structured Intent in the Quasar pipeline. However, the comparison to the big GPT models reflects the
role of the SI, as we prompt the GPT models in their natural mode with the original questions. The
linearized sequence of available SI slots does not always have major advantages, but there are enough
cases where specific facets provide crucial cues. This holds especially for the Entities slot, as this drives
the gathering of evidence in the ER stage (cf. [3], and for the Time slot, as these cues are often decisive
for temporal questions (cf. [15]).

Role of Re-Ranking. As our ablation studies show, merely using top-k evidence from an initial
BM25-style ranking does not provide good performance. Also, there seems to be sweet spot in the
choice of k: we need enough evidence for connecting the dots if the question requires multiple pieces
of information, or for corroborating candidates if the question finds many useful but noisy pieces. In
the experiments, k = 30 turns out to be good choice; much lower k results in insufficient evidence, and
much larger k leads to saturation and ultimately degrading performance. Our argument for iteratively
shrinking the candidate set in multiple rounds of re-ranking is substantiated in our experiments, but
the gain of doing this, compared to GNN- or CE-based re-ranking from 1000 to 30, is not big. More
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research is called to better understand the role of ranking in RAG.

Limitations of Evidence Retrieval. For ER, we adopted more or less standard techniques. The
results showed very good answer presence, in the order of 75% in the top-100 or even top-30. An
important case where this is insufficient are questions that require aggregating information over a large
number of evidence pieces. An example is asking for the life-time total of 3-point scores of the basketball
player Dirk Nowitzki. This requires collecting a set of per-season tables with NBA player statistics, but
also other web sources with numbers for his career before he joined the NBA (including his youth teams).
Of course, there are sometimes shortcuts like a Wikipedia article or biography mentioning the total
number, but this cannot be universally assumed. The bottom line is that ER should be reconsidered as
well, striving to improve the recall dimension.

Limitations of Answer Generation. For AG, we simply rely on a LLM, using it as an extractor
(“reader”) from the given evidence. Despite the wide belief that LLMs can perform deep reasoning over
many pieces of evidence, our experience is that the extraction works only well – robustly and faithfully
– for relatively simple questions with a few multi-hop joins or simple aggregation over a few pieces.
However, complicated questions such as asking for the top-100 NBA players with the largest number of
life-time 3-point scores (again including their pre-NBA careers) are currently out of scope and will likely
remain so for quite some time. This offers many opportunities for pushing the envelope further.

Trust in Data Sources. In our experiments, we considered all heterogeneous sources as trustworthy
and unbiased. With focus on Wikidata and Wikipedia, this assumption has been well justified. In the
wild, however, input data for RAG-based systems likely exhibit a wide spectrum of quality issues, in
terms of stale information, biased positions, or simply false statements. Identifying trustworthy and
up-to-date evidence and dealing with conflicting data, has been explored in other contexts (e.g., for KG
curation [9]), but remains a major challenge for RAG-based QA.

Open Challenges and Future Work. The best-performing methods in our experiment, mostly
Quasar, reach P@1 values of 56% for CompMix and 75% for TimeQuestions. For the latter, the
answer presence in the top-100 is only slightly higher; so the AG stage hardly misses anything. However,
for CompMix, the answer presence is 75% – much higher than what our system can actually answer.
Obviously, closing this gap is a major direction to pursue, with focus on the RF and AG stages. However,
missing one fourth of the answers completely in the top-100 pool, is a big problem as well. This requires
improving recall at the ER stage, possibly with better guidance by the QU, which in turn needs more
sources beyond the scope of our experiments (currently limited to Wikidata and Wikipedia).

In general, we need to think beyond this kind of “benchmark mindset”. Even if we reached 80%
or 90% precision and recall, we would still have a substantial fraction of questions that are answered
incorrectly or not at all. The remaining errors may not be a problem for chatbots, but they would be
a showstopper for the deployment of mission-critical applications in business or science. We believe
that this big gap is a shortcoming of all methods, not an issue that comes from the data alone. For
trivia-style QA, as looked at in this paper, a smart human in “open book” mode and no time limitation
should be able to properly answer practically all questions, just by reading pieces of web contents and
putting things together. Neither LLMs nor state-of-the-art RAG are the final solution; substantial
research and creative ideas are needed to further advance QA.
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Abstract

The advent of Large Language Models (LLMs) has significantly transformed the AI landscape,
enhancing machine learning and AI capabilities. Factuality issue is a critical concern for LLMs, as
they may generate factually incorrect responses. In this paper, we propose GraphEval to evaluate an
LLM’s performance using a substantially large test dataset. Specifically, the test dataset is retrieved
from a large knowledge graph with more than 10 million facts without expensive human efforts.
Unlike conventional methods that evaluate LLMs based on generated responses, GraphEval streamlines
the evaluation process by creating a judge model to estimate the correctness of the answers given by
the LLM. Our experiments demonstrate that the judge model’s factuality assessment aligns closely
with the correctness of the LLM’s generated outputs, while also substantially reducing evaluation
costs. Besides, our findings offer valuable insights into LLM performance across different metrics and
highlight the potential for future improvements in ensuring the factual integrity of LLM outputs.
The code is publicly available at https://github.com/xz-liu/GraphEval.

1 Introduction

The rapid progress of Large Language Models (LLMs) has markedly boosted artificial intelligence and
machine learning due to their strong contextual text generation capabilities. Despite these groundbreaking
advancements, recent works [34, 35] have highlighted the significance of LLMs evaluation. LLMs are
prone to producing seemingly authentic yet factually inaccurate responses, a phenomenon known as
hallucination [19]. Such errors may stem from outdated or incorrect data during training or the model’s
learned associations, impacting its reliability. The evaluation, therefore, helps identify instances of
hallucination and understand the LLM’s ability to generate coherent and contextually relevant text, i.e.,
factuality of LLM outputs.

Recent efforts have been put into the factuality evaluation of LLM. For example, [26] introduce
FELM, a benchmark comprising diverse factual samples across various domains. Moreover, [24] and [22]
utilize external tools (e.g., search engines and a well-trained factual LLM) to estimate the factuality
of the generated texts. Representing structured knowledge related to real-world objects, Knowledge
Graphs (KGs) [11, 20, 28, 41] have gained prominence for LLM factuality assessments. They primarily
originate from Wikipedia, encapsulate factual information for AI tasks, and form the knowledge base
with datasets like Natural Questions [21].

87

https://github.com/xz-liu/GraphEval


I disagree with that. I personally think the 
spaghetti should be mixed with concrete grade 42. 

LLM: 

User 

Remember the principles I provided when 
you have such high-speed machinery 
entering China.

Hallucination Detection

User 

Which high school did 
Kobe Bryant attend?

Sample

Product

Documents

Knowledge

Extraction

Factuality evaluation with limited question answering data. 

User 

Which high school did Kobe 
Bryant attend? Choose from 
(A) Whitney High School; (B) 
Preuss School UCSD; (C) 
Lower Merion High School.

My answer is C.
LLM 

Lower Merion 
High School.

LLM 
Knowledge


Graphs

Sample Answer

Subgraphs Subgraphs LLM’s

respond

    
LLM

Fast Judge 

on whole KG.

Training Lightweight

Judge Model

Factuality evaluation with 10 million+ facts.

Knowledge Graphs

Less 

Human effort
More

Comprehensive
Less 

Test data leak
High 

Reliability

Figure 23: Existing works compared to the proposed GraphEval on factuality evaluation.

Several studies [1, 2] have focused on creating benchmarks from knowledge sources by posing factual
questions derived from triples in KGs. These methods, as depicted in the left part of Figure 23, either
(i) sample subgraphs from large KGs or (ii) extract a subset of knowledge from text documents to
construct multiple-choice or text question-answer pairs. Those question pairs are then posed to LLMs to
assess their factuality. However, the above-mentioned methods or evaluation strategies face challenges in
comprehensively evaluating the factuality of LLMs. Firstly, the scope of evaluation data is often limited
or incomplete, focusing predominantly on specific domains. This limitation restricts the evaluation’s
breadth and undermines its applicability across various contexts, failing to cover the wide range of topics
LLMs are expected to handle. The specialized nature of these datasets means that the evaluation may
not accurately reflect the model’s performance in generating factual content across a broader spectrum
of subjects. Secondly, the process of factuality evaluation itself is inherently time-consuming and costly.
It necessitates that an LLM generate full texts, which must then be meticulously assessed for accuracy
and reliability. This comprehensive generation and detailed review demand significant computational
resources and extensive human effort [35] for validation. As a result, the process becomes less feasible for
regular or large-scale applications, limiting the frequency and scope of practical evaluations. Lastly, due
to the limited size of the evaluation data, there may be biases in the benchmarks [16], or risks of test
data leakage [38], which might compromise the validity of the evaluations. Together, these challenges
underscore the need for more scalable, efficient, and domain-agnostic approaches to evaluating the
factuality of LLM-generated texts.

To this end, we propose GraphEval, which consists of two novel features in terms of the design, as
presented on the right side of Figure 23. First, we utilize KGs that encapsulate factual information
sourced from verifiable content like Wikipedia. With the KG, millions of prompts can be automatically
generated, leading to a significant saving of human efforts in labeling the ground truth. From the data
perspective, the KG gives a more diversified and comprehensive evaluation of the LLMs’ factuality.
Second, the proposed method efficiently reduces the computation costs and speeds up the evaluation
process. Specifically, we incorporate a highly reliable and lightweight judge model to decide whether an
LLM can generate an accurate response to a designated question. Instead of generating the full text, the
judge model returns three options (i.e., True, False, and I don’t know) to simulate LLMs’ responses to a
given prompt. To ensure the reliability of the simulated results, the judge model is trained based on a
few question-answer pairs, where the questions are sampled from KGs and the answers are generated by
the target LLM. As a result, the judge model can serve as a replacement for the factuality evaluation of
the facts extracted from large-scale KGs. In summary, our contributions are as follows:
• We propose GraphEval, a large-scale evaluation framework that assesses the factuality of LLMs using

KGs. GraphEval evaluates the factuality of LLMs using the entire KGs, providing a more diversified
and comprehensive evaluation of the LLMs’ factuality.

• We introduce a judge model to assist with the evaluation process, which reduces the computational
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cost and enhances the efficiency of the evaluation. We also give a theoretical analysis of the judge
model to demonstrate its validity.

• We conduct extensive experiments on a large-scale KG, i.e., DBpedia, to demonstrate the effectiveness
and efficiency of GraphEval in evaluating the factuality of LLMs.

• We provide an in-depth analysis of the LLM’s performance on the KGs, including the LLM’s perfor-
mance with respect to relation types, head entity types, tail entity types, and the relation of LLM
performance to degree and pageviews.

2 Related Work
Factuality Issue of LLMs Factuality issue [19, 39], is the issue that LLMs may produce content
inconsistent with established facts. As outlined in [19], this issue may be due to: (i) LLMs lacking
expertise in specific domains [3, 7]; (ii) LLMs’ unawareness of recent developments or changes [4, 9];
(iii) LLMs not retaining [21, 35, 40] or forgetting [17, 31, 36, 37, 50] knowledge from its training corpus;
and (iv) LLMs failing to reason with the knowledge they possess [27, 47, 51]. The factuality issue has
been addressed by various works, by incorporating Retrieval Augmented Generation (RAG) [12, 14],
fine-tuning [24], and knowledge-enhanced models [13, 22]. To summarize, these approaches integrate
other knowledge sources into the LLMs’ training process or use them to augment the models’ knowledge
base, thus alleviating the factuality issue. Our work differ from them in that we evaluate the factuality
of LLMs, rather than providing factuality enhancement methods.

Factuality Evaluation of LLMs The expanding use of LLMs across various domains necessitates the
assurance of their output’s accuracy and reliability. A range of benchmarks and evaluation methodologies
for assessing large language models (LLMs) are proposed. These works primarily focus on evaluating the
factuality, truthfulness, reasoning capabilities, and adaptability to new information of LLMs. MMLU [42]
and TruthfulQA [5] aim to measure the factuality and truthfulness of LLMs across diverse tasks, while
C-Eval [46] focuses on the Chinese context, assessing models’ knowledge of Chinese culture and laws.
There are also works [1, 2] that propose factuality evaluation using subsets of KGs. However, selecting
subsets of KGs to test LLMs can introduce selection bias. For example, random sampling can focus
more on a few popular domains or subjects more densely connected with others, thus not showing LLMs’
factuality on diversified topics. Our work addresses this limitation by proposing a resource-efficient
method to evaluate the factuality of LLMs which allows evaluations on whole KGs instead of subsets, thus
providing a more diversified and comprehensive evaluation of the LLMs’ factuality, enabling an extensive
assessment of LLM’s factuality and reasoning abilities in a way that existing individual benchmarks do
not as they only focus on specific aspects.

Using KGs in LLMs KGs are structured representations of factual knowledge, typically in the form
of (head, relation, tail) triples. There are lots of efforts in constructing [11], and reasoning [43] on KGs.
This has made KGs an indispensable resource of factual knowledge for AI tasks. Currently, the most
common way of integrating KGs with LLMs is using KGs as an external knowledge source to enhance
LLM performance by pre-training, fine-tuning, or in-context learning [8, 23, 25, 33, 45]. Our work is
different from these works in that we use KGs to evaluate the factuality of LLMs, rather than enhancing
the LLMs with KGs.

3 Method

GraphEval is designed to measure the factuality of a language model in relation to a KG. As presented in
Figure 24, the proposed work is divided into three steps:
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Figure 24: Overview of the GraphEval framework. Step #1 retrieves KG statements and collect LLM
judgments on them. Step #2 trains the judge model which classifies LLM hidden states into three
categories. Step #3 evaluates the LLM on all KG statements with the judge model.

• Step 1: Question and label collection from KGs and LLMs. The model samples triples
from KGs and converts each triple into a declarative statement with GPT-4-crafted templates. To
prepare versatile statements, we employ negative sampling, where incorrect statements are intentionally
generated. Afterward, those statements are posed to collect the labels answered by an LLM (i.e., Yes,
No, and I don’t know (IDK)).

• Step 2: Judge model training. With the triples collected in the first step, we train a judge
model to avoid long-generated texts and conserve computational resources. In detail, inspired by [15],
we train a classifier with LLMs’ hidden states to make a selection within the above three options. We
also apply p-tuning [18] to minimize the prompt/instruction size.

• Step 3: Evaluation on whole KGs. Similar to the first step, we retrieve all true/false statements
from KGs. Subsequently, these statements are fed into the trained judge model to estimate the factuality
of LLM. This process enables a thorough and multifaceted analysis of the LLM’s performance in
terms of factuality, drawing from a wide range of perspectives to provide a more comprehensive and
diversified evaluation.

In the following sections, we will discuss the details of each step.

3.1 Question and Label Collection

Question Generation In order to evaluate the language model’s ability to identify false statements,
we directly construct a declarative sentence for each triple. This addresses the ineffectiveness of multiple-
choice questions in our task. Firstly, multiple-choice prompts may cause misalignment with parametric
knowledge in LLMs. Since LLMs mainly learn parametric knowledge through text data, in which
knowledge facts are mostly represented as declarative sentences [6], employing multiple-choice questions
may hinder the evaluation of factuality. Secondly, multiple-choice questions have more complex labels
(i.e. A, B, C, D) than declarative sentences (i.e. True, False, IDK), which can complicate the tasks for
the judge model, influencing the overall effectiveness. We use an example to illustrate this.
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Example 3.1: For the triple (Barack Obama, birthPlace, Hawaii), a multi-choice question
can be generated as Where was Barack Obama born? with choices A. Hawaii B. Chicago
C. New York D. Los Angeles. Here, for the same triple, we can also generate another multi-
choice question as Where was Barack Obama born? with choices A. China, B. Hawaii, C.
Japan, D. Russia. The two questions represent the same triple, but the choices are different. As
mentioned in the last paragraph, this can introduce complexity and potential misalignment with an
LLM’s training and result in inconsistent responses.

To address the ineffectiveness of multiple-choice questions, we propose to directly ask the LLMs
whether a statement is true or not. For instance, considering the triple (Barack Obama, birthPlace,
Hawaii), we can formulate a fact Obama was born in Hawaii by integrating the entities Barack
Obama and Hawaii into the template {head} was born in {tail}. Each template corresponds
to the relation of a triple, and they are crafted to be clear and straightforward statements. GPT-4 is
employed to generate these templates for all relations in the KG. These generated templates are then
manually reviewed and refined to ensure their compatibility with the KG. Then, we can ask a question
to the LLMs, such as Is the statement "Barack Obama was born in Hawaii" true or
false?. Here, the templates are corresponding to the relations of the triples. This is because the
number of relations in the KG is limited, while the number of triples is large. Therefore, we can use the
relations to categorize the triples, and then use the templates to generate questions for each category.
This can significantly reduce human labor, i.e., monitoring less than 1000 templates compared with
monitoring more than 10 million triples. See the Appendix A.5 for the detailed settings of the relation
templates.

Negative sampling Although the declarative sentences simplify the training of the judge model,
they alone are insufficient to evaluate the language model’s factual accuracy. LLMs can simply answer
true for every question, and still get a high accuracy. To address this, we introduce negative sampling,
a technique commonly used in KG completion tasks, to generate false statements. Specifically, we
randomly replace one entity or relation in the original triple with another entity or relation sampled from
the KG. For example, given the triple (Barack Obama, birthPlace, Hawaii), we can replace
the tail entity Hawaii with another entity Chicago to form the false statement Barack Obama was
born in Chicago. These false statements are then presented to the LLMs to evaluate their ability
to identify falsehoods.

3.2 Judge Model
Normally, to evaluate the factual accuracy of a language model, we would generate questions from a
KG and then pose these questions to the language model. However, given the expansive nature of KGs,
it’s impractical to label every generated question by the LLM. A more efficient approach is to use the
last token logits of the LLMs as their answers. However, recent research has highlighted discrepancies
between these logits and the model’s actual text outputs [29]. Therefore, we introduce a novel judge
model to assist with this task. The judge model, initially trained on a subset of labeled questions, is
then employed to label the remaining questions. Uniquely, inspired by [15], the judge model utilizes
the LLM’s hidden state as input, as a replacement of the LLM’s last layer with compressed output
tokens. Specifically, three output classes are used: True, False, and I don’t know. The judge model is a
two-layer feed-forward neural network, with a layer normalization and a ReLU activation function. This
approach diverges from standard practices where LLMs generate answers, as here we only forward the
transformer once. Consequently, this operation is significantly less resource-intensive than full answer
generation, allowing the judge model to efficiently process a large number of questions with limited
labeled data. With this model, we can glance at the correctness of an LLM, i.e., how likely the model
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can answer a question relevantly and correctly. We evaluate the performance of the judge model using
two metrics: (i) Truthfulness, i.e., the likelihood that the judge model prediction matches the LLM
correctness under a given question; and (ii) Informativeness, i.e., the likelihood that the judge model
does not give a prediction of ‘I don’t know.’ Since the evaluation is based on a general KG that spans
multiple domains, other metrics such as “Relevance” would typically require a more specific contextual
framework. Nonetheless, future research could explore the use of more context-specific metrics tailored
to the LLM’s domain of application.

Efficiency To further enhance the judge model’s efficiency, we include 2 extra components. First, we
found that the instruction prefix of the LLMs is too large for the judge model to process efficiently. We
thus fine-tune a prompt encoder [32] to reduce the large input of the prompt prefix, which would be
the same for all questions. Second, we found that our judge model, with the training process on the
labeled dataset, is robust to the LLM’s hidden states. In experiments, we observed that our judge model
can seamlessly utilize hidden states from distinct LLMs without significant differences in performance.
For instance, within the LLaMA 2 model family, which contains 3 models with different parameters:
7B, 13B, and 70B, we found that the judge model’s performance is consistent regardless of whether the
hidden states are from 7B, 13B, or 70B. Therefore, we can use the model with the least parameters, as a
substitute model when computing the hidden states. This gives us a huge reduction in computational
cost.

Analysis of Judge model In this part, we assume there are two datasets; one is for training the
judge model, and the other is for evaluation, denoted by DS and DT , respectively. As the proposed judge
model leads to a triple classification task, we assume a hypothesis portfolio h = {ht, hf , hidk}, where
these three hypotheses separately predict if a sample can be correctly answered by the LLM, i.e., True,
False, and IDK. In other words, the hypothesis ĥ ∈ h maps an input x to {0, 1}, where 1 means the input
satisfies the hypothesis conditions. For a given input x, the equality h(x) = ht(x) + hf (x) + hidk(x) = 1
always holds because the judge model provides an only output. Define the convex loss function for a
hypothesis ĥ ∈ h to be

LD(ĥ) =
∑

(x,y)∈D

|ĥ(x)− 1ĥ(y)|,

where 1ĥ(y) indicates if the data indeed satisfies the hypothesis. Since a wrong prediction for data (x, y)

results in
∑

ĥ∈h |ĥ(x)− 1ĥ(y)| = 2, we define the misclassification rate as

LD (h) =
1

2
(LD (ht) + LD (hf ) + LD (hidk))

Below is a theoretical analysis to understand the bound of the misclassification rate, which is driven
by Theorem 2 of [30].

Theorem 3.1: Let H = {Ht,Hf ,Hidk} be a set of hypothesis spaces of VC dimension d. If US ,UT are
the samples of size m each, drawn from DS and DT , respectively, then for any δ ∈ (0, 1), with probability
at least 1− δ, for every h ∈ H, we have

LDT
(h) ≤ LDS

(h) +
3

4
dH∆H (US ,UT ) + 6

√
2d log (2m) + log (2/δ)

m
+

1

2
λ (3)

where λ = infh∈H (LDS
(h) + LDT

(h)) is the optimal combined error, dH∆H measures the distribution
discrepancy between two distributions.
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The above theorem provides insights for the generalization bound of the judge model. The bound is
associated with the discrepancy between training data DS and evaluation data DT , and the discrepancy
can be measured by drawing samples from both training and evaluation datasets for an equivalent size.
Moreover, the bound is affected by the optimal hypothesis over all the data, i.e., DS ∪DT , where a lower
error leads to improved performance of the judge model.

3.3 Evaluation

For evaluating the LLM’s performance, we consider Correctness, which is defined as the proportion of
questions for which the LLM’s response matches the true label (or false label if the question is generated
from a negative triple). This captures the accuracy of the LLM in identifying correct information and
distinguishing it from fabricated (negative) triples. We also adopt the metrics of Truthfulness and
Informativeness, as defined in [5]. Truthfulness refers to the likelihood of the language model (LLM)
providing an honest response. A response is considered Truthful if the LLM either provides the correct
answer or opts for ‘I don’t know’. This criterion assesses the model’s ability to be honest about what it
knows and to admit uncertainty rather than making false statements. Informativeness is the probability
of the LLM offering any substantive information, irrespective of its accuracy. An answer is deemed
Informative if it is anything other than ‘I don’t know’. This reflects the model’s capacity to provide
substantial information without resorting to uncertainty or avoidance of an answer.

When considering multiple negative triples sampled, we combine the results for all negative triples
sampled from a triple τ , as well as the results for their original positive triple τ , to calculate the overall
performance of the LLM. Since correctly detecting a real triple from KG is much simpler than detecting
a negative triple, we want to give a max penalty to the LLM’s wrong response to the real triple when
designing the metric. Therefore, if a real triple is predicted as false, the LLM will score 0 across all
metrics. Then, the negative triple results are averaged to give a fine-grained evaluation of the LLM’s
performance. To achieve this, for each performance metric, we define functions F which evaluates the
LLM’s response to τ and F ′ to each negative triple τ ′ sampled from τ . The overall performance metric
for τ is then calculated as:

Metric(τ) = max

0,F(τ)− 1

|N (τ)|
∑

τ ′∈N (τ)

F ′(τ ′)

 (4)

Here, N (τ) represents the set of all negative triples generated from the positive triple τ . F and F ′ are
defined as follows: (i) Correctness. F is defined such that it is 1 if the judge model predicts that a
real (positive) triple is True, and it is 0 otherwise; F ′ is 0 if the judge model predicts a negative triple
as False, and 1 otherwise. (ii) Truthfulness. When measuring Truthfulness, F is set to 1 if the judge
model’s prediction for the input τ is either True or IDK, and it is 0 otherwise. Similarly, F ′ is set to 1 if
the judge model’s prediction for the input τ ′ is True, and 0 otherwise; and (iii) Informativeness. For
Informativeness, F is defined as 1 if the judge model’s prediction for the input τ is anything other than
"I don’t know", and it is 0 otherwise. F ′ is set to 1− F on the informativeness metric. By applying
this equation, we can systematically compute the Correctness, Truthfulness, and Informativeness of an
LLM’s responses in a consistent and comprehensive manner, offering a detailed insight into its overall
performance.
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#Entities #Relations #Triples Avg. degree Density

4,928,232 633 16,915,848 6.80 7.18× 10−7

Table 11: Statistics of the DBpedia knowledge graph.

4 Experiments

4.1 Experiment Setup

Data We use DBpedia [11], a large-scale knowledge graph constructed from Wikipedia. We report
the statistics of the DBpedia knowledge graph in Table 11. Note that there are “dummy” entities
in DBpedia that represent a fact that is only true on a specific time period. An example is https:
//dbpedia.org/page/Kathy_Greenlee__Tenure__1. For simplicity, we remove these dummy
entities and triples related from the knowledge graph. We refer to the remaining triples as the DBpedia
knowledge graph. The DBpedia knowledge graph contains 4,928,232 entities, 633 relations, and 16,915,848
triples. The average node degree of the knowledge graph is 6.80, and the density of the knowledge graph
is 7.18× 10−7.

LLMs In this paper, we evaluate the Meta LLaMA 2 family [49], including LLaMA-2-7B, LLaMA-
2-13B, and LLaMA-2-70B, and Google’s Gemma [44] including Gemma-2B and Gemma-7B. For each
language model, we first randomly sample 2000 triples, and perform a negative sampling to obtain
another 2000 negative triples. For each triple, we ask the LLM 3 times the same question, on whether
the triple is true, false, or the LLM doesn’t know. We use majority voting to determine the LLM’s final
answer. When asking, we use huggingface’s pipeline with default settings and FP16 precision. This is to
form a labeled dataset. We randomly sample 70% for the training set and 30% for the validation set,
then train a judge model to classify the LLM’s hidden state into 3 classes: LLM correctly answering
the question (True), LLM incorrectly answering the question (False), and LLM responding with I don’t
know (IDK). We refer to Table 12 for the statistics of the labeled dataset.

Metrics For the LLM’s performance, we report the estimated factuality of the LLMs on the DBpedia
knowledge graph. We report the LLM’s performance in terms of Truthfulness, Informativeness, and
Correctness. For evaluating the judge model’s performance (See Appendix A.1), we seek to maximize
the similarity between the judge model’s prediction and the LLM’s answer. Thus, we use the common
metrics Precision (P), Recall (R), and F1 score (F) to evaluate the judge model’s accuracy; and the
time it takes to predict to evaluate the judge model’s efficiency.

Hyperparameter Settings For the judge model classifier training, we train 100 epochs with a batch
size of 8. We use the Adam optimizer with a learning rate of 1e-4. We use the same settings for all the
evaluated LLMs. For LLaMA 2 7B, 13B, and 70B, we use LLaMA 2 7B as the judge model’s hidden
state input. For Gemma 2B and 7B, we use Gemma 2B as the judge model’s hidden state input. The
judge model is trained on a server with NVIDIA A6000 GPUs.

For the training of the prompt encoder, we use the same settings for all the evaluated LLMs. To be
specific, we use 20 virtual tokens, 1 transformer submodule, 12 attention heads, 12 layers, MLP as the
encoder reparameterization type, 4096 as the encoder hidden size, and 2e-5 as the learning rate. We
train the prompt encoder for 5 epochs with a batch size of 8. We use the Adam optimizer with a weight
decay of 0.01.

For the evaluation, we use two servers, one with NVIDIA A6000 GPUs and the other with NVIDIA
A100 GPUs. For inference, we use Flash Attention 2 [10] as the attention implementation, and use FP16
precision.
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Model True False IDK Truthful Informative Correct

LLaMA-2-7B 1901 1545 554 0.965 0.550 0.516
LLaMA-2-13B 2100 1796 104 0.979 0.980 0.959
LLaMA-2-70B 338 126 3536 0.993 0.007 0.006
Gemma-2B 1760 1786 454 0.056 0.867 0.024
Gemma-7B 1509 1751 740 0.206 0.657 0.056

Table 12: Statistics and performance metrics of LLMs. True, False, and IDK denote the number of
labels from the LLMs in the labeled dataset. Truthful, Informative, and Correct represent performance
metrics.

4.2 LLM’s Performance Analysis

We report the estimated factuality of the LLMs on DBpedia in Table 12. Overall, the LLaMA-2 series
shows an increase in model size up to 13B, particularly in terms of balanced truthfulness, informativeness,
and correctness. However, the 70B variant diverges, excelling in truthfulness but failing to provide useful
or accurate information. We will discuss this phenomenon in the detailed LLaMA analysis. The Gemma
series struggles with truthfulness and correctness, despite being informative. This might indicate that
these models are better at generating detailed content but need careful consideration for tasks requiring
high accuracy or reliability. The performance of these models highlights the complex trade-offs between
being truthful, informative, and correct. We further provide a correlation analysis between the LLM’s
performance and the degree/popularity of the entities in the Appendix A.3.

LLaMA-2 Analysis LLaMA-2-7B shows good truthfulness (.965) but is moderate in being informative
(.550) and correct (.516). This suggests that while the model is generally reliable in its outputs, it may
not always provide highly detailed or accurate information. LLaMA-2-13B significantly improves across
all metrics compared to LLaMA-2-7B, with very high scores in truthfulness (.979), informativeness
(.980), and correctness (.959). This indicates a strong overall performance, making it a very reliable and
accurate model for generating information.

LLaMA-2-70B, despite its high truthfulness (.993), scores extremely low in both informativeness
(.007) and correctness (.006), which is puzzling. We hypothesize that the model may have difficulty in
making a decision, and thus selecting ‘I don’t know’ as the answer. This may be related to a more clear
knowledge boundary of LLMs, as larger LMs tend to give up on more questions [48], meaning they have
a better understanding on whether they know the answer or not. A detailed analysis of the knowledge
boundary of LLMs can be found in Appendix A.4. This can also be confirmed by the fact that the
model has the highest truthfulness score among all models, indicating that it is more likely to provide a
correct answer when it knows the answer. However, it is still important to note that a high number of ‘I
don’t know’ answers may indicate the model’s inability to answer factual questions.

Gemma Analysis Gemma-2B has an exceptionally low truthfulness score (.056) but is quite high in
informativeness (.867). Its correctness score (.024) is also very low. This suggests that despite providing
detailed responses, the model’s outputs are often neither truthful nor accurate. It might be generating
detailed but misleading or incorrect information. Gemma-7B improves on truthfulness (.206) compared
to Gemma-2B but still falls short of being considered reliable. Its informativeness (.657) is respectable,
and its correctness (.056) remains low. Similar to Gemma-2B, while it can provide detailed responses,
those are not often true or correct.
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(b) Averaged metrics vs Tail entity type
Figure 25: The LLM’s averaged metrics with respect to head entity types and tail entity types

4.3 Relation Type Study

There are more than 600 different relation types in the DBpedia knowledge graph, and each relation
type has different characteristics. It is unclear if we directly compare the performance of the LLMs on
different relation types. Thus, to gain a better understanding of the LLM’s performance, we first analyze
the LLM’s performance with respect to relation types. In DBpedia, most entities are associated with a
https://schema.org/ type. Thus, we can categorize the relations into different types by the triples
they belong to. We denote a relation’s head/tail entity type as the most frequent schema type of the
head/tail entity of the triples associated with the relation. For example, the relation birthPlace is
associated with triples like (Barack Obama, birthPlace, Hawaii), and the head entity Barack
Obama is associated with the schema type Person, and the tail entity Hawaii is associated with the
schema type Place. Then, the relation’s head entity type is Person, and tail entity type is Place.
We then analyze the LLM’s performance with respect to these relation types. We report the performance
of the LLMs on different relation types, by taking the average of the 3 metrics, correctness, truthfulness,
and informativeness, for each relation type. We present the results in Figure 25. Here, “None” refers to
entities not linked to a schema type. We also present a detailed analysis of the LLM’s performance with
respect to head and tail entity types in Appendix A.2. We can observe variability in model performance
across relation types, such as “MusicGroup" and “CreativeWork" achieving high scores while “Area" and
"Mountain" face lower performance, highlighting the diverse challenges in modeling different kinds of
information. These performance differences suggest that the effectiveness of LLMs in handling structured
knowledge heavily depends on the nature of the relations being modeled.

5 Conclusions

We introduce GraphEval, an innovative approach for appraising the efficacy of LLMs against a voluminous
test dataset derived from an extensive knowledge graph containing over 10 million facts, significantly
mitigating the necessity for costly human intervention. GraphEval, by embedding a judge module within
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the LLM itself, not only refines the evaluation process but also establishes a new benchmark for assessing
the veracity of the information presented by these models. The empirical evidence from our experiments
substantiates the judge model’s proficiency in fact-checking, exhibiting a high degree of concordance
with the accuracy of the LLM’s outputs, and simultaneously diminishing the resources required for
evaluation. The insights gleaned from our study shed light on the multifaceted performance of LLMs and
lay the groundwork for future endeavors aimed at enhancing the reliability of their generated content.
Moreover, we consider extending this work to cross-lingual KGs to evaluate the performance of various
LLMs in different languages.

References

[1] Sun, K. et al.. Head-to-tail: How knowledgeable are large language models (llm)? AKA will llms replace
knowledge graphs?. arXiv preprint arXiv:2308.10168, , 2023.

[2] Liang, P. et al.. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110, , 2022.
[3] Lu, P. et al.. Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering.

, 2022.
[4] Yao, Y. et al.. Editing large language models: Problems, methods, and opportunities. arXiv preprint

arXiv:2305.13172, , 2023.
[5] Lin, S. et al.. TruthfulQA: Measuring How Models Mimic Human Falsehoods. :3214–3252, 2022.
[6] Weller, O. et al.. " According to..." Prompting Language Models Improves Quoting from Pre-Training Data.

arXiv preprint arXiv:2305.13252, , 2023.
[7] Elliot Bolton, et al.. BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text. , 2024.
[8] Yasunaga, M. et al.. Deep bidirectional language-knowledge graph pretraining. Advances in Neural

Information Processing Systems, 35:37309–37323, 2022.
[9] Jia, Z. et al.. Tempquestions: A benchmark for temporal question answering. :1057–1062, 2018.

[10] Dao, T.. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, , 2023.

[11] Auer, S. et al.. Dbpedia: A nucleus for a web of open data. :722–735, 2007.
[12] Haoyu Wang, et al.. BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query

Generation Blending and Knowledge Filtering. , 2024.
[13] Shizhe Diao, et al.. Mixture-of-Domain-Adapters: Decoupling and Injecting Domain Knowledge to Pre-trained

Language Models Memories. , 2023.
[14] Lewis, P. et al.. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural

Information Processing Systems, 33:9459–9474, 2020.
[15] Azaria, A., Mitchell, T.. The Internal State of an LLM Knows When It’s Lying. :967–976, 2023.
[16] Gallegos, I.O. et al.. Bias and Fairness in Large Language Models: A Survey. arXiv preprint arXiv:2309.00770,

, 2023.
[17] Kotha, S. et al.. Understanding catastrophic forgetting in language models via implicit inference. arXiv

preprint arXiv:2309.10105, , 2023.
[18] Liu, X. et al.. P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and

tasks. arXiv preprint arXiv:2110.07602, , 2021.
[19] Wang, C. et al.. Survey on factuality in large language models: Knowledge, retrieval and domain-specificity.

arXiv preprint arXiv:2310.07521, , 2023.
[20] Carlson, A. et al.. Toward an architecture for never-ending language learning. 24:1306–1313, 2010.
[21] Kwiatkowski, T. et al.. Natural Questions: A Benchmark for Question Answering Research. Transactions of

the Association for Computational Linguistics, 7:453–466, 2019. MIT Press-Journals.
[22] Feng, S. et al.. FactKB: Generalizable Factuality Evaluation using Language Models Enhanced with Factual

Knowledge. :933–952, 2023.
[23] Kim, J. et al.. KG-GPT: A general framework for reasoning on knowledge graphs using large language

models. arXiv preprint arXiv:2310.11220, , 2023.

97



[24] Tian, K. et al.. Fine-tuning language models for factuality. arXiv preprint arXiv:2311.08401, , 2023.
[25] Luo, L. et al.. Reasoning on graphs: Faithful and interpretable large language model reasoning. arXiv

preprint arXiv:2310.01061, , 2023.
[26] Shiqi Chen, et al.. FELM: Benchmarking Factuality Evaluation of Large Language Models. , 2023.
[27] Berglund, L. et al.. The Reversal Curse: LLMs trained on" A is B" fail to learn" B is A". arXiv preprint

arXiv:2309.12288, , 2023.
[28] Bollacker, K. et al.. Freebase: a collaboratively created graph database for structuring human knowledge.

:1247–1250, 2008.
[29] Wang, X. et al.. " My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-

Tuned Language Models. arXiv preprint arXiv:2402.14499, , 2024.
[30] Ben-David, S. et al.. A theory of learning from different domains. Machine learning, 79:151–175, 2010.

Springer.
[31] Wang, Y. et al.. Preserving In-Context Learning ability in Large Language Model Fine-tuning. arXiv

preprint arXiv:2211.00635, , 2022.
[32] Liu, X. et al.. P-Tuning: Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and Tasks.

:61–68, 2022.
[33] Jiang, J. et al.. ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained Language Models for

Question Answering over Knowledge Graph. :3721–3735, 2023.
[34] Chang, Y. et al.. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems

and Technology, , 2023. ACM New York, NY.
[35] Cunxiang Wang, et al.. Evaluating Open-QA Evaluation. , 2023.
[36] Goodfellow, I.J. et al.. An empirical investigation of catastrophic forgetting in gradient-based neural networks.

arXiv preprint arXiv:1312.6211, , 2013.
[37] Zhai, Y. et al.. Investigating the Catastrophic Forgetting in Multimodal Large Language Models. arXiv

preprint arXiv:2309.10313, , 2023.
[38] Zhou, K. et al.. Don’t Make Your LLM an Evaluation Benchmark Cheater. arXiv preprint arXiv:2311.01964,

, 2023.
[39] Zhang, Y. et al.. Siren’s song in the AI ocean: a survey on hallucination in large language models. arXiv

preprint arXiv:2309.01219, , 2023.
[40] Joshi, M. et al.. TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension.

:1601–1611, 2017.
[41] Suchanek, F.M. et al.. Yago: a core of semantic knowledge. :697–706, 2007.
[42] Dan Hendrycks, et al.. Measuring Massive Multitask Language Understanding. Proceedings of the

International Conference on Learning Representations (ICLR), , 2021.
[43] Bordes, A. et al.. Translating embeddings for modeling multi-relational data. Advances in neural information

processing systems, 26, 2013.
[44] Team, G. et al.. Gemma: Open models based on gemini research and technology. arXiv preprint

arXiv:2403.08295, , 2024.
[45] Zhang, M. et al.. Knowledge Graph Enhanced Large Language Model Editing. arXiv preprint

arXiv:2402.13593, , 2024.
[46] Huang, Y. et al.. C-eval: A multi-level multi-discipline chinese evaluation suite for foundation models.

Advances in Neural Information Processing Systems, 36, 2024.
[47] Liu, A. et al.. We’re Afraid Language Models Aren’t Modeling Ambiguity. arXiv preprint arXiv:2304.14399,

, 2023.
[48] Ren, R. et al.. Investigating the factual knowledge boundary of large language models with retrieval

augmentation. arXiv preprint arXiv:2307.11019, , 2023.
[49] Touvron, H. et al.. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,

, 2023.
[50] Chen, S. et al.. Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting.

:7870–7881, 2020.
[51] Tan, Y. et al.. Can ChatGPT replace traditional KBQA models? An in-depth analysis of the question

answering performance of the GPT LLM family. :348–367, 2023.

98



[52] Talmor, A., Herzig, J., Lourie, N., and Berant, J. CommonsenseQA: A Question Answering Challenge
Targeting Commonsense Knowledge. arXiv preprint arXiv:1811.00937, 2019. https://arxiv.org/abs/
1811.00937.

99

https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937


Last token logits (No PE) Last token logits GraphEval (No PE) GraphEval

P R F0.00

0.25

0.50

0.75

Sc
or

es

(a) LLaMA 7B

P R F0.00

0.25

0.50

0.75

Sc
or

es

(b) LLaMA 13B

P R F0.00

0.25

0.50

0.75

Sc
or

es

(c) LLaMA 70B

P R F0.0

0.2

0.4

0.6

Sc
or

es

(d) Gemma 2B

P R F0.0

0.2

0.4

0.6

Sc
or

es

(e) Gemma 7B

P R F0.00

0.25

0.50

0.75

Sc
or

es

(f) Average
Figure 26: Evaluation scores on the judge model’s performance on the labeled validation set. P, R, and
F are Precision, Recall, and F1 Score.

Substitute Model LLaMA 2 7B LLaMA 2 13B LLaMA 2 70B

P R F P R F P R F

LLaMA 2 7B .858 .845 .850 .928 .934 .930 .837 .861 .848
LLaMA 2 13B .850 .868 .855 .930 .940 .932 .837 .851 .844
LLaMA 2 70B .868 .883 .871 .924 .942 .931 .858 .876 .866

Table 13: Ablation on the LLaMA models as substitute models. The i-th row and j-th column denote
the result of using i-th LLM as the substitute hidden state input for training on j-th model’s labels. P,
R, and F are Precision, Recall, and F1 Score.

A Appendix

A.1 Judge Model Analysis

We analyze the judge model’s performance on the labeled validation set. We compare GraphEval’s judge
model by using the last token logit as the judge model. This is a common practice in evaluating LLMs,
as the last token logit is the most common way to extract the hidden state of the LLMs. We also analyze
the judge model with or without the prompt encoder (PE), as it may have a negative impact on the
judge model’s performance. We refer to Figure 26 for the judge model’s performance on the labeled
validation set.

Accuracy Analysis The GraphEval model, both with and without Prompt Encoder (PE), consistently
outperforms the score of using Last token logits in almost all configurations and metrics. This indicates
the effectiveness of the GraphEval approach in capturing the nuances of the evaluation task.

Ablation Study On Prompt Encoder: As Figure 26 shows, the comparison between models with
and without PE indicates a slight performance variation. For GraphEval, the presence of PE does not
significantly alter the performance, suggesting that our method of evaluating LLMs is robust to the
inclusion or exclusion of PE. For the Last token logits method, removing PE generally results in a
perturbation in performance. However, the GraphEval approach’s consistency suggests a potentially
different or more advanced mechanism of evaluation that is less dependent on PE. On Substitute Models:
We also evaluate the judge model’s performance on different LLMs as hidden state input. We refer to
Table 13 for the judge model’s performance on different LLMs as hidden state input. We can see that,
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Models LLaMA 2 7B LLaMA 2 13B LLaMA 2 70B Gemma 2B Gemma7B

Speed #GPUs Speed #GPUs Speed #GPUs Speed #GPUs Speed #GPUs

TG (A6000) 2.26 1 1.07 2 0.09 4 2.06 (1.82) 1 2.18 (1.28) 1
GraphEval (A6000) 121.34 1 120.10 1 117.90 1 388.61 1 389.04 1

TG (A100) 2.80 1 1.48 1 0.21 2 2.47 1 2.42 1
GraphEval (A100) 210.59 1 213.05 1 210.30 1 731.98 1 735.62 1

Table 14: Efficiency evaluation. Speed denotes the average number of triple facts on which a conclusion
can be given in one second. #GPUs denotes the least number of GPUs to run without OOM. TG
denotes text generation. The numbers in parentheses are the speed without Flash Attention 2.

generally, when larger models are applied for feeding the hidden states, there is a slight increase in the
fitting accuracy of the judge model. However, there is no significant difference in the judge model’s
performance.

Efficiency study We also analyze the judge model’s efficiency by measuring the time it takes to
make a prediction on one triple. The speed of text generation refers to the average rate at which the
LLM completes generating a response consisting of one sentence derived from a triple. It’s important
to recognize that the pace of text generation can vary with different prompts because the LLM may
produce responses of varying lengths. Therefore, for a more consistent measure of text generation speeds,
it’s advisable to consider the rate of token generation. Despite this, our evaluation framework, GraphEval,
does not depend on text generation and operates on a triple-based unit. Consequently, we continue to
use the triple as the unit of measurement for time. We use the same hardware and software environment
for all the experiments. We compare the average speed of the judge model with text generation. We
report the time it takes to make a prediction in Table 14. The attention implementation and precision
are the same for text generation and for the judge model’s input model. We can see that the judge model
is significantly faster than text generation. This indicates that the judge model is efficient in evaluating
the LLMs. Also, benefiting from the substitute model, our evaluation speed and GPU requirement does
not grow with the LLM size, which is an advantage for evaluating large LLMs. We also observe that,
paradoxically, the Gemma 2B model operates slower than the Gemma 7B model, despite its smaller size.
This counterintuitive result could be attributed to the implementation of Flash Attention 2. To draw a
fair comparison, we documented the text generation speed on A6000 GPUs excluding Flash Attention
2, which is indicated within parentheses. The comparative data reveals that Gemma 2B is faster than
Gemma 7B when Flash Attention 2 is not utilized. Notwithstanding this, Gemma 2B demonstrates
enhanced performance when Flash Attention 2 is active. Therefore, for the sake of consistency, we have
decided to maintain the results acquired with Flash Attention 2.

A.2 Detailed Relation Type Analysis

Llama Family Analysis Across the LLaMA family, a progressive improvement in performance is
observed from 7b to 13b. The 7b model shows decent performance across categories with a particular
strength in the truthfulness. However, its informativeness and correctness metrics show room for
improvement, particularly in categories like Book, Hotel, and College, indicating a struggle to accurately
provide informative and correct classifications in more nuanced or specific domains.

The LLaMA 13b model demonstrates a significant leap in performance, especially in informativeness
and correctness, nearly reaching perfection across most categories. This jump can be attributed to
the model’s increased capacity, enabling it to understand and process the nuances of various entities
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(b) Correctness vs Tail entity type

Figure 27: The LLM’s correctness with respect to head entity types and tail entity types

better, resulting in remarkably high scores in nearly all categories, especially noticeable in MusicGroup,
CreativeWork, and Place.

The LLaMA 70b results appear anomalous with extremely high truthfulness scores but negligible
informativeness and correctness across all categories. We suspect this discrepancy might be due to the
model’s knowledge awareness [48], where the model might be less confident in its responses when the
parameters are increased, leading to a higher proportion of “I don’t know" responses. This could explain
the high truthfulness scores but low informativeness and correctness metrics, as the model might be too
cautious to provide definitive answers.

Gemma Family Analysis The Gemma models present an interesting contrast. The Gemma 2b
model shows a tendency towards high informativeness in certain categories like MusicGroup and Book
but lacks behind significantly in truthfulness and correctness metrics. This suggests that while the model
might be picking up on relevant information, it struggles to accurately validate the truth behind that
information or its applicability to the queried entities. The Gemma 7b model shows improvement in the
truthfulness metric compared to Gemma 2b, particularly noticeable in categories like Book and Hotel,
and even surpasses LLaMA 7b in certain areas like None and Restaurant. However, it still significantly
lags behind the LLaMA models, particularly LLaMA 13b, in both informativeness and correctness.
The improved but still limited performance suggests that while Gemma 7b has a better grasp over the
veracity of information compared to Gemma 2b, it still struggles with providing highly informative and
correct outputs consistently across various entities.
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(b) Truthfulness vs Tail entity type

Figure 28: The LLM’s truthfulness with respect to head entity types and tail entity types

A.3 Correlation Analysis

As the current language models are all exposed to Wikipedia knowledge during training, we are interested
in how the LLM performance is correlated with the attributes of the triples in the knowledge graphs.
As an example, if an entity has a higher degree, it may be linked to more documents, and the LLM
may have more chances to learn about the entity during training. Another example is the popularity
of the entity. If the entity is more popular, it may be linked to more external documents because it
summarizes the relevant knowledge and provides high-level ideas to the general public, and the LLM
may have more chances to learn about the entity during training. This raises the question of whether
the LLM’s performance is correlated with the attributes of the triples in the knowledge graphs. For the
entities in a knowledge graph, the degree of an entity is the number of edges connected to the entity. We
also collect the pageviews of the entities in the knowledge graph from Wikimedia1, which is the number
of pageviews of the Wikipedia page of the entity. This can be seen as a measure of the popularity of
the entity because a popular page should appeal to the significant attention of the readers. We collect
the pageviews, in the time period of the entities in the knowledge graph from the Wikipedia page of
the entity. After collecting the degree and pageviews of the entities in the knowledge graph, we can
aggregate the degree and pageviews of the entities to the triples, by simply taking the average of the
degree and pageviews of the head and tail entities of the triples.

Here, we analyze whether the LLM’s performance is correlated with the attributes of the triples in the
knowledge graphs, such as the entity’s degree, and page views. We refer to Figure 30 for the correlation
heatmap of the LLMs’ hidden states and the judge model’s predictions. Here, ‘T’ stands for Truthful,
‘I’ stands for Informativeness, ‘C’ stands for Correctness, ‘P’ stands for Pageviews, and ‘D’ stands for
Degree. We can see that the LLM’s performance does not show a strong correlation with the attributes of

1https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia.org/all-access/all-agents
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(b) Informativeness vs Tail entity type

Figure 29: The LLM’s informativeness with respect to head entity types and tail entity types

Models Llama 3 1B Llama 3 3B Llama 3 8B Llama 3 70B

CommonsenseQA 54.65 37.73 30.36 22.28
TruthfulQA 58.35 52.32 49.03 23.45

Table 15: Knowledge boundary analysis results for the Llama 3 series models on CommonsenseQA and
TruthfulQA datasets. The table reports the Expected Calibration Error (ECE) values (%) measuring
the alignment between model confidence and correctness. Lower is better. The best results are in bold.

the triples in the knowledge graphs. This indicates that the LLM’s performance is not directly correlated
with the attributes of the triples in the knowledge graphs. However, the different metrics of LLMs may
correlate with each other, such as Truthful and Informativeness, which is expected. This can be explained
by the fact that certain attributes, like the degree of an entity in the knowledge graph, can be misleading.
For example, degree is often correlated with popularity, but the popularity metric is 0 for many entities,
particularly those in the long tail. This uneven distribution limits the usefulness of popularity as a
reliable metric for evaluating LLM performance. In other words, while high-degree or popular entities
may influence LLM performance to some extent, the vast majority of entities are long-tail, and their
sparse or zero popularity values do not strongly correlate with performance outcomes. This highlights
the need for more nuanced or domain-specific metrics to assess LLM performance effectively.

A.4 Knowledge Boundary Analysis

We analyze the knowledge boundaries of large language models (LLMs), as discussed in Section 4.2 and
[48], which suggest that larger models have a better understanding whether they know an answer or
not. To investigate this hypothesis, we conduct experiments using the Llama 3 model series on two
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Figure 30: Correlation heatmap of the LLMs’ hidden states and the judge model’s predictions.

question-answering datasets: CommonsenseQA [52] and TruthfulQA [5]. To assess whether an LLM
understands its own knowledge boundaries, we directly elicit confidence scores for each answer through
prompting, then we calculate the Expected Calibration Error (ECE). ECE measures the misalignment
between the correctness of answers and the models’ confidence. Mathematically, for LLM responses A,
ECE is defined as:

ECE =
1

|A|
∑
a∈A

|I(a)− conf(a)| , (5)

where I(a) is an indicator function that outputs 1 if a is correct and 0 otherwise, and conf(a) denotes
the confidence score assigned by the model. The experimental results are presented in Table 15.

The results in Table 15 align with our previous hypothesis across different Llama 3 model sizes. For
both CommonsenseQA and TruthfulQA, the ECE values decrease as model size increases, indicating
better alignment between confidence and correctness in larger models. Specifically, for CommonsenseQA,
the Llama 3 70B model achieves the lowest ECE (22.28%), demonstrating superior calibration compared
to smaller models like Llama 3 1B (54.65%). Similarly, on TruthfulQA, the Llama 3 70B model achieves
an ECE of 23.45%, significantly outperforming the smaller Llama 3 1B model with an ECE of 58.35%.

These findings align with the hypothesis that larger models are better calibrated in estimating their
confidence, which can partially explain why larger models are more likely to answer “I don’t know” when
asked about a question as shown in Section 4.2.

Overall, GraphEval aligns well with the results on TruthfulQA and CommonsenseQA, demonstrating
that it effectively captures the model’s factuality and informativeness across diverse knowledge domains.
This alignment validates the robustness of our evaluation framework and confirms its consistency with
established benchmarks for assessing LLM reasoning and truthfulness.

A.5 Detailed Settings

Relation templates We use the relation templates to create queries for evaluating the models. These
templates are first generated by GPT with Web API in a few-shot manner, then manually curated
to ensure the quality of the templates. We refer to Figure 31 for the prompt used for generating the
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You are given a few samples of a relation in the format of <head, relation, tail>.
You need to write a statement template about the relation, which will be used to generate a 
statement for a given head entity and the tail entity.
I will give you 3 examples as below.

relation: "education"
triple samples:
<Mamphono Khaketla, education, National University of Lesotho>
 …
<A.D. Frazier, education, University of North Carolina at Chapel Hill>

statement template: "{head} was educated at {tail}."

relation: "channel"
triple samples:
<Way Out, channel, CBS>
 …
<19+, channel, TVN (Poland)>

statement template: "{head} is broadcasted on {tail}."

relation "curator"
triple samples:
<Alicante Museum of Contemporary Art, curator, Alicante>
 …
<Baturyn Museum of Archeology, curator, Hetman's Capital>

statement template: "{head} is curated by {tail}."

according to the above 3 examples, please write a statement template for the folloing relation:

relation: {relation}
triple samples:
{triples}

Figure 31: The prompt to generate the relation template.

relation templates. The prompt is designed to ask the model to generate a query for a given relation
type. The model is asked to generate a query that can be used to judge the factuality of the relation
type. We then manually curate the generated templates to ensure the quality of the templates. We
refer to Table 16 for the curated relation templates. Due to the large number of relation types in the
DBpedia knowledge graph, we only showcase a few relation templates in the table, these templates are
the most common relation types in the knowledge graph, sorted by the number of triples associated with
the relation type. We can see that the relation templates are comprehensive and cover a wide range of
topics. This can be seen as a source of multiple-domain knowledge for evaluating the LLMs.

Data and Model We download the DBpedia data dump from https://www.dbpedia.org/. We use
the turtle format of the DBpedia knowledge graph. We directly use the LLaMA 2 and Gemma from the
Hugging Face model hub. The model cards are meta-llama/Llama-2-7b-chat-hf, meta-llama/Llama-2-13b-
chat-hf, meta-llama/Llama-2-70b-chat-hf, gemma-team/gemma-2b-chat-hf, and gemma-team/gemma-
7b-chat-hf.

Instruction used for the LLaMA and Gemma models We report the instructions used for
creating queries for the LLaMA and Gemma models. The instruction is designed to ask the model to
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Relation Template Count

birthPlace The birthplace of {head} is {tail}. 1,465,157
team {head} is a part of the {tail} team. 1,265,483
subdivision The subdivision of {head} is {tail}. 1,070,387
country {head} is from the country {tail}. 766,844
starring {head} is a character in a movie or play {tail}". 540,937
location The location of {head} is {tail}. 523,283
type The type of {head} is {tail}. 480,274
deathPlace {head} passed away in {tail}. 435,869
timeZone The time zone of {head} is {tail}. 433,915
genre The genre of {head} is {tail}. 415,336
homepage The homepage of {head} is {tail}. 366,745
position The position of {head} is {tail}. 319,196
seeAlso The related item to {head} under the 296,615

↪→label ’seeAlso’ is {tail}.
writer The writer of {head} is {tail}. 249,017
almaMater The alma mater of {head} is {tail}. 217,533
occupation The occupation of {head} is {tail}. 200,615
award The award won by {head} is {tail}. 181,521
recordLabel The record label associated with {head} is {tail}. 178,657
party The party that {head} is affiliated with is {tail}. 170,931
producer The producer of {head} is {tail}. 169,628
formerTeam {head} used to play for {tail} team. 151,374
family {head} belongs to the {tail} family. 148,818
currentMember The current member of {head} is {tail}. 148,739
battle {head} participated in the following battles: {tail}. 148,188
nationality The nationality of head is tail. 147,525
director The director of {head} is {tail}. 145,621
associatedBand The band associated with {head} is {tail}. 135,597
associatedMusical The musical artist associated with {head} 135,582
↪→ Artist ↪→ in the music industry is {tail}.
class The class of {head} is {tail}. 127,837
order The order of {head} is {tail}. 123,626

Table 16: Relations templates.

judge whether the statement is true or false. We refer to Table 17 for the instruction used for creating
queries. We use the same instruction for both the LLaMA and Gemma models with little modification
to adjust the model’s instruction format. With this instruction, the most frequent responses of LLMs
are Yes, the statement is true, No, the statement is false, and I don’t know, with some variations on the
suffix, mainly explaining the reason for the answer. This is what we expect from the LLMs when using
a judge model (or the first-token logit as well), since the judge model doesn’t use the LLM’s response,
but the hidden state of the LLM, which makes the consistency of the response format important.

A.6 Language Setting

As a framework, GraphEval is not constrained by language, as long as the input is in the form of a
knowledge graph. However, we did not conduct experiments on multilingual or cross-lingual datasets in
the current work. Current experiments are conducted on English knowledge graphs.
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Model Instruction

LLaMA 2 Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes
the request.\n\n ### Instruction:\n You are given a statement. You
are asked to judge whether the statement is true or false. Answer ’Yes,
the statement is true.’ if you know the statement is true. Answer ’No, the
statement is false.’ if you know the statement is false. Otherwise, answer
’I don’t know.’\n\n### Input: Input \n\n### Response:\n\n

Gemma start_of_turn>user Below is an instruction that describes a task, paired
with an input that provides further context. Write a response that
appropriately completes the request.\n\n### Instruction:\n You are
given a statement. You are asked to judge whether the statement is
true or false. Answer ’Yes, the statement is true.’ if you know the
statement is true. Answer ’No, the statement is false.’ if you know the
statement is false. Otherwise, answer ’I don’t know.’\n\n### Input:
Input <end_of_turn><start_of_turn>model\n\n The answer is "

Table 17: Instruction used for creating queries.
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Abstract

Large Language Models (LLMs) are promising technology to support Question Answering on
enterprise SQL data (i.e. Text-to-SQL). Knowledge Graphs are also promising technology to enhance
LLM-based question answering by providing business context that LLMs lack. However, it is not well
understood to what extent Knowledge Graphs can increase the accuracy of LLM-powered question
answering system on SQL databases. Our research aims to understand and quantify this extent.
First, we introduce a benchmark comprising an enterprise SQL schema in the insurance domain, a
range of enterprise queries encompassing reporting to metrics, and a contextual layer consisting of
an ontology and mappings that define a Knowledge Graph. The experimental reveals that question
answering using GPT-4, with zero-shot prompts directly on SQL databases, achieves an accuracy of
16%. Notably, this accuracy increases to 54% when questions are posed over a Knowledge Graph
representation of the enterprise SQL database. Second, we present an approach that leverages the
ontology of the Knowledge Graph to deterministically detect incorrect queries generated by the LLM
and repair them. Experimental results show that the accuracy increases to 72.55%, including an
additional 8% of “I don’t know" unknown results. Thus, the overall error rate is 20%. The conclusion
is that investing in Knowledge Graph provides higher accuracy for LLM powered question answering
systems on SQL databases.

A Introduction

Business users and executives would like to have an AI assistant that understands their business, available
to them at all times, in order to ask questions and receive accurate, explainable and governed answers.
This challenge, known as Question Answering, which is the ability to interact with data using natural
language questions and obtaining accurate results, has been a long-standing challenge in computer
science dating back to the 1960s [12–14, 28]. The field has advanced throughout the past decades
[6, 27, 31], through Text-to-SQL approaches, as a means of facilitating chatting with the data that is
stored in SQL databases[9, 17, 21, 24, 29, 33]. With the rise of Generative AI and Large Language
Models (LLMs) in early 2023, the interest increased dramatically. These question answering systems
hold tremendous potential for transforming the way data-driven decision making is executed within
enterprises.

Knowledge Graphs (KGs) have been identified as a promising solution to fill the business context
gaps in order to reduce hallucinations, thus enhancing the accuracy of LLMs. The effective integration of
LLMs and KGs started to gaining traction in academia in the past several years1[23]. From an industry
perspective, Gartner stated in July 2023 that, "Knowledge graphs provide the perfect complement to

1https://github.com/RManLuo/Awesome-LLM-KG
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LLM-based solutions where high thresholds of accuracy and correctness need to be attained."2.
Our hypothesis is that Knowledge Graphs play a critical role in LLM powered Question Answering

systems on SQL databases. However, at the time that we started this research in July 2023, it was not
clear to what extent. The starting point of our work is to understand the role of Knowledge Graphs for
accuracy, given that hallucinations became one of the largest concerns in the industry. Our work comes
in two parts.

First, we seek to understand the accuracy of LLM-powered question answering systems with respect
to enterprise questions, enterprise SQL databases and the role knowledge graphs play to improve the
accuracy. Our first contribution [25, 26] is a benchmark with experimental results showing that by using
GPT-4 and zero-shot prompting, enterprise natural language questions over enterprise SQL databases
schema and generating a SQL query achieved 16.7% accuracy. This accuracy increased to 54.2%
when a SPARQL query was evaluated over a Knowledge Graph representation of the SQL database
in the form of an OWL ontology and R2RML mapping, thus an accuracy improvement of 37.5%. The
benchmark can be found here: https://github.com/datadotworld/cwd-benchmark-data.
This contribution has made an impact in the industry. The benchmark and the results were initially
independently reproduced and validated by dbt Labs3. Several semantic layer vendors have further
validated our results4 5 6 7 8 9. The GraphRAG Manifesto by Neo4j argues that one of the benefits of
GraphRAG relative to vector-only RAG is due to higher accurate responses, citing our benchmark and
results10.

Leveraging the learnings from our first contribution, namely understanding what happened with
inaccurate queries, our intuition is that accuracy can be further increased by 1) leveraging the ontology
of the knowledge graph to check for errors in the LLM generated SPARQL queries and 2) using the
LLM to repair incorrect queries. Our second contribution [3, 4] is a two-part approach consisting 1)
Ontology-based Query Check (OBQC), which checks in a deterministic manner if the query is valid by
applying rules based on the semantics of the ontology. If the OBQC detects an error, we could either
determine to not return the result thus terminate or we could try to repair the query, and 2) LLM
Repair, which repairs the detected incorrect SPARQL query generated by the LLM. The result is a new
query which can then be passed back to the OBQC. By grouping all the questions in the benchmark, the
OBQC and LLM Repair increased the accuracy 72.55%. If the repairs were not successful after three
iterations, an unknown result was returned, which occurred 8% of the time. The result is an error rate
of 20%.

The conclusion of our work is that Knowledge Graph provides higher accuracy for LLM powered
question answering systems on SQL databases. Therefore, enterprises that are considering to use LLMs
for question answering on their SQL databases must invest in knowledge graphs.

2Adopt a Data Semantics Approach to Drive Business Value,” Gartner Report by Guido De Simoni, Robert Thanaraj,
Henry Cook, July 28, 2023

3https://roundup.getdbt.com/p/semantic-layer-as-the-data-interface
4https://www.atscale.com/blog/semantic-layers-make-genai-more-accurate/
5https://www.wisecube.ai/blog/optimizing-llm-precision-with-knowledge-graph-based-natural-language-qa-systems/
6https://blog.kuzudb.com/post/llms-graphs-part-1/
7https://delphihq.substack.com/p/delphi-at-100-dbt-semantic-layer
8https://cube.dev/blog/semantic-layers-the-missing-piece-for-ai-enabled-analytics
9https://www.stratio.com/blog/stratio-business-semantic-data-layer-delivers-99-answer-accuracy-for-llms/

10https://neo4j.com/blog/graphrag-manifesto/
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B Understanding the role of Knowledge Graphs on LLM’s Accuracy
for Question Answering on SQL

While question answering systems have shown remarkable performance in several Text-to-SQL bench-
marks [7, 8], such as Spider [30], WikiSQL[33], KaggleDBQA[19] their implications relating to enterprise
SQL databases remain relatively obscure. We argue that existing Question Answering and Text-to-SQL
benchmarks, although valuable, are often misaligned with real-world enterprise settings:

1. these benchmarks typically overlook complex database schemas representing enterprise domains,
which likely comprise hundreds of tables,

2. they also often disregard questions that are crucial for operational and strategic planning in
an enterprise, including questions related to business reporting, metrics, and key performance
indicators (KPIs), and

3. a critical missing link is the absence of a business context layer – metadata, mappings, transforma-
tions, ontologies, that provides business semantics and knowledge about the enterprise.

Recent benchmarks [20, 22] are attempting to address the first challenge. However, the second
and specially the third point have not been a focus of those new benchmarks. Without these vital
components, LLMs for enterprise question answering on SQL databases risk being disconnected from
the reality of enterprise data, leading to hallucinations and uncontrolled outcomes.

We investigate the following two research questions:
RQ1: To what extent Large Language Models (LLMs) can accurately answer enterprise natural

language questions over enterprise SQL databases.
RQ2: To what extent Knowledge Graphs can improve the accuracy of Large Language Models

(LLMs) to answer enterprise natural language questions over enterprise SQL databases.
The hypothesis is the following: An LLM powered question answering system that answers a natural

language question over a knowledge graph representation of the SQL database returns more accurate
results than an LLM powered question answering system that answers a natural language question over
the SQL database without a knowledge graph.

Enterprise SQL Schema The enterprise SQL schema used in the benchmark comes from the P&C
Data Model for Property And Casualty Insurance11, a standard model created by Object Management
Group (OMG), a standards development organization. This OMG specification addresses the data
management needs of the Property and Casualty insurance community.

Enterprise Questions The benchmark comes with 43 Question-Answer pairs as evaluation criteria,
where the input is the question, and the output is the corresponding answer to the question based on a
data instance. The questions are written in English, and refer to concepts covered by the data. Since
there can be multiple valid SQL queries for a given question, the determining accuracy factor is the
final output instead of a generated SQL query. In order to score the execution accuracy of an LLM, we
need to have a reference answer to each question. An "answer" in this situation is itself a query; it is a
query that was written by a human expert, which gives the expected correct answer to the question.
Each question has a reference query in SQL for the relational database, and SPARQL for the knowledge
graph. Naturally, each query gives the same response when run against the data.

The questions are classified on a spectrum of low to high complexity:
11https://www.omg.org/spec/PC/1.0/About-PC
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• Low question complexity: Pertains to business reporting use cases, aimed at facilitating daily
business operations. From a technical standpoint, these questions are translated into SELECT-
FROM SQL queries.

• High question complexity: Arises in the context of Metrics and Key Performance Indicators (KPIs)
within an organization. These questions are posed to make informed strategic decisions crucial for
organizational success. From a technical standpoint, these questions are translated to SQL queries
involving aggregations and mathematical functions.

Questions also depend on the number of tables required to provide an answer. Therefore, questions
are also classified on a spectrum of low to high schema:

• Low schema complexity: Small number of tables (i.e. 0 - 4), denormalized schema

• High schema complexity: Larger number of tables (5+), normalized schema, many-to many join
tables, etc.

By combining these two spectrums, four quadrants are defined which are used to classify the questions
as shown in Figure 32:

Figure 32: Four quadrants to classify questions: (1) Low Question/Low Schema Complexity, (2)
High Question/Low Schema Complexity, (3) Low Question/High Schema Complexity, and (4) High
Question/High Schema Complexity

This 43 questions of the benchmark can be found in [25] and on Github12. While 43 questions may be
considered small, the benchmark ensures coverage of key scenarios that reflect real-world enterprise data
usage and queries in the insurance domain. All the questions in the benchmark are building blocks to
answer one of the most important key metrics in the insurance industry: Loss Ratio. While benchmarks
with larger numbers of questions can provide generalizability to evaluate question answering systems and
setup leaderboards, the goal of this benchmark is to understand the role of Knowledge Graphs and to

12https://github.com/datadotworld/cwd-benchmark-data
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what extent the accuracy improves. The quadrant provides visibility on the type of extent. Furthemore,
the question quadrant can be considered as a framework to be applied for other domains; instead of
generating a laundry list of questions, categorize them in these quadrants.

Context Layer The context layer consists of two parts:

• Ontology: Business Concepts, Attributes, and Relationships that describe the insurance domain.

• Mapping: transformation rules from the source SQL schema to the corresponding Business
Concepts, Attributes, and Relationships in the target ontology.

For this current version of the benchmark, the context layer is provided in machine readable as RDF:
ontology in OWL and mapping in R2RML. The OWL ontology and R2RML mappings can be used to
create the Knowledge Graph either in a virtualized or materialized way.

Scoring The benchmark reports three scores: Execution Accuracy, Overall Execution Accuracy and
Average Overall Execution Accuracy.

• Execution Accuracy (EA): We follow the metric of Execution Accuracy (EA) from the Spider
benchmark [30]. An execution is accurate if the result of the query matches the answer for the
query. Note that the order or the labels of the columns are not taken in account for accuracy.

• Overall Execution Accuracy (OEA): Given the non-deterministic nature of LLMs, there is no
guarantee that given an input question, the generated query will always be the same thus providing
the same answer. Therefore, every question has a Overall Execution Accuracy (OEA) score which
is calculated as (# of EA)/Total Number of runs.

• Average Overall Execution Accuracy (AOEA): The Average Overall Execution Accuracy is the
average number of OEA scores for a given set of questions. This set could be for all the questions
in the benchmark or all the questions in a quadrant.

The benchmark serves as a framework for the results to be reproduced in an enterprise’s own setting
using their own enterprise schemas, questions and context.

B.1 Experimental Setup

The question answering system we evaluated was a zero-shot prompt to GPT-4, that is instructed to
generate a query, which is executed against the database. The resulting response is compared to the
response given by the reference query.

The particular parameters to the OpenAI API are as follows:

• max_tokens = 2048

• n = 1

• temperature = 0.3

Additionally, a timeout was set so that computations that take more than 60 seconds are considered
to be failures.

Note that the goal of our experiment is to understand the role of Knowledge Graphs on accuracy.
The focus of the experiment is not to understand how a certain LLM performs with a Knowledge Graph.
That is why we select only one LLM for our experiment, namely GPT-4. Naturally, future work should
include a comparison of multiple LLMs in order to understand how a Knowledge Graph can increase
accuracy on different LLMs.
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B.2 Question Answering System for SQL

The question answering system for SQL is shown in Figure 33. The question and the SQL DDL for the
database are provided as zero-shot prompt to GPT-4. These are combined together using the following
simple prompt template:
SQL Zero-shot Prompt

INSERT SQL DDL
Write a SQL query that answers the following question. Do not explain
the query. Return just the query, so it can be run verbatim from your
response.
Here’s the question:
INSERT QUESTION

We kept the prompt simple for this experiment, because we wanted to focus on the ability of the
contextual information (the DDL in the case of SQL) to provide necessary information for the formation
of the query.

The resulting query is sent verbatim to the SQL processor of data.world, which returns an answer
in a tabular form. This is converted into a Pandas DataFrame for comparison. At the same time, the
reference query for the question is sent to data.world, and its result is also converted to a DataFrame.
Once they are both in the form of DataFrames, it is a simple matter to compare them. Details of this
comparison are available from the Spider project[30].

B.3 Question Answering System for Knowledge Graph

The question answering system for the Knowledge Graph is shown in Figure 34. The question and the
OWL ontology are provided as zero-shot prompt to GPT-4. These are combined together using the
following simple prompt template:
SPARQL Zero-shot Prompt

As in the SQL case, we kept the prompt simple. The extra line about the SERVICE allows the LLM
to produce queries that invoke the data.world knowledge graph virtualization layer. In principle, this
adds some complexity to the SPARQL prompt, but in practice, GPT-4 seemed to handle it very well.

The resulting query is sent verbatim to the SPARQL processor of data.world, and the result converted
to a DataFrame, just as for the SQL case.
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Figure 33: Question Answering System for SQL

Figure 34: Question Answering System for Knowledge Graph
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B.4 Results

The results are presented in four parts 1) overall, 2) question quadrant, 3) partial accuracy and 4)
inaccurate results. In the results, we refer to

• SPARQL as question over Knowledge Graph representation of the SQL database and

• SQL as questions directly on the SQL databases without a Knowledge Graph.

Given that the OEA of a question is a percentage, the results are presented as a heatmap. Every
cell corresponds to a generated query for the given question. The value in the cell is the OEA for that
question. The green color corresponds to 100% OEA. The red color corresponds to 0% OEA. The color
scale goes from green to red.

The Overall and Quadrant results are presented in Table 18.

B.4.1 Overall

By grouping all the questions in the benchmark, SQL achieves an AOEA of 16.7%. In comparison,
SPARQL achieves an average OEA of 54.2% as shown in Figure 35. The heatmap that depicts the OEA
for each question is shown in Figure 36: Therefore, overall SPARQL accuracy was 3x the SQL accuracy.

Overall, Natural Language questions translated to SPARQL over a Knowledge Graph representation
of the SQL database achieved 3x the accuracy of natural language questions translated to SQL and
executed directly over the SQL database. Combining all the questions into one overall result is not
satisfactory because there are nuances to the types of questions. This is why we also present the results
in each of the quadrants.

B.4.2 Quadrant

0.0%

25.0%

50.0%

75.0%

100.0%

w/o KG (SQL) w/ KG (SPARQL)

Figure 35: Average Overall Execution Accuracy
(AOEA) of SPARQL and SQL for all the questions
in the benchmark

Figure 37 presents the AOEA scores for questions
in each quadrant. Figure 38 presents the heat
map for each quadrant. We observe the following
results:

• Low Question/Low Schema: SQL achieves
an AOEA of 25.5%. In comparison,
SPARQL achieves an AOEA of 71.1%. The
SPARQL accuracy is 2.8X the SQL accuracy.

• High Question/Low Schema: SQL achieves
an AOEA of 37.4%. In comparison,
SPARQL achieves an AOEA of 66.9%. The
SPARQL accuracy is 1.8X the SQL accuracy.

• Low Question/High Schema: SQL was not
able to answer any question accurately. In
comparison, SPARQL achieves an AOEA of
35.7%.

• High Question/High Schema: SQL was not
able to answer any question accurately. In comparison, SPARQL achieves an AOEA of 38.7%.
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Per the hypothesis, SPARQL achieves higher accuracy than SQL in every quadrant. Furthermore, it
is surprising to observe that SQL was not able to answer any question in the High Schema Complexity
quadrants. These results by quadrant sheds further light on understanding the extent. In each quadrant,
SPARQL accuracy is higher than the SQL accuracy. While the SPARQL accuracy is 2.8X the SQL
accuracy for Low Question/Low Schema and 1.8X for High Question/Low Schema, it was unforeseen
that SQL was not able to accurately answer any questions for Low Question/High Schema and High
Question/High Schema. The results also lead us to understand when SQL starts to fail. When a question
requires more than 4 tables to provide then answer, the accuracy drops to zero.

w/o KG (SQL) w/ KG (SPARQL) Improvement
All Questions 16.7% 54.2% 37.5%
Low Question/Low Schema 25.5% 71.1% 45.6%
High Question/Low Schema 37.4% 66.9% 29.5%
Low Question/High Schema 0% 35.7% 35.7%
High Question/High Schema 0% 38.5% 38.5%

Table 18: Average Overall Execution Accuracy (AOEA) of Overall and Quadrant Results

B.4.3 Partial Accuracy

We manually analyzed the generated SQL and SPARQL queries and observed that a subset of queries
produced partially accurate results. We consider a partially accurate answer to be one where the returned
answers are accurate but incomplete. During the manual analysis, the following patterns for partially
accurate answers are observed:

• Overlap: the columns returned by the query are correct, however, they are a subset of the accurate
answer. In some cases, they include other columns that are not part of the expected answer. This
can be seen as a form of a semantic overlap[10].

• Return Identifier: An internal identifier was returned instead of the appropriate label.

Consider the question Return all the claims we have by claim number, open date and close date?
and the following generated SQL and SPARQL query:

SQL

SELECT Claim_Identifier, Claim_Open_Date, Claim_Close_Date
FROM Claim

SPARQL

SELECT ?claim ?claimOpenDate ?claimCloseDate
WHERE {

?claim a in:Claim ;
in:claimNumber ?claimNumber ;
in:claimOpenDate ?claimOpenDate ;
in:claimCloseDate ?claimCloseDate .

}
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Figure 36: Overall Execution Accuracy (OEA) of SPARQL and SQL for all the questions as a heatmap

118



Figure 37: Average Overall Execution Accuracy (AOEA) of SPARQL and SQL for each quadrant
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Figure 38: Overall Execution Accuracy (OEA) of SPARQL and SQL for each quadrant as a heatmap

The answer for claim open date and claim close date are accurate and is a subset of the correct
answer. However in the SQL query, the Claim_Identifier column is being returned as the claim
number, when in fact, the claim number is actually the column company_claim_number. In the
SPARQL query case, the variable ?claim is returned which binds to the IRI that uniquely identifies
each claim. The claim number is not returned.

In practice, if a user is interacting with a system and the results are missing a column, they could
ask for the missing column or provide a label instead of an identifier. Therefore partial accuracy may be
acceptable for users. However this is an open question on how to define partial accuracy and how to
score it.

B.4.4 Inaccuracy

During the manual analysis of the generated queries, we also observed query characteristics that generated
the inaccurate answers. These characteristics were different for SQL and SPARQL.

SQL Inaccuracy The following three types of inaccuracies were observed:

• Column Name Hallucinations: Column names were generated that do not exist in the
corresponding table.

• Value Hallucinations: Generated value applied as a filter on a column where that value does
not exist in the database.

• Join Hallucinations: Generated joins that are not accurate.
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SPARQL Inaccuracy

• Incorrect Path: The generated query does not follow the correct path of the properties in the
ontology. The generated path goes from A to C when the correct path is A to B to C.

• Incorrect Direction: The generated query swaps the direction of a property. The generated
direction is B to A, when the correct direction is A to B.

The inaccuracy of SQL queries are based on hallucination while the inaccuracy of SPARQL queries
are based on path inconsistency. The SQL hallucinations are evident: column names that don’t exist in
a table and values that the LLM does not know if they exist in the data. The joins may seem plausible,
but they are not how the database was designed, thus returning empty results. For SPARQL queries,
the generated paths are indicative that the LLM knew what the correct starting and end node was and
the error was on defining the correct path from the start node to the end node. One could even argue
that the LLM appears to do some sort of reasoning but not always getting it correct. This observation
is what led us to the second part of our work.

C Ontologies to the Rescue

Consider the following knowledge represented in an ontology of a knowledge graph: a Policy is sold by
an Agent. If an LLM generated SPARQL query representing the statement an Agent is sold by a Policy,
it would be inconsistent because it does not match the semantics of the ontology (i.e. this doesn’t make
sense). Our intuition is two-fold. First, by leveraging the ontology of knowledge graph, we can check the
LLM generated SPARQL query and detect these types of errors. Second, we can also use the LLM to
repair incorrect SPARQL queries.

For example, assume the following question “return all the policies that an agent sold", resulted in
the following SPARQL query:

SELECT ?agent ?policy
WHERE {

?agent :soldByAgent ?policy .
?agent rdf:type :Agent

}

and given the following snippet of an OWL ontology

:soldByAgent a owl:DatatypeProperty;
rdfs:domain :Policy ;
rdfs:range :Agent .

we could determine that the generated query should be correct if the domain of :soldByAgent is
:Policy. However, per the query, the domain is :Agent and assuming they are disjoint, the generated
query does not match the semantics of the ontology, thus it is incorrect. Given an explaination of this
error, we could then prompt the LLM to try again.

We investigate the following research questions:
RQ3: To what extent can the accuracy increase by leveraging the ontology of a knowledge graph to
detect errors of a SPARQL query and an LLM to repair the errors?
RQ4: What types of errors are most commonly presented in SPARQL queries generated by an LLM?

The hypothesis is the following: An ontology can increase the accuracy of an LLM powered question
answering system that answers a natural language question over a knowledge graph.
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This first part of our approach is the Ontology-based Query Check (OBQC), which checks if
the query is valid by applying rules based on the semantics of the ontology. A set of rules checks the
semantics of the body of the query (i.e. the WHERE clause). Another set of rules checks the head of
query (i.e. the SELECT clause). It is important to clarify that the Ontology-based Query Check does
not use an LLM. It is a deterministic rule-based approach based solely on the semantics of the ontology.
If the OBQC detects an error, we could try to repair the query.

Repairing databases[1] and programs[11, 32] has been an long standing research area in computer
science. Recently, LLMs have been applied to repair programs[5, 18]. Inspired by these approaches,
consider the following example. Once a SPARQL query is detected to be incorrect, we can define an
explanation for the reason why it is incorrect. Per our running example, an explanation is the following:
The property :soldByAgent has domain :Policy, but its subject ?agent is a :Agent, which isn’t a subclass
of :Policy.. What if we can pass the incorrect SPARQL query, with this explanation and prompt the
LLM to rewrite the query?

The second part of our approach is LLM Repair, which repairs the SPARQL query generated by
the LLM. It takes as input the incorrect query and the explanation coming from the rule(s) that was
fired as an explanation to why the query is incorrect and re-prompts the LLM. The result is a new query
which can then be passed back to the OBQC. Our approach gives us the opportunity to understand
the capability of an LLM to repair a SPARQL query and thus further improve the accuracy. Figure 39
depicts the overview of our approach.

C.1 Ontology-based Query Check

Knowledge Graphs defined using the Semantic Web technology stack (specifically, RDF, RDFS, OWL
and SPARQL) have been built on a rigorous logical foundation. The exact meaning of a statement
(triple) in RDF is given in terms of predicate logic; the meaning of a model in RDFS or OWL is specified
according to a logical foundation [2, 15, 16]13. The meaning of a SPARQL query is specified in terms of
these logical foundations. A practical upshot of this theoretical framework is that it is possible to know
exactly what constraints a model in RDFS or OWL places on the correctness of a SPARQL query, and
these constraints can be described in an executable way in SPARQL. The approach takes two inputs: a
SPARQL query and an ontology. The output consists of a list of sentences that describe ways in which
the SPARQL query deviates from the specifications in the ontology.

The check system relies on the declarative nature of SPARQL, the structure of Basic Graph Patterns
and, the ability to query the ontology via SPARQL itself. If the generated query deviates from the
ontology, the approach outlines how. The approach to achieve this is threefold:

First, a SPARQL query consists of a pattern to be matched against the data (specified after the
keyword WHERE in the query); known as a Basic Graph Pattern (BGP) of the query. The process
begins with extraction of BGPs from the generated SPARQL query, replacing variables with resources
from a reserved namespace (prefixed with qq:). Some portions of the original query logic, including the
SELECT clause, subquery structures, filters, UNIONs, OPTIONAL and NOT clauses, aren’t considered
since the focus is on examining the compatibility of the BGP with the ontology structure. We leave that
for future work. However, note that violations of BGPs in an OPTIONAL or FILTER NOT EXISTS /
MINUS context are not ignored as they can also provide vital insights into the query understanding.

Second, a conjunctive graph14 is constructed by encapsulating two named graphs: :query and
:ontology, representing the SPARQL query’s BGP-turned-RDF and the ontology, respectively.

13For an introduction to knowledge graphs and semantic web technologies, we refer the reader to the textbooks “Semantic
Web for the Working Ontologist" and “Knowledge Graphs" https://kgbook.org/

14using RDFLib nomenclature
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Figure 39: Overview of our Ontology-based Query Checker and LLM Repair approach
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Third, the ontology consistency rules are applied guided by the formal logic of RDFS and OWL.
The rules are implemented in SPARQL which query the :query and :ontology graphs and identify
instances where the query diverges from the ontology.

Note that this ontology-based query check approach could be extended to other Knowledge Graphs
that lack a rigorous semantic foundation, such as property graphs. However, property graphs do not have
well-defined standardized schema language and an inference system. This would need to be explicitly
defined in order for our approach to be applied.

C.1.1 Rules

We defined two set of rules based on the body and the head of a query. The body rules check that the
Basic Graph Patterns of a SPARQL query (i.e. WHERE clause) matches the semantics of an ontology.
Our approach follows a subset of the RDF Schema (RDFS) semantics15. The body rules are:

• Domain: If the domain of a property p is a class C, then the subject of any triple using p as a
predicate must be a member of class C.

• Range: If the range of a property p is a class C, then the object of any triple using p as a predicate
must be a member of class C.

• Double Range: If two triples make conflicting requirements on the range of a property then error.

• Double Domain: If two triples make conflicting requirements on the domain of a property then
error

• Domain Range: If the object of a first triple is the subject of a second triple, then the range of the
property of the first triple should be the same as the domain of the property of the second triple.

• Incorrect Property: All the properties in the query need to exist in the ontology.

The head rules check the head of a SPARQL query (i.e. SELECT clause). A common error for an
LLM is to include extra values in the SELECT clause or to leave some out. These errors have nothing
to do with the ontology. However, a very common error is to include a variable in the SELECT clause
that will be bound to an IRI (an identifier). The head rules are:

• Subject Output: if a query selects a variable that is the subject of a basic triple pattern, then it is
an IRI.

• IRI Output: if a predicate has a specified range which is a class, then the object of that triple is
an IRI.

For simplicity, in this paper we only provide an example of the Domain Rule. The description of the
implementation for all the rules can be found in [3, 4].

The Domain rule (rdfs:domain in RDF Schema) is defined in English as follows: If the domain of a
property p is a class C, then the subject of any triple using p as a predicate must be a member of class
C. The domain rule is formally defined as:

IF
?p rdfs:domain ?C .
?s ?p ?o .

THEN
?s rdf:type ?C .

15https://www.w3.org/TR/rdf11-schema/
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The following SPARQL query is a representation of this domain rule which detects a violation:

SELECT ?p ?domain ? s ? c l a s s WHERE {
GRAPH : query{

? s ?p ?o .
? s a ? c l a s s .

}
GRAPH : onto logy {

?p rd f s : domain ?domain .
FILTER ( ISIRI (? domain ) )

}
FILTER NOT EXISTS {

? c l a s s r d f s : subClassOf ∗ ?domain .
}

}

The following example shows how the domain rule is used to check a BGP against an ontology.
Suppose the LLM generated the following query:

SELECT ? agent WHERE {
? agent : soldByAgent ? po l i c y .
? agent rd f : type : Agent

}

This query has a BGP consisting of two-triples:

?agent :soldByAgent ?policy .
?agent rdf:type :Agent

The BGP is turned into RDF graph by replacing the variables with resources from a reserved
namespace (prefixed with qq:):

qq:agent :soldByAgent qq:policy .
qq:agent rdf:type :Agent

Now, suppose the ontology includes the following definition of :soldByAgent:

:soldByAgent
rdfs:domain :Policy ;
rdfs:range :Agent .

The conjunctive graph in nquads is the following:

:query {
qq:agent :soldByAgent qq:policy .
qq:agent rdf:type :Agent .

}
:ontology {

:soldByAgent
rdfs:domain :Policy ;
rdfs:range :Agent .

}
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The first clause, on the graph :query, finds the precondition for rdfs:domain; there is a triple
with predicate (?p) whose subject is a member of some class. The second clause searches the ontology
for a relevant domain definition; that is, that same property ?p has a specified domain. This query
ignores domain definitions that are not IRIs, which would typically include domains that are UNIONs
or INTERSECTIONs of other classes. We have simplified the query for exposition in this paper, but it
would be easy enough to extend the query to deal with other OWL constructs. We leave this as future
work. Finally, the FILTER clause of this query checks to make sure that the class specified in the input
query (?class) is not included in the domain (?domain). If all of these conditions in the evaluation
query hold, then we have found a violation of the ontology in the query.

Continuing our example, in the :query graph, we have a match for the first clause, with the binding

?s -> qq:agent
?p -> :soldByAgent
?class -> :Agent

The second clause searches :ontology for a triple matching

?soldByAgent rdfs:domain ?domain

this matches, with ?domain bound to :Policy (which is indeed an IRI). Finally, we test whether

:Agent rdfs:subClassOf* :Policy .

Notice that the meaning of the * in SPARQL implies that this would succeed if :Agent were the
same as :Policy. But in this case, they are not the same, and there is no such triple, so the FILTER
NOT EXISTS condition succeeds, and the check comes up with a match, with the following bindings

?p -> :soldByAgent
?domain -> :Policy
?s -> qq:agent
?class -> :Agent

This information is not very understandable to a human, and might not be usable to an LLM. But it
can be formatted into a meaningful sentence in English as follows:

The property :soldByAgent has domain :Policy, but its subject ?agent is a :Agent, which
isn’t a subclass of :Policy.

For each check rule, we provide a template that can create this explanation. In this case, the template
is: The property {p} has domain {dom}, but its subject {s} is a {class}, which isn’t a subclass of {dom}

C.2 LLM Repair

The LLM Repair is a prompt that takes as two inputs: 1) the list of issues for which the query is
incorrect which is the output of the OBQC and 2) the incorrect SPARQL query. The prompt is the
following:
Explanation Zero-shot Prompt

The output is a new LLM generated SPARQL query, which is passed again to the OBQC. This cycle
repeats until the check pass, or an upper limit of cycles is reached. In our experiments, the limit is 3. In
this latter case, the query generation is said to be unknown; there is no point in sending a query that is
known to be faulty to the database.
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It is instructive to note that the LLM repair focuses on that task; we do not repeat the question
nor the ontology to the LLM. The ontology input was taken into consideration by the OBQC, and the
question is reflected in the query so far.

It is also noteworthy that there are two possible outcomes; we can achieve a query that we have
considerable confidence in (because it matches the semantics of the ontology), or we fail to create such a
query. In the latter case, we are aware of the failure of the system. In contrast to a pure LLM-based
system which is prone to hallucinations, when we get the wrong answer, we know it, and can report that
to the user.

C.3 Results

The results consider three cases: 1) accurate queries (that get the right answer), 2) inaccurate queries
(that get the wrong answer), and 3) unknown queries, queries that we know are incorrect and are not
able to repair. As we summarize the results, we follow the metric of Execution Accuracy (EA) from the
Spider benchmark [30].

We report the following metrics for a SPARQL query generated by an LLM:

• Execution Accuracy First Time: if the OBQC returns true the first time which results in an
accurate execution.

• Execution Accuracy with Repairs: if the OBQC returns false the first time and the LLM Repair
results in an accurate execution.

• Execution Unknown with Repairs: if the OBQC returns false the first time and the LLM Repair is
unable to repair after three attempts.

C.3.1 Accuracy Results

By grouping all the questions in the benchmark, the Average Overall Execution Accuracy with Repairs
is 72.55%. This is an increase of 29.67% based on the Average Overall Execution Accuracy First Time
which is 42.88%. The Average Overall Execution Unknown with Repairs is 8% which implies that the
LLM Repair is usually able to repair the queries and is still able to identify when queries can not be
repaired. By combining the Average Overall Execution Accuracy with Repairs and Average Overall
Execution Unknown with Repairs, the error rate is 19.44%. Based on the results shown in Table 19, we
observe that the Ontology-based Query Check and LLM Repair favorably increased the accuracy and
reduced the error rate in two areas:

• Questions on High Complex Schema: the Ontology-based Query Check and LLM Repair positively
impacts the accuracy of all types of questions that are on a high schema complexity.

• Combining Accuracy and Unknowns: “I don’t know" is a valid answer and arguable a better answer
than an inaccurate answer. By combining accuracy and unknown, the error rate reduces, notably
making a bigger impact in Low Question/Low Schema.

We observe the following details for each quadrant:

• Low Question/Low Schema: the Ontology-based Query Check and LLM Repair increased the
accuracy by 25.48%. The Execution Unknown with Repairs was the highest in this quadrant,
12.87%. Combined, this implies that the error rate is 10.46%, the lowest of all the quadrants.

127



Average
Overall

Execution
Accuracy

First Time

Average
Overall

Execution
Accuracy

with
Repairs

Average
Overall

Execution
Unknown

with
Repairs

Average
Overall

Execution
Accuracy +

Unknown
with

Repairs

Error Rate

All Questions 42.88% 72.55% 8% 80.56% 19.44%
Low Question
/ Low Schema 51.19% 76.67% 12.87% 89.54% 10.46%

High
Question /
Low Schema

69.76% 75.10% 6.02% 81.12% 18.88%

Low Question
/ High
Schema

17.20% 76.33% 3.45% 79.79% 20.21%

High
Question /
High Schema

28.17% 60.62% 8.40% 69.03% 30.97%

Table 19: Average Overall Execution Accuracy (AOEA) of Overall and Quadrant Results

• High Question/Low Schema: the Ontology-based Query Check and LLM Repair increased the
accuracy by 5.34% which was the lowest increase of the quadrants. It is not clear why. The final
error rate is 18.88%.

• Low Question/High Schema: the Ontology-based Query Check and LLM Repair had a substantial
impact by increasing the accuracy by 59.13% with an error rate of 20.21%.

• High Question/High Schema: the Ontology-based Query Check and LLM Repair had a meaningful
impact by increasing the accuracy by 32.45% with an error rate of 30.97%.

Comparing to the results with our first contribution, the accuracy increase is notable. The Average
Overall Execution Accuracy of the same zero-shot Text-to-SPARQL prompt on a Knowledge Graph
representation of the SQL database, reported in our previous work, was 54.2%, indicating an error rate
of 45.8%. With our Ontology-based Query Check and LLM Repair, the error rate is reduced to 19.44%.
Figure 40 depicts these results for all the questions in the benchmark. Figure 41 depicts these results for
all questions in each quadrant.

A follow up question to understand the extent is the following: How much of the possible execution
accuracy improvement was achieved? In other words, given the number of times the system achieved
an accurate answer on the first time, and the total number of runs, we know how much is left for
improvement. Therefore, how much of that improvement was achieved? For example, given a total of 10
runs, where 2 of them were accurate on the first try achieving a First Time Execution Accuracy of 20%,
means that there are 8 runs left where the OBQC and LLM Repair to repair a query in order to achieve
100% Execution Accuracy with Repairs. Let’s say that the system is able to accurately repair 4 times,
therefore the Execution Accuracy with Repairs is 60%. The achievable improvement is 50% because the
accurate repair occurred 4 times out of the 8 possible times. Achievable Improvement is calculated as
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Figure 40: Average Overall Execution Accuracy (AOEA) of SPARQL and SQL for all the questions in
the benchmark compared to OBQC and LLM Repair

Figure 41: Average Overall Execution Accuracy (AOEA) of SPARQL and SQL for all questions in each
quadrant compared to OBQC and LLM Repair
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(Number of Accurately Repaired Queries) / (Total Number of runs - Number of First Time Executed
Accurate queries). The results of achievable improvement are shown in Table 20

Average Achiev-
able Improve-
ment

All Questions 55.57%
Low Question/Low
Schema 49.30%

High Question/Low
Schema 40.45%

Low Question/High
Schema 72.23%

High Question/High
Schema 57.70%

Table 20: Average Achievable Improvement of Over-
all and Quadrant Results

The results indicate that the OBQC is able to
successfully repair queries half of the time. Thus,
we are halfway there and there is still room for
improvement. Recall that OBQC mainly checks
the body of the query and just two checks in the
SELECT clause determine if IRI identifiers are
returned. We postulate that a set of inaccurate
queries are due to the overlap type of partial ac-
curate queries: the columns returned by the query
are correct, however, they are a subset of the ac-
curate answer. Therefore possible repair rules can
be defined to check the head of the query. Ad-
ditionally, this may indicate the need for more
expressive ontologies.

C.3.2 Error Type Results

In our experiments, we kept count of the number
of times a rule was invoked by the OBQC. Table
21 presents the percentage of usage of each rule in
the OBQC. Notably, 70% of the repairs were done
by the Body rules checks while 30% of the repairs were done by the Head rules. The rules exclusively
related to domain were invoked 42.16% of the time and surprisingly, rules exclusively related to range
were invoked less than 1% of the time. The Domain Range rule contributed to 22.78% of the repairs.

Rule Usage

Double Domain 37.47%
Domain Range 22.78%
IRI Output 18.40%
Subject Output 11.91%
Domain 4.69%
Incorrect Prop-
erty 4.26%

Range 0.43%
Double Range 0.06%

Table 21: Rule usage in the Ontology-based Query
Check

A surprising result is that the domain related
rules had the largest impact in repairs. These
results may shine some light on what is happening
underneath the hood inside an LLM, namely the
relationship between english language and triples
of a graph. English is written and read from left to
right. The domain of a property has a relationship
to the left side of a triple. If the LLM writes
a query which is wrong, it would most probably
get it wrong at the beginning of a sentence/triple.
This may be an explanation on why the domain
related rules were the most impactful.

D Conclusion

We are now able to provide answers to our research
questions:
RQ1: To what extent Large Language Models
(LLMs) can accurately answer Enterprise Nat-
ural Language questions over Enterprise SQL
databases.
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Answer: Using GPT-4 and zero-shot prompting, Enterprise Natural Language questions over
Enterprise SQL databases achieved 16.7% Average Overall Execution Accuracy. For Low Question/Low
Schema, the Overall Execution Accuracy was 25.5%. For High Question/Low Schema, the Overall
Execution Accuracy was 37.%. However, for both Low Question/High Schema and High Question/High
Schema, the accuracy was 0%.
RQ2: To what extent Knowledge Graphs can improve the accuracy of Large Language Models (LLMs)
to answer Enterprise Natural Language questions over Enterprise SQL databases.

Answer: Using GPT-4 and zero-shot prompting, Enterprise Natural Language question over a
Knowledge Graph representation of the enterprise SQL database achieved 54.2% Average Overall
Execution Accuracy. The overall SPARQL accuracy was 3x the SQL accuracy and the accuracy
improvement was 37.5%.
RQ3: To what extent can the accuracy increase by leveraging the ontology of a knowledge graph to
detect errors of a SPARQL query and an LLM to repair the errors?

Answer: By using the same zero-shot prompting on GPT-4 and adding the Ontology-Based Query
Check and LLM Repair, that new accuracy is 72.55%. That is over a 4x accuracy improvement compared
to the zero-shot promting with SQL. Given that we consider an unknown result in our approach because
the LLM Repair is not able to repair and the Ontology-Based Query Check catches the error, the overall
error rate is 19.44%.
RQ4: What types of errors are most commonly presented in SPARQL queries generated by an LLM?

Answer: 70% of the repairs were done by the Ontological checks while 30% of the repairs were
done by the SELECT Clause checks. The domain related rules had the largest impact in repairs, being
invoked 42.16% of the time. An interpretation of this result is that if the LLM writes a query which is
wrong, it would most probably get it wrong at the beginning of a sentence/triple and the domain of a
property has a relationship to the left side of a triple.

The answers to our research questions are evidence that supports the main conclusion of our work:
Knowledge Graph provides higher accuracy for LLM powered question answering systems on SQL
databases.

What is evident is that context is crucial for accuracy and these results further emphasizes the need
to invest in business context. The point to be made here is a call to action that investing in context
of SQL databases is required to increase the accuracy of LLMs for question answering over the SQL
databases. In this work, the context was presented in the form of a knowledge graph consisting of an
ontology that describes the semantics of the business domain and mappings that connect the physical
schema with the ontology which are used to create the knowledge graph. The ontology can also include
further semantics such as synonyms, labels in different languages, which are not expressible in a SQL
DDL.

Arguably, our work has influenced the wider data industry to acknowledge the need to invest in
semantics and knowledge graphs in this new AI era. Our work has been reproduced and validated by
multiple independent vendors1617 18 19 20 21 22, and contributed to rise of GraphRAG23.

The takeaway for enterprises is that in order to provide trustworthy question answering systems that
results in highly accurate results, they must make an investment in business context and semantics.

16https://roundup.getdbt.com/p/semantic-layer-as-the-data-interface
17https://www.atscale.com/blog/semantic-layers-make-genai-more-accurate/
18https://www.wisecube.ai/blog/optimizing-llm-precision-with-knowledge-graph-based-natural-language-qa-systems/
19https://blog.kuzudb.com/post/llms-graphs-part-1/
20https://delphihq.substack.com/p/delphi-at-100-dbt-semantic-layer
21https://cube.dev/blog/semantic-layers-the-missing-piece-for-ai-enabled-analytics
22https://www.stratio.com/blog/stratio-business-semantic-data-layer-delivers-99-answer-accuracy-for-llms/
23https://neo4j.com/blog/graphrag-manifesto/
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This context needs to be effectively managed in metadata managements systems such as data catalog
and governance platforms built on a knowledge graph architecture.
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Abstract

Large Language Models (LLMs) have revolutionized access to multimodal data lakes, enabling
users to query and analyze complex information across diverse data modalities using natural language.
However, their generative nature unavoidably leads to hallucinations, resulting in inaccuracies and
misinformation in models like GPT, Llama, and Gemini. To address this, we introduce Symphony,
a system designed for trustworthy question answering and verification using multimodal data lakes.
Symphony supports two core functions: reasoning and verification. In reasoning, Symphony retrieves
relevant information from multimodal data sources, breaks down complex queries into manageable
sub-questions, and uses specialized tools (e.g., LLMs or DBMS) to generate grounded answers. For
verification, it cross-checks (LLM) generated answers against trusted sources, such as private or
enterprise data lakes, to enhance accuracy and reliability. By integrating these processes, Symphony
mitigates factual inaccuracies, aligns outputs with trusted data, and adapts to a wide range of
applications.

