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Abstract
Nearest neighbor search is a computational primitive whose efficiency is paramount to many applications.

As such, the literature recently blossomed with many works focusing on improving its effectiveness in an
approximate setting. In this overview paper, we review recent advances of the state of the art and discuss some
trends. Given the practical relevance of the problem, new approaches need to be thoroughly benchmarked. We
therefore review some recent benchmarking efforts and provide advice on the benchmarking pipeline.

1 Introduction

Nearest neighbor search is a key component in many computer science applications. For example, using CLIP
embeddings [50] both images and text can be mapped to dense vectors in a vector space; retrieving images that
match a text description then boils down to embedding the text into a query vector and searching for images
whose vectors are closest to the query vector under some distance measure. Using nearest neighbor search, large
language models (LLMs) can also be augmented with knowledge that was not present in the training data [36].
Unfortunately, exact nearest neighbor search in high-dimensional data—such as the dense vectors generated
by deep learning-based embedding pipelines—is a notoriously difficult problem that usually requires scanning
through the whole dataset. This excludes the possibility of scalable approaches for billion-scale datasets that are
common in today’s applications.

To enable scalable nearest neighbor search, the research focus turned to approximate nearest neighbor search
(ANN). In empirical settings, this usually means that an implementation does not provide a guarantee on the
quality of the returned vectors. Instead, the user provides—based on knowledge of the data distribution and the
query workloads—parameters that are used to build and to search the index data structure, respectively. Given a
query point and some search parameters, the index is used to generate a candidate set for the query. The closest
vectors among these candidates are returned as the (presumably) nearest neighbors for a given query. The smaller
the candidate set, the faster the search, but also the lower the result accuracy. Section 2 gives an overview over
general approaches to approximate nearest neighbor search.

ANN-benchmarks [10] presents the state-of-the-art benchmark on million-scale approximate nearest neighbor
search implementations. In the benchmarking run published in April 2023, more than 30 implementations were
tested on a collection of datasets. Each implementation was run on a single thread. The results for a single dataset
are depicted in Figure 1. On a high level, many implementations achieve a throughput of more than 1,000 queries
per second at an average recall of at least 90%. In particular, many implementations still perform well in the
setting of average recall at least 99%. As a baseline, a bruteforce solution using BLAS achieved a throughput of
16 queries per second. Most of the approaches that perform best implement a graph-based approach with the
notable exception of Google’s ScaNN [25] and Meta’s FAISS [35] which both implement a clustering-based
approach as their main data structure. Please see the project website for more details on the used implementations.
We review benchmarking efforts and pitfalls in Section 3.
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Figure 1: April 2023 run of ANN-benchmarks [10] (http://ann-benchmarks.com) on 100-dimensional
vectors from GloVe embeddings [47] on a twitter corpus. The x-axis represents the average fraction of true
10-nearest neighbors returned (on a logarithmic scale); the y-axis provides the queries per second achieved, on a
logarithmic scale. Both index building and searching is conducted on a single thread. Reported points represent
the Pareto-frontier over a grid search on the parameter space. Interactive visualisations are available on the project
website. Benchmarking run carried out by E. Bernhardsson.

This overview paper focuses on approaches that are not covered by the current benchmarking efforts. While
theoretical breakthroughs have been achieved over the last years, for example by Andoni et al. [5], our focus
lies on approaches that are supported by efficient implementations targeted to solve nearest neighbor search on
real-world datasets. Section 4 is dedicated to this recent work. Finally, we close the overview by identifying
recent trends and promising directions for future work in Section 5.

1.1 Problem setup

Formally, the task in k-nearest neighbor search is defined as follows. Let (X , dist) be a metric space, and let
k � 1 be an integer. Given a dataset S ✓ X of n data points (p1, . . . , pn) 2 X

n, the task is to build an index data
structure that supports the following queries: Given a query point q 2 X , return a sequence Iq = (i1, . . . , ik) of
unique indices of data points in S such that pi1 , . . . , pik minimize the distance to q.

