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Abstract

Space partitions of Rd underlie a vast and important class of fast nearest neighbor search (NNS) algorithms.
Inspired by recent theoretical work on NNS for general metric spaces [8, 9], we develop a new framework
for building space partitions reducing the problem to balanced graph partitioning followed by supervised
classification. We instantiate this general approach with the KaHIP graph partitioner [50] and neural networks,
respectively, to obtain a new partitioning procedure called Neural Locality-Sensitive Hashing (Neural LSH).
On several standard benchmarks for NNS [3], our experiments show that the partitions obtained by Neural
LSH consistently outperform partitions found by quantization-based and tree-based methods as well as classic,
data-oblivious LSH.

1 Introduction

The Nearest Neighbor Search (NNS) problem is defined as follows. Given an n-point dataset P in a d-dimensional
Euclidean space Rd, we would like to preprocess P to answer k-nearest neighbor queries quickly. That is, given
a query point q 2 Rd, we want to find the k data points from P that are closest to q. NNS is a cornerstone of the
modern data analysis and, at the same time, a fundamental geometric data structure problem that led to many
exciting theoretical developments over the past decades. See, e.g., [7, 53] for an overview.

The main two approaches to constructing efficient NNS data structures are indexing and sketching. The
goal of indexing is to construct a data structure that, given a query point, produces a small subset of P (called
candidate set) that includes the desired neighbors. Such a data structure can be stored on a single machine, or (if
the data set is very large) distributed among multiple machines. In contrast, the goal of sketching is to compute
compressed representations of points to enable computing approximate distances quickly (e.g., compact binary
hash codes with the Hamming distance used as an estimator, see the surveys [53, 54]). Indexing and sketching
can be (and often are) combined to maximize the overall performance [28, WGS+17].

Both indexing and sketching have been the topic of a vast amount of theoretical and empirical literature. In
this work, we consider the indexing problem. In particular, we focus on indexing based on space partitions. The
overarching idea is to build a partition of the ambient space Rd and split the dataset P accordingly. Given a query
point q, we identify the bin containing q and form the resulting list of candidates from the data points residing in
the same bin (or, to boost the accuracy, nearby bins as well).

Some of the popular space partitioning methods include the following:

• locality-sensitive hashing (LSH) [5, 6, 25, 37], where the partitioning is obtained by hashing the points
into “bins” such that the probability of two points colliding dependends on the distance between them,

55



• quantization-based approaches [14, 29, GSL+20], where partitions are obtained via k-means clustering of
the dataset and its generalizations, and

• tree-based methods, such as random-projection trees, learned trees or PCA trees [10, 17, 20, 33, 39, 49].
Here, the partition is defined by a rooted binary tree, where each internal node v is augmented with
a hyperplane, and each edge to a child of v corresponds to one of the two halfspaces defined by the
hyperplane. In turn, each leaf v in the tree corresponds to a cell in the partition, defined as the intersection
of all halfspaces corresponding to the edges on a path from the root to v.

Compared to other indexing methods (see Section 1.2), space partitions have multiple benefits. First, they are
naturally applicable in distributed settings, as different bins can be stored on different machines [12, 15, 36, 44].
Moverover, the computational efficiency of search can be further improved by using any nearest neighbor search
algorithm locally on each machine. Second, partition-based indexing is particularly suitable for GPUs due to
the simple and predictable memory access pattern [28]. Finally, partitions can be combined with cryptographic
techniques to yield efficient secure similarity search algorithms [16]. Thus, in this paper we focus on designing
space partitions that optimize the trade-off between their key metrics: the number of reported candidates, the
fraction of the true nearest neighbors among the candidates, the number of bins, and the computational efficiency
of the point location.

Recently, there has been a large body of work that studies how modern machine learning techniques (such as
neural networks) can help tackle various classic algorithmic problems (a partial list includes [11, 13, 19, 32, 40–
42, 45]). Similar methods—under the name “learn to hash”—have been used to improve the sketching approach
to NNS [53]. However, when it comes to indexing, while some unsupervised techniques such as PCA or k-means
have been successfully applied, the full power of modern tools like neural networks has not yet been harnessed.
This state of affairs naturally leads to the following general question: Can we employ modern (supervised)
machine learning techniques to find good space partitions for nearest neighbor search?

1.1 Our contribution

In this paper we address the aforementioned challenge and present a new framework for finding high-quality
space partitions of Rd. Our approach consists of three major steps:

1. Build the k-NN graph G of the dataset by connecting each data point to k nearest neighbors;

2. Find a balanced partition P of the graph G into m parts of nearly-equal size such that the number of edges
between different parts is as small as possible;

3. Obtain a partition of Rd by training a classifier on the data points with labels being the parts of the partition P

found in the second step.

See Figure 1 for illustration. The new algorithm directly optimizes the performance of the partition-based
nearest neighbor data structure. Indeed, if a query is chosen as a uniformly random data point, then the average
k-NN accuracy is exactly equal to the fraction of edges of the k-NN graph G whose endpoints are separated by
the partition P . This generalizes to out-of-sample queries provided that the query and dataset distributions are
close, and the test accuracy of the trained classifier is high.

At the same time, our approach is directly related to and inspired by recent theoretical work [8, 9] on NNS
for general metric spaces. In particular, using the framework of [8, 9], we prove that, under mild conditions on
the dataset P , the k-NN graph of P can be partitioned with a hyperplane into two parts of comparable size such
that only few edges get split by the hyperplane. This gives a partial theoretical justification of our method.

The new framework is very flexible and uses partitioning and learning in a black-box way. This allows us
to plug various models (linear models, neural networks, etc.) and explore the trade-off between the quality and
the algorithmic efficiency of the resulting partitions. We emphasize the importance of balanced partitions for
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the indexing problem, where all bins contain roughly the same number of data points. This property is crucial
in the distributed setting, since we naturally would like to assign a similar number of points to each machine.
Furthermore, balanced partitions allow tighter control of the number of candidates simply by varying the number
of retrieved parts. Note that a priori, it is unclear how to partition Rd so as to induce balanced bins of a given
dataset. Here the combinatorial portion of our approach is particularly useful, as balanced graph partitioning is a
well-studied problem, and our supervised extension to Rd naturally preserves the balance by virtue of attaining
high training accuracy.

We speculate that the new method might be potentially useful for solving the NNS problem for non-Euclidean
metrics, such as the edit distance [55] or optimal transport distance [34]. Indeed, for any metric space, one can
compute the k-NN graph and then partition it. The only step that needs to be adjusted to the specific metric at
hand is the learning step.

Let us finally put forward the challenge of scaling our method up to billion-sized or even larger datasets. For
such scale, one needs to build an approximate k-NN graph as well as using graph partitioning algorithms that are
faster than KaHIP. We leave this exciting direction to future work. For the current experiments (datasets of size
106 points), preprocessing takes several hours. Another important challenge is to obtain NNS algorithms based on
the above partitioning with provable guarantees in terms of approximation and running time. However, we expect
it to be difficult, in particular, since all the current state-of-the-art NNS algorithms lack such guarantees (e.g.,
k-means-based [29] or graph methods [43], see also [3] for a recent SOTA survey).

Evaluation We instantiate our framework with the KaHIP algorithm [50] for the graph partitioning step,
and either linear models or small-size neural networks for the learning step. We evaluate it on several standard
benchmarks for NNS [3] and conclude that in terms of quality of the resulting partitions, it consistently outperforms
quantization-based and tree-based partitioning procedures, while maintaining comparable algorithmic efficiency.
In the high accuracy regime, our framework yields partitions that lead to processing up to 2.3⇥ fewer candidates
than the strongest baseline.

As a baseline method we use k-means clustering [29]. It produces a partition of the dataset into k bins, in a
way that naturally extends to all of Rd, by assigning a query point q to its nearest centroid. (More generally, for
multi-probe querying, we can rank the bins by the distance of their centroids to q). This simple scheme yields
very high-quality results for indexing. Besides k-means, we evaluate LSH [6], ITQ [23], PCA tree [49], RP
tree [20], and Neural Catalyzer [48].

1.2 Related work

On the empirical side, currently the fastest indexing methods for the NNS problem are greedy graph-based
algorithms, such as HNSW [43], NSG [21] or DiskANN [30]. Their high-level idea is to construct a graph on the
dataset (it can be the k-NN graph, but other constructions are also possible), and then for each query perform
a walk, which eventually converges to the nearest neighbor. Although very fast, graph-based approaches have
suboptimal “locality of reference”, which makes them less suitable for several modern architectures. For instance,
this is the case when the algorithm is run on a GPU [28], or when the data is stored in external memory [SWQ+14]
or in a distributed manner [12, 44]. Moreover, graph-based indexing requires many rounds of adaptive access to
the dataset, whereas partition-based indexing accesses the dataset in one shot. This is crucial, for example, for
nearest neighbor search over encrypted data [16]. These benefits justify further study of partition-based methods.

Machine learning techniques are particularly useful for the sketching approach, leading to a vast body of
research under the label “learning to hash” [53, 54]. In particular, several recent works employed neural networks
to obtain high-quality sketches [38, 48]. The fundamental difference from our work is that sketching is designed
to speed up linear scans over the dataset, by reducing the cost of distance evaluation, while indexing is designed
for sublinear time searches, by reducing the number of distance evaluations.
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(a) Dataset (b) k-NN graph together
with a balanced partition

(c) Learned partition

Figure 1: Stages of our framework

We note that while sketches are not designed for indexing, they can be used for that purpose, since a b-bit
hashing scheme induces a partition of Rd into 2b parts. Nonetheless, our experiments show that partitions
induced by these methods (such as Iterative Quantization [23]) are not well-suited for indexing, and underperform
compared to quantization-based indexing, as well as to our methods.

We highlight in particular the recent work of [48], which uses neural networks to learn a mapping f : Rd
!

Rd0 that improves the geometry of the dataset and the queries to facilitate subsequent sketching. It is natural to
ask whether the same family of maps can be applied to enhance the quality of partitions for indexing. However,
as our experiments show, in the high accuracy regime the maps learned using the algorithm of [48] consistently
degrade the quality of partitions.

Finally, we mention that here is some prior work on learning space partitions: [17, 39, 47]. However, all these
algorithms learn hyperplane partitions into two parts (then applying them recursively). Our method, on the other
hand, is much more flexible, since neural networks allow us to learn a much richer class of partitions.

2 Our method

Given a dataset P ✓ Rd of n points, and a number of bins m > 0, our goal is to find a partition R of Rd into m
bins with the following properties:

1. Balanced: The number of data points in each bin is not much larger than n/m.

2. Locality sensitive: For a typical query point q 2 Rd, most of its nearest neighbors belong to the same bin of
R. We assume that queries and data points come from similar distributions.

3. Simple: The partition should admit a compact description and, moreover, the point location process should be
computationally efficient. For example, we might look for a space partition induced by hyperplanes.

Formally, we want the partition R that minimizes the loss Eq

hP
p2Nk(q)

1R(p) 6=R(q)

i
s.t. 8p2P |R(p)| 

(1 + ⌘)(n/m), where q is sampled from the query distribution, Nk(q) ⇢ P is the set of its k nearest neighbors in
P , ⌘ > 0 is a balance parameter, and R(p) denotes the part of R that contains p.

First, suppose that the query is chosen as a uniformly random data point, q ⇠ P . Let G be the k-NN graph
of P , whose vertices are the data points, and each vertex is connected to its k nearest neighbors. Then the above
problem boils down to partitioning vertices of the graph G into m bins such that each bin contains roughly n/m
vertices, and the number of edges crossing between different bins is as small as possible (see Figure 1(b)). This
balanced graph partitioning problem is extremely well-studied, and there are available combinatorial partitioning
solvers that produce very high-quality solutions. In our implementation, we use the open-source solver KaHIP [50],
which is based on a sophisticated local search.
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Figure 2: Hierarchical partition into 9 bins with m1 = m2 = 3. Ri’s are partitions, Pj’s are the bins of the
dataset. Multi-probe query procedure, which descends into 2 bins, may visit the bins marked in bold.

More generally, we need to handle out-of-sample queries, i.e., which are not contained in P . Let eR denote
the partition of G (equivalently, of the dataset P ) found by the graph partitioner. To convert eR into a solution to
our problem, we need to extend it to a partition R of the whole space Rd that would work well for query points.
In order to accomplish this, we train a model that, given a query point q 2 Rd, predicts which of the m bins
of eR the point q belongs to (see Figure 1(c)). We use the dataset P as a training set, and the partition eR as the
labels – i.e., each data point is labeled with the ID of the bin of eR containing it. The method is summarized in
Algorithm 1. The geometric intuition for this learning step is that – even though the partition eR is obtained by
combinatorial means, and in principle might consist of ill-behaved subsets of Rd – in most practical scenarios, we
actually expect it to be close to being induced by a simple partition of the ambient space. For example, if the
dataset is fairly well-distributed on the unit sphere, and the number of bins is m = 2, a balanced cut of G should
be close to a hyperplane.

The choice of model to train depends on the desired properties of the output partition R. For instance, if
we are interested in a hyperplane partition, we can train a linear model using SVM or regression. In this paper,
we instantiate the learning step with both linear models and small-sized neural networks. Here, there is natural
tension between the size of the model we train and the accuracy of the resulting classifier, and hence the quality of
the partition we produce. A larger model yields better NNS accuracy, at the expense of computational efficiency.
We discuss this in Section 3.

Multi-probe querying Given a query point q, the trained model can be used to assign it to a bin of a partition
R, and search for nearest neighbors within the data points in that part. In order to achieve high search accuracy,
we actually train the model to predict several bins for a given query point, which are likely to contain nearest
neighbors. For neural networks, this can be done naturally by taking several largest outputs of the last layer. By
searching through more bins (in the order of preference predicted by the model) we can achieve better accuracy,
allowing for a trade-off between computational resources and accuracy.

Hierarchical partitions When the required number of bins m is large, in order to improve the efficiency of
the resulting partition, it pays off to produce it in a hierarchical manner. Namely, we first find a partition of Rd

into m1 bins, then recursively partition each of the bins into m2 bins, and so on, repeating the partitioning for L
levels. The total number of bins in the overall partition is m = m1 · m2 · . . . mL. See Figure 2 for illustration.
The advantage of such a hierarchical partition is that it is much simpler to navigate than a one-shot partition with
m bins.

Neural LSH with soft labels In the primary instantiation of our framework, we set the supervised learning
component to a a neural network with a small number of layers and constrained hidden dimensions (the exact
parameters are specified in the next section). In order to support effective multi-probe querying, we need to infer
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Algorithm 1: Nearest neighbor search with a learned space partition

1 Preprocessing
2 Input: Dataset P ⇢ Rd, integer parameter k > 0, number of bins m > 0

1: Build a k-NN graph G of P .
2: Run a balanced graph partitioning algorithm on G into m parts. Number the parts arbitrarily as 1, . . . , m.

Let ⇡(p) 2 {1, . . . , m} denote the part containing p, for every p 2 P .
3: Train a machine learning model M with training set P and labels {⇡(p)}p2P . For every x 2 Rd, let

M(x) 2 {1, . . . , m} denote the prediction of M on x. =0

M(·) defines our m-way partition of Rd. Note that it is possible that ⇡(p) 6= M(p) for some p 2 P , if M
attains imperfect training accuracy.

Query
Input: query point q 2 Rd, number of bins to search b

1: Run inference on M to compute M(q).
2: Search for a near neighbor of q in the bin M(q), i.e., among the candidates {p 2 P : M(p) = M(q)}.
3: If M furthermore predicts a distribution over bins, search for a near neighbor in the b top-ranked bins

according to the ranking induced by the distribution (i.e., from the most likely bin to less likely ones). =0

not just the bin that contains the query point, but rather a distribution over bins that are likely to contain this point
and its neighbors. A T -probe candidate list is then formed from all data points in the T most likely bins. In order
to accomplish this, we use soft labels for data points generated as follows. For S � 1 and a data point p, the soft
label P = (p1, p2, . . . , pm) is a distribution over the bin containing a point chosen uniformly at random among
S nearest neighbors of p (including p itself). Now, for a predicted distribution Q = (q1, q2, . . . , qm), we seek
to minimize the KL divergence between P and Q:

Pm
i=1 pi log pi

qi
. Intuitively, soft labels help guide the neural

network with information about multiple bin ranking. S is a hyperparameter that needs to be tuned; we study its
setting in the appendix (cf. Figure 6b).

3 Sparse hyperplane-induced cuts in k-NN graphs

We state and prove a theorem that shows, under certain mild assumptions, that the k-NN graph of a dataset
P ✓ Rd can be partitioned by a hyperplane such that the induced cut is sparse (i.e., has few crossing edges while
the sizes of two parts are similar). The theorem is based on the framework of [8, 9] and uses spectral techniques.

We start with some notation. Let Nk(p) be the set of k nearest neighbors of p in P . The degree of p in the
k-NN graph is deg(p) = |Nk(p) [ {p0 2 P | p 2 Nk(p0)}|. Let D be the distribution over the dataset P , where a
point p 2 P is sampled with probability proportional to its degree deg(p). Let Dclose be the distribution over pairs
(p, p0) 2 P ⇥ P , where p 2 P is uniformly random, and p0 is a uniformly random element of Nk(p). Denote
↵ = E(p,p0)2Dclose

[kp � p0k22] and � = Ex1⇠D,x2⇠D[kp1 � p2k22]. We will proceed assuming that ↵ (typical
distance between a data point and its nearest neighbors) is noticeably smaller than � (typical distance between
two independent data points).

The following theorem implies, informally speaking, that if ↵ ⌧ �, then there exists a hyperplane which
splits the dataset into two parts of not too different size while separating only few pairs of (p, p0), where p0 is one
of the k nearest neighbors of p. For the proof of the theorem, see [18].

Theorem 3.1: There exists a hyperplane H = {x 2 Rd
| ha, xi = b} such that the following holds. Let

P = P1 [P2 be the partition of P induced by H: P1 = {p 2 P | ha, pi  b}, P2 = {p 2 P | ha, pi > b}. Then,
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one has:
Pr(p,p0)⇠Dclose

[p and p0 are separated by H]

min{Prp⇠D[p 2 P1], Prp⇠D[p 2 P2]}


r
2↵

�
. (1)

4 Experiments

Datasets For the experimental evaluation, we use three standard ANN benchmarks [3]: SIFT (image descriptors,
1M 128-dimensional points), GloVe (word embeddings [46], approximately 1.2M 100-dimensional points,
normalized), and MNIST (images of digits, 60K 784-dimensional points). All three datasets come with 10 000
query points, which are used for evaluation. We include the results for SIFT and GloVe in the main text, and
MNIST in [18].