A Introduction

The rise of Large Language Models (LLMs) has unlocked transformative opportunities across
diverse domains, including natural language processing, data analysis, and creative design, among many
others. By enabling interaction with complex systems through intuitive natural language queries, LLMs
democratize access to knowledge and data, allowing users to obtain valuable information quickly and
cost-effectively without requiring specialized expertise or manual data processing. This accessibility
has driven widespread adoption across industries such as healthcare, finance, and customer service,
empowering both professionals and non-experts to extract insights and make informed decisions with
ease. By reshaping traditional workflows, LLMs have the potential to significantly enhance productivity
and decision-making across a wide range of applications.

However, alongside these opportunities, significant risks of LLMs (or more generally, generative
AI) have emerged. The phenomenon of hallucinations, i.e., the generation of inaccurate or misleading

Ju Fan is the corresponding author
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Figure 42: An Overview of Symphony.

information, poses a serious challenge to trust in LLM outputs. By 2023, analysts estimated that
chatbots hallucinate as much as 27% of the time1, and factual errors were present in 46% of generated
texts [5], underscoring the prevalence of this issue. These inaccuracies can negatively impact various
aspects, including decision-making, the spread of misinformation, privacy violations, and potential legal
liabilities.

Developing trustworthy solutions for question answering is a priority for both academia and
industry, with efforts focused on improving accuracy, reducing biases, and aligning models with human
values. Companies like OpenAI and Google enhance model reliability through advanced training and
Responsible AI principles2. Initiatives like the Partnership on AI and collaborations by the AI Ethics
Lab promote ethical guidelines and accountability in AI development3. However, challenges remain due
to the probabilistic and generative nature of LLMs, which leads to unpredictability in outputs. While
current efforts are valuable, they are insufficient to fully address issues such as inaccuracies, biases, and
lack of explainability. More robust systems are needed, especially in high-stakes applications like data
analysis over multimodal data, where trustworthiness is critical.

In this paper, we present Symphony [4, 17], a system designed for trustworthy question answering
and data analysis over multimodal data lakes. Given a multimodal data lake L and a natural language
question Q requiring factual or objective answers, the task of reasoning involves generating an answer
to Q by retrieving relevant data from L and applying various reasoning tools such LLMs, RDBMSs, or
graph databases. Additionally, if an answer A is provided—whether from humans or LLMs (possibly
enhanced with RAG)—the task of verification is to assess the correctness of A for Q, using the data lake
L (either a public data lake or a private/enterprise data lake) to ensure factual accuracy and reliability.

As illustrated in Figure 42, Symphony comprises three core modules: (1) Discovery operates over
multimodal data lakes and serves as the retrieval module; (2) Reasoning formulates answers to natural
language questions using retrieved information and various tools; and (3) Verification assesses the
correctness of provided answers utilizing LLMs and multimodal data lakes.

Roadmap. Section B describes the Discovery module. Section C discusses the Reasoning module.
1https://www.nytimes.com/2023/11/06/technology/chatbots-hallucination-rates.html
2https://openai.com/safety/
3https://aiethicslab.com/
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Section D presents the Verification module. Section E describes empirical findings. Section F
identifies open problems. Section G discusses related work. Finally, we close this paper by concluding
remarks in Section H.

B Symphony: Data Discovery over Multimodal Data Lakes

Data discovery is the process of identifying relevant data files from multimodal data lakes efficiently. As
shown in Figure 43, Symphony provides two main categories of data discovery methods: (a) word-level
similarity search and (b) holistic embedding-based similarity search. These methods are chosen based
on a balance between efficiency and effectiveness, enabling retrieval of relevant data from data lakes,
thus supporting both reasoning and verification.

Word-level similarity search breaks down queries and data items in the data lakes into words (or
terms), retrieves and ranks data items based on combined word-level similarity, as shown in Figure 43
(a). Methods like BM25, TF-IDF, and Jaccard similarity are used. These approaches are simple,
interpretable, and computationally efficient, making them ideal for scenarios with high word overlap
between the query and data items.

Embedding-based similarity search encodes multimodal data items and queries into high-dimensional
vectors in a shared embedding space, enabling fast and precise similarity calculations. As shown in
Figure 43, in this process, multimodal data (e.g., text, tables or images) are encoded into dense vector
embeddings. These embeddings are then stored in a vector database (e.g., Meta Faiss), and indexed
for fast similarity-based retrieval, typically using efficient distance metrics like cosine similarity or dot
product. To support various data representations, Symphony investigates the following two encoding
strategies:

(b) Holistic Embedding-based Similarity Search 
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1. Modal-specific Representation Learning. This strategy uses models tailored to each data
type (e.g., text encoder [11], table encoder [16] or image encoder CLIP [14]), capturing unique
features like intricate table structures or text nuances, making it ideal for precise retrieval within
individual modalities.

2. Modal-agnostic (Cross-Modal) Representation Learning. This strategy learns a shared
embedding space, using a General Encoder, through cross-modal representation learning (see
[4] for more details), enabling similarity comparisons across modalities. This approach supports
queries that can retrieve relevant items from different modalities, enhancing interoperability where
cross-modal relationships are crucial.

C Symphony: Reasoning over Multimodal Data Lakes

In this section, we present the reasoning process of Symphony, which integrates Large Language Models
(LLMs) with Retrieval-Augmented Generation (RAG) to reason over information from multimodal data
lakes. Given a natural language (NL) question, Symphony first retrieves top-k relevant data items from
the data lakes, as discussed in the previous section. Symphony then conducts a question decomposition
strategy to address complex queries effectively, where a question can be decomposed into sub-questions,
and each sub-question can be answered by different tools, such as LLMs, DBMSs, and so on.

C.1 Question Decomposition

We propose a Question Decomposition strategy to address complex questions requiring information from
multiple sources. Here, a data source is defined as a collection of data items originating from the same
origin, such as an isolated table, a database, or a text passage. When multiple data items, like a table
and passage, come from the same Wikipedia page or structured document, they are also treated as a
single data source. Similarly, if two tables di and dj have a predefined primary-foreign key (PK-FK)
relationship, as with tables from the same database, they are merged into a unified data source d′k.
Initially, we retrieve a set of data items D = {d1, d2, . . . , dn} from multimodal data lakes and process
them using heuristic methods to form D′ = {d′1, d′2, . . . , d′m}, where m ≤ n and each di ∈ D′ represents
a distinct data source.

The objective of our question decomposition strategy is to break down a complex query into simpler
sub-questions to facilitate retrieval of relevant information. Ideally, each sub-question should focus on a
primary data source. However, we allow flexibility for sub-questions that still require multiple sources
after decomposition, accommodating scenarios where information from different sources complements
or corroborates each other. This adaptable approach enhances reasoning effectiveness by balancing
simplicity, which reduces each sub-question to its essential elements, with the integration of supportive
data, enabling relevant details from multiple sources to strengthen the answer’s accuracy. Together,
these elements minimize fusion errors and streamline the reasoning flow, creating a coherent, step-by-step
resolution.

To achieve this, Symphony employs an iterative prompt-based approach with LLM to automate
the decomposition process. In each round, the LLM generates a sub-question based on the previous
sub-question and data source, or decides to terminate the process. First, an initial prompt is generated
to identify the first sub-question and its corresponding data sources. Symphony then iteratively uses
this information to generate subsequent prompts, guiding the LLM to create the next sub-question until
the entire question is resolved. In cases where the LLM determines that a question cannot be effectively
decomposed, Symphony bypasses decomposition. Instead, it directly leverages the information retrieved
from multiple data sources to formulate a reasoning for the original question. For example, a question
like “What is the population of France?” cannot be further decomposed into distinct sub-questions.

138



…

Q1: The passage P1 has the following content: Faraar (transl. Absconding) is a 1975 Bollywood crime film drama. The film is produced by Alankar Chitra and 
directed by Shanker Mukherjee. The film stars Amitabh Bachchan, Sharmila Tagore, Sanjeev Kumar, Sulochna, Sajjan, Agha and Bhagwan Dada…
The table T1 has the following columns: Year, Song, Film, Music Director, Lyricist. 
Based on P1 and T1, the question is “Which songs appeared in a film produced by Alankar Chitra and directed by Shanker Mukherjee?”.
What sub-questions can it be broken down into? 

LLM:            What is the name of the film produced by Alankar Chitra and directed by Shanker Mukherjee. It can be answered by P1.

Q2: The first sub-question is “What is the name of the film produced by Alankar Chitra and directed by Shanker Mukherjee?”, it can be answered by P1.

LLM:             the second sub-question is “What is the name of the song in the film?”, it can be answered by T1. …

Data Discovery with Cross-modality Representations

      Which songs appeared in a film produced by Alankar Chitra and directed by Shanker Mukherjee?Q

Faraar (transl. Absconding) is a 1975 
Bollywood crime film drama. The film is 
produced by Alankar Chitra and directed 
by Shanker Mukherjee. The film stars 
Amitabh Bachchan, Sharmila Tagore, 
Sanjeev Kumar, Sulochna, Sajjan, Agha 
and Bhagwan Dada…
Source: https://en.wikipedia.org/wiki/Faraar Source: https://en.wikipedia.org/wiki/Kishore_Kumar

On-demand Natural Language Query Decomposition with LLM Optimized Query Execution

P1 T1

“Faraar”

res(       ) over P1 res(       ) over T1 res(     ) Q

“Main Pyaasa tum”

q1

q2

q1 q2

prompt0

prompt1

Figure 44: RAG-based Reasoning in Symphony

We illustrate the question decomposition process in Figure 44. Suppose we have a question Q:
“Which song ...,” with two relevant data sources retrieved from multimodal data lakes, a passage P1 and
a table T1. Using a template-based approach, Symphony constructs an initial prompt, prompt0, based
on Q, P1, and T1. Symphony sends the prompt prompt0 to LLM, and LLM generate a sub-question
q1 as well as the data source on which it should be utilized. Building on the first sub-question q1 and
its data source P1, Symphony uses the next prompt template to generate prompt1. Given prompt1,
the LLM generates the second sub-question, q2, and assigns table T1 as its data source. At this point,
the LLM decides to stop, as it considers the original query Q fully addressed.

C.2 Reasoning

Question Answering using Retrieval Augmented Generation (RAG). We leverage the powerful
reasoning capabilities of large language models (LLMs) to address complex questions alongside relevant
retrieved data sources. Using a prompt-based approach, we guide LLMs to conduct nuanced reasoning
and generate coherent answers. If necessary, we can also prompt the LLM to provide detailed explanations
of the reasoning, enhancing transparency and interpretability. Symphony offers NL2SQL as another way
to support queries over a single table or a database. In addition to the existing NL2SQL techniques [9],
Symphony leverages LLMs [12], as well as the prompting techniques to convert NL questions to SQL
queries, using similar ideas we introduced in question decomposition.

Sub-Answers Aggregation. For complex questions, answers to each sub-question need to be combined
accurately for a complete response. Using a prompt-based approach, the LLM sequentially integrates
individual answers, rephrasing them into a coherent response to the original question. For instance, if
the task involves summing values from sub-answers, the LLM aggregates these values directly, producing
a reliable and context-aware final result.

Reasoning Optimization. To ensure both efficiency and accuracy, reasoning optimization is applied to
streamline execution plans and reduce response times. Symphony employs a multi-objective optimizer
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that balances speed with precision, choosing the best approach based on retrieved data type and question
complexity. For instance, if an exact result is critical and the data is highly structured, Symphony
prioritizes Natural Language to SQL (NL2SQL) for accuracy; otherwise, Table Question Answering
(TableQA) can be used for faster, approximate answers.

This optimization framework also manages cost-performance trade-offs by evaluating the computa-
tional demands of various query methods. For high-priority questions, accurate methods are selected,
while non-critical evaluating may utilize quicker, approximate options. This flexible approach enables
Symphony to handle complex, multimodal evaluating efficiently, effectively decomposing and aggregating
responses across data sources.

D Symphony: Answer Verification over Multimodal Data Lakes

This section describes our verification approach [17]. In Symphony, verification occurs when an answer is
provided, with the objective of ensuring its correctness. Notably, Reasoning and Verification are
loosely coupled, allowing Verification to validate answers regardless of whether they are generated
by humans, large language models (LLMs), or other tools.

During verification, this answer is used as a query to retrieve supporting or contradicting data items
from the multimodal data lake, with the aim of either validating or refuting the generated information.
Symphony employs two types of verifiers. The first type is a one-size-fits-all model, such as an LLM,
which can be conveniently utilized by sending prompts directly. The second type consists of task-specific
models, designed for specialized scenarios, such as PASTA [9] for verifying facts based on tables. While
using LLMs by default provides simplicity, we support task-specific models for two main reasons:

1. Data privacy: In sensitive domains like healthcare and government, using generic, externally
hosted models can risk data exposure. Task-specific, localized models mitigate this by processing
data internally, protecting privacy;

2. Improved accuracy: Our empirical results show that task-specific models, fine-tuned on relevant
datasets, generally outperform generic models for specialized tasks, providing more reliable and
precise results.

An example of this verification process is shown in Figure 45. Based on an answer generated by the
LLM, Symphony retrieves a passage titled “Stomp the Yard” and a table “Meagan Good’s Filmography”
from the data lake. Using these retrieved items as evidence, the verifier identifies the generated content
as incorrect and provides an explanation for the error.

The multimodal data lakes used in verification can differ from those used in reasoning, such as
private or enterprise-specific data lakes, which contain domain-specific knowledge and high-quality,
reliable data tailored to organizational needs. Using such data sources in the verification process not
only enhances reliability but also ensures that outputs adhere to specific content standards and align
with user expectations. This is particularly valuable in enterprise applications where data quality and
relevance are important.

E Experiments

We conduct preliminary experiments to demonstrate the effectiveness of Symphony. We evaluate its
performance in two key processes: Reasoning and Verification.
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Does Meagan Good play a role in Stomp the Yard?

No, Meagan Good does not appear in the 2007 film "Stomp the Yard." "Stomp the Yard" is adance drama film directed by Sylvain White, and 
Meagan Good is not listed as part of themain cast or credited with a role in the film. The main cast of"Stomp the Yard" includesactors such as 
Columbus Short, Chris Brown, Ne-Yo, and Brian White, among others. MeaganGood is an American actress known for her roles in films such as 
"Think Like a Man," "Eve'sBayou," and "Waist Deep," but she did not appear in "Stomp the Yard."

Data Lake
Coco

Year

Waist Deep

April Palmer

Natasha Freeman

One Missed Call

Title

2008

Stomp the Yard

Shelley Baum

Role

2006

2006 Miles from Home

2007

Meagan Good’s FilmographyStomp the Yard

Based on the retrieved data, the generated answer is incorrect. Meagan Good is indeed listed as part of the main cast in the 2007 film Stomp the 
Yard. The passage mentions Meagan Good as one of the starring actors, and the table confirms her role as "April Palmer" in Stomp the Yard. 
Therefore, Meagan Good did appear in Stomp the Yard.Verifier

Figure 45: RAG-based Verification in Symphony

E.1 Question Answering

Experiment Setting. In this experiment, we focus on evaluating question answering performance
using a multimodal data lake consisting of 400K web tables and 6M English passages extracted from
Wikipedia. The data lake includes both tables and texts, and each query is designed to retrieve relevant
data items to answer a given question. We use 18 manually crafted user queries, each with corresponding
ground truth annotations specifying the required data items, sub-queries for decomposition, and final
answers.

Data Discovery Evaluation. The effectiveness of data discovery is measured using the recall at
K (R@K) metric, which calculates the proportion of relevant data items retrieved in the top-K
recommendations. The experimental results show that when K is 5, 10, 15, and 20, the R@K values
are 40.8%, 46.3%, 59.3%, and 77.8%, respectively. For 12 out of the 18 queries, Symphony successfully
discovers all the relevant items needed to answer the query. The remaining 6 queries show partial success.
In total, 30 out of 38 related items are correctly discovered, demonstrating the potential of the proposed
data discovery methodology, even though it is still in a preliminary stage.

Query Decomposition Evaluation. To decompose queries into manageable sub-queries, Symphony
serializes the discovered data items and uses GPT-3 to generate sub-queries. The output includes the
sub-queries and corresponding data item ids. Evaluation of the decomposition quality is based on
two criteria: (1) whether each sub-query is useful for solving the original query, and (2) whether the
sub-query can be answered correctly using the selected data item. The human evaluation results show
that 77.8% of the queries scored 2 (both criteria met), 16.7% scored 1 (only the first criterion met), and
5.5% scored 0.

Table 22 shows the results of 8 instances. Symphony is able to handle different aggregation operations,
such as sum (Instance 2) and comparison (Instance 3). Further, it correctly understands long sentences
(Instance 1). However, Symphony has difficulty in dealing with sentences with complex syntactic
structures (e.g., in Instance 4, GPT-3 mistakenly generates q3 because it takes the subject of released”
as Academy Award for Best Foreign Language Film”.).
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Instance 1: Q: Did the 2014 United States house of representatives elections take place on the
same day in Rhode Island, South Carolina and Louisiana? E = {P1, P2, P3}
→ q1: Did the 2014 United States House of Representatives elections take place on November 4,
2014 in Rhode Island? e1 = P1; q2: Did the 2014 United States House of Representatives elections
take place on November 4, 2014 in South Carolina? e2 = P2; q3: Did the 2014 United States House
of Representatives elections take place on November 4, 2014 in Louisiana? e3 = P3

⋆ Score: 2
Instance 2: Q: How many representatives were elected in the 2014 United States house of represen-
tatives elections in Rhode Island and South Carolina? E = {P1, P2}
→ q1: How many representatives were elected in the 2014 United States house of representatives
elections in Rhode Island? e1 = P1; q2: How many representatives were elected in the 2014 United
States house of representatives elections in South Carolina? e2 = P2

⋆ Score: 2
Instance 3: Q: Which number is larger, the number of living former prime ministers of Tunisia or
the number of former presidents of Ghana? E = {T1, P1}
→ q1: What is the number of living former prime ministers of Tunisia? e1 = P1; q2: What is the
number of former presidents of Ghana? e2 = T1

⋆ Score: 2
Instance 4: Q: What year was the first German film that won the Academy Award for Best Foreign
Language Film released? E = {T1, P1}
→ q1: What year was the film The Tin Drum released? e1 = T1; q2: What was the first German
film that won the Academy Award for Best Foreign Language Film? e2 = T1; q3: What year was
the first Academy Award for Best Foreign Language Film given out? e3 = T1

⋆ Score: 0
Instance 5: Q: Did The Tin Drum and Kolya both win the Academy Awards for Best Foreign
Language Film? E = {P1, P2}
→ q1: whether The Tin Drum has ever won the Academy Award for Best Foreign Language Film?
e1 = P1; q2: whether Kolya has ever won the Academy Award for Best Foreign Language Film?
e2 = P2

⋆ Score: 2
Instance 6: Q: How many years elapsed between the premiere of season 10 and the premiere of
season 5 of Law & Order : Special Victims Unit? E = {T1, T2}
→ q1: What is the premiere date of season 10 of Law & Order : Special Victims Unit? e1 = T2; q2:
What is the premiere date of season 5 of Law & Order : Special Victims Unit? e1 = T1

⋆ Score: 2
Instance 7: Q: Did You Let Me Walk Alone participate in the Eurovision Song Contest in 1996?
E = {T1, P1}
→ q1: What year was the Eurovision Song Contest held in Lisbon, Portugal? e1 = T1; q2: What
year was You Let Me Walk Alone released? e2 = P1

⋆ Score: 1
Instance 8: Q: Are the tallest building in the united kingdom and the tallest building in poland
above 200 meters? E = {T1, T2}
→ q1: What is the height of the tallest building in the United Kingdom? e1 = T1; q2: What is the
height of the tallest building in Poland? e2 = T2

⋆ Score: 2

Table 22: Example sub-queries generated by Symphony. qi and ei represent the ith sub-query and its
corresponding data item. Ti represents a table and Pi represents a text.
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            Claim: In 1954 u.s. open (golf), the cash prize for tommy bolt,  
            fred haas,  and ben hogan was 960 in total. 
            (Ground Truth: a false claim that should be Refuted) 

Retrieved Evidence and Verification 
Table E1: 1954 u.s. open (golf) 
I place I player I country I score I to par I money I 
I t1 I ed furgol I united states I 71 + 70 + 71 + 72 = 284 I + 4 1 6000 I 
I t2 I gene littler I united states I 70 + 69 + 76 + 70 = 285 I + 5 I 3600 I 
| t3 I lloyd mangrum I united states I 72 + 71 + 72 + 71 = 286 I + 6 | 1500 I 
| t3 I dick mayer I united states I 72 + 71 + 70 + 73 = 286 I + 6 | 1500 I 
| t5 I bobby locke I south africa I 74 + 70 + 74 + 70 = 288 I + 8 | 960 | 
I t6 I tommy bolt I united states I 72 + 72 + 73 + 72 = 289 I + 9 | 570 I 
I t6 I fred haas I united states I 73 + 73 + 71 ÷ 72 = 289 I + 9 | 570 I 
| t6 I ben hogan I united states I 71 + 70 + 76 + 72 = 289 I + 9 | 570 I 
I t6 I shelley mayfield I united states I 73 + 75 + 72 + 69 = 289 I + 9 | 570 I 
I t6 I billy joe patton (a) I united states I 69 + 76 + 71 + 73 = 289 I + 9 1 0 1 
Verification result: Refuted.  Explanation: The cash prize for Tommy Bolt,  
Fred Haas, and Ben Hogan was $570 each, totaling $1710. 

Table E2: 1959 u.s. open (golf) 
I player I country I year (s) won I total I to par I finish I  
I ben hogan I united states I 1948, 1950, 1951 , 1953 | 287 | + 7 I t8 I  
I cary middlecoff I united states I 1949, 1956 | 294 I + 14 | t19 I  
| liack fleck I united states I 1955 | 294 I + 14 I t19 I  
| liulius boros I united states | 1952 | 297 | + 17 | t28 I  
I tommy bolt I united states | 1958 | 301 | + 21 I t38 I V2:  
Verification result: Not related.

Figure 46: Verifying a textual claim using retrieved tables.

E.2 Answer Verification

We showcase preliminary experimental results that highlight the initial achievements of Symphony in
facilitating the verification of generative AI.

Experiment Setting. We perform a controlled study to assess textual claims, employing 1,300 textual
claims from the TabFact [3] benchmark, which is currently the most advanced benchmark for verifying
the credibility of textual hypotheses by utilizing a given table. The data lake consists of 16,573 tables
from the TabFact and 2,925 tables sourced from WikiTable-TURL [6].

Evaluation for Retrieval. We use Elasticsearch [8] to retrieve the top-5 tables for each textual
claim. Given the limited amount of relevant data, we focus on the recall metric for evaluation. Each
textual claim is associated with a corresponding table in the original dataset, which we consider relevant
evidence, while other retrieved tables are deemed irrelevant. The retrieval performance, measured by
R@5, is 0.88.

Evaluation for Verification. We evaluate the verification process using two different verifiers: GPT-3.5,
the default verifier for both data types, and PASTA [9], a specialized model for text verification. The
performance of the verifiers is measured by accuracy. When the retrieved data cannot support or refute
a claim, the verifier outputs “not related”. However, in this case, since PASTA that only offers two
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different answers: “true” or “false”, we consider it’s also correct when PASTA outputs “false”.
We conduct experiments in two settings. When a relevant table is retrieved and provided as evidence

to the verifier, PASTA achieves higher accuracy than GPT-3.5 (0.89 vs. 0.75) in verifying the textual
claim based on the table. However, in cases where many of the retrieved tables are irrelevant to the
claim, the verifier must accurately determine which tables are not related. In this setting, PASTA’s
accuracy drops to 0.72 because it has not encountered this scenario during training, while GPT-3.5
improves to 0.91. Thus, when the retrieved data is highly related to the generative data, local models
like PASTA have higher accuracy while protecting privacy. In contrast, GPT-3.5 is better at generalizing
and providing explanations for further judgments. Users can select the appropriate model based on their
requirements.

In Figure 46, we present a case of verifying a textual claim based on retrieved tables using GPT-3.5.
Symphony retrieves two tables E1 and E2, where E1 can be used with an aggregation query to refute
the claim while E2 is not related because it is for the year 1959. The red boxes in Figure 46 show that
GPT-3.5 can provide not only a verification result but also some explanation.