For simplicity, we will focus on the case that X = Rd, i.e., we consider d-dimensional real-valued vectors.
Classical distance metrics are Lp norms, in particular for p = 2 (Euclidean distance), and inner product
dissimilarity, associated with the task commonly known as maximum inner product search. Other interesting
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cases are length-d bitstrings X = {0, 1}d under Hamming distance and collections of sets X = P(U) under
Jaccard similarity over a finite universe U with P(U) being the power set of U .

In the case that distances are unique, we can identify by I
⇤
q the set of indices of the true k-nearest neighbors of

a query point q. As a quality measure, we consider the recall |Iq \ I
⇤
q |/k. We call a method exact if it guarantees

a recall of 1, and we call it approximate otherwise. In the context of approximate methods, papers often report
on the average recall over a set Q of queries. If distances are not unique, distance-based recall variants are
available [10].

2 A general overview over high-dimensional indexing

There exists a plethora of different approaches for solving nearest neighbor search. The most successful
approaches can be categorized into clustering-based, graph-based, hashing-based, and tree-based approaches.
For the notable exception of graph-based approaches, nearest neighbor search is usually solved by partitioning
the space Rd into M disjoint parts R1, . . . , RM such that

S
1iM Ri = Rd.

2.1 Indexing techniques for high-dimensional data

We provide a short overview of approaches and highlight a well-established method from each category. Each
implementation comes with certain parameter choices used during the indexing phase (building the ANN data
structure) and the querying phase (searching for the approximate nearest neighbors). To ease the explanation and
make an attempt of unifying the landscape, we provide explanations that focus on a single build parameter M
and a single search parameter `.

Clustering-based approaches (IVF [35]). Given a dataset S ✓ Rd and two parameters M and `, run a
clustering algorithm such as M -means to find M centroids. By associating each point with its closest centroid,
the space is partitioned into M parts. The data structure that stores the centroids and the associated lists is referred
to as an inverted file index (IVF). To find nearest neighbors to a query q 2 Rd, inspect the points associated to the
` closest centroids of q. Since this itself is a nearest neighbor search task, for large M an index over the centroids
is employed. Clustering-based approaches usually provide very compelling index size since each point is stored
only once with its associated centroid. The build time of a clustering-based approach is dominated by clustering
the data points, which is often done on a sample. The final assignment carries out O(nM) distance computations
to centroids if the assignment is exact; as before, this can be sped up by indexing the centroids.

Graph-based approaches (HNSW [43]). Given a dataset S ✓ Rd and parameters M, `, the goal is to build a
graph G = (V, E), where each point is represented by a vertex and edges exist between a point and a “diverse”
set of at most M points. Let us assume that such a graph G is given. To find the nearest neighbors of a query
point q, HNSW uses a hierarchy of graphs to find a good entry point into the bottom-layer graph that indexes all
points. Given such a start point, carry out a greedy hill climbing. In each round, consider the currently closest
point to the query not considered before. Inspect the neighborhood and compute the distances to the query point.
After each round, trim the list of current closest points (inspected and non-inspected) to `, which is usually called
the beam width. Terminate if all ` points have been considered. (Note that this is not a bound on the number of
distance computations, since considered points might be trimmed off.) To build the graph, order all the points and
insert them one-by-one using the search algorithm¸ often with a smaller `0 than used for the queries. From the
points inspected in this search, a pruned set of M points is chosen as neighbors of the inserted point. Additionally,
pruning might be necessary for its neighbors if their degree bound M is not met. Graph-based indexes usually
provide compelling index sizes when M is small (the number of edges can be as large as Mn). The index build
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time is usually rather high for graph-based approaches, since individual searches are carried out for each data
point.

Hashing-based approaches (FALCONN [3]) FALCONN is an approach based on locality-sensitive hashing
optimized for inner product similarity on unit length vectors. It uses crosspolytope LSH as its LSH function. A
crosspolytope LSH function is described by a rotation matrix, which is chosen at random. The hash value of a
point is the closest base vector in Rd when applying the random rotation to the point. Given a set of points S and
two parameter M, `, the data structure works as follows. Choose M random LSH functions mapping data points
to hash values R, where each function is the concatenation of two to three random crosspolytope LSH functions.
Hash each data point M times with independent hash function choices, and store the point in M buckets, one per
hash function. These buckets together with the collection of hash functions form the index. Given a query point
and collection of M hash tables, hash the query point using the same hash functions and consider the data points
that also reside in the bucket as candidates. Traditionally, LSH suffers from large indexes since independent
repetitions provide the “best” buckets in the sense that among all buckets, it is most likely to find a close points in
the bucket identified by the query hash code. However, if space is a concern, one can use a smaller M value and
if less than ` points are found, check neighboring buckets using a multiprobing approach. The index build time of
a hashing-based approach is usually dominated by hashing each data point M times. Fast evaluation tricks, such
as applying the fast Hadamard transform [3] and pooling/tensoring approaches [18] can be employed to lower
this cost.

Tree-based approaches (MRPT [30]). MRPT builds a collection of trees based on sparse random projections.
Given a set of points S and two parameters M, `, the data structure works as follows. First, a node in a tree
is described by a hyperplane a that splits up a point set S0

✓ S. At the root, the whole dataset is taken into
consideration, and a leaf is created as soon as the number of points at a node is below a certain threshold. Instead
of a single tree, M trees are created to boost the quality of the results. Given a query point and a collection of
M trees, carry out root-to-leaf-traversals in each tree for the query. In MRPT, a voting search is carried out by
considering a point in a leaf as a candidate if it appears in at least ⌫ different trees. MRPT results in compelling
index sizes for small M values since each level of the tree contains a single random hyperplane, only storing the
split value in a node. The build time is dominated by finding the individual splits, which typically requires in
each node and over all trees, to evaluate the projection value and select the median. [32] describe a method to
automatically select hyper-parameters for this approach.

2.2 System Architecture

The standard system architecture for ANN search is depicted in Figure 2. Given a dataset S ✓ X and a set of
build parameters Pbuild, an index is built following the approaches mentioned in the previous subsection. Both
the build time and the index size is often crucial for the feasibility of an approach. Given a query point q 2 X

and a set of query parameters Pquery, the index is used to generate the candidate set. This candidate set is usually
refined using a quantization or sketching technique that stores small summaries of each data point. The goal of
the refinement is to discard candidate points that are unlikely to be among the k nearest neighbors. In a final
reranking step, exact distance computations between the refined candidates and the query point are carried out,
and the indices of the k points with smallest distance to the query are returned as the answer to the query. In the
case that memory resources are sparse, for example when dataset vectors do not fit into main memory, the final
re-ranking step might not be carried out, which usually results in a loss in precision.
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Figure 2: Overview of the phases of a traditional ANN implementation.

3 Benchmarking ANN implementations

Assessing the performance of a new method is at the same time crucial and challenging. The new method
itself often has a lot of configurations to explore, and the number of baselines to compare with grows by the
day, with each baseline featuring a lot of parameters. In such a scenario, benchmarking efforts such as the
ANN-benchmarks [10] mentioned in the introduction— also used for benchmarking in billion-scale settings [53]—
and the Lernaean Hydra framework for data series similarity [21] provide a very useful stepping stone.

In particular, a benchmarking infrastructure such as ANN-benchmarks provides a collection of baseline
algorithms, along with sensible ranges of their parameters to test. Algorithms are then evaluated according to a
standardized evaluation protocol: each approach is first set up with indexing parameters; then it is fed the data to
be queried, allowing it to build index structures; finally several query groups are executed on the same index, with
different query parameters.

We believe that it is much easier to integrate a new method in an existing benchmarking infrastructure,
rather than implementing a custom one for each new paper. We therefore urge the community to adopt shared
benchmarking infrastructures in order both to avoid reinventing the wheel and to make results more easily
comparable across papers. Even if the core pipeline cannot be used, the data preprocessing (for example, the
fixed definition of query workloads) and result postprocessing (for example, the availability of groundtruth data
and evaluations scripts) can be used in isolation, ensuring reproducibility of results.

Observing the evolution of results of ANN-benchmarks throughout the last couple of years, and the experi-
mental evaluations of the paper reviewed in this survey, we formulate in the following a few concrete suggestions
on how to improve benchmarking of future works.
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Figure 3: Recall/qps performance of several
parameter combinations of HNSW on the
Glove dataset.
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Figure 4: Distribution of queries per second
of several parameter combinations of HNSW
achieving at least recall 0.9.

