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Abstract

The field of vector search has seen a surge in interest from both researchers and practitioners due to
its potential in emerging AI applications. Understanding how to optimize its performance is crucial for
numerous tasks, but there remain a lot of challenges in practice. The advent of new hardware architectures and
platforms has prompted a reevaluation of the design of large-scale vector search systems. However, current
state-of-the-art vector search algorithms have not fully leveraged new hardware architectures to maximize
performance.

In this study, we propose design strategies to enhance the computational and memory efficiency of large-
scale vector search. Our novel search algorithm, iQAN, delivers up to an order of magnitude faster search
speeds on multi-core architectures through efficient intra-query parallelism, effectively utilizing the combined
computational power of modern multi-core chips. Our new design, HM-ANN, employs a novel form of
index that effectively leverages heterogeneous memory, enabling billion-scale vector search at a low cost.
This paper delves into the challenges and algorithms associated with iQAN and HM-ANN, with a focus on
improvements in computational and memory efficiency. The paper also includes the results of our experiments
that demonstrate the outstanding performance of vector search when modern hardware architectures are
effectively utilized through our proposed methods. Lastly, the paper explores open questions and future
directions for supporting high-dimensional vector search with speed and scale.

1 Introduction

1.1 Approximate Nearest Neighbor Search

Finding the top-k nearest neighbors among database vectors for a query has long been a key building block to
solve problems such as large-scale information retrieval and image search [33, 38, 49], recommendation [17],
entity resolution [27], and sequence matching [10]. As database size and vector dimensionality increase, exact
nearest neighbor search becomes expensive and impractical due to latency and memory constraints [11, 12, 62].
Therefore, to reduce the search cost, various approximate nearest neighbor search (ANNS) algorithms have been
proposed to improve efficiency substantially while mildly relaxing accuracy constraints, leading to the so-called
accuracy-vs-efficiency tradeoffs.

Over the years, a variety of algorithms for Approximate Nearest Neighbor Search (ANNS) have been
developed with the goal of enhancing computational and memory efficiency. To improve the compute efficiency,
well-designed indexes have been introduced, including tree structure-based [8, 9, 44], hashing-based [26], and
proximity graph-based approaches [24, 40]. To improve memory efficiency, various compression algorithms have
also been applied to ANNS, such as product quantization-based methods [25, 31, 32, 36, 46]. These methods
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can also be combined to improve both compute and memory efficiency simultaneously. For a more detailed
understanding and comparison of ANNS algorithms, we recommend several literature that provide excellent
surveys [3, 37, 58].

1.2 Modern Applications and Requirements

ANNS holds significant relevance in contemporary applications, particularly in conjunction with deep learning
models, as it facilitates innovative search scenarios. Traditional entity retrieval relies on keyword matching and
user behavior signals. However, with the progression of deep learning, it is now possible to construct models
that yield vectors with close distances for entity inputs sharing similar “views”. With these models, one then can
encode unstructured data into embedding vectors in a high dimensional space Rd [28, 65]. These vectors capture
the similarities between various entities within the latent space. As a result, the nearest embeddings for a specific
query often symbolize entities with similar semantics in the latent space. ANNS then emerges as a natural choice
for managing these vectors while ensuring both speed and accuracy in retrieval.

Vector-based search has already been integrated into many modern applications. For instance, Web-scale
search engines like Google [56] and Bing [14, 55] utilize embeddings for documents (e.g., word2vec [43] and
doc2vec [34]) and images (e.g., VGG [54]) to retrieve semantically related entities in response to user queries.
Major e-commerce players like Amazon [45] have developed recommendation systems that embed both the
product catalog and the search query, recommending products whose embeddings are closest to the embedded
search query. YouTube has built search engine that embeds videos to vectors for video recommendation [16].
More recently, vector search has been employed in retrieval augmented generation in large language models
(LLMs), where vector search can be used to expand LLMs knowledge by incorporating external data sources [13].
Vector search also presents a fertile ground for exploring future applications. For instance, recent advancements
in deep learning have enabled models to capture multimodal relationships, such as through the use of multimodal
foundation models [21]. Consequently, the underlying vector search systems can also leverage ANNS to handle
multi-modality entities. However, how to effectively handle different modalities and capture the full range of
interconnections and relationships among them via ANNS remains an open question. This includes whether
various modalities benefit from using the same or different vector search methods, which is an exciting area for
future exploration.

As vector search goes to a larger scale, where the dimension scales from ⇠100 to ⇠1000 and the number of
vectors scales from millions to billions, the challenge of serving latency becomes more prominent even with novel
ANNS algorithms. For instance, online interactive services (e.g., web search engine) often require responses to
be returned within a few or tens of milliseconds, as delayed responses could degrade user satisfaction and affect
revenue [22]. However, as the number of entities (such as images and documents) grows rapidly and deep learning
embeddings expand to higher dimensions (from embedding sentences to full documents), it becomes increasingly
difficult to find highly accurate results in large datasets while adhering to latency constraints. Many vector search
services, such as text and image search, require intensive computation and may not be feasible due to latency
violations. Therefore, how to transform these applications from impossible to ship due to latency violation to
well-fitting SLA is crucial for the practical adoption of vector search. Another big requirement for large-scale
vector search is cost reduction. Large-scale services deal with a vast volume of requests and could necessitate
thousands of machines for a single application. Therefore, decreasing the number of machines while maintaining
the same search quality and latency is crucial for reducing the total cost of ownership for the application.

1.3 New Hardware Architectures and Opportunities

Existing ANN algorithms have mostly exploited the uni-core CPU infrastructure and standard memory hierarchy.
This infrastructure uses processors whose performance increased with Moore’s Law, thus limiting the need for
high levels of concurrent execution on a single machine. However, processors are no longer providing ever
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higher uni-core performance. Meanwhile, the prior infrastructure used DRAM for main memory. However, the
main memory capacity is often quite limited to hold a large volume of data. As multi-core processors become
ubiquitous and new memory architecture such as heterogeneous memory becomes available, new opportunities
for large-scale vector search exist:

• Design for multi-core: Modern CPUs are often equipped with high-performance multi-core. Since uni-core
speed has pretty much saturated, we need to get better at exploiting a large number of cores by addressing
at least two important aspects:

1. Multi-core CPUs provide high concurrency, but as the level of concurrency increases, synchronization
among different cores are more likely to block and limit scalability.

2. The performance of multi-core processes also depend on the shared memory bandwidth utilization.
According to the roofline model [64], the performance of an application is not only bounded by
the compute capability but also the bandwidth performance. So how to make the best utilization of
memory bandwidth needs great care.

• Design for modern memory devices: Vector search at large scale is very memory consuming and easily
runs out of memory with a few hundred millions of vectors. When the dataset becomes too large to fit on
a single machine, one approach is to use the compressed representations of the database points, such as
Hamming codes [47] and product quantization [19, 25, 31, 32, 46]. However, the performance of these
methods deteriorates rapidly at higher recall targets, because they calculate approximate distance based
on compressed vectors instead of on the original data vectors. Another approach is to exploit storage.
In DiskANN [55], the authors explore slow storage to achieve billion-scale ANNS in a single machine.
However, disk latency is a major problem. While persistent media such as SSD offers lower latency and
much higher I/O ops per second than traditional disks, they are still several orders of magnitude slower than
DRAM. Based on this assumption, data access to the persistent media during search should be minimized.
As a result, DiskANN maintains a copy of compressed data in memory with product quantization [55],
which results in loss of in-memory search quality. It then performs a re-ranking using full-precision
coordinates stored on SSD, using block-level data accesses but with expensive SSD accessing time. While
methods such as DiskANN show promising results, the emergence of Heterogeneous Memory (HM) brings
opportunities to significantly improve ANNS. HM combines cheap, slow but extremely large memory with
expensive, fast but small memory (e.g., traditional DRAM) to achieve a good balance between production
cost, memory performance and capacity. Because of the large memory capacity, HM can use full-precision
vectors with accurate distance computation. Since memory access latency/bandwidth of slow memory
components in HM is much faster than slow storage such as SSD, it is possible to occasionally access data
in slow memory during search without paying the expensive cost of data accesses. That being said, realizing
the full performance potential of HM for ANNS is still quite challenging. Although slow memory such as
PMM performs ⇠80X times faster than SSD, it is still ⇠3X slower than DRAM in terms of random access
latency [60]. Therefore, a naive data placement strategy can hurt the search efficiency badly. Therefore, one
may still wonder if we can leverage HM for ANNS to achieve both high search accuracy and low search
latency, especially when the dataset cannot fit in DRAM (fast memory)?

In this work, we revisit the similarity search problem in light of the recent advances in the field. Two
new system optimization methods are introduced, dedicated to improving the efficiency and scaling of vector
search while simultaneously delivering high accuracy. They are particularly appropriate for the new hardware
architectures discussed above. Specially:

• iQAN [48] is a parallel search algorithm that exploits intra-query parallelism in graph-based vector search
to obtain significant latency reduction in vector search on multi-core architectures with high accuracy.
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This approach includes a set of optimizations that boost convergence, avoid redundant computations, and
mitigate synchronization overhead.

• HM-ANN [51] is a heterogeneous memory-based technique that shatters the memory barrier of deploying
large-scale vector search via NVMe memory, enabling billion-scale vector search with low deployment
cost. It carefully constructs vector search indices via a memory hierarchy-aware algorithm, hence leading
to substantially better search performance as the vectors grow to be larger than the DRAM capacity. It also
employs parallel search algorithms to boost the in-memory search efficiency, leading to faster search speed.

In drawing broader lessons from this work, we believe that effectively leveraging multi-core and exploiting
the memory hierarchy are the keys to high-performance vector search on modern processors. Further, based on
the above methods, we discuss open research problems, including exploring hierarchical parallelism to meet both
latency and throughput targets, highly concurrent vector search with addition and deletion, automating the index
construction for vector search, and the interactions with modern applications in Section 5.

2 Background

The literature on nearest neighbor search is vast, and hence, we focus our attention on the most relevant works
here. There has been a lot of work on building effective ANN indices to accelerate the search process. Earlier
works focus on space partitioning-based methods. For example, Tree-based methods (e.g., KD-tree [53] and R*
tree [8]) hierarchically split the data space into lots of regions that correspond to the leaves of a tree structure
and only search a limited number of promising regions. However, the complexity of these methods becomes no
more efficient than brute-force search as the dimension becomes large (e.g., >16) [35]. Prior works also have
spent extensive efforts on locality-sensitive hashing-based methods [1, 2, 18, 29], which map data points into
multiple buckets with a certain hash function such that the collision probability of nearby points is higher than
the probability of others. These methods have solid theoretical foundations. LSH and its variations are often
designed for large sparse vectors with hundreds of thousands of dimensions. In practice, LSH-based methods
have been outperformed by other methods, such as graph-based approaches, by a large margin on large-scale
datasets [4, 24, 40]. More recently, Malkov and Yashunin found graphs that satisfy the small-world property
exhibit excellent navigability in finding nearest neighbors. They introduce the Hierarchical Navigable Small
World (HNSW) [40], which builds a hierarchical k-NN graph with additional long-range links that help create
the small-world property. For each query, it then performs a walk, which eventually converges to the nearest
neighbor in logarithmic complexity. Subsequently, Fu et al. proposed NSG, which approximates Monotonic
Relative Neighbor Graph (MRNG) