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Abstract
Distance measures are core building blocks in time-series analysis and the subject of active research for

decades. Unfortunately, the most detailed experimental study in this area is outdated (over a decade old) and,
naturally, does not reflect recent progress. Importantly, this study (i) omitted multiple distance measures,
including a classic measure in the time-series literature; (ii) considered only a single time-series normalization
method; and (iii) reported only raw classification error rates without statistically validating the findings,
resulting in or fueling four misconceptions in the time-series literature. Motivated by the aforementioned
drawbacks and our curiosity to shed some light on these misconceptions, we comprehensively evaluate 71
time-series distance measures. Specifically, our study includes (i) 8 normalization methods; (ii) 52 lock-step
measures; (iii) 4 sliding measures; (iv) 7 elastic measures; (v) 4 kernel functions; and (vi) 4 embedding
measures. We extensively evaluate these measures across 128 time-series datasets using rigorous statistical
analysis. For the most promising measures, we present an accuracy-to-runtime analysis and summarize recent
progress on a generalized lower bounding measure that accelerates all elastic distances. Our findings debunk
four long-standing misconceptions that significantly alter the landscape of what is known about existing
distance measures. With the new foundations in place, we discuss open challenges and promising directions.

1 Introduction

The understanding of a multitude of natural or human-made processes involves the analysis of high-dimensional
observations over time. The recording of such time-varying measurements leads in an ordered sequence of data
points called time series [64, 65]. In the last decades, time-series analysis has become increasingly prevalent,
affecting virtually all scientific disciplines and their corresponding industries [25, 39, 47, 56, 60, 71, 72]. With
sensors and devices becoming increasingly networked and with the explosion of Internet-of-Things (IoT)
applications, the volume of produced time series is expected to continue to rise [41, 42, 55, 57, 74]. This growth
and ubiquity of time series generates tremendous interest in the extraction of meaningful knowledge from time
series [31, 67].

The basis for most analytics over time series involves the detection of similarities between time series. The
measurement of similarity, through a distance or similarity measure, is the most fundamental building block in
time-series data mining, fueling tasks such as querying [2, 29, 76, 78], indexing [32, 45, 112], clustering [7, 43, 68–
70], classification [6, 67, 85, 107], motif discovery [53, 62, 108], and anomaly detection [9–12, 24, 75, 77, 96].
In contrast to other data types where distance measures often process observations independently, for time series,
distance measures consider sequences of observations together. This characteristic complicates the definition
of distance measures for time series and, therefore, it is desirable to study the factors that determine their
effectiveness.

The difficulty in formalizing accurate distance measures stems from the inability to express precisely the
notion of similarity. As humans we easily recognize perceptually similar time series, by ignoring a variety

69



of distortions, such as fluctuations, misalignments, and stretching of observations. However, it is challenging
to derive definitions to reflect the similarity for mathematically non-identical time series [33]. Due to that
difficulty and the need to handle the variety of distortions, dozens of distance measures have been proposed
[5, 8, 16–18, 29, 34, 35, 61, 67, 68, 88, 95, 99].

Despite this abundance of time-series distance measures and their implications in the effectiveness for a
multitude of time-series tasks, less attention has been given in their comprehensive experimental validation.
Specifically, in the past two decades, only a single comprehensive experimental evaluation has been dedicated to
studying the accuracy of 9 influential time-series distance measures over 38 datasets [29]. Unfortunately, this
study suffers from three main drawbacks: (i) this study omitted multiple distance measures, including one of the
most classic measures in the time-series literature, namely, the cross-correlation measure [13, 79]; (ii) this study
considered only a single time-series normalization method; and (iii) this study reported raw classification error
rates without performing any rigorous statistical analysis to assess the significance of the findings. Therefore, the
analysis is incomplete, and, the findings might not be conclusive. Importantly, this study is now outdated (more
than a decade old), and, naturally, it does not reflect recent progress. Considering the previous drawbacks as well
as the remarkable interest in time-series analysis, we believe it is critical to revisit this subject.

However, our effort is not only motivated by the necessity to address the aforementioned issues or to extend
the previous study with newer datasets and distance measures. Instead, the thorough experimental evaluation
of time-series distance measures that we present in this paper is the byproduct of our attempt to challenge four
long-standing misconceptions (see M1�M4 in Section 2) that have appeared in the time-series literature. These
misconceptions are concerned with the (i) normalization of time series; (ii) identification of the state-of-the-art
distance measure in every category of measures; (iii) performance of the omitted measures against state-of-the-art
measures; and (iv) detection of the most powerful category of measures. Such misconceptions originated from
several influential papers [2, 8, 34, 40, 94], some of which date back a quarter of a century, and are fueled by recent
inconclusive findings [29] as well as successive claims in the literature that we discuss later. Considering how
widely cited and impactful these papers are, we believe it is risky not to challenge such persistent misconceptions
that might disorientate newcomer researchers and practitioners.

Motivated by the aforementioned issues and our curiosity to shed some light on these misconceptions, we
conduct a comprehensive experimental evaluation to validate the effectiveness of 71 time-series distance measures.
These distance measures belong to five categories: (i) 52 lock-step measures, which compare the ith point of
one time series with the ith point of another; (ii) 4 sliding measures, which are the sliding versions of lock-step
measures when comparing one time series with all shifted versions of the other; (iii) 7 elastic measures, which
create a non-linear mapping between time series by comparing one-to-many points in order to align or stretch
points; (iv) 4 kernel measures, which use a function (with lock-step, sliding, or elastic properties) to implicitly
map data into a high-dimensional space; and (v) 4 embedding measures, which exploit distance or kernel measures
indirectly for constructing new representations for time series. In addition, we consider 8 normalization methods
for time series.