3.1 Reporting on multiple metrics

Most of the times, the metrics considered for approximate nearest neighbor queries are the query throughput and
the average recall. The query throughput—or equivalently the query time—are however very dependent on the
implementation, and are thus measuring the performance of the implementation, rather than assessing the merits
of the underlying algorithm [38].

While the actual performance of an implementation is what people are most interested in, considering
other metrics can give further insights into the behavior of an algorithm. For instance, the number of distance
computations performed can indicate how effective an approach is at reducing the amount of work to be performed.
The interplay between the number of distance computations and the actual running time is also of interest: a
linear scan through compressed points using product quantization may be faster than a more sophisticated
index due to better use of the cache, despite carrying out more distance computations. As highlighted in [19],
this is for example true for clustering-based approaches compared to graph-based approaches in million-scale
settings. While the latter only carry out a fraction of distance computations, the more efficient memory layout of
clustering-based approaches can make up for the additional calculations.

Furthermore, the index size and the index construction time are important metrics to complement the execution
speed.

3.2 Selecting parameters

Many papers evaluate the proposed method by comparing with a few state of the art approaches, using a few
configurations for each. Some papers use just a single configuration for the baseline, namely the default one
provided by the implementation or the ones discussed in the associated publication. This approach can however
lead to misleading comparisons, in that the performance of many approaches varies wildly in response to
parameter changes, and differently across datasets.

For instance, HNSW is a commonly used baseline to compare with, and in many cases only a few parameter
combinations are tested. Figure 3 reports the results—in terms of average recall and queries per second—of
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Figure 5: Histogram of the recall of single queries for a configuration of HNSW achieving average recall 0.55.

answering 5 000 queries on glove-100-angular1 using HNSW in the implementation provided by the
FAISS library [35]. The index building parameters being used are M 2 {4, 8, 12, 16, 24, 36, 48, 64, 96} and
efConstruction = 500; the search parameters are varied in the range ef 2 {10, 20, 40, 80, 120, 200, 400, 600, 800}.
As one can observe, the outcomes vary wildly, both in terms of recall and in terms of query throughput. As such,
using only a single parameter configuration as a baseline for comparison is very likely to result in suboptimal
performance for the baseline itself. In this case we consider HNSW due to its popularity, but the same behavior
can be observed with most approaches.

Even fixing a target recall and focusing on a single configuration achieving it does not make the performance
more stable across parameter configurations. Figure 4 shows the distribution of the query throughput for all the
aforementioned configurations that result in an average recall between 0.9 and 0.95. As we can see, the difference
between the slowest and the fastest configurations is about two orders of magnitude.

3.3 Making workloads explicit

Many papers describe which datasets are part of their experimental section and then make a generic statement
along the lines of n queries are run from the dataset. The reader is then left to conjecture that possibly queries
are sampled at random from the dataset. However, it has been shown [8] that the practical performance of queries
is greatly influenced by the intrinsic dimensionality of the queries themselves. Some works already address
explicitly workloads with different difficulties [22, 68].

We therefore suggest to explicitly design query workloads that span a different range of difficulties, thus
allowing to assess the performance of the approaches under test in finer detail. We provide Python code to
compute intrinsic dimensionality measures of workloads at the following public repository: https://github.
com/Cecca/workloads-difficulty.

3.4 Dangers of reporting on averages

In the previous section we considered the average recall of 5 000 queries as a performance indicator. This can be
misleading at times, and hide interesting behavior.

1http://ann-benchmarks.com/glove-100-angular.hdf5
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Consider again HNSW. Figure 5 reports the histogram of the recalls of individual queries of a run attaining
average recall ⇡ 0.552. Strikingly, almost a third of the queries have recall 0, and a third of the queries have recall
1. In this case considering the average hides this bimodal behavior that may have important practical implications.

Therefore, we suggest to consider the distribution of the performance of individual queries, rather than
drawing conclusions based on averages alone.

3.5 Implementation accessibility

The possibility to access the implementation backing the findings reported in any paper is of paramount importance
for the community to verify and build upon results. Fortunately, in recent years the number of papers in nearest
neighbor search that make their code accessible (usually as a Git repository hosted on online services such as
GitHub or BitBucket) increased significantly.