F Open Problems

Cross-Modal Data Discovery. Data discovery presents a significant challenge within data preparation,
especially when dealing with data lakes that store diverse types of data across various formats, including
structured data (e.g., tables), semi-structured data (e.g., graphs), and unstructured data (e.g., images
and videos). Unlike data lakes containing only relational tables, discovering relevant data across multiple
modalities requires addressing the inherent heterogeneity of these data types. One promising direction for
tackling this challenge is to explore cross-modal representation learning, which encodes data from different
modalities into a unified vector space. This approach can enable a streamlined data discovery process
by supporting embedding-based similarity search. While we have made initial strides in cross-modal
representation, our current work has not touched the surface of modeling relationships across different
data modalities. Further research is needed to deepen our understanding and improve cross-modal data
discovery methods.

Cross-Modal Data Reasoning and Verification. One of the complexity of cross-modal reasoning
and verification stems from the intricate relationships between different data modalities, such as text,
images, and structured data (e.g., tables and knowledge graphs). Each modality often possesses unique
characteristics and contextual information that can complicate the verification process. For instance,
verifying a claim made in textual data may require correlating it with relevant knowledge graph entities or
structured data, where mismatches in representation and interpretation can lead to inaccuracies. Current
large language models, such as GPT, demonstrate reasonable performance in reasoning across diverse
data types; however, there remains significant room for improvement, particularly regarding privacy
and accuracy. To address these challenges, promising directions include the development of domain-
specific models that focus on the interactions between specific modalities, improved representation
learning techniques for better alignment of data types, and hybrid approaches that combine local and
large language models. Additionally, privacy-preserving techniques, such as federated learning and
iterative feedback mechanisms, could enhance the robustness and reliability of cross-modal reasoning
and verification. These strategies aim to create a more effective framework for ensuring the accuracy
and trustworthiness of generative AI outputs across different modalities.

Trustworthiness of Data Sources. The accuracy of discovering and verifying data across different
modalities in a data lake can be influenced by the quality and reliability of the underlying data sources.
Therefore, it is crucial to assess the trustworthiness of different sources accurately to enhance the overall
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accuracy and reliability of the entire verification process.

G Related Works

Retrieval Augmented Generation Question Answering. Large languaga models sometimes
generate factually incorrect or misleading information, often due to a lack of real-time knowledge or
limited access to external facts beyond their training data. RAG-based Question Answering addresses
this by integrating external knowledge retrieval into the generation process. By retrieving relevant
document chunks through semantic search, RAG ensures that the model’s responses are grounded in
accurate, real-world information, effectively reducing the likelihood of hallucinations. Early approaches
focused on jointly training the retriever and generator, ensuring that the retrieved content aligned with
the generation model’s intent to provide more accurate answers [10]. With the success of in-context
learning, more recent work has treated the retriever as a separate module, directly providing retrieved
information to the model via prompts [18]. As retrieval technologies have advanced, RAG-based systems
now support multimodal retrieval, enabling answers that draw from diverse data sources [1, 2, 13].

Trustworthiness of Large Language Models. The trustworthiness of LLMs is essential for their
effective deployment in real-world applications. To assess LLM trustworthiness, researchers have proposed
various approaches. For example, TrustLLM [7] provides a comprehensive framework for evaluating
LLMs across different trust dimensions. However, evaluating LLM trustworthiness remains challenging,
with gaps in holistic assessment approaches. Some studies suggest that self-evaluation, where LLMs
assess their confidence in the generated outputs, can help improve selective generation and mitigate
inaccuracies [15]. Additionally, understanding the internal mechanisms of LLMs, such as the use of local
intrinsic dimension (LID) for predicting truthfulness, has been proposed as a way to measure model
reliability [19]. In our work, we aim to improve the trustworthiness of LLMs through post-verification,
ensuring that generated outputs are validated against reliable sources after generation to minimize
inaccuracies and enhance their overall reliability.

H Concluding Remarks

In conclusion, Symphony represents a significant advancement in the pursuit of trustworthy question
answering over multimodal data lakes. By harnessing the power of RAG, Symphony effectively addresses
the critical challenge of hallucinations inherent in LLMs. Its dual functionality caters to diverse user
needs, facilitating both reasoning and verification processes. Through the decomposition of complex
queries and the retrieval of relevant information from various data sources, Symphony generates grounded
answers that can be rigorously cross-checked against reliable datasets. This collaborative approach not
only enhances the accuracy of responses but also fosters confidence in the decision-making processes
that rely on such information. As we continue to explore the potential of multimodal data and LLMs,
Symphony stands out as a versatile tool that can adapt to a wide range of applications, paving the way
for more reliable and informed use of LLMs in various domains.
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Abstract

Retrieve-and-rerank is a prevalent framework in neural information retrieval, wherein a bi-encoder
network initially retrieves a pre-defined number of candidates (e.g., K=100), which are then reranked
by a more powerful cross-encoder model. While the reranker often yields improved candidate scores
compared to the retriever, its scope is confined to only the top K retrieved candidates. As a result,
the reranker cannot improve retrieval performance in terms of Recall@K. In this work, we propose to
leverage the reranker to improve recall by making it provide relevance feedback to the retriever at
inference-time. Specifically, given a test instance during inference, we distill the reranker’s predictions
for that instance into the retriever’s query representation using a lightweight update mechanism.
The aim of the distillation loss is to align the retriever’s candidate scores more closely with those
produced by the reranker. The algorithm then proceeds by executing a second retrieval step using
the updated query vector. We empirically demonstrate that this method, applicable to various
retrieve-and-rerank frameworks, substantially enhances the retrieval recall across multiple domains,
languages, and modalities.

A Introduction

Information Retrieval (IR) involves retrieving a set of candidates from a large document collection given
a user query. The retrieved candidates may be further reranked to bring the most relevant ones to the
top, constituting a typical retrieve-and-rerank (R&R) framework [1, 2]. Reranking generally improves the
ranks of relevant candidates among those retrieved, thus improving on metrics such as Mean Reciprocal
Rank (MRR) [3] and Normalized Discounted Cumulative Gain (nDCG) [4], which assign better scores
when relevant results are ranked higher. However, retrieval metrics like Recall@K, which mainly evaluate
the presence of relevant candidates in the top K retrieved results, remain unaffected. Increasing Recall@K
can be key, especially when the retrieved results are used in downstream knowledge-intensive tasks
[5] such as open-domain question answering [6–8], fact-checking [9], entity linking [10–12] and dialog
generation [13, 14].

Most existing neural IR methods use a dual-encoder retriever [15, 16] and a subsequent cross-encoder
reranker [17]. Dual-encoder1 models leverage separate query and passage encoders and perform a
late interaction between the query and passage output representations. This enables them to perform
inference at scale as passage representations can be pre-computed. Cross-encoder models, on the other
hand, accept the query and the passage together as input, leaving out scope for pre-computation. The
cross-encoder typically provides better ranking than the dual-encoder—thanks to its more elaborate

1We use the terms bi-encoder and dual-encoder interchangeably in this paper.
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computation of query-passage similarity informed by cross-attention—but is limited to seeing only the
retrieved candidates in an R&R framework.

Figure 47: ReFIT: The proposed method
for reranker relevance feedback. We intro-
duce an inference-time distillation process
(step 3) into the traditional retrieve-and-
rerank framework (steps 1 and 2) to com-
pute a new query vector, which improves
recall when used for a second retrieval step
(step 4).

Since the more sophisticated reranker often generalizes
better at passage scoring than the simpler, but more effi-
cient retriever, here we propose to use relevance feedback
from the former to improve the quality of query representa-
tions for the latter directly at inference. Concretely, after
the R&R pipeline is invoked for a test instance, we update
the retriever’s corresponding query vector by minimizing
a distillation loss that brings its score distribution over
the retrieved passages closer to that of the reranker. The
new query vector is then used to retrieve documents for
the second time. This process effectively teaches the re-
triever how to rank passages like the reranker—a stronger
model—for the given test instance. Our approach, Re-
FIT2, is lightweight as only the output query vectors (and
no model parameters) are updated, ensuring comparable
inference-time latency when incorporated into the R&R
framework. Figure 47 shows a schematic diagram of our
approach, which introduces a distillation and a second
retrieval step into the R&R framework. By operating ex-
clusively in the representation space—as we only update
the query vectors—our framework yields a parameter-free
and architecture-agnostic solution, thereby providing flex-
ibility along important application dimensions, e.g., the
language, domain, and modality of retrieval. We empiri-
cally demonstrate this effect by showing improvements in
retrieval on multiple English domains, across 26 languages
in multilingual and cross-lingual settings, and in different modalities such as text and video retrieval.

Our main contributions are as follows:

• We propose ReFIT, an inference-time mechanism to improve the recall of retrieval in IR using
relevance feedback from a reranker.

• Empirically, ReFIT improves retrieval performance in multi-domain, multilingual, cross-lingual
and multi-modal evaluation.

• The proposed distillation step is fast, considerably increasing recall without any loss in ranking
performance over a standard R&R pipeline with comparable latency.

B Related Work

Pseudo-relevance feedback: Our method has similarities with Pseudo-Relevance Feedback (PRF)
[18–20] in IR: [21, 22] use the retrieved documents to improve sparse approaches via query expansion or
query term reweighting, [23, 24] score similarity between a target document and a top-ranked feedback
document, while [25] train a separate query encoder that computes a new query embedding using the
retrieved documents as additional input. In contrast, our approach does not require customized training

2ReFIT stands for Reranker Feedback at Inference Time
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feedback models or availability of explicit feedback data, as we improve the query vector by directly
distilling from the reranker’s output within an R&R framework.

Further, previous approaches to PRF have been dependent on the choice of retriever architecture and
language; [25]’s PRF model is tied to the retriever used, [26] explore cross-lingual relevance feedback,
but require feedback documents in target language and thereby could only apply to three languages,
while [27] explore interpolating relevance feedback between dense and sparse approaches. On the other
hand, our approach is independent of the choice of the retriever and reranker architecture, and can be
used for neural retrieval in any domain, language or modality.

Distillation in Neural IR: Existing approaches primarily leverage reranker feedback during training
of the dual-encoder retriever, to sample better negatives [28], for standard knowledge distillation of the
cross-attention scores [29], to train smaller and more efficient rankers by distilling larger models [30],
or to align the geometry of dual-encoder embeddings with that from cross-encoders [31]. Instead, we
leverage distillation at inference time, updating only the query representation to replicate the cross-
encoder’s scores for the corresponding test instance. A key implication of this design choice is that unlike
existing methods, we keep the retriever parameters unchanged, meaning ReFIT can be incorporated
out-of-the-box into any neural R&R framework. In contrast, extending training-time distillation to new
languages or modalities would require re-training the bi-encoder.

More recently, TouR [32] has proposed test-time optimization of query representations with two
variants: TouRhard and TouRsoft. TouRhard optimizes the marginal likelihood of a small set of (pseudo)
positive contexts. ReFIT shares similarities with TouRsoft, which uses the normalized scores of a
cross-encoder over the retrieved results as soft labels. Crucially, TouR relies on multiple iterations
of relevance feedback via distillation, where each iteration runs until the top-1 retrieval result has the
highest reranker score (in TouRsoft) or is a pseudo-positive (in TouRhard). This makes inference highly
computationally expensive, as each additional iteration involves labeling top-K retrieval results with a
reranker and then retrieving again. ReFIT improves efficiency over TouR by requiring only a single
iteration of feedback that simply updates the query vector for longer, foregoing additional retrieval
and reranking steps. More specifics on the inference process of the two methods can be found in §E.4.
TouR was evaluated only on English phrase and passage retrieval tasks, while we demonstrate ReFIT’s
effectiveness in multidomain, multilingual and multimodal settings, with an empirical comparison with
TouR in §E.4.

C Method

Here we discuss the standard retrieve-and-rerank (R&R) framework for IR (§C.1) and how our proposal
fits into it (§C.2). While our approach can be applied to any R&R framework, we consider a text-based
retriever and reranker for simplicity while elaborating our method. A multi-modal R&R framework is
described in §E.3.

C.1 Retrieve-and-Rerank

R&R for IR consists of a first-stage retriever and a second-stage reranker. Modern neural approaches
typically use a dual-encoder model as the retriever and a cross-encoder for reranking.

The Retriever: The dual-encoder retriever model is based on a Siamese neural network [33], containing
separate Bert-based [34] encoders EQ(.) and EP (.) for the query and the passage, respectively. Given a
query q and a passage p, a separate representation is obtained for each, such as the cls output or a pooled
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Algorithm 1: ReFIT

Input: Query q and its representation Qq, retrieved passages P and their representations P̂ .
Output: Updated query representation Qq,n

1: Initialize query vector Qq,0 = Qq

2: Compute reranker distribution DCE(q, P ) (Eq. 10) for i in 0 to n do
3:

Compute retriever distribution DQq,i(P̂ ) (Eq. 11)
4: Compute loss L (Eq. 12)
5: Update Qq,i+1 = Qq,i − α ∂

∂Qq,i
L

6:
7: return Qq,n

representation of the individual token outputs from EQ(q) and EP (p). The question-passage similarity
sim(q, p) is computed as the dot product of their corresponding representations: query/passage.

Qq = Pool(EQ(q)) (6)

Pp = Pool(EP (p)) (7)

sim(q, p) = S(Qq, Pp) = QT
q Pp (8)

Since Eq. 8 is decomposable, the representations of all passages in the retrieval corpus can be
pre-computed and stored in a dense index [35]. During inference, given a new query, the top K most
relevant passages are retrieved from the index via approximate nearest-neighbor search.

The Reranker: The cross-encoder reranker model uses a Bert-based encoder ER(.), which takes the
query q and a corresponding retrieved passage p together as input and outputs a similarity score. A
feed-forward layer F is used on top of the cls output from ER(.) to compute a single logit, which is
used as the final reranker score R(q, p). The top K retrieved passages are then ranked based on their
corresponding reranker scores.

R(q, p) = F (CLS(ER(q, p)) (9)

C.2 Reranker Relevance Feedback

The main idea underlying our proposal is to compute an improved query representation for the retriever
using feedback from the more powerful reranker. More specifically, we perform a lightweight inference-time
distillation of the reranker’s knowledge into a new query vector.

Given an input query q during inference, we use the following output provided by the R&R pipeline:

• Query representation Qq from the retriever.

• Retrieved passages P = {p1, p2, ..., pK} and their representations P̂ = [Pp1 , Pp1 , ..., PpK ] from the
retriever.

• The reranking scores R(q, P ) = [R(q, p1), ..., R(q, pK)].
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Step (Device)
Retrieve & Rerank ReFIT

(K=100)K=100 K=125

1st Retrieval (CPU) 40ms 40ms 40ms

Rerank (CPU) 1540ms 1925ms 1540ms
Rerank (GPU) 360ms 450ms 360ms

Distillation (CPU) - - 30ms
2nd Retrieval (CPU) - - 40ms

Total (CPU) 1580ms 1965ms 1650ms
Total (GPU) 400ms 490ms 470ms

Table 23: Comparison of inference times (in milliseconds) for different approaches, utilizing both CPU-
only and GPU configurations (when reranking K passages).

Note that P̂ above is directly obtained from the passage index and is not computed during inference.
The proposed reranker feedback mechanism begins with using the reranking scores R(q, P ) to

compute a cross-encoder ranking distribution DCE(q, P ) over passages P as follows:

DCE(q, P ) = softmax([R(q, p1), ..., R(q, pK)]) (10)

The query and passage representations from the retriever are used to compute a similar distribution
DQq(P̂ ) over P :

DQq(P̂ ) = softmax([QT
q Pp1 , ..., Q

T
q PpK ]) (11)

Next, we compute the loss as the KL-divergence between the retriever and reranker distributions:

L = DKL(DCE(q, P )||DQq(P̂ )) (12)

which is then used to update the query vector via gradient descent. The query vector update process
is repeated for n times, where n is a hyper-parameter. A schematic description of the process can be
found in Algorithm 1.

Finally, the updated query vector Qq,n is used for a second-stage retrieval from the passage index.
From dual-encoder retrieval with the updated Qq,n, we aim to achieve better recall than with the initial
Qq, while obtaining a ranking performance that is comparable with that of the reranker.

D Experimental Setup

D.1 Distillation Process

We observe that the output scores from the dual-encoder and the cross-encoder models are not bounded
to specific intervals. Hence, we do min-max normalization separately on the query vector’s scores QT

q P̂
(from the dual-encoder) and the cross encoder’s scores R(q, P ) to bring the two scoring distributions
closer. Further, the cross-encoder tends to have peaky scoring distributions, hence we use a temperature
T (= 2 after tuning) while computing the softmax DCE(q, P ) over the cross-encoder scores. After tuning
on the MS Marco dev set, we set the number of updates n=100 with learning rate α=0.005.
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BM25 ANCE RocketQA RocketQA
RocketQA RocketQA

Contriever
Contriever Contriever

v1 v2 v1+Rerank v1+ReFIT + Rerank + ReFIT
MS MARCO 65.8 85.2 88.4 88.7 89.4 90.0* 89.1 89.9 90.5*
Trec-COVID 49.8 45.7 48.5 46.4 52.0 52.9 40.7 43.8 51.5*
NFCorpus 25.0 23.2 26.9 25.9 27.4 29.2* 30.0 29.5 31.9*

NQ 76.0 83.6 91.1 89.8 91.8 92.7* 92.5 93.3 94.2*
HotpotQA 74.0 57.8 69.8 67.7 71.4 73.3* 77.7 78.6 80.4*

FiQA 53.9 58.1 63.6 61.2 64.3 63.8 65.6 65.9 65.6
DBPedia 39.8 31.9 45.7 43.4 47.6 50.2* 54.1 56.0 57.3*
Scidocs 35.6 26.9 31.8 29.3 33.1 35.5* 37.8 38.3 40.1*
FEVER 93.1 90.0 92.6 92.5 92.8 93.7* 94.9 95.3 95.5*

Climate-FEVER 43.6 44.5 47.4 48.7 49.3 53.6* 57.4 59.0 59.5
Scifact 90.8 81.6 88.1 85.4 89.0 89.9* 94.7 94.4 95.2*
Average 58.9 57.1 63.1 61.7 64.4 65.9* 66.8 67.6 69.0*

Table 24: Recall@100 (in %) on the English BEIR benchmark. Performance of ReFIT is shown for
different choices of underlying retrievers. RocketQAv2 [39] corresponds to a training-time distillation
baseline. Improvements marked with * are statistically significant at p < 0.05 as per paired t-test.

D.2 Rerank Baseline

ReFIT introduces the additional overhead of distillation and a second retrieval step into the R&R
framework. We note that distillation latency (in Algorithm 1) in linear in the number of updates n.
Table 23 compares the inference latency of our method with that of standard R&R, assuming K=100
passages are to be reranked and n=100 updates are used during distillation. We highlight that our
distillation process is lightweight and takes just 30ms on a CPU. We see that the additional distillation
and retrieval steps increase the latency of inference by roughly 17.5% when using a GPU (or 4.4% for
CPU);3 in that same amount of time, vanilla R&R can process a total of 125 passages on the GPU (see
Table 23), to potentially increase Recall@100. Hence, and for fair comparison, we evaluate against a
Rerank baseline that is allowed to retrieve and rerank 125 passages. We note that both ReFIT and the
Rerank baseline use the same retriever and reranker, and are evaluated on Recall@100.

D.3 Retriever and Reranker

We use Contriever [36] as the underlying retriever (unless otherwise mentioned), which has been pre-
trained with an unsupervised contrastive learning objective on a large-scale collection of Wikipedia and
CCNet documents. Contriever is a dual-encoder retriever that outperforms traditional term-matching
methods, BM25 and recent dense approaches e.g. DPR [15] and ANCE [37]. For retrieval in both English
and other languages, we use the publicly available version of Contriever, fine-tuned on MS MARCO [38].
Our English4 and multilingual5 rerankers are based on sentence transformers.

E Results

E.1 English Retrieval in Multiple Domains

We evaluate English retrieval performance on the BEIR benchmark [40], comprising training and in-
domain test instances from MS MARCO and out-of-domain evaluation data from a number of scientific,

324-core AMD EPYC 7352 CPU and 80GB A100 GPU.
4cross-encoder/ms-marco-MiniLM-L-6-v2
5cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
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mBERT XLM-R Contriever Rerank ReFIT
Arabic 81.1 79.9 88.7 89.5 90.9*
Bengali 88.7 84.2 91.4 91.4 95.9*
English 77.8 73.1 77.2 78.7 81.8*
Finnish 74.2 81.6 88.1 88.9 91.0*

Indonesian 81.0 87.4 89.8 90.5 93.7*
Japanese 76.1 70.9 81.7 82.5 85.2*
Korean 66.7 71.1 78.2 81.0 80.2
Russian 77.6 74.1 83.8 85.7 87.3
Swahili 74.1 73.9 91.4 92.0 90.5
Telugu 89.5 91.2 96.6 97.0 97.5
Thai 57.8 89.5 90.5 91.6 93.3*

Average 76.8 79.7 87.0 88.1 89.7*

Table 25: Recall@100 (in %) on the multilingual Mr.TyDi benchmark. Rerank and ReFIT use Contriever
as the underlying retriever. * corresponds to statistical significance at p < 0.05 (paired t-test).

biomedical, financial, and Wikipedia-based retrieval datasets6.
Firstly, we compare our inference-time distillation approach against a training-time distillation

method. We use RocketQAv1 [41] as the underlying retrieval model and RocketQAv2 [42] as the retriever
distilled at training time from the cross-encoder. We also compare with a Rerank (K=125) baseline,
which improves Recall@100 by reranking the top 125 passages (retrieved by RocketQAv1). Moreover, we
also demonstrate the effectiveness of ReFIT with a different underlying retrieval model, in this case,
Contriever.

Table 24 shows Recall@100 results on the BEIR benchmark. Firstly, we see that ReFIT consistently
outperforms all baselines. Next, RocketQAv2 shows improvement over RocketQAv1 on MS MARCO,
which is the dataset used for training-time distillation of RocketQAv2. However, RocketQAv2’s perfor-
mance degrades on out-of-domain datasets from the BEIR benchmark. This is unsurprising, since the
training-time distillation approach is limited to the bi-encoder seeing the cross-encoder’s relevance labels
only in the source domain, i.e. the domain used for training (MS MARCO in this case). As a result, the
training-time distillation approach may not generalize well to unseen domains (BEIR in this case). In
contrast, ReFIT offers the key advantage of learning from target-domain pseudo labels provided by the
reranker at inference, which yields improved out-of-domain generalization.

E.2 Retrieval in More Languages

Multilingual Retrieval

We also evaluate on Mr. TyDi [43], a multilingual IR benchmark derived from TyDi QA [44], where
given a question in one of 11 languages, the goal is to retrieve candidates from a pool of Wikipedia
documents in the same language. Our underlying retriever is the multilingual version of Contriever.
Other baseline retrieval models are mBERT and XLM-R [45], in addition to the Rerank (K=125) baseline.
Table 25 shows Recall@100 for the different systems on Mr.TyDi. Here again, ReFIT yields significant
improvement over all baselines on most languages.

Cross-lingual Retrieval

For our cross-lingual experiments, we used the MKQA benchmark [46]. MKQA involves retrieving
passages from the English Wikipedia corpus for questions that are posed in 26 different languages.

6We omit some datasets due to license & versioning issues.
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avg en ar fi ja ko ru es sv he th da de fr
mBERT 57.9 74.2 44.0 51.7 55.7 48.2 57.4 63.9 62.7 46.8 51.7 63.7 59.6 65.2
XLM-R 59.2 73.4 42.4 57.7 53.1 48.6 58.5 62.9 67.5 46.9 61.5 66.9 60.9 62.4

Contriever 65.6 75.6 53.3 66.6 60.4 55.4 64.7 70.0 70.8 59.6 63.5 72.0 66.6 70.1
Rerank 66.4 76.0 54.5 67.5 61.5 56.7 65.8 70.5 71.6 60.8 64.9 72.7 67.5 70.6
ReFIT 68.2 76.6 58.0 68.8 64.7 59.3 68.4 72.5 73.1 62.9 66.5 74.1 70.1 72.5

it nl pl pt hu vi ms km no tr zh-cn zh-hk zh-tw
mBERT 64.1 66.7 59.0 61.9 57.5 58.6 62.8 32.9 63.2 56.0 58.4 59.3 59.3
XLM-R 58.1 66.4 61.0 62.0 60.1 62.4 66.1 46.6 65.9 60.6 55.8 55.5 55.7

Contriever 70.3 71.4 68.8 68.5 66.7 67.8 71.6 37.8 71.5 68.7 64.1 64.5 64.3
Rerank 70.8 72.0 69.9 69.3 67.5 68.7 72.0 38.6 72.3 69.3 65.1 65.4 65.2
ReFIT 72.4 73.6 71.1 71.5 68.9 70.5 73.3 39.9 73.3 70.7 67.5 67.4 66.9

Table 26: Recall@100 (in %) on the cross-lingual MKQA benchmark. Rerank and ReFIT use Contriever
as the underlying retriever. All improvements are statistically significant at p < 0.05 (paired t-test).

Following [36], we discard unanswerable questions and questions with a yes/no answer or a long answer,
leaving 6,619 queries per language in the final test set. Table 26 compares Recall@100 of different models
on MKQA. ReFIT again outperforms, leading the nearest baseline (Rerank) by about 2 points on
average, and with improvements on all 26 MKQA languages.

E.3 Multi-modal Retrieval

A key advantage of ReFIT is that it can operate independently of the choice of architecture for the
bi-encoder and the cross-encoder, and is therefore not limited to working on only text input. To
demonstrate this, we apply our method to retrieval in a multi-modal setting. Specifically, we consider
text-to-video retrieval, which involves retrieving videos that are relevant to a given textual query.