We perform an extensive evaluation of these distance measures across 128 datasets [25] and compare
their classification accuracy obtained from one-nearest-neighbor classifiers (1-NN) under both supervised and
unsupervised settings. We conduct a rigorous statistical validation of our findings by employing two statistical
tests to assess the significance of the differences in classification accuracy when comparing pairs of measures or
multiple measures together. In summary, our study identifies (i) normalization methods leading to significant
improvements in a number of distance measures; (ii) new lock-step measures that significantly outperform the
current state of the art; (iii) an omitted baseline that most highly popular elastic measures do not outperform; and
(iv) new elastic and new kernel measures that significantly outperform the current state of the art. These findings
debunk the four long-standing misconceptions and alter the landscape of what is known about existing measures.

We start with the description of the four misconceptions in the literature (Section 2) and we review the
relevant background (Section 3). Then, we present our contributions:
• We explore for the first time 8 normalization methods along 56 distance measures (Section 4).

70



• We study 52 lock-step distance measures (Section 5).
• We investigate 4 classic sliding measures omitted from every previous evaluation (Section 6).
• We compare 7 elastic measures under supervised and unsupervised settings (Section 7).
• We study for the first time 4 kernel (Section 8) and 4 embedding distance measures (Section 9).
• We present an accuracy-to-runtime analysis (Section 10).
• We summarize recent progress towards accelerating the strongest elastic distances via the use of lower

bounding measures (Section 11).
Finally, we discuss new directions (Section 12) and conclude with the implications of our work (Section 13). An
earlier version of the paper has been published in ACM SIGMOD 2020 [73].

2 The Four Misconceptions

In this section, we describe four misconceptions that have appeared in the time-series literature.
These misconceptions have originated in part from several influential papers [2, 8, 34, 40, 94]. Subsequently,

these misconceptions were fueled by a comprehensive study of time-series distance measures [29] as well
as dozens of subsequent papers in the literature trusting its findings. Even though an extension of this study
appeared five years later [102], this newer version focused on elaborating on the previous results. Recent studies
that have focused on time-series classification [6, 54] performed a statistical analysis of several classifiers,
including the distance measures in [29, 102]. Unfortunately, these studies only considered supervised tuning of
necessary parameters, which does not reflect the use of distance measures for similarity search [32]. Importantly,
some results in [6] contradict other results in [54], which, in turn, validated claims that there is no significant
difference between the evaluated elastic measures [29, 102]. Interestingly, the improved accuracy found for some
measures was attributed to the evaluation framework used while otherwise it was claimed to be undetectable
[6]. Considering such apparent difficulties in providing conclusive evidence for this important subject, it is not
surprising that the following misconceptions have persisted for so long.

Before we dive into the details, we emphasize that we do not believe or imply that any of these misconceptions
were created on purpose. On the contrary, we believe that they are based on evidence, trends, and resources
available at the given point in time. We describe the four misconceptions in the form of answers to questions a
newcomer researcher would likely identify by studying the literature.
M1: How to normalize time series? The consensus is to use the z-score or z-normalization method. Starting
with the work of Goldin and Kanellakis [40], a follow-up of the two seminal papers for sequence [2] and
subsequence [34] search in time-series databases, that suggested first to normalize the time series to address issues
with scaling and translation, z-normalization became the prevalent method to preprocess time series. Despite
the proposal of alternative methods the same year [3], the z-normalization was subsequently preferred as the
suggested transformations are also applicable to the widely popular Fourier representation [2, 34, 83]. Due to the
ubiquity of z-normalization, a valuable resource for time series, the UCR Archive [25], offered until recently
the datasets in their z-normalized form. To the best of our knowledge, no study has ever extensively evaluated
normalization methods for time series. We review 8 approaches in Section 4 and study their performance in
Sections 5 and 6.
M2: Which lock-step measure to use? The consensus is to use the Euclidean distance (ED). ED was the
method of choice in the first paper for sequence search in time series [2] due to its usefulness in many cases and its
applicability over feature vectors. Considering that ED is straightforward to implement, parameter-free, efficient,
as well as tightly connected with the Fourier representation and widely supported by indexing mechanisms (in
contrast to other Lp-norm variants [109]), there is no surprise about its popularity. Besides, evidence that with
increased dataset sizes, the classification error of ED converges to the error of more accurate measures [94],
justified its use from virtually all current time-series indexing methods [32]. (Our results in Section 10 suggest
that classification error of ED may not always converge to the error of more accurate measures, at least not always
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with the same speed of convergence.) In Section 5, we evaluate 52 lock-step measures.
M3: Are elastic better than sliding measures? The answer is currently unknown. Despite the wide popularity
of the cross-correlation measure, also known as sliding Euclidean or dot product distance, in the signal and image
processing literature [14], cross-correlation has largely been omitted from distance measure evaluations. We
believe two factors are responsible for that. First, cross-correlation was considered in the seminal paper [2] as a
typical similarity measure, but ED was preferred instead because (i) cross-correlation reduces to ED; and (ii) for
the aforementioned reasons in M2. Second, in the introduction of Dynamic Time Warping (DTW) [8], an elastic
measure, as an alternative to ED a year later, no comparison was performed against cross-correlation, an obvious
baseline. Subsequently, virtually all research on that subject focused either on lock-step or elastic measures
[32, 33], with a few exceptions [52, 68, 89]. Interestingly, cross-correlation was not considered as a baseline
method in any of the proposed elastic measures [16–18, 61, 95, 99], neither in any of the experimental evaluations
of distance measures discussed previously [6, 29, 54, 102]. Strangely, cross-correlation was also omitted from
many popular surveys [33, 84]. Therefore, it remains unknown if elastic measures outperform sliding measures.
We study 4 sliding measures in Section 6 and analyse their performance against elastic measures in Section 7.
M4: Is DTW the best elastic measure? The general consensus that has emerged is yes. Since the introduction
of DTW as a distance measure for time series [8], DTW has inspired the exploration of edit-based distances and
it is widely used as the baseline method for this problem [6, 16–18, 54, 61, 68, 95, 99]. It is not uncommon to
identify statements even in the abstracts of papers that 1-NN with DTW is exceptionally difficult to outperform
[80–82, 105]. Such statements have been backed over the years by the aforementioned extensive evaluations,
which conclude that (i) the accuracy of other elastic measures is very close to that of DTW [29, 102]; (ii) there is
no significant difference in the accuracy of elastic measures [54]; and (iii) that it is “a little embarrassing” that
most classifiers do not outperform 1-NN with DTW [6]. Therefore, there is little space to doubt that DTW is the
best elastic measure. To study that misconception, we validate 7 elastic measures in Section 7.

To complete the analysis and capture recent progress, we also include kernel measures and embedding
measures in our evaluation (Sections 8 and 9). With the detailed presentation of the four misconceptions, we
believe we have now convinced the reader that these misconceptions are not based on any personal biases but,
instead, have originated naturally along with the evolution of this area. However, it is risky to not challenge their
validity, which may result in confusion for newcomer researchers and practitioners and discourage them from
tackling problems in that area. Importantly, it is surprising to consider that half a century of scientific progress
has not resulted in any significant improvements over ED or the 50-year-old DTW [87].

Next, we review the relevant background required to validate the accuracy of the normalization methods and
distance measures. Even though the efficiency of measures is another important factor of their effectiveness,
there are many ways to accelerate each measure, ranging from hardware-aware implementations to algorithmic
solutions such as the use of indexing or comparison pruning. We refer the reader to an excellent recent study of
data-series similarity search [32], which shows the level of detail required to only evaluate ED. Therefore, we
leave such detailed study for future work but we present an accuracy-to-runtime analysis in Section 10.

3 Preliminaries and background

In this section, we review the necessary background for our experimental evaluation.
Terminology and definitions: We consider a time-series dataset as a set of n real-valued vectors X =
[~x1, . . . , ~xn]>2Rn⇥m, where each time series, ~xi2Rm, is an m-dimensional ordered sequence of data points.
From this definition, it becomes clear that we consider univariate time series of equal length, where each of these
points is a scalar. Following the previous evaluations [6, 29, 102], we consider that the sampling rates of all time
series are the same and omit the discrete time stamps.
Datasets: To conduct our extensive evaluation, we use one of the most valuable public resources in the time-
series data mining literature, the UCR Time-Series Archive [25]. This archive contains the largest collection
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of class-labeled time-series datasets. Currently, the archive consists of 128 datasets and includes time series
from sensor readings, image outlines, motion capture, spectrographs, medical signals, electric devices, as well as
simulated time series. Each dataset contains from 40 to 24, 000 time series, the lengths vary from 15 to 2, 844,
and each time series is annotated with a single label. The majority of the datasets are already z-normalized and
we apply the same normalization to all datasets.

The latest version of the archive has deliberately left a small number of datasets containing time series with
varying lengths and missing values to reflect the real world. Following the recommendation of the authors of the
archive, who performed similar steps to report classification accuracy numbers on the UCR archive website [25],
we resample shorter time series to reach the longest time series in each dataset and we fill missing values using
linear interpolation. Through these steps, we make the new datasets compatible with previous versions of the
archive [66].
Evaluation framework: Following the previous studies [6, 29], we also employ the 1-NN classifier in our
evaluation framework, with important differences. 1-NN classifiers are suitable methods for distance measure
evaluation for several reasons [29]. Specifically, 1-NN classifiers: (i) resemble the problem solved in time-series
similarity search [32]; (ii) are parameter-free and easy to implement; (iii) dependent on the choice of distance
measure; and (iv) provide an easy-to-interpret (classification) accuracy measure, which captures if the query and
the nearest neighbor belong to the same class.

A critical step for the effectiveness of classifiers is the splitting of a dataset into training and test sets. Previous
studies [6, 29, 102] used the k-cross-validation resampling procedure, which produces k groups of time series,
tunes necessary parameters on the k � 1 groups, and evaluates the distance measures using the group of time
series left. Strangely, [29, 102] tuned parameters only on a single group and evaluated the distance measures
using the k � 1 groups, which contradicts the common practice. In [6], the improved accuracy of some measures
is attributed to such a resampling procedure, while otherwise, it was claimed to be undetectable. Therefore, to
eliminate biases from resampling, we respect the split of training and test sets provided by the UCR archive
as well as the class distribution in the datasets (i.e., some datasets contain the same number of time series in
each class while other datasets contain imbalanced classes). This decision makes our evaluation framework
deterministic and enables reproducibility. Refer to [73] for further details on our evaluation settings.
Statistical analysis: To assess the significance of the differences in accuracy, we employ two statistical tests to
validate the pairwise comparisons of measures and the comparisons of multiple measures together. Specifically,
following the highly influential [26], we use the Wilcoxon test [103] with a 95% confidence level to evaluate
pairs of measures over multiple datasets, which is more appropriate than the t-test [86]. As with pairwise tests we
cannot reason about multiple measures together and following [26], we also use the Friedman test [36] followed
by the post-hoc Nemenyi test [63] to compare multiple measures over multiple datasets and report statistical
significant results with 90% confidence level (because these tests require more evidence than Wilcoxon).
Availability of code and results: We implemented the evaluation framework in Matlab, with imported C
and Java codes for several distance measures. To ensure the reproducibility of our findings, we make the code
available.1

Environment: We ran our experiments on 15 identical servers: Dual Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz and 196GB RAM. Each server has 24 physical cores (12 per CPU), which provided us with 360 cores
for four months.

Next, we start with the study of normalization methods.

4 Time-Series Normalizations

In this section, we review 8 normalization methods. As we discussed earlier, a critical issue when comparing time
series is how to handle a number of distortions that are characteristic of the time series. For complex distortions,

1https://github.com/TheDatumOrg/TSDistEval
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Figure 1: Example of how each of the 8 normalization methods transforms time series of ECGFiveDays [25].

sophisticated distance measures are required as offering invariances to such distortions is not trivial, which
explains the proliferation of distance measures in the literature. However, in several cases, a simple preprocessing
step is generally sufficient, as we see next.

Consider the following two examples [40]: (i) two products with similar sales patterns but different sales
volume; and (ii) temperatures of two days starting at different values but exhibiting the exact same pattern. The
first is an example of the difference in scale between two time series, whereas the second is an example of the
difference in translation. Despite such differences, in many cases, it is useful to recognize the similarity between
time series. Formally, for any constants a (scale) and b (translation), linear transformations in time series of the
form a~x + b should not affect their similarity.

Several methods have been proposed to handle these popular distortions. Normalization methods transform
the data to become normally distributed, whereas standardization methods place different data ranges on a
common scale. In the machine-learning literature, feature scaling is also used to refer to such methods. In practice,
all terms are used interchangeably to refer to some data transformation.

We consider 8 popular normalization methods in our study, namely, z-score, min-max (MinMax), Mean
(MeanNorm), Median (MedianNorm), Unit length (UnitLength), Adaptive scaling (AdaptiveScaling), Logistic or
Sigmoid (Logistic), and Hyperbolic tangent (Tanh) normalization. (Please refer to [73] for more details and their
mathematical formulas.) Figure 1, shows an example of how each one of the previously described normalization
methods transforms a pair of time series from ECGFiveDays [25]. We observe that in some cases, the differences
are only visible in the range of values (e.g., z-score vs. UnitLength), but, in others, the visual effect is more
distinct (e.g., MinMax, MeanNorm, and AdaptiveScaling). The most unexpected visual effects come from the
two non-linear transformations (i.e., Logistic and Tanh). Next, we evaluate 8 methods along with the 52 lock-step
measures.

5 Time-Series Lock-Step Distances

In this section, we study 52 lock-step measures that have been proposed across different disciplines.
Distance measures provide a numerical value to quantify how distant are pairs of objects represented as points,

vectors, or matrixes. Due to the difficulty in formalizing the notion of similarity, as well as the need to handle a
variety of distortions and applications, hundreds of distance measures have been proposed in the literature. This
proliferation of distance measures across different scientific areas has resulted in multi-year efforts to organize
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this knowledge into dictionaries [27] and encyclopedias [28].
As it is understandable, not all of these measures are applicable to time-series data. Thankfully, different

endeavors have already been conducted to identify appropriate measures for a variety of tasks across different
fields [37, 110]. An influential study [15] identified 50 lock-step distance measures that we adapt in our evaluation
of time-series distance measures. We note that a previous study [38] evaluated a subset of these measures (45)
using 1-NN over 42 datasets from the UCR archive and concluded that there is no significant differences between
these lock-step distance measures.

Unfortunately, we identified issues with this study. First, several of the evaluated measures are known to
be equivalent to each other and, therefore, they should provide identical classification accuracy results. For
example, this is the case for the Euclidean distance and the inner product (or Pearson’s correlation), which under
z-normalization, they should provide the same accuracy numbers. Second, several distance measures were not
properly implemented, resulting in using as distance values either the real part of complex numbers or the first
value of a normalized vector of the input time series. Therefore, the analysis of these lock-step measures is
incomplete, and the findings are inconclusive.

In our study, we have carefully re-implemented all 50 distance measures from [15]. The distance measures
belong to 7 different families of measures: (1) 4 measures belong to the Lp Minkowski family; (2) 6 measures
belong to the L1 family; (3) 7 measures belong to the Intersection family; (4) 6 measures belong to the Inner
Product family; (5) 5 measures belong to the Fidelity family; (6) 8 measures belong to the L2 family; and (7)
6 measures belong to the Entropy family. Apart from these 42 measures, we also consider the 3 measures that
utilize ideas from multiple other measures (Combinations) as well as 5 measures proposed in the survey but not
reported in the literature (until that point).

Besides these measures, we also include two measures that have substantial differences from the previous
lock-step measures. Specifically, DISSIM [35] defines the distance as a definite integral of the function of time of
the ED in order to take into consideration different sampling rates of time series. This computationally expensive
operation can be approximated by a modified version of ED that considers in the distance of the ith points the
i + 1th points, which is a form of a smoothing operation. Finally, the adaptive scaling distance (ASD), embeds
internally the AdaptiveScaling normalization with an inner product measure to compare time series under optimal
scaling [19, 106].
Evaluation of lock-step measures: For all mathematical formulas, we refer the reader to the previous survey
[15]. We evaluate 52 distance measures and their combinations with 8 normalization methods using our 1-NN
classifier over 128 datasets (see Section 3). From all combinations of distance measures and normalization
methods (52 · 8 = 416 in total), we observe 14 measures with some improvement in their average accuracy in
contrast to ED and overall 36 combinations with different normalization methods. However, only about half of
these combinations result in statistically significant differences according to the pairwise Wilcoxon test. (Refer
to [73] for raw numbers in Table 1.) To better understand the performance of lock-step measures, we also
evaluate the significance of their differences in accuracy when considering several distance measures together,
using the Friedman test followed by a post-hoc Nemenyi test. Specifically, we perform two analyses: (i) we
evaluate different distance measures under the same normalization; and (ii) we evaluate standalone distance
measures under different normalizations; Figure 2 shows the average rank across all datasets of the distance
measures, which under z-score normalization, outperformed previously ED. The thick line connects measures
that do not perform statistically significantly better. We observe that Lorentzian is ranked first (once we ignore
the supervised Minkowski), meaning that it performed best in the majority of the datasets. All 5 measures
significantly outperform ED, but we observe no difference between them. Figure 3 evaluates a standalone distance
measure, the Lorentzian measure that performed the best previously, with different normalization methods against
ED with z-score. We observe that the 3 out of the 4 combinations that were better than ED under the Wilcoxon
test remain better under this statistical analysis, and there is no difference between them.
Debunking M1 and M2: Our evaluation shows clear evidence that normalization methods other than z-score
can lead to significant improvements, which debunks M1. Even though for standalone measures, we did not
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Figure 2: Ranking of lock-step measures under z-score based on the average of their ranks across datasets.
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Figure 3: Ranking of normalization methods in combination with the Lorentzian distance based on the average of
their ranks across datasets. ED uses z-score normalization.

observe significant improvements (e.g., ED with MeanNorm vs. ED with z-score), that does not reject our
hypothesis. We note that the majority of the UCR datasets are in their z-normalized form and, therefore, for
fairness, we z-normalized all datasets, which may have limited this analysis. Despite that, we identified two new
distance measures, unknown until now, that only under MinMax and MeanNorm methods outperform ED with
z-score and, importantly, z-score is not suitable for them. Normalizations such as MeanNorm, which combines
z-score and MinMax methods, seems to perform the best for several measures. Similarly, our analysis shows
that distance measures other than ED can lead to significant improvements, which debunks M2. We identified 7
distance measures that significantly outperform ED. We emphasize that no previous study considered different
normalization methods in order to challenge M1, and our findings contradict both previous studies [29, 38],
which concluded that there is no significant difference in the accuracy of lock-step measures.

Next, we focus on sliding versions of lock-step measures.

6 Time-Series Sliding Distances

We study 4 variants of cross-correlation, a measure that has largely been omitted from evaluations.
Starting with the concurrent introduction of lock-step and elastic measures for the problem of time-series

similarity search [2, 8, 34], the vast majority of research focused on these two categories of measures (see M3
in Section 2). Cross-correlation, which is similar to convolution, dates back in the 1700s [30] but received
practical popularity only after the invention of Fast Fourier Transform (FFT) [20], which dramatically reduced
its computational cost. Cross-correlation is one of the most fundamental operations in signal processing [14]
and, lately, in deep neural networks [48, 49]. Recently, research focusing on time-series clustering used cross-
correlation and achieved state-of-the-art performance for this task [68, 69]. However, this work assumed
z-normalized time series and performed evaluations only against ED and DTW. (Refer to [68, 73] for the
mathematical notation.)
Evaluation of sliding measures: Due to the resemblance of cross-correlation to the sliding version of Pearson’s
correlation, when time series are z-normalized, the majority of the literature assumes this underlying data
normalization [68]. To the best of our knowledge, the performance of cross-correlation as a measure to compare
time series under different normalization methods is not well explored. We measure the performance of the
combinations of cross-correlation variants with normalization methods. Specifically, from 32 such combinations
(i.e., 4 measures ⇥ 8 normalizations), we report only those resulted in an average accuracy higher than the
one achieved by Lorentzian (with z-score followed by UnitLength), the new state-of-the-art lock-step distance
measure based on our previous analysis (Section 5). (Refer to [73] for raw numbers and detailed pairwise
analysis.)

In addition to these pairwise comparisons, we also evaluate the significance of the differences when considered
all together. Figure 4 shows the average rank across datasets of five combinations of NCCc with normalization
methods. Similarly to the pairwise analysis, we observe that combinations with z-score, MeanNorm, and
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Figure 4: Ranking of different normalization methods for NCCc based on the average of their ranks across
datasets, using Lorentzian with UnitLength as the baseline method.

UnitLength normalizations lead to significant improvements according to the Friedman test followed by a post-
hoc Nemenyi test to assess the significance of the differences in the ranking. Combinations of NCCc with
AdaptiveScaling or MinMax do not achieve significant improvement. We observe that both statistical evaluation
approaches lead to similar conclusions.

For completeness, we report another analysis using ED as the baseline instead of the Lorentzian distance
(we omit the figure due to space limitation). NCCc in combination with z-score, UnitLength, and MeanNorm
normalization methods outperform ED but, in contrast to Figure 4, now combinations with AdaptiveScaling and
MinMax are also significantly better than ED. This analysis confirms our results in Section 5 that the Lorentzian
distance (and other L1 variants) are more powerful than ED. In addition, our analysis indicates that NCCc

outperforms all lock-step measures with all different normalizations, making it a strong baseline method for
time-series comparison.

We now turn our focus to elastic measures and their performance against sliding measures.

7 Time-Series Elastic Measures

In this section, we study 7 elastic measures, a popular category of measures for time-series comparison.
As discussed earlier, sliding measures find a global alignment by sliding one time series against the other.

In contrast, elastic measures create a non-linear mapping between time-series data points to support flexible
alignment of different regions. Through this mapping, elastic measures permit time series to “stretch” or “shrink”
their observations to improve time-series matching. Most elastic measures rely on dynamic programming to find
this mapping efficiently by defining recursive formulas over a m-by-m matrix M that contains in each cell the
ED (or some other lock-step measure) between every point of one time series against every point of another time
series. In general, the goal of different elastic measures in the literature is to employ different strategies to find a
warping path, W = {w1, . . . , wk}, with k � m, a contiguous set of matrix cells that shows the mapping of every
point of one time series to one, more, or none of the points of the other time series. To improve the efficiency and
the accuracy of elastic measures, it is a common practice to introduce constraints (i.e., parameters) to guide the
warping path to visit only a subset of cells in M .

The first elastic measure, DTW [87, 88], was proposed as a speech recognition tool and, later, it was introduced
in the time-series literature as a suitable approach for time-series comparison [8]. DTW finds the warping path
that minimizes the distances between all data points. In the original form, DTW is parameter-free, however, many
approaches have been proposed to define bands (i.e., the shape of the subset cells of matrix M that the warping
path is permitted to visit) and the width or window (i.e., size) of the bands. We use the Sakoe-Chiba band [88],
which is the most frequently used in practice [29], and we tune the window � using parameters shown in Table 4
of [73]. For example, a value � = 10 indicates a window size 10% of the time-series length.

The Longest Common Subsequence (LCSS) distance is another type of elastic measure that was derived from
the idea of edit-distances for characters. Specifically, LCSS introduces a parameter ✏ that serves as a threshold
to determine when two points of time series should match [4, 99]. Similarly to DTW, LCSS also constrains the
warping window by introducing an additional parameter � [99]. Edit Distance on Real sequence (EDR) distance
[17] is another edit-distance-based measure that similarly to LCSS, uses a parameter ✏ to quantify the distance of
points as 0 or 1. EDR also introduces penalties for gaps between matched subsequences. Edit Distance with Real
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Figure 5: Ranking of elastic and sliding distance measures based on the average of their ranks across datasets,
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Figure 6: Ranking of elastic and sliding distance measures based on the average of their ranks across datasets,
using unsupervised tuning for their parameters.

Penalty (ERP) distance [16] bridges DTW and EDR distance measures by more carefully computing the distance
between gaps.

Differently than the previous approaches, the Sequence Weighted Alignment model (Swale) [61] proposes
a model to compute the similarity of time series using rewards for matching points and penalties for gaps.
Apart from a threshold ✏ parameter, Swale also requires parameters for the reward r and the penalty p. The
Move–split–merge (MSM) distance [95] is another elastic measure based on edit-distance but in contrast to DTW,
LCSS, and EDR, MSM is a metric. MSM uses a set of operations to replace, insert, or delete values in time series
to improve their matching. Finally, Time Warp Edit (TWE) distance [58] is a measure that combines merits from
LCSS and DTW. TWE introduces a stiffness parameter ⌫ to control the warping but at the same point it also
penalizes matched points.
Evaluation of elastic vs. sliding measures: With the introduction of the 7 elastic measures we are now in
position to evaluate their performance against sliding measures, an experiment that has been omitted in all
previous studies [6, 29]. Refer to [73] for detailed raw numbers and pairwise comparisons under supervised and
unsupervised settings.

To understand the performance of elastic measures against NCCc, we evaluate the significance of the
differences when considered all together. Specifically, Figure 5 shows the average ranks of the elastic measures
in the supervised setting and Figure 6 shows the average ranks in the unsupervised setting. We observe that
even under supervised settings, 4 out of the 7 elastic measures, namely, LCSS, ERP, EDR, and Swale, do not
achieve significantly better performance than NCCc. The results for MSM, TWE, and DTW, are consistent in
both statistical evaluations. For the unsupervised setting, both statistical evaluation approaches agree to an extent.
In particular, Figure 6 shows clearly that MSM and TWE outperform NCCc. However, the remaining 5 elastic
measures perform similarity to NCCc. To validate our findings, we repeat the analysis (we omit figures due to
space limitation) and evaluate the significance of the differences when we consider all elastic measures together
(i.e., excluding NCCc). Specifically, we observe that Swale, ERP, EDR, and LCSS do not outperform DTW-10
with statistically significant difference. Interestingly, the supervised LCSS is slightly worse than the unsupervised
DTW-10. ERP, which under pairwise evaluation appears to significantly outperform DTW-10, when all measures
are considered together, both appear to achieve comparable performance. MSM, TWE, and DTW also perform
similarly and all three supervised measures outperform DTW-10. However, under unsupervised settings, MSM
and TWE significantly outperform all elastic measures.
Debunking M3 and M4: Our comprehensive evaluation shows clear evidence that sliding measures are strong
baselines that most elastic measures do not manage to outperform either in supervised or unsupervised settings,
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which debunks M3. Specifically, from all 5 elastic measures evaluated in the decade-old study [29], namely,
LCSS, Swale, EDR, ERP, and DTW, only DTW significantly outperforms cross-correlation under the supervised
scenario. In the unsupervised setting, none of the 5 measures outperforms cross-correlation and, interestingly,
several of them perform slightly worse. This is a remarkable finding, showing that the simplest type of alignment
between time series is very effective and it should have served as a baseline method for elastic measures. Only
MSM and TWE, two measures that appeared after [29] show promising results and outperform cross-correlation
with statistically significant differences in both supervised and unsupervised settings. Importantly, MSM is the
only method that significantly outperforms DTW under supervised settings (according to Wilcoxon) and, under
unsupervised settings, both MSM and TWE significantly outperform DTW (with both statistical tests validating
this result). Therefore, there is clear evidence that the widely popular DTW is no longer the best elastic distance
measure, which debunks M4.

8 Time-Series Kernel Measures

Until now, our analysis focused on three categories of distance measures, namely, lock-step, sliding, and elastic
measures, with the goal to provide answers to the four-long standing misconceptions that we discussed in Section
2. Recently, kernel functions [91, 92], a different category of similarity measures, have started to receive attention
due to their competitive performance [1]. In contrast to all previously described measures, kernel functions must
satisfy the positive semi-definiteness property (p.s.d) [90]. The precise definition is out of the scope of this work
(we refer the reader to recent papers for a detailed review [1, 67]) but in simple terms, a function is p.s.d. if
the similarity matrix, which contains all pairwise similarity values, has positive eigenvalues. This important
property results in convex solutions for several learning tasks involving kernels [21]. In this section, we study 4
representative kernel functions and evaluate their performance against sliding and elastic measures.

Specifically, the first kernel we consider is the Radial Basis Function (RBF) [22], a general purpose kernel
function that internally exploits ED but maps data into a high-dimensional space where their separation is easier.
To capture similarities between the shifted versions of time series, [100] proposed a sliding kernel to consider all
possible alignments between time-series. We include a recently proposed variant of this kernel, namely, SINK,
that has achieved competitive results to NCCc and DTW [67]. Finally, we include two elastic kernel functions,
the Global Alignment Kernel (GAK) [23] and Dynamic Time Warping Kernel (KDTW) [59].
Evaluation of kernel functions: Having introduced the 4 kernel functions, we are now in position to evaluate
their performance against sliding and elastic measures. As before, we consider both supervised and unsupervised
settings. In the supervised setting, we observe that all kernel functions significantly outperform NCCc with the
exception of RBF, which is significantly worse. In the unsupervised settings, KDTW and GAK significantly
outperform NCCc, as before, but SINK achieves comparable performance without outperforming NCCc. To
better understand the performance of KDTW and GAK, which appear to be the strongest kernel functions, we also
evaluate the significance of the differences when considered together with all elastic and sliding measures. Figure
7 presents the results for supervised settings and Figure 8 for unsupervised settings. We have omitted elastic
measures that based on the earlier analysis did not show competitive results. We observe that GAK achieves
comparable performance to DTW under both settings. However, KDTW, significantly outperforms DTW in both
unsupervised and superivsed settings. This is in contrast to TWE and MSM measures that were significantly
better only under the unsupervised settings. To the best of our knowledge, this is the first time that a kernel
function is reported to outperform DTW in both settings.
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9 Time-Series Embedding Measures

Previously, we studied approaches that directly exploit a kernel function or a distance measure to compare
time series. In this section, we study 4 embedding measures, which are alternative approaches that employ a
similarity measure only to construct new representations [1]. These representations are similarity-preserving as
the comparison of two representations with ED approximates the comparison of the corresponding original time
series with the employed similarity measure.

We consider 4 approaches to construct embedding measures (i.e., ED over learned representations). Specifi-
cally, we consider the Generic RepresentAtIon Learning (GRAIL) framework, which employs the SINK kernel
[67], the Shift-invariant Dictionary Learning (SIDL) method, which preserves alignment between time series
[111], the Similarity Preserving Representation Learning method (SPIRAL), which employs DTW [50], and the
Random Warping Series (RWS), which preserves the GAK kernel [104].
Evaluation of embedding measures: For all approaches, we follow [67] and tune required parameters using
the recommended values from their corresponding papers. We construct representations of same length (100)
for fairness. We observe that GRAIL, is the only framework that constructs robust representations that when
ED is used for comparison (under the 1-NN settings), it achieves similar performance to NCCc, but without
significant difference. All other embedding measures perform significantly worse and none of the embedding
measures outperform DTW (see detailed raw numbers in [73]. We note, however, that embedding measures (as
well as kernel methods), achieve much higher accuracy under different evaluation frameworks (e.g., with SVM
classifiers), as shown in [67].

10 Accuracy-to-runtime Analysis

Until now, we have extensively evaluated distance measures based on their accuracy results. However, it is also
important to understand the cost associated with each one of these distance measures. In Figure 9, we summarize
the accuracy-to-runtime performance of the most prominent measures. The runtime performance includes only
inference time (i.e., evaluation on the testing sets). We observe that ED, and all other lock-step measures (omitted),
are the fastest but achieve relatively low accuracy (all these measures have O(m) runtime cost). NCCc [68] and
SINK [67], two methods that rely on the classic cross-correlation measure, provide an excellent trade-off between
runtime and accuracy in comparison to ED (these measures have O(m log m) runtime cost). We also observe
that all other elastic or kernel methods require substantially higher runtime costs to achieve comparable accuracy
results to NCCc (these measures have O(m2) runtime cost). In particular, only MSM and TWE significantly
outperform NCCc (see Figure 6) but require two orders of magnitude higher runtime cost. Instead, embedding
measures, such as GRAIL [67], show great promise as they can achieve high accuracy without sacrificing runtime
performance.

11 Accelerating Elastic Measures

Despite their promise, elastic distance measures scale quadratically to the length of the time series, as noted earlier.
Compared to ED, which has linear complexity, elastic distance measures incur an additional runtime overhead,
often between one to three orders of magnitude (see Figure 9). This cost would prevent applications from using
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Figure 10: Comparison of the pruning power of GLB variants against state-of-the-art LBs of several popular elastic
measures over 128 datasets. The blue dots above the diagonal indicate datasets over which GLB outperforms the
state of the art.

elastic measures in large-scale settings. To alleviate this issue, the idea of lower bounding was developed to filter
out unpromising candidates before carrying out the expensive elastic distance measure computation [34, 44, 46].
In simple terms, a lower bound (LB) is a fast distance measure that approximates an expensive elastic distance
measure and is computed over some summaries of the time series instead of the actual time series.

A plethora of LBs have been developed for elastic distance measures [16, 44, 46, 51, 93, 97, 98], with
the goal to improve their pruning power (i.e., tightness of LB). Unfortunately, the research effort on LBs has
been disproportionally concentrated on Dynamic Time Warping (DTW) [87, 88], which is the oldest elastic
measure with at least eight established LBs (see [78] for details). In contrast, newer and better-performing elastic
distance measures, such as MSM and TWE, have received little attention, and their LBs are performing poorly.
Unfortunately, developing LBs is a challenging task. It is unsustainable to expect a similar research effort for
each elastic measure. For this reason, a generalized framework, namely GLB, was recently proposed [78] to
accumulate the knowledge from previously developed LBs and eliminate the need for designing separate LBs
for each elastic measure. Specifically, GLB outperforms all established LBs across different elastic measures.
Figure 10 shows the improvement in pruning power (i.e., the percentage of the true distance computation avoided)
achieved by GLB for several popular elastic measures (more details in [78]). Considering that MSM and TWE
are the new state-of-the-art elastic measures, we note that GLB accelerates MSM up to 10⇥ and TWE up to 26⇥
in an extensive analysis we performed across 128 datasets [25].
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12 Future Directions

With the new knowledge in place, several new challenges open that we hope to spark new research directions.
Below, we provide three areas that we believe require more attention and can potentially lead to substantial
improvements in the entire area of time-series similarity search:
• Identifying more accurate normalizations. Our work was the first to study the performance of 8 normalization

methods. We identified multiple distance measures outperforming the previous SOTA measures only when
combined with appropriate normalization methods. In our view, inventing a new normalization method that
achieves significant accuracy improvements by preprocessing data differently and without changing existing
methods and systems would be a breakthrough.

• Tuning parameters, or selecting appropriate distance measures per dataset in an unsupervised manner. Un-
fortunately, there are no principled methodologies currently for selecting distance measures or tuning their
parameters, despite significant recent attention in AutoML for other domains.

• Improving and evaluating the performance of embedding measures. These measures show the most promise
based on their runtime-to-accuracy trade-off. To the best of our knowledge and based on our comprehensive
study, there are no embedding measures that significantly outperform the most vigorous elastic measures in
terms of accuracy. Recent advances in deep neural networks [101] may lead to embeddings that substantially
outperform elastic measures.

13 Conclusion

We presented a comprehensive evaluation to validate the performance of 71 distance measures. Our study
debunked four long-standing misconceptions in the time-series literature and established new state-of-the-art
results for lock-step, sliding, elastic, kernel, and embedding measures. Our findings prepare the ground for
the development of distance measures with implications across time-series analytical tasks. Importantly, our
work has implications for general-purpose similarity search problems over high-dimensional data. For example,
several similarity search methodologies rely heavily on the concepts of lower bounding to prune unnecessary
comparisons [32, 76]. Similarly to how GLB abstracted the costs of different elastic measures and generalized
lower bounds for time series, we believe a similar concept can be applied in the case of lock-step measures
(e.g., Euclidean distance) and the corresponding data summarization methods. In addition, our work identified
lock-step measures that outperform Euclidean distance and lock-step measures performing exceptionally well
only under certain normalizations. However, the literature in the similarity search area has largely focused on
developing methods assuming Euclidean distance is the underlying distance measure. Our work may lead to new
solutions for the new, better-performing distance measures. Finally, the methodologies presented for constructing
embedding measures are sufficiently generic and can complement solutions focusing on learning embeddings
from data [101] (e.g., concatenate deep embeddings with our similarity-preserving embeddings or improve deep
embeddings by integrating our similarity-preserving embeddings in the loss functions).
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