Still, we note that code accessibility can be improved further. In some case, the code linked to a paper fails to
compile following the instructions, most often due to differences between the environments of the code’s author
and the reader. Among the many solutions to this problem, we believe the most straightforward is to pair the
code with container environments such as Docker [14] or Singularity [39]. Doing so also makes for an easier
integration in existing benchmarking efforts, which often leverage containers in their infrastructure [10].

4 New approaches to ANN search

Having covered general approaches to high-dimensional indexing and remarks on benchmarking efforts, we will
now focus on recent work. In the context of this overview paper, we report on approaches that appeared after the
publication of the benchmarking paper [10].

4.1 Hashing-based Approaches

Recent works based on hashing have focused on extending classic LSH techniques by using new data structures,
new query procedures, and by incorporating information from the data and query distribution.

PUFFINN [9] is an approach whose goal is to address approximate k-nearest neighbor queries while
providing theoretical guarantees on the failure probability. In order to do so, it leverages the theoretical framework
of Locality Sensitive Hashing (LSH) [15, 27]. While providing theoretical guarantees, LSH is known to have
many parameters, whose setting is crucial to achieve good performance. To overcome this issue, PUFFINN
adopts an adaptive approach based on the LSH forest trie data structure [13].

PM-LSH [66] is an approach focusing on Lp norms. Their key idea is as follows. A dimensionality reduction
using the Johnson-Lindenstrauss transform is applied to project each point into a lower-dimensional space. The
transformed points are then indexed by means of a PM-tree [55]. Queries are then carried out by performing
several range queries on the PM-tree. While this approach is reminiscent of the earlier SRS approach [58], there
is a somehow subtle difference. Where SRS runs k-NN queries in the projected space, which may suffer from the
inaccuracy introduced by the projection (i.e. the second nearest neighbor in the projected space might not be the
best candidate in the original space) PM-LSH runs a sequence of range queries, which they demonstrate to be
more accurate.

FARGO [65] focuses on the Maximum Inner Product Search problem (MIPS). In order to apply LSH to the
MIPS problem, the paper proposes an asymmetric transformation of data and queries so that all data points have
the same norm, while retaining the original inner products with the queries. Then data points are indexed using
LSH, and queried using a multi-probing approach.

2Using the faiss implementation of HNSW, with efConstruction = 500, M = 16 and ef = 10. Queries are the ones provided
in the glove-100-angular.hdf5 file from ANN-benchmarks.
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CEO-MIPS [48] targets the MIPS problem as well, by performing several Gaussian random projections of the
data and the queries. By leveraging the theory of concomitants of extreme order statistics, CEO-MIPS considers
among all the projections of the query only the one with maximum value. If the i-th projection maximizes the
absolute inner product, then it considers as candidates the data points whose i-th projection is large. The paper
describes several variants of the approach that reduce the space usage.

FALCONN++ [49] improves on the Cross-Polytope-based hashing used in the FALCONN library [3].
The main insight is that mapping a data point into a bucket based on the random vector that maximizes the
inner product (crosspolytope hashing), can also be used as an estimator of the distance between the point and
the query vector, similarly to [48]. The paper proposes a threshold for the inner product to keep a point in a
bucket, otherwise it is filtered away. This is the first practical implementation using the locality-sensitive filtering
technique proposed by Andoni et al. [4] and by Christiani [17] in the context of approximate nearest neighbor
search. We note that Rashtchian et al. [51] used this framework for computing similarity joins for skewed data.

LSH-CO-SUBSTRING [40] seeks to overcome one of the main hurdles of using LSH, that is selecting the
number of repetitions. The key idea is that, instead of performing L repetitions of the LSH scheme, each vector is
associated with a string of hash values of length m. Then, instead of defining buckets, a query looks for the hash
strings with the longest colliding subsequence, allowing wraparounds at the string boundaries. The experimental
analysis shows that the approach has an edge over other LSH-based approaches in terms of query time at a given
recall, with markedly smaller index sizes.