The retriever and reranker for this experiment are based on BLIP [47], a state-of-the-art vision-
language model that comprises two unimodal encoders and an image-grounded text encoder. The
unimodal encoders encode image and text separately, akin to dual-encoders in text-to-text retrieval,
and are trained with an Image-Text Contrastive (ITC) loss. The image-grounded text encoder injects
visual information into the text encoder by incorporating a cross-attention layer, similar to a text-to-text
cross-encoder, and is trained with an Image-Text Matching (ITM) loss. We refer the reader to [47] for a
more detailed description of BLIP’s architecture and the pre-training objectives. BLIP can thus be used
for retrieval with the unimodal encoders (which we refer to as BLIPITC), and for reranking with the
image-grounded text encoder (which we refer to as BLIPITM ). We use the output from BLIPITM as
the reranker distribution, which is then used to compute the distillation loss for updating the query
representation that is output by BLIPITC .

We evaluate using Recall@100 on the MSRVTT [48] text-to-video retrieval dataset, with BLIPITC

[47] being our primary retrieval-only baseline along with other baselines taken from [47]. The Rerank
baseline uses BLIPITM to rerank K=125 videos retrieved by BLIPITC . Table 27 compares performance
on the 1k test split of MSRVTT. We see that BLIPITM yields better ranking (as evident from higher
Recall@10) than BLIPITC as expected, but shows only minor gains in Recall@100. Crucially, ReFIT
improves Recall@100 over the already strong BLIPITC retriever, without a noticeable drop in Recall@10
compared to the BLIPITM reranker.
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Method R@10 R@100
MIL-NCE 32.4 -
VideoCLIP 30.0 -
FiT 51.6 -

BLIPITC 69.0 92.1
Rerank (BLIPITM ) 74.6 92.3
ReFIT 74.7 92.9

Table 27: Recall of text-to-video retrieval
methods on the MSRVTT benchmark.

NQ EntityQ BEIR Mr.TyDi
Retrieve 86.1 70.1 66.8 87.0
Rerank 86.8 71.2 67.6 88.1

TouRhard 87.0+ 71.9+ 68.4 88.7
TouRsoft 87.2+ 72.5+ 68.1 88.1

ReFIT 87.6 72.6 69.2 89.7

Table 28: Recall@100 numbers for comparison of
ReFIT with both variants of TouR. + corresponds
to numbers directly taken from [32].

E.4 Comparison with TouR

In this section, we compare the performance of ReFIT with TouR on the passage retrieval benchmarks
used in [32], NQ [49] and EntityQuestions [50] as well as the multidomain BEIR and multilingual
Mr.TyDi benchmarks. For NQ and EntityQuestions, we use the same retriever [15] and reranker [51] as
in [32]. The retriever and the reranker for BEIR and Mr.TyDi are the same as described in §D.3. In
Table 28, we can see that ReFIT consistently outperforms both TouR variants across various datasets.
We believe that the lower performance of TouR can be attributed to its early stopping criterion for
distillation updates. Specifically, TouR performs relevance feedback for 3 iterations, wherein in each
iteration, distillation into the query vector continues until the top-1 retrieval result has the highest
reranker score (for TouRsoft) or is a pseudo-positive (for TouRhard). In contrast, ReFIT makes more
distillation updates but for only one iteration (we do n = 100 updates, which has been tuned). This
makes it also considerably faster than TouR, as each additional iteration of relevance feedback in TouR
comes with a high computational overhead (§B). We show in §F.4 that ReFIT can further benefit from
multiple rounds of relevance feedback with continuous improvements over the course of three iterations.

E.5 ReFIT for multi-vector dense retrieval

ColBERTv2 Rerank ReFIT
NFCorpus 27.7 28.0 28.8

FiQA 62.8 63.7 64.3
Scidocs 35.8 36.6 38.5
Scifact 89.4 90.2 90.1

Table 29: Recall@100 (in %) on a subset
of the English BEIR benchmark, with
Rerank and ReFIT using ColBERTv2
as the underlying retriever.

Our experiments thus far have been focused on single-vector
dense retrieval, where queries and passages are encoded as
individual vectors. Multi-vector retrieval models like Col-
BERT [16, 52], on the other hand, compute token-level query
and passage representations, subsequently employing a late-
interaction mechanism for scoring. This section explores the
application of ReFIT to multi-vector retrieval, specifically,
ColBERTv2 [52]. In this case, distillation (Step 3 in Figure
47) updates embeddings of individual tokens in the query. We
present results in Table 29 on a subset7 of the BEIR dataset,
which clearly show that ReFIT can be effectively extended to multi-vector dense retrieval, as it consis-
tently surpasses the performance of the ColBERTv2 retriever and outperforms the Rerank baseline (with
K = 125) in most cases. Notably, the training of ColBERTv2 [52] involved the use of a reranker’s scores
for supervision; our results in this section thus reinforce the finding of §E.1 that ReFIT’s inference-time
distillation can be superior to ordinary knowledge distillation during training.

7Owing to the substantially larger index size inherent to multi-vector dense retrieval, we restrict this study to subsets
of BEIR with < 100k passages in the retrieval corpus.
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Figure 48: t-SNE plots for some examples from BEIR, with the query vectors shown alongside the
corresponding positive passages. The updated query vectors after ReFIT are now closer to the positive
passages (in green).

Query Initial Retrieval (within Reranker Top-5) Newly Retrieved Positive
treating tension
headaches with-
out medication

Most intermittent tension-type headaches are
easily treated with over-the-counter medications,
including: 1 Aspirin. 2 Ibuprofen (Advil, Motrin
IB, others) 3 Acetaminophen (Tylenol, others)

Instead of popping a pill when you get a headache, toss
some almonds. For everyday tension-type headaches , al-
monds can be a natural remedy and a healthier alternative
to other medicine.

who drives the
number 95 car
in nascar

On October 2013, it was announced
that McDowell would be moving to
Leavine Family Racing’s No. 95 Ford for

the 2014 NASCAR Sprint Cup Series season.
McDowell failed to qualify for the Daytona 500.

Michael Christopher McDowell is an American professional
stock car racing driver. He currently competes full-time in
the Monster Energy NASCAR Cup Series , driving the

No. 95 Chevrolet SS for Leavine Family Racing .

who plays addi-
son shepherd on
grey’s anatomy

In 2005, she was cast in her breakout role in the
ABC series Grey’s Anatomy, as Dr. Addison

Montgomery , the estranged spouse of Derek
Shepherd.

Kathleen Erin Walsh is an American ac-
tress and businesswoman. Her roles include
Dr. Addison Montgomery on the ABC television

dramas Grey’s Anatomy and Private Practice.

Table 30: Examples of how initial retrievals highly ranked (top-5) by the reranker (middle) helps retrieve
new positives (right) via the updated query vector, due to important lexical and semantic overlap
(highlighted in green). The text that contains the answer to the query is shown in red.

F Discussion and Analysis

This section describes additional experiments, providing further insights into ReFIT.

F.1 Query vectors: the original and the new

To better understand how the updated query vector after reranker relevance feedback improves recall,
we take a closer look at the query and passage vectors computed for a set of BEIR examples. Figure 48
shows t-SNE plots for four such examples, where each dot represents a vector, and the distance between
any two points is their cosine distance. As the figure shows, the reranker feedback brings the query
vector in each case closer to the corresponding positive passage vectors, making the query align with an
increased number of relevant passages and consequently improving recall. Across different datasets in
BEIR, we observed that the new query vector is also closer to the initially retrieved positives by 5-16%.

We observe that the new positives discovered by the updated query vector are closest to a passage
in the reranker’s top 5 in 26% of the cases (38% for top 10; 55% for top 20), confirming an effective
transfer of the reranker’s knowledge into the query vector. Table 30 provides some examples, showing
how specific words and phrases in a passage within the reranker top-5 help retrieve additional candidates
with lexical/semantic overlap (highlighted in green) via relevance feedback. Interestingly, in the fourth
example, an incorrect passage highly scored by the reranker leads to the subsequent retrieval of an
actual positive candidate.
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Figure 49: Variation of ReFIT performance with distillation updates n (left), reranked passages K used
for distillation supervision (center) and relevance feedback iterations (right). ∆ corresponds to change
in latency with respect to the standard R&R framework with K=100 (CPU-only configuration).

F.2 How much additional latency does our approach introduce?

Our proposed method introduces a distillation and an additional retrieval step into the standard R&R
framework. While retrieval takes constant time with respect to the number of updates n in Algorithm
1, the latency of distillation is directly proportional to n. Figure 49 (left) demonstrates the effect of
varying n on both the latency and performance of our approach. The extra latency is computed with
respect to a standard R&R framework that runs with K=100. With a mere 4.4% increase in latency
(for when n=100), our method produces a gain that is significantly larger than a more computationally
expensive reranking of K=125 candidates which in turn corresponds to 24.3% increase in latency on a
CPU. Thereby, we demonstrate that, under latency constraints, our approach can be made faster by
simply lowering the number of updates, while still surpassing the conventional strategy of reranking a
larger pool of candidates for improving recall.

F.3 How do smaller K values affect results?

Our experiments described thus far are run in the standard setting of K=100: 100 passages are retrieved,
reranked and subsequently used to distill the reranker score distribution into the new query. Here
we investigate how ReFIT performs as we vary K. Smaller values of K correspond to a faster R&R
pipeline (as lower number of candidates are reranked), but it comes at the expense of the target teacher
distribution now providing lesser supervision. Figure 49 (center) shows Recall@100 of the post-relevance
feedback retrieval step on BEIR for different values of K. While a higher K expectedly leads to a higher
recall in general, we observe performance improvements over directly reranking 125 passages, even when
considerably smaller number of passages are used for distillation. Our approach can thus be easily tuned
to achieve different accuracy-speed trade-offs depending on the requirements of the target application.

F.4 Can multiple iterations of relevance feedback further improve results?

Our relevance feedback approach improves recall when the updated query vector is used for a second
retrieval step. Here we examine if further improvements are possible from more iterations of relevance
feedback, i.e., running the following operations in a loop: (1) rerank the retrieval results from the
previous iteration, (2) update the query vector via distillation from the reranker distribution, and (3)
retrieve again. We note that this experiment operates under the assumption of a relaxed time budget, as
the computationally expensive reranker must be executed N times. Figure 49 (right) shows performance
on BEIR from N iterations of relevance feedback, with N = 0 corresponding to baseline retrieval. We
can see that recall improves with each additional round of relevance feedback; the biggest gain comes in
the first round (N = 1) and performance saturates after N = 2.
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F.5 Further Discussion

The curious case of zero initial positives:

In §F.1, we presented an example where our method leverages a close negative among the initially
retrieved candidates to later retrieve a positive passage. We find that in 24% of the cases where the
first-stage retriever retrieves no positive passages, our method can improve recall in a similar fashion.
Among all cases where recall improves, however, 75% have at least one positive in the top retrieved
results. These results indicate that while the presence of positive candidates in the initial retrieval is
useful, our relevance feedback approach can also generally leverage informative negatives to update the
query vector in the right direction.

Choice of Reranker:

In the experiments comparing our approach to the R&R framework, we used an efficient (yet high-
performing) reranker both in the baseline model and as the teacher model for distillation. Would the
results have been different if we used a more powerful (but computationally expensive) reranker instead?
To find an answer, it is essential to note that the final recall of an R&R engine is inherently limited by
the underlying retriever. For instance, the Recall@100 of an R&R pipeline with K=125 cannot exceed
the Recall@125 of the underlying retriever, irrespective of the quality of the reranker. The Recall@100 of
ReFIT (BEIR: 69.2, Mr. TyDi: 89.7, MKQA: 68.2 and MSRVTT: 92.9) is consistently higher than the
Recall@125 of the baseline retriever (BEIR: 68.9, Mr. TyDi: 88.2, MKQA: 66.9 and MSRVTT: 92.8).
These results clearly suggest that even the best reranker baseline would fail to attain the recall of our
method. Further, we can expect a better reranker to improve the recall of ReFIT since leveraging a
stronger teacher model for distillation should lead to a better student (retriever query vector).

G Conclusion and Future Work

We demonstrate that query representations can be improved using feedback from a cross-encoder reranker
at inference time for better performance of dual-encoder retrieval. This work proposes for distillation
using relevance feedback from the reranker as a better and faster alternative to the traditional strategy
of reranking a larger pool of candidates for improving recall. ReFIT is lightweight and improves
retrieval accuracy across different domains, languages and modalities over a state-of-the-art retrieve-and-
rerank pipeline with comparable latency. Future work will focus on the potential integration of textual
relevance feedback from large language models (LLMs). Additionally, a promising area of exploration
lies in enhancing the interpretability by examining how relevance feedback influences the significance of
individual query terms within the query representation.

H Limitations

ReFIT introduces an additional latency into a traditional retrieve-and-rerank framework. The distillation
time is only dependent on the number of updates, and is unaffected by the model architecture and
number of retrieved passages; the overall additional latency (as per Table 23) amounts to an extra 17.5%
on GPU (or 4.4% on CPU) when the number of retrieved passages K=100. However, it is noteworthy
that ReFIT remains faster and exhibits superior performance compared to the standard approach of
reranking a larger pool of candidates for improving recall. Moreover, the efficacy of our approach is
contingent upon the reranker providing a better ranking than the retriever. We anticipate that our
method might provide minimal gains in situations where the retriever performs similar to the reranker.
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Abstract

The KDD Cup 2024 CRAG Challenge aims to provide a foundation for evaluating Retrieval
Augmented Generation (RAG) systems. RAG systems take natural language questions as input,
decide whether and how to use the facilitating information such as web pages and mock Knowledge
graphs, and return natural language answers. A good RAG system provides correct and useful
answers to questions without bringing in hallucinated information. In this report, we describe the
motivation for organizing this challenge, review the design for the benchmark and the competition,
discuss observations from the submissions, and reflect the learnings from hosting the challenge.

A Introduction to RAG and the CRAG benchmark

The rise of Large Language Models (LLMs) has revolutionized the field of natural language processing [22,
24, 53, 58], but these models still struggle with providing accurate and reliable answers to complex
questions. One major challenge is the tendency for LLMs to “hallucinate” or generate responses that are
not grounded in factual information [18, 34, 40, 42]. To address this issue, researchers have turned to
Retrieval-Augmented Generation (RAG) [6, 10, 13, 20], a technique that involves searching external
sources to gather relevant information and then using that information to generate more accurate answers
(Figure 50).

Figure 50: Given a question, a RAG system searches external sources to retrieve relevant information
and then provides grounded answers.

††The first four authors contributed equally.
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Figure 51: KDD Cup 2024 Meta CRAG challenge tasks.

However, existing datasets for evaluating RAG systems are limited in their scope and diversity, failing
to capture the complexity and nuance of real-world question-answering tasks. To address this limitation,
we developed the Comprehensive RAG (CRAG) Benchmark, a comprehensive evaluation framework
designed to assess the capabilities of RAG systems. The benchmark comprises over 4.4K question-answer
pairs, accompanied by mock APIs that mimic the process of searching the web and accessing knowledge
graphs. CRAG is across five domains (finance, sports, music, movie, and encyclopedia open domain),
and a diverse range of question types, including simple-fact questions, questions that require aggregation
and reasoning. CRAG further encompasses varied entity popularity from popular to long-tail and
temporal spans ranging from seconds to years. As such, it covers a broad spectrum of real user queries,
providing a realistic and challenging testbed for RAG systems [52]. By incorporating both web and
knowledge graph search, CRAG simulates realistic information retrieval scenarios, reflecting the common
practice of users seeking answers from multiple sources. Our evaluations using this benchmark revealed
substantial performance gaps in even the most advanced LLMs and RAG systems, highlighting the need
for continued research and development in this area.

The CRAG benchmark served as the foundation for the KDD Cup 2024 competition, which drew over
2.5K participants and 5.6K submissions from around the world. The winning solutions demonstrated
significant improvements over baseline methods. In this paper, we present key insights and takeaways
from the competition, including our learnings on the RAG landscape (Section C), learnings from the
CRAG winning solutions (Section D), and learnings from hosting the CRAG challenge (Section E),
suggesting directions for future RAG research.

B Challenge Overview

B.1 Challenge Tasks

A RAG QA system takes a question Q as input and outputs an answer A; the answer is generated
by LLMs according to information retrieved from external sources or directly from the knowledge
internalized in the model. The answer should accurately address the question while avoiding any
hallucinations.
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We designed three tasks, which share the same set of (question, answer) pairs but differ in the
external data accessible for retrieval to augment QA, as shown in Figure 51. Here, we provide the
content that can be leveraged in QA to ensure fair comparisons.
Task 1: Retrieval Summarization. In Task 1, we provide up to five web pages for each question.
These web pages are likely, but not guaranteed, to be relevant to the question. This task aims to test
the answer generation capability of a RAG system.
Task 2: KG and Web Retrieval Augmentation. In Task 2, we in addition provide mock APIs to
access information from underlying mock KGs. The mock KGs store structured data relevant to the
questions; answers to the questions may or may not exist in the mock KGs. The mock APIs take input
parameters, oftentimes parsed from the question, and provide structured data from the mocked KGs to
support answer generation. This task tests how well a RAG system 1) queries structured data sources
and 2) synthesizes information from different sources.
Task 3: End-to-end RAG. Similar to Task 2, Task 3 also provides both web search results and mock
APIs as candidates for retrieval but provides 50 web pages, instead of 5, as candidates. The larger set of
web pages increases the likelihood of providing relevant information to answer the question, but they
also tend to contain more noise. As such, Task 3 in addition tests how a RAG system ranks a larger
number of retrieval results.

The three tasks, each adding upon the previous one, allow testing different capabilities of the
end-to-end RAG systems.

B.2 Data and System Requirement

The challenge used the CRAG benchmark as described in Section A. We split the data randomly into
validation, public test, and private test at 30%, 30%, and 40%, and released the validation and public
test sets for the challenge. The final winners were determined by evaluating against the held-out private
test set.

In order to make the systems more comparable and to encourage open source development, we require
all submitted systems to be based on Llama 2 [44] or Llama 3 [3] models in this challenge. Participants
can also fine-tune their models using publicly available data as long as the data were not generated by
proprietary models.

The challenge was hosted on the AICrowd competition platform, and results were posted on a
leaderboard. All submissions were run on AWS G4dn.12xlarge instances equipped with 4 NVIDIA T4
GPUs with 16GB GPU memory. Since neither the Llama 2 70B or Llama 3 70B models in full precision
can be directly run on these T4 GPUs, participants needed to use quantization or other techniques to
make their system runnable on the inference platform. Also, network connection was disabled during
the challenge to ensure all participants can access an equal set of retrieved contents, and to prevent
leak of the private test set data. Moreover, each example had a time-out limit of 30 seconds and was
truncated to 75 BPE tokens [38] in the auto-evaluation. In human-evaluation, graders examined the
first 75 bpe tokens to find valid answers, but reviewed the whole response to judge for hallucination. See
section B.3 for more details about the evaluation.

B.3 Evaluation

Metrics

We use a scoring method to assess the performance of RAG systems. For each question in the evaluation
set, we first label the answer with perfect, acceptable, missing, or hallucination, according to the
following criteria.

Perfect. The response correctly answers the user’s question and contains no hallucinated content.

165



Acceptable. The response provides a useful answer to the user’s question but may contain minor
errors that do not harm the usefulness of the answer.

Missing. The response is “I don’t know”, “I’m sorry I can’t find ...”, a system error such as an empty
response, or a request from the system to clarify the original question.

Hallucination. The response provides wrong or irrelevant information to answer the user’s question.
We then use a scoring method Scoreh with score 1, 0.5, 0, and −1 for each perfect, acceptable,

missing, and hallucinated answer, respectively, where we penalize hallucinated answers because users
would prefer the model to admit “I don’t know" than providing an hallucinated answer when it does not
know how to answer the question. We then define Truthfulness as the average score from all examples
in the evaluation set for a given RAG system. Concretely,

Truthfulnessh = Perfect rate + 0.5 ∗ Acceptable rate − Hallucination rate.

Evaluation Method

We employ a hybrid evaluation system that includes both human evaluation (human-eval) and model-
based automatic evaluation (auto-eval). In the former, we use manual grading to judge perfect,
acceptable, missing, and hallucinated for each answer. In the latter, we merge perfect and acceptable,
call it accurate, and use a three-way scoring Scorea with 1,−1, 0 for accurate, hallucinated, and
missing answers. And in this case,

Truthfulnessa = Accuracy − Hallucination rate.

We design a two-step method for automatic evaluation: if the answer matches the ground truth
exactly, it is considered accurate; otherwise, we use LLMs to determine whether the response is accurate,
hallucinated, or missing. To avoid the self-preference problem [31], we experimented with two families of
LLM evaluators: ChatGPT (gpt-3.5-turbo-0125) [29] and Llama 3 (llama-3-70B-instruct) [3]
and reported the average accurate, hallucinated, missing rates, and scores from the two models for
benchmarking the straightforward solutions [52]. This two-step method yields an accuracy of 94.5% for
ChatGPT and 99% for Llama 3 compared to human-eval. We adopted ChatGPT as the auto-evaluator
in the challenge due to its low cost.

B.4 Challenge Schedule and Outcomes

The challenge was announced on March 15, 2024. Submissions were accepted starting on April 1, 2024,
simultaneously with the release of the starter kit. Baseline models were released a week after. The
challenge had two phases: in Phase 1, each team can make up to six submissions per week for all three
tasks together during a two-month period, and check their results directly on the leaderboard based on
auto-eval; in Phase 2, each team can submit up to six times for the three tasks together in total. The
submitted solutions in Phase 2 were first evaluated by auto-eval. Then the top-15 teams from each task
were sent for human-eval to determine the final winners. Phase 2 ended on June 22, 2024, and the final
results were announced on July 28, 2024.

The challenge awarded the top-3 teams that obtained the highest Truthfulness scores in each task.
It also provided seven additional prizes for teams that achieved the highest scores for each of the seven
complex question types. In the end, twelve teams won the prizes (See Table 32 for the list of the winning
teams.), among which six winning teams were invited to present in the KDD 2024 CRAG workshop1.
All participating teams were encouraged to submit a technical report for their solutions.

1Please see more information about the workshop at: https://kddcup24.github.io/pages/benchmark.html
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The challenge attracted more than 2,500 participants, 384 teams and more than 5,600 submissions.
After the challenge was complete, we held a workshop during the ACM KDD 2024 conference. The
workshop featured three keynote speeches, six winning-team presentations, and attracted more than 130
onsite audiences. It also published 11 technical reports from the participating teams afterwards.

C Learnings on RAG landscape

Solution Accuracy Hallucination Missing Truthfulness Latency (ms)

LLM-Only Llama 3 32.3% 28.9% 38.8% 3.4%
GPT-4 33.5% 13.5% 53.0% 20.0%

Straightforward RAG Llama 3 40.6% 31.6% 27.8% 9.1%
GPT-4 43.6% 30.1% 26.3% 13.5%

CRAG KDD Cup Winners ⋆ Top-3: vsluy-team 43% 24.9% 30.1% 18.1%
Top-2: APEX 48.6% 13.7% 36.3% 34.9%
Top-1: db3 53.3% 17.1% 28.0% 36.2%

Industry SOTA ⋆⋆ Perplexity.ai 60.2% 25.3% 10.1% 34.9% 4,634
Meta SG 57.4% 16.0% 21.8% 41.4% 3,431
ChatGPT Plus 66.5% 25.0% 1.9% 41.5% 6,195
Gemini Advanced 65.9% 16.6% 12.5% 49.3% 5,246
Copilot Pro 68.5% 17.9% 7.8% 50.6% 11,596

Table 31: Truthfulness scores on CRAG. (⋆: the score is obtained by human evaluation and the others
are obtained by automatic evaluation; ⋆⋆: in addition, different accesses to retrieval contents. [52].)

Table 31 summarizes the performance in truthfulness score of baselines (the LLM only and straightforward
RAG solutions), the KDD Cup winner solution, and the best-performing industry state-of-the-art (SOTA)
system on CRAG. We have the following observations and details can be found in [52].

1. The LLM-only solution performs poorly on CRAG, with truthfulness ranging from 3% to 20%.

2. Although RAG can help answer more questions, adding RAG in a straightforward manner does not
necessarily reliably outperform the LLM-only solution (truthfulness ranging from 9% to 13%). This
is because careless summarization in baseline RAG solutions can introduce more hallucinations
generated from irrelevant retrieval results.

3. The CRAG KDD Cups winning solutions improve the truthfulness significantly to 36%, but still
falls short of perfection in terms of answer accuracy and latency. We will describe the solutions in
more detail in Section D.

4. Industry SOTA systems, which likely leverages better models and retrieval systems (e.g., web and
KG search engines), achieved 51% truthfulness. The systems that achieved the highest truthfulness
and that had the lowest latency were different, reflecting the quality-latency tradeoff. There is still
much room for improvement on quality and latency.

D Learnings from the winning solutions

More than 2500 participants took part in the CRAG competition. Four teams won top-three positions
across three tasks, and seven additional teams scored high points for individual question types (see
Table 32).
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Table 32: CRAG competition winning teams and team placements. For each task we awarded top-3
teams for overall scores, and top-1 team for each question type.