Evaluation metrics We mainly investigate the trade-off between the number of candidates generated for a
query point, and the k-NN accuracy, defined as the fraction of its k nearest neighbors that are among those
candidates. The number of candidates determines the processing time of an individual query. Over the entire
query set, we report both the average as well as the 0.95-th quantile of the number of candidates. The former
measures the throughput1 of the data structure, while the latter measures its latency.2 We focus on parameter
regimes that yield k-NN accuracy of at least 0.75, in the setting k = 10. Additional results with broader regimes
of accuracy and of k are included in the appendix.

Our methods We evaluate two variants of our method, with two different choices of the supervised learning
component:

• Neural LSH: In this variant we use small neural networks. We compare this method with k-means clustering,
Iterative Quantization (ITQ) [23], Cross-polytope LSH [6], and Neural Catalyzer [48] composed over k-means
clustering. We evaluate partitions into 16 bins and 256 bins. We test both one-level (non-hierarchical) and
two-level (hierarchical) partitions. Queries are multi-probe.

• Regression LSH: This variant uses logistic regression as the supervised learning component and, as a result,
produces very simple partitions induced by hyperplanes. We compare this method with PCA trees [1, 35, 49],
random projection trees [20], and recursive bisections using 2-means clustering. We build trees of hierarchical
bisections of depth up to 10 (thus total number of leaves up to 1024). The query procedure descends a single
root-to-leaf path and returns the candidates in that leaf.

4.1 Implementation details

Neural LSH uses a fixed neural network architecture for the top-level partition, and a fixed architecture for all
second-level partitions. Both architectures consist of several blocks, where each block is a fully-connected layer
+ batch normalization [26] + ReLU activations. The final block is followed by a fully-connected layer and a
softmax layer. The resulting network predicts a distribution over the bins of the partition. The only difference
between the top-level network the second-level network architecture is their number of blocks (b) and the size
of their hidden layers (s). In the top-level network we use b = 3 and s = 512. In the second-level networks
we use b = 2 and s = 390. To reduce overfitting, we use dropout with probability 0.1 during training. The
networks are trained using the Adam optimizer [31] for under 20 epochs on both levels. We reduce the learning
rate multiplicatively at regular intervals. The weights are initialized with Glorot initialization [22]. To tune soft
labels, we try different values of S between 1 and 120.

1Number of queries per second.
2Maximum time per query, modulo a small fraction of outliers.
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GloVe SIFT
Averages 0.95-quantiles Averages 0.95-quantiles

One level 16 bins 1.745 2.125 1.031 1.240
256 bins 1.491 1.752 1.047 1.348

Two levels 16 bins 2.176 2.308 1.113 1.306
256 bins 1.241 1.154 1.182 1.192

Figure 3: Largest ratio between the number of candidates for Neural LSH and k-means over the settings where
both attain the same target 10-NN accuracy, over accuracies of at least 0.85. See details in Section 4.2.

We evaluate two settings for the number of bins in each level, m = 16 and m = 256 (leading to a total
number of bins of the total number of bins in the two-level experiments are 162 = 256 and 2562 = 65 536,
respectively). In the two-level setting with m = 256 the bottom level of Neural LSH uses k-means instead
of a neural network, to avoid overfitting when the number of points per bin is tiny. The other configurations
(two-levels with m = 16 and one-level with either m = 16 or m = 256) we use Neural LSH at all levels.

We slightly modify the KaHIP partitioner to make it more efficient on the k-NN graphs. Namely, we introduce
a hard threshold of 2000 on the number of iterations for the local search part of the algorithm, which speeds up
the partitioning dramatically, while barely affecting the quality of the resulting partitions.

4.2 Comparison with multi-bin methods

Figure 4 shows the empirical comparison of Neural LSH with k-means clustering, ITQ, Cross-polytope LSH,
and Neural Catalyzer composed over k-means clustering. It turns out that k-means is the strongest among these
baselines.3 The points depicted in Figure 4 are those that attain accuracy � 0.75. In [18] we include the full
accuracy range for all methods.

In all settings considered, Neural LSH yields consistently better partitions than k-means.4 Depending on the
setting, k-means requires significantly more candidates to achieve the same accuracy:

• Up to 117% more for the average number of candidates for GloVe;

• Up to 130% more for the 0.95-quantiles of candidates for GloVe;

• Up to 18% more for the average number of candidates for SIFT;

• Up to 34% more for the 0.95-quantiles of candidates for SIFT;

Figure 3 lists the largest multiplicative advantage in the number of candidates of Neural LSH compared to
k-means, for accuracy values of at least 0.85. Specifically, for every configuration of k-means, we compute the
ratio between the number of candidates in that configuration and the number of candidates of Neural LSH in its
optimal configuration, among those that attained at least the same accuracy as that k-means configuration.

We also note that in all settings except two-level partitioning with m = 256,5 Neural LSH produces partitions
for which the 0.95-quantiles for the number of candidates are very close to the average number of candidates,
which indicates very little variance between query times over different query points. In contrast, the respective gap

3It is important to note that ITQ is not designed to produce space partitions; as explained in Section 1, it does so as a side-effect.
Simiarly, Neural Catalyzer is not designed to enhance partitions. The comparison is intended to show that they do not outperform indexing
techniques despite being outside their intended application.

4We note that two-level partitioning with m = 256 is the best performing configuration of k-means, for both SIFT and GloVe, in
terms of the minimum number of candidates that attains 0.9 accuracy. Thus we evaluate this baseline at its optimal performance.

5As mentioned earlier, in this setting Neural LSH uses k-means at the second level, due to the large overall number of bins compared
to the size of the datasets. This explains why the gap between the average and the 0.95-quantile number of candidates of Neural LSH is
larger for this setting.
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in the partitions produced by k-means is much larger, since unlike Neural LSH, it does not directly favor balanced
partitions. This implies that Neural LSH might be particularly suitable for latency-critical NNS applications.

Model sizes. The largest model size learned by Neural LSH is equivalent to storing about ⇡ 5700 points
for SIFT, or ⇡ 7100 points for GloVe.This is considerably larger than k-means with k  256, which stores at
most 256 points. Nonetheless, we believe the larger model size is acceptable for Neural LSH, for the following
reasons. First, in most of the NNS applications, especially for the distributed setting, the bottleneck in the high
accuracy regime is the memory accesses needed to retrieve candidates and the further processing (such as distance
computations, exact or approximate). The model size is not a hindrance as long as does not exceed certain
reasonable limits (e.g., it should fit into a CPU cache). Neural LSH significantly reduces the memory access
cost, while increasing the model size by an acceptable amount. Second, we have observed that the quality of the
Neural LSH partitions is not too sensitive to decreasing the sizes the hidden layers. The model sizes we report
are, for the sake of concreteness, the largest ones that still lead to improved performance. Larger models do not
increase the accuracy, and sometimes decrease it due to overfitting.

4.3 Comparison with tree-based methods

Next we compare binary decision trees, where in each tree node a hyperplane is used to determine which of the
two subtrees to descend into. We generate hyperplanes with the following methods: Regression LSH, the Learned
KD-tree of [17], the Boosted Search Forest of [39], cutting the dataset into two equal halves along the top PCA
direction [35, 49], 2-means clustering, and random projections of the centered dataset [20, 33]. We build trees of
depth up to 10, which correspond to hierarchical partitions with the up to 210 = 1024 bins. Results for GloVe and
SIFT are summarized in Figure 5 (see appendix). For random projections, we run each configuration 30 times
and average the results.

For GloVe, Regression LSH significantly outperforms 2-means, while for SIFT, Regression LSH essentially
matches 2-means in terms of the average number of candidates, but shows a noticeable advantage in terms of the
0.95-percentiles. In both instances, Regression LSH significantly outperforms PCA tree, and all of the above
methods dramatically improve upon random projections.

Note, however, that random projections have an additional benefit: in order to boost search accuracy, one can
simply repeat the sampling process several times and generate an ensemble of decision trees instead of a single
tree. This allows making each individual tree relatively deep, which decreases the overall number of candidates,
trading space for query time. Other considered approaches (Regression LSH, 2-means, PCA tree) are inherently
deterministic, and boosting their accuracy requires more care: for instance, one can use partitioning into blocks
as in [29], or alternative approaches like [33]. Since we focus on individual partitions and not ensembles, we
leave this issue out of the scope.

4.4 Additional experiments

In this section we include several additional experiments.
First, we study the effect of setting k. We evaluate the 50-NN accuracy of Neural LSH when the partitioning

step is run on either the 10-NN or the 50-NN graph.6 We compare both algorithms to k-means with k = 50.
Figure 6a compares these three algorithms on GloVe for 16 bins reporting average numbers of candidates. From
this plot, we can see that for k = 50, Neural LSH convincingly outperforms k-means, and whether we use 10-NN
or 50-NN graph matters very little.

Second, we study the effect of varying S (the soft labels parameter) for Neural LSH on GloVe for 256 bins.
See Figure 6b where we report the average number of candidates. As we can see from the plot, the setting S = 15

6Neural LSH can solve k-NNS by partitioning the k0-NN graph, for any k, k0; they do not have to be equal.
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(a) GloVe, one level, 16 bins (b) SIFT, one level, 16 bins

(c) GloVe, one level, 256 bins (d) SIFT, one level, 256 bins

(e) GloVe, two levels, 16 bins (f) SIFT, two levels, 16 bins

(g) GloVe, two levels, 256 bins, k-means at 2nd level (h) SIFT, two levels, 256 bins, k-means at 2nd level

Figure 4: Comparison of Neural LSH with baselines; x-axis is the number of candidates, y-axis is the 10-NN
accuracy
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Figure 5: Comparison of decision trees built from hyperplanes: x-axis – number of candidates, y-axis – 10-NN
accuracy
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Figure 6: Effect of various hyperparameters

yields much better results compared to the vanilla case of S = 1. However, increasing S beyond 15 brings
diminishing returns on the overall accuracy.

5 Conclusions and future directions

We presented a new technique for finding partitions of Rd which support high-performance indexing for sublinear-
time NNS. It proceeds in two major steps: (1) We perform a combinatorial balanced partitioning of the k-NN
graph of the dataset; (2) We extend the resulting partition to the whole ambient space Rd by using supervised
classification (such as logistic regression, neural networks, etc.). Our experiments show that the new approach
consistently outperforms quantization-based and tree-based partitions.

Our work leads to multiple exciting open problems. Perhaps the most important one is whether it is possible
to design a variant of Neural LSH that has provable correctness guarantees, without sacrificing the empirical
performance. Such guarantees could take multiple forms:

1. approximate nearest neighbor: the data structure guarantees that, given a query q, it returns a point p0

whose distance to q is at most some factor c > 1 greater than the distance from q to its true nearest neighbor.

2. probabilistic near neighbor: for a given scale parameter r and probability parameter � > 0, given a query
q, each point p within a distance r from q is returned with probability 1 � �.
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Algorithms based on locality-sensitive hashing satisfy guarantees (1) [25] or (2) [4], depending on the
implementation. Similarly, some tree-based methods such as [10] and [20] satisfy such guarantees. It is thus
plausible that one could achieve SOTA empirical performance while guaranteeing some form of correctness.
At the same time, we expect this challenge to be somewhat difficult, as the current state-of-the-art indexing
algorithms typically lack correctness guarantees. For example, [27] has recently demonstrated that there exist
data sets for which graph-based algorithms such as HNSW [43], NSG [21] or DiskANN [30] must scan a large
percentage of data point to return a reasonable approximate nearest neighbor. Nevertheless, an initial progress
towards this goal has been already made in [2].
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