LSH-APG [64] aspires to blend together LSH and graph-based approaches. In particular, LSH is used
to speed up the construction of a graph-based index. At query time, LSH is again used to select a few entry
points into the graph; these are then used to handle the search for the best query answers. Experiments show that
LSH-APG has a larger index than graph-based methods, but such index can indeed be constructed much faster.
Furthermore, the query performance at fixed parameters is shown to be better than other graph-based approaches.

DB-LSH [62] employs a dynamic bucketing scheme, modifying the classic LSH approach, to answer range
queries. The traditional LSH approach for the Euclidean distance requires to project points onto a random
direction, and then to bucket the projections at indexing time to build the hash codes. In DB-LSH such
quantization is deferred to query time, so to be able to center the buckets around the query. In particular, at index
time the random projections of the dataset points are indexed in an R*-tree. At query time, the R*-tree is used to
answer a sequence of (rectangular) range searches, that are equivalent to dynamically bucketing the hash values
around the query.

HD-INDEX [7] answers approximate k-nearest neighbor queries with the aim to use less space than LSH.
The core idea is to partition the dataset with a regular grid, which is then traversed using a space-filling curve
(such as Hilbert of Z-order). Points are then inserted in a tree-like data structure using their position along the
space filling curve as keys. The rationale is that points that are close in a geometric sense are also close along
the space filling curve. The experiments reported in the paper show that, compared to baselines the HD-INDEX
answers queries with a better Mean Average Precision, in a shorter time.

4.2 Graph-based approaches

Graph-based approaches offer among the largest variety of known methods, see for example the survey paper
by Wang et al. [63]. In general, recent works have focused on enabling the use of graph-based approaches on
larger-than-memory data, on addressing the issue of indexing time, and on designing pruning/refinement strategies
for the graph building process.

DISKANN [56] targets approximate nearest neighbor search in an external memory setting, where the size
of the dataset makes it impossible to store the index and the data entirely in memory. Therefore, the main aim is
to develop an index that minimizes the number of disk reads per query to amortize the disk latency. To this end,
DISKANN refines a random k-regular graph using iterated beam searches from a central graph node, the medoid.
It refines the graph in two steps with different pruning values. In difference to HNSW, no hierarchy is employed.
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ELPIS [11] tackles one of the main issues of graph-based approaches, which is the index construction time.
It does so by first partitioning the datasets using a tree-based data structure, and then by using HNSW to build
graphs on the leaves. As such, the graph construction is carried out in parallel on smaller subsets of the data.
This leads to a faster index construction and to a smaller index as well. In particular, ELPIS builds its tree
by employing dimensionality reduction techniques borrowed from the data series community, observing that a
high-dimensional vector can be considered as an instance of a data series.

Dobson et al. [19] give a detailed account on scaling graph-based nearest neighbor search implementations
to billion-scale datasets. In particular, they describe parallelization techniques to deal with the potential data
dependencies that can occur during the parallel insertion of points.

4.3 Clustering-based approaches

SCANN [25] extends the standard inverted file index based on (hierarchical) k-means clustering, designed
for inner product spaces. Their motivation is that `2-based k-means clustering may favor centroids that do
not preserve the ordering under inner product similarity. To mitigate this issue, they propose an anisotropic
quantization technique which is more accurate for inner product similarity. A significant ingredient to SCANN’s
performance is a very efficient product quantization implementation based on SIMD instructions as described by
Andre et al. [6]. Sun et al. [57] extend the approach with an efficient hyper-parameter selection technique.

4.4 Learning-based approaches

Algorithms with predictions [37] is a recent trend in the development of algorithms and data structures. The
idea is that an oracle, for example a machine learning model, gives predictions for data that is stored in the data
structure. An overview over progress in this field in general is given by Mitzenmacher and Vassilvitskii [45]. A
thorough survey of deep learning-based methods for approximate nearest neighbor search is given in [42].

In the context of ANN search, two main research directions are (i) using a machine learning model to guide
the candidate generation and (ii) using a machine learning model to set adaptive stopping criteria in a traditional
data structure. In the former, the indexing part is augmented with a machine learning model; in the latter, the
search phase is augmented using such a model.