Team name Task 1 placement Task 2 placement Task 3 placement

db3 [49] 1st place 1st place 1st place
APEX [30] 2nd place 2nd place
md_dh [11] 2nd place 3rd place

Set
Aggregation
Post-processing

vslyu-team [51] 3rd place
ElectricSheep [55] 3rd place Simple with condition

Set
Aggregation
Multi-hop
Post-processing

dRAGonRAnGers [32] Comparison
Post-processing

Comparison Comparison

ETSLab False premise Multi-hop
dummy model [16] Simple with condition

Set
Aggregation

bumblebee7 [56] Multi-hop
Future [9] False premise
StarTeam [48] Simple with condition
Riviera4 [43] False premise
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Most winning solutions adapt a general RAG system design that comprises two main stages (see
Figure 52): (1) Knowledge Retrieval components that retrieve and process relevant information from
web or knowledge graphs, and (2) an Augmented Generation component that leverages an LLM to
incorporate retrieved information and provide an answer to the question.

No team trained the overall pipeline in an end-to-end fashion. Instead, each component is optimized
separately, where sub-systems are tailored to the specific tasks or question types. The teams leverage
both off-the-shelf solutions (e.g., Beautifulsoup for HTML parsing, BGE encoders for ranking) and
customized solutions (e.g., fine-tuned LLM to reduce hallucination). In the following we deep dive to
learnings from each component.

Figure 52: Conceptual overall architecture from winning solutions.

D.1 Knowledge Retrieval from Web

Given a query, this component retrieves supporting material from the web repository (task 1, 2 and 3).
An ideal retrieval system finds relevant knowledge efficiently (high recall) without including too many
noises (high precision). There are several key challenges: 1) raw HTML contains inconsistent structures,
making it challenging to extract clean text; 2) long web pages exceed LLM’s input length constraints; 3)
webpages often contain contents that are irrelevant to the question that dilute signals and potentially
lead to hallucinations from summarizations.

To address these challenges, most winning solutions follow a workflow consisting of four steps to
obtain clean relevant information from webpages: HTML parsing, content chunking, relevance scoring,
and re-ranking. The teams heavily utilize off-the-shelf libraries as building blocks as listed in Table 33
below.

Table 33: Off-the-shelf libraries the winning solutions leveraged for web retrieval.

Component Libraries

HTML Parsing BeautifulSoup [35], Trafilatura [5]
Chunking CharacterTextSplitter [26] , ParentDocumentRetriever [26]
Relevance scoring bge-base [50], ms-marco-miniLM [27] , sentence-t5 [28], BM25 [36]
Re-ranking bge-reranker [8]
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The teams leveraged a variety of chunking strategies to partition web content into smaller segments.
Beyond the basic token-level chunking method, three solutions stand out in ensuring related contexts
are preserved in the same chunk, allowing the summarization model to access coherent information:

1. Db3’s [49] solution maintains a parent-child chunk relationship using the ParentDocumentRetriever
library. Once they identify smaller children chunks that are relevant to the question, they include
their associated parent chunks in the pipeline.

2. Md_dh’s [11] solution traverses the tree structure of HTML to identify chunks at node level,
minimizing segmentation of texts under a common tag such as header, table, sections.

3. ElectricSheep’s [55] solution first identifies questions in web pages by matching sentences that start
with “5W1H” key words (i.e. "Who", "What", "Where", "When", "Why" and "How") and end
with a question mark, and then ensures subsequent texts are grouped together with the questions.

For relevance scoring and re-ranking, the winning solutions mainly rely on off-the-shelf sparse (e.g.
BM25) and dense (e.g. bge-base) retrieval models and re-ranker models (e.g. bge-reranker) without
customized fine-tuning. Ablation study (md_dh [11]) shows that dense retrieval via cross-encoders has
a slight edge over sparse retrieval in terms of accuracy.

D.2 Knowledge Retrieval from KG

CRAG provides various domain specific APIs to access underlying KG data (task 2,3). The main tasks
for efficient retrieval from KG are three folds: 1) identifying the appropriate API(s), 2) generating
correct API parameters, and 3) processing API results to find relevant information.

The winning solutions for KG retrieval fall into three broad categories.

1. Build each retrieval step separately. Using APEX’s [30] solution as an example, this approach
invokes the following steps. It first leverages an LLM to identify named entities, followed by entity
linking via string matches or BM25 fuzzy matches. Then it identifies an appropriate API and its
parameters via domain-specific rules and calls the API. Afterwards, it filters the API results based
on the date of the query. Finally it converts the filtered results to markdown format and sent to
the final generation model.

This approach provides explicit control and insights of each step at the cost of integration
complexity.

2. Generate e2e API call directly. A few teams (db3 [49], md_dh [11], ElectricSheep [55] etc.)
prompt an LLM to directly generate API payload, where fine-tuned LLMs with API specific data
further improve the calling accuracy.

3. Regularized API. Another innovative solution came from team db3 [49]. Instead of building a
retrieval system around the original APIs provided by CRAG, the authors develop a new set
of “regularized” APIs that enhances the expressiveness of the original APIs. More specifically,
the solution built API wrappers to encapsulate filtering conditions (e.g.“year” == “2012”) and
aggregation logics (e.g. maximum, average). The following is an example comparing the original
API and the regularized API.

get_movie(movie_name) → get_movie(movie_name, condition)[key_name] (13)

where “condition” is from a set of predefined rules, and “key_name” are indices to search in the
results. The expressive regularized APIs allow the team to obtain concise information via a single
API call generated by LLM.
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D.3 LLM Augmented Generation

LLM Augmented Generation incorporates upstream retrieved knowledge to generate a final answer.
All winning solutions put significant efforts in reducing hallucination in this step, partially because
hallucination is penalized more severely than a missing (e.g. “I don’t know") answer in the CRAG
scoring criteria.

The main strategies that the winning solutions adapt to reduce hallucinations are a combination of
chain-of-thought prompting, explicit confidence estimation, supervised fine-tuning, and manual rules.

1. Chain-of-thought. Teams (e.g., ElectricSheep [55], APEX [30]) show that prompting the LLM
to articulate intermediate thinking steps improve answering accuracy for complex questions and
significantly reduce hallucination. For instance, ElectricSheep [55] prompts the model to first
identify if a question has false premise, then whether the question can be answered by each retrieved
evidence, before generating the final answer.

2. Explicit confidence inference. Another approach is to estimate LLM answer’s confidence, then
only retain the answer at high confidence, and answer “I don’t know” otherwise. Winning solutions
either prompt the LLM directly to self produce a confidence level, or sample several answering
paths and approximate the confidence as the answer consistency. Both methods are effective in
their respective pipeline, but the self-consistency approach demands more computational resources.

3. Supervised fine-tuning. Several teams (e.g., db3 [49], md_dh [11], dRAGonRAnGers [32]) fine-
tune an Llama-3-8b model specifically targeting reducing hallucinations. The teams generated
training labels by first running the pipeline with a non-fine-tuned LLM generation model, then
prompts a separate LLM to automatically identify questions that are not answerable by retrieved
knowledge passages and labeled “I don’t know” for fine-tuning. The resulting fine-tuned model
answers “I don’t know” more frequently on questions that it tends to hallucinate originally.

4. Manual rules. Since dynamic questions are much more difficult to answer correctly than static
questions. Some teams opt to avoid answering dynamic questions all together to prevent getting
penalized with hallucinated answers.

D.4 Observations by Question Categories

CRAG categorizes questions along four dimensions: Topic domain (Finance, Sports, Music, Movie,
Open), Dynamism (Real-time, Fast-changing, Slow-changing, Static), Popularity (Web, Head, Torso,
Tail) and Question Type (Simple, Simple with condition, Set, Comparison, Aggregation, Multi-hop,
Post-processing, False premise). The strategies and performance of winning solutions vary significantly
across different dimensions, as shown in Figure 53 from task 3 winning teams.

Domain dimension Since each domain has its own set of APIs, most winning solutions develop
router to detect the topic domain of each question then use the results to select appropriate API calls
and construct domain specific prompts accordingly.

Among the domains, Finance questions prove to be the most challenging. This is mainly because
many financial questions are real-time or fast-changing (e.g., "can you tell me the opening stock price
of landp on the last Friday (question asked on 02/28/2024, 07:58:48 PT)?"), thus requiring finding
results precisely corresponding to the reference time. To tackle date-time parsing, APEX [30] leveraged
regex rules and Python libraries (pytz and datetime) to parse absolute datetime objects. One other
challenge is that Finance questions often require numeric reasoning. ElectricSheep [55] delegates numeric
calculations to an external Python interpreter, which reduces hallucination from LLM.
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Figure 53: Human-evaluated Truthfulness scores from Task 3 winners on the private test set across the
four question categories. The truthfulness scores reflect different strategies taken by different winning
teams. First-place winner for all three tasks Db3 [49], as an example, put in significant efforts for
improving the results on using the APIs, which gained them large margins in handling those KG-
supported questions.

Dynamism dimension Overall, winning solutions perform better in static and slow-changing questions
than fast-changing and real-time questions, mainly because of difficulties in temporal reasoning in both
the retrieval step and the summarization step. Some teams even implemented solutions to blankly answer
“I don’t know" for all dynamic questions to reduce hallucination penalties. One promising approach
was team db3’s [49] “regularized" APIs (see Section D.2), which improved the APIs’ expressiveness in
handling temporal information.

Dynamic questions are an area where RAG should excel over vanilla LLM. The fact that teams
struggle with dynamic questions suggests further opportunities in this area.

Popularity dimension In this dimension, the performance is largely correlated with entity popularity
as expected, due to sparsity of information for torso to tail questions.

Question Type dimension In this dimension, comparison questions (e.g., “who started performing
earlier, Adele or Ed Sheeran?”), post-processing questions (e.g., “How many days did Thurgood Marshall
serve as a Supreme Court justice?"), and multi-hop questions (e.g., “what school does Lebron James’s
youngest son attend?") are the most difficult types, mainly because they require retrieving information
of multiple entities and nontrivial reasoning over the retrieved results.

Team dRAGonRAnGers’s [32] solution won first place for comparison questions in all three tasks.
The authors hypothesized that their explicit chain-of-thought prompt contributed to the success by
generating rationals for each entities involved in the comparison then synthesizing a final answer.
Similarly, carefully engineered chain-of-thought prompts also improved reasoning for multi-hop and
post-processing questions, as Team ElectricSheep [55] and bumblebee7 [56] demonstrated.
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E Learnings from hosting the challenge

In this section, we reflect the experience from creating the benchmark, designing the challenge, and
finally hosting the challenge and workshop, and summarize our learnings from this one year journey.

E.1 How can we design a fair, informative and feasible challenge?

We strive to create an informative and engaging challenge, but also need to take into consideration the
fairness, accessibility, as well as time and budget constraints. We made several design decisions for the
challenge, which turned out to be critical for its success. We narrate these design choices next.

Creating equally accessible retrieval contents. Providing equally accessible retrieval contents
eliminates the unfair comparison induced by having access to different resources among the participants.
A RAG system theoretically can retrieve from the universe of all public and proprietary information
sources. Although it is interesting to test RAG systems in an end-to-end manner by allowing participants
to use all accessible APIs, it inevitably creates an advantage for large companies or entities that have
more resources. We therefore made a decision to provide equally accessible retrieval contents in the
benchmark for the challenge, so that all systems can be evaluated against the same set of facilitating
information, eliminating the potential unfairness introduced by having access to different amount of
retrieval sources. This design choice, although not completely testing the retrieval of the RAG systems,
still allows users to evaluate it by combining all the retrieved webpages as the retrieval pool.

Another advantage of using fixed retrieval contents is to be able to compare over time. Search engines
evolve over time. People who use the benchmark questions later on can get better results just because
the search engine improves its results. Meanwhile, CRAG retrieval content is available for experiments.
Researchers who want to conduct a fair comparison do not need to reproduce the previous results, when
the results were reported on CRAG retrieval content. Otherwise, they would need to re-implement
existing SOTA systems to make sure the same version of search engines were used. This can be very
consuming and even infeasible (if the system involves proprietary implementation or data). We believe
providing equally accessible retrieval content can substantially facilitate the research for RAG, and are
striving to extend this practice to future studies. See Section G for more discussions.

Setting model constraints. We put the constraints on which model can be used to make the
challenge focus on RAG, instead of the base models. The participants can use vanilla or fine-tuned
Llama 2 or Llama 3 models as long as the data were publicly available and were not generated from any
proprietary model. This decision also ensures the results from the built systems are more comparable.

E.2 How can we ensure the cost is affordable?

There are a lot of cost involved in running a large-scale challenge. To ensure its sustainability, we
carefully planned to control two major costs: computation and evaluation.

Setting submission limit and hardware constraints. The computation cost mainly comes from
using GPUs to run the inference. We set limits on the number of submissions from each team during
the challenge to make sure the computation cost can be controlled. The challenge allows up to six
submissions for each team each week in phase 1, and up to six submissions for each team in total in
phase 2.

We also selected a more affordable GPU option: the AWS G4dn.12xlarge instance equipped with 4
NVIDIA T4 GPUs with 16GB GPU memory as the supported hardware for the inference. These GPUs
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have the limitation that they cannot run the Llama 2 70B or Llama 3 70B full precision models directly.
However, the price of those more powerful GPUs were several times higher and would not bring much
additional value. Therefore, we decided to choose the more economical option.

These submission limits, along with the selected hardware configurations, ensured that we can provide
enough room for the participants to develop and test their solutions while keeping the computation cost
under the budget.

Using auto-eval in Phase-1 and in Phase-2 initial selection. Although human-eval is the most
comprehensive way for evaluating responses from LLMs, it would be too slow and expensive to support
challenges that receive thousands of submissions. Therefore we made an early decision to develop
auto-eval solutions for the challenge. Phase 1 of the challenge was purely relying on auto-eval to support
the leaderboard. For phase 2, we first used auto-eval to select the top-15 teams for each task, and then
employed human manual evaluation to determine the final winners. This design substantially reduced
the time and expense (more than 100 times) needed for the evaluation.

E.3 How can we ensure the evaluation is reliable?

In order to guarantee the evaluation quality, we still need to ensure the auto-eval mechanism has high
accuracy, which we discuss next.

Ensuring auto-eval quality. We solve the auto-evaluation problem with an LLM task, where the
prompt asks the LLM to determine whether the generated answer is accurate, hallucinated, or missing
based on the ground truth information. This is a simple version of the NLP task —consistency check.

We conducted extensive experiments to make sure the auto-eval solution can have high accuracy [52].
We have two observations when developing the auto-eval solution. First, it is critical to provide high
quality ground truth answers for the auto-evaluator to work effectively. During the experiment, we
observed that some examples may not have a unique correct answer (e.g., a question about height can
be answered in either feet or meters.). Hence, we also provided alternative ground truth answers for the
benchmark questions whenever needed. It turned out that these alternative answers were very helpful
for reducing evaluation errors. Second, we don’t need the most powerful models to serve as the auto-
evaluator. Our experiment shows that the accuracy of using the Llama 3 (llama-3-70B-instruct)
model and the ChatGPT (gpt-3.5-turbo) are 99% and 94.5% respectively (for predicting accurate,
missing and hallucinated responses) [52]. See Table 34 for more detailed results.

In the final evaluation, among the nine top-3 winning teams selected by manual evaluation, six
of them were also selected by our auto-evaluation. Generally speaking, using LLM-as-a-Judge is a
common practice in evaluating language models’ performance. Procedures for measuring and resolving
the self-enhancement bias, position bias [57] and preventing prompt attacks play vital roles in ensuring
the reliability of the evaluation results.

Preventing evaluation attacks. We found three decisions very helpful for protecting the evaluation
from hacks. The first one was to keep a held-out test set for the final competition (phase 2). We initially
ran the leaderboard in phase 1 using the released public test set, but soon found the leaderboard was
filled with 100% accuracy. This was because some teams tried to test the evaluation system and created
a map with (query, answer) pairs based on the released data, from which they looked up answers for
the test queries during the submission. This issue was remedied by replacing the leaderboard test set
with a subset of the held-out dataset. The second decision was to hold out the exact prompt used in
the auto-eval to avoid prompt attack. We released an example evaluation prompt to illustrate how the
auto-eval works in the starter kit, and later on received questions from the challenge forum calling out
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F1 Score Accuracy

Model Correct Missing Hallucinated

ChatGPT-3.5 Turbo 92.0% 100.0% 92.0% 94.5%
Llama 3.0 8B Instruct 94.6% 100.0% 90.7% 95.3%
Llama 3.0 70B Instruct 98.9% 100.0% 97.9% 99.0%
Llama 3.1 70B Instruct 98.2% 100.0% 96.8% 98.4%

Table 34: Auto-eval performance for using different models as the evaluator. The first three columns
show the F1 scores on the accurate, missing and hallucinated responses. The last columns shows the
overall accuracy on all examples in the CRAG public test set. Llama 3.0 70B and Llama 3.1 70B models
achieve accuracy around 99%. Llama 3.0 8B, although being much smaller, attains accuracy 95.3%,
on par with ChatGPT-3.5 Turbo. All models have 100% on the missing answers because we require
all missing answers to be answered as “I don’t know", and we use exact match to judge for missing
responses during the evaluation.

ways to hack the prompt for obtaining high scores. During the final competition, we also noticed some
submissions that tried to fool the auto-evaluator achieved very high scores. Although the final winners
were selected by the manual evaluation, recall that a team needed to be among the top 15 in the auto-eval
to be eligible for human-eval. Keeping the evaluation prompt private significantly reduced the risk of
prompt attack and also reduced the overhead needed for manual checking after the evaluation. The
third one was to disable network connection during the inference. The choice of providing pre-fetched
retrieval contents (discussed in Section E.1) allowed us to avoid using live web connection during the
challenge. This also helped reduce the risk of leaking the private test data during the evaluation stage.

F Related work

F.1 RAG Benchmarks

We compare and highlight the strengths and limitations of existing retrieval-augmented generation (RAG)
benchmarks across several critical dimensions, as demonstrated in table 35 in CRAG [52]. QALD-10 [46]
focuses primarily on knowledge graph search over Wikidata but does not incorporate web retrieval,
limiting its capacity to test models in unstructured environments. It lacks mock APIs or dynamic
question capabilities, reducing its ability to simulate real-world, evolving knowledge scenarios. MS
MARCO [4], while widely used for open-domain question answering, primarily emphasizes passage
retrieval and lacks integration with knowledge graphs. It also fails to test for long-tail facts, as it
predominantly handles popular, factoid-based information sourced from common queries, limiting its
coverage of less frequent, tail facts. Natural Questions [19] focuses on more complex and long-form
queries but remains heavily constrained to Wikipedia-based knowledge and lacks dynamic or API-driven
retrieval. RGB [7], on the other hand, introduces a focus on long-tail facts but does not fully test
retrieval beyond specific domains, missing integration with KG searches or dynamic question handling.
FreshLLMs [47] excels in testing models’ ability to retrieve and update real-time knowledge but remains
narrow, lacking domain diversity and focus on structured retrieval such as knowledge graphs.

Despite having smaller question size than MS MARCO and NQ, CRAG [52] stands out by combining
web retrieval, knowledge graph search, and mock APIs, simulating diverse retrieval environments. It
goes beyond Wikipedia, tackling dynamic questions and ensuring comprehensive coverage of both torso
and tail facts across multiple domains, making it a more robust and versatile benchmark for evaluating
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Table 35: Comparing CRAG to existing benchmarks for factual question answering.

Benchmark Web
retrieval

KG
search

Mock
API

Dynamic
question

Torso and
tail facts

Beyond
Wikipedia

Question
size

QALD-10 [46] ✗ ✓ ✗ ✗ ✗ ✗ 0.8K
MS MARCO [4] ✓ ✗ ✗ not explicitly not explicitly ✓ 100K
NQ [19] ✓ ✗ ✗ not explicitly not explicitly ✗ 323K
RGB [6] ✓ ✗ ✗ ✗ ✗ ✓ 1K
FreshLLM [47] ✗ ✗ ✗ ✓ ✗ ✓ 0.6K
CRAG [52] ✓ ✓ ✓ ✓ ✓ ✓ 4.4K

next-generation RAG systems.

F.2 RAG Systems

RAG systems have evolved significantly over time, focusing on improving large language models (LLMs)
by integrating retrieval mechanisms for enhanced knowledge access. Talmor et al. [41] pioneered the
use of the web as a knowledge base to answer complex questions, emphasizing retrieval for reasoning
tasks. Lewis et al. [21] formally introduced RAG, combining dense retrieval with generative models to
solve knowledge-intensive NLP tasks, setting a strong foundation for subsequent models. REALM [14]
improved this by incorporating retrieval into pre-training, making retrieval part of both the learning
and fine-tuning process, which was further extended by Fusion-in-Decoder (FiD) [17], fusing multiple
retrieved documents into the generation process for improved question answering. Mallen et al. [25]
explored the effectiveness of parametric and non-parametric memory mechanisms to determine when
models should rely on internal versus external knowledge. Similarly, Sun et al. [39] investigated whether
LLMs could replace traditional knowledge graphs, assessing how well LLMs store and retrieve structured
knowledge. QA-GNN [54] integrated retrieval-augmented methods with reasoning from knowledge
graphs, combining structured and unstructured knowledge for better question answering. Meanwhile,
Mallen et al. [25] focused on trust in LLMs, analyzing the limitations of parametric knowledge and
advocating for non-parametric memory integration. Recently, FreshLLMs [47] refreshed LLM knowledge
using search engine augmentation to maintain up-to-date responses. These works collectively contribute
to a growing body of research that refines LLM performance by bridging the gap between parametric
knowledge and external, retrievable information.

F.3 RAG System Evaluation

In recent developments for evaluating RAG systems, multiple frameworks have proposed solutions aimed
at addressing key challenges like retrieval relevance, truthfulness, and the efficiency of the evaluation
process. ARES [37] offers an automated evaluation approach by generating synthetic data and fine-tuning
lightweight language models, allowing for scalable assessments of retrieval relevance, answer faithfulness
and answer relevance. However, ARES may face issues with domain adaptation, as its synthetic data may
not always represent the nuances of diverse real-world datasets. RAGAS [12] introduces a reference-free
evaluation method, providing metrics for context relevance without relying on ground truth annotations,
reducing human labeling costs. Nevertheless, its heuristic-based measures may struggle with capturing
deeper semantic nuances and can exhibit biases in complex scenarios. CoFE-RAG [23] performs an
exhaustive evaluation across the entire RAG pipeline, employing multi-granularity keyword-based
assessment of the retrieved context. RAG-QA Arena [15] proposes a pairwise preference evaluation
framework with truthfulness as the primary criterion, leveraging ground truth to gauge the evaluation
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system quality.

F.4 RAG Competitions

More recently, the TREC 2024 RAG Track is proposed, featuring Ragnarök [33], an open-source, end-
to-end evaluation framework with MS MARCO V2.1 collection and industrial baselines like OpenAI’s
GPT-4o and Cohere’s Command R+. The framework provides a web-based interface for benchmarking
pairwise RAG systems through a RAG battle arena.

Various domain-specific competitions, such as the Zindi RAG challenge [2] for public services, the
FinanceRAG competition [1], and the Trustbit Enterprise RAG Challenge [45], push the boundaries
of RAG applications. These challenges emphasize tailored RAG systems that retrieve domain-specific
information and generate context-aware responses, demonstrating the potential of RAG to enhance
service delivery in public administration, financial analysis, and business document comprehension.

G Discussion and future work

The KDD Cup CRAG 2024 competition established a benchmark for evaluating Retrieval-Augmented
Generation (RAG) systems with three challenging tasks: retrieval summarization, knowledge graph
and web retrieval, and end-to-end RAG. Questions covered various domains, dynamism levels, types,
and entity popularity. Key learnings from hosting the challenge (Section E) emphasized the need for
standardized retrieval content and retrieval access, controlled model constraints, maintaining a private
test set, and mixed automated and human evaluation strategies to ensure fairness and manage cost.

CRAG highlighted persistent challenges in RAG systems. First, reducing retrieval noises from
the web and from KG is critical as irrelevant or contradicting information degrades answer quality.
Second, handling real-time or fast-changing questions remains difficult due to the need for nuanced
temporal reasoning. Third, questions that require aggregation, multi-hop reasoning or post-processing
are challenging as they require complex logic to integrate knowledge across multiple sources. Lastly,
reducing hallucinations in summarization remains essential. To address the above challenges, winning
teams leveraged a variety of solutions (Section D). For example, developing multi-step pipelines to parse,
chunk, and rank web contents reliably, creating regularized APIs to enhance KG retrieval expressiveness,
incorporating external libraries to improve temporal reasoning, leveraging chain-of-thought techniques to
break down complex queries, and fine-tuning LLM and implementing confidence estimation component
to reduce hallucinations. The practical applications of these findings have significant implications for
improvements in industry-grade RAG systems.

The CRAG competition highlights several promising directions for future RAG research: Enhancing
web retrieval quality via better handling of structured and semi-structured data, improving temporal
reasoning for real-time queries, and refining methods for multi-hop and aggregation tasks can improve
response reliability. Additionally, targeted fine-tuning may be essential to effectively reduce halluci-
nations. Looking ahead, future CRAG-style competitions could expand the question sets to include
multimodal, multi-turn questions, integrating text with images or structured data for a more realistic
RAG environment. As researchers pursue these directions, they will also need to address key scalability
challenges in building RAG systems that can handle real-time and multimodal data, including ensuring
data consistency across diverse sources and achieving low-latency processing of real-time multimodal
data. By tackling these challenges, researchers can unlock the full potential of RAG systems and improve
response reliability.
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