ANN AS MULTILABEL CLASSIFICATION by Hyvönen et al. [31] proposes to formulate the following
multi-label classification problem: Given S ✓ X and x 2 X , let yi = [pi is a k-NN of x in S]. Thus, the
(high-dimensional) label y = (y1, . . . , yn) represents the set of k nearest neighbors of x. Given these pairs
{(x(i), y(i))}1in, we can train a classifier for this multi-label classification problem. Applied to space parti-
tioning nearest neighbor search algorithms, such as trees, LSH, or clustering-based variants, the authors show
that the pre-dominant approach that collects the points that fall into the same part of the partition (i.e., a leaf or a
bucket) is not the natural classifier for the multi-label classification problem. Instead, one should use a majority
vote based on groundtruth labels y of these points to decide on the candidates to check.

NEURALLSH [20] proposes to build the k-NN graph on the dataset S, and find a balanced partition of this
graph into m disjoint parts. These m parts form the m buckets of the data structure. The label of a point x is an
m-bit string, where the i-th bit is set if x has a k-NN in part i of the graph. The labeling is learned by means
of a neural network, and the search is guided by predicting bucket probabilities using the neural network, and
checking all buckets in sorted order, thresholding at a certain value.

BLISS [26] applies iterative repartitioning by learning the bucket assignment and redistributing points
according to the learned assignments, in rounds. More precisely, data points are split up at random into B
groups/buckets. The label of a data point x is a length-B bit string; label i 2 {1, . . . , B} is set if the nearest
neighbor of x is in group i. After learning the assignment, a prediction step is carried out for each data point,
the top-K buckets with the highest probability are retrieved, and the data point is moved to the least loaded
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bucket among these top-K. The process is repeated R times independently. Experimentally, a small value of R is
sufficient, and B is set to roughly

p
n.

LEARNING TO HASH, ROBUSTLY [2] proposes a learned LSH function for binary data under Hamming
distance. In particular, rather than sampling bit-coordinates uniformly at random as in the standard LSH scheme,
the paper describes a method to optimize the probability distribution over coordinates, for the given dataset. In
contrast to the approaches mentioned above, they can guarantee worst-case running time comparable to the best
known theoretical approaches, while being able to adapt to the difficulty of a query dynamically.

Li et al. [41] note that most approaches using indexes to reduce the number of candidates to evaluate do not
adapt to the difficulty of a query, i.e., use the same stopping condition for all queries. The consequence is that to
achieve a good recall a conservative stopping condition needs to be used, thus hurting the performance of easier
queries. Therefore, they develop a prediction pipeline based on gradient boosting decision trees, allowing the
implementation of an adaptive stopping condition. Such an adaptive stopping condition is then implemented in
the IVF and HNSW indexes, with experiments showing a general reduction in latency.

Continuing along the line of the previous paper, Zheng et al. [67] focus on IVF indexes, with the aim of
setting the number of cells to probe on a per query basis. To this end, they first modify the way data vectors are
clustered, so to ensure that each cluster has a balanced number of entries. Then they use autoencoders, trained
offline on sample queries, to estimate the number of cells to probe for a query.

4.5 Refining Candidates

In the context of nearest neighbor search, an important ingredient of the system pipeline is the refinement of a set
of candidates. To this end, one wants to compress vectors in a way such that points likely to not be part of the k
nearest neighbors are to be excluded without incurring an exact distance computation. A general overview of the
techniques is given by Pagh in [46]. The main technique used is Product Quantization as introduced by Jegou et
al. [34]. An overview over this technique and its variants is given by Matsui et al. [44].

FINGER [16] aims at improving the speed at which nearest neighbor graphs are traversed. The key
observation is that during traversals most of the distances do not need to be computed exactly. Therefore, the
paper proposes an estimation method to quickly estimate distances that can be used to improve the performance of
any graph-based nearest neighbor algorithm. To showcase the performance of the approach, the paper integrates
it in an HNSW implementation.

ADSAMPLING [23] aims at optimizing one of the most basic operations in nearest neighbor search: the
distance comparison operation, which given a pair of points returns whether the points’ distance is above or below
a given threshold. First, the same random rotation is applied to each point. Then, given two vectors their distance
is computed by considering the rotated dimensions one at a time, in a progressive sampling fashion, conducting a
statistical hypothesis test on whether the two vectors are closer or farther than the threshold.

LVQ [1] describes a locally-adaptive vector quantization technique, which uses scalar quantization with
individual lower and upper bounds on the coordinate values. Employed in a graph-based index, the authors show
compelling performance up to billion-scale datasets.

5 Trends

5.1 Billion-Scale ANN search

Scaling ANN search to billion-scale datasets has been one of the core research directions of the past years. In
particular, this is supported by the availability of diverse datasets through the NeurIPS 2021 Billion-Scale ANN
challenge [53] and other large datasets such as Laion5B [52]. On this scale, index construction time and index
size pose the most challenging part of the indexing pipeline. Dobson et al. [19] provide an empirical comparison
of the scaling of different approaches from million to billion scale, focusing primarily on graph-based approaches.
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They discuss different parallelization strategies to efficiently parallelize the index construction and the (batched)
search. They conclude that graph-based nearest neighbor search performs best on billion-scale datasets in the
high recall regime. In terms of index building times and index size, clustering- and hashing-based approaches
were shown to be competitive.

5.2 New Tasks in ANN Search

In the following we describe extension of nearest neighbor search targeted towards real-world applications.

Filtered Search When data vectors are associated with some metadata, for example for the YFCC-100M [61]
dataset or the LAION5B dataset [52], a natural extension to k-NN search is to incorporate the metadata into the
query. Technically, each data vector is associated with a bag-of-words representation of its tags. The query vector
additionally has tags t1, . . . , tT , and the task is to find the (approximate) k-NN among all points in the dataset
that contain the query’s tags. A graph-based solution to this problem is described by Gollapudi et al. [24].

Out-of-Distribution Queries A common scenario in modern approximate nearest neighbor search is that data
and query vectors originate from different distributions, but are embedded into the same space. For example,
the Yandex TEXT2IMAGE dataset [53] consists of image embeddings produced by the Se-ResNext-101 model
described by Hu et al. [28], while queries are textual embeddings produced by a variant of the DSSM model by
Huang et al. [29]. As described in [53], the mapping to the shared 200-dimensional real valued vectors under
inner product similarity is learned via minimizing a variant of the triplet loss using clickthrough data. A novel
approach to explicitly deal with out-of-distribution queries is described in [33]. As pointed out in [19], cluster-
and LSH-based approaches are particularly affected by these changes in distribution.

Streaming Search A particular challenge in the index building process is to maintain an index over dynamic
insertions and deletions. Technically, a stream of add, delete, search operations is given, where each search is
supposed to return the approximate k-nearest neighbors of all the elements that are in the index according to the
add and delete operations. Simhadri 3 describes different applications of this setting. For example, for web search
the index may contain roughly a trillion vectors and has to handle billions of updates per day. Searches have
to be handled at a latency of at most 10 milliseconds with a throughput of 10,000-100,000 queries per second.
Naïve solutions such as placing tombstones for deleted items quickly degrade performance, as would a complete
rebuild of the index in a given interval size. Singh et al. [54] describe a graph-based approach to handle this issue
and show competitive performance to the non-stream setting, and a big improvement over previous LSH-based
approaches [59]. Their system handles thousands of add/delete operations per second while maintaining high
recall/throughput comparable to the non-streaming setting. A special case of this dynamic setting is content drift,
which was studied by Baranchuk et al. [12].

5.3 Conclusions

In recent years, the field of approximate nearest neighbor search has witnessed an exciting surge in the development
of new approaches and the refinement of existing methods. Alongside the traditional k-nearest neighbor setting,
new tasks are emerging: queries can incorporate different metadata such as tags, an index has to be kept over
a dynamic stream of search, insert, and remove operations, or queries might arise from a different distribution
than the data points. Moreover, the scale of today’s datasets has reached billions of data points, requiring
unprecedented scalability while retaining accuracy.

3https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx, (accessed on Sept 25, 2023.)
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Given the practical relevance of the problem, it is crucial that new approaches are benchmarked thoroughly.
Given the effort needed to set up a benchmarking infrastructure, we invite the research community to adopt and
improve shared benchmarks which avoid the pitfalls that commonly affect experimental evaluations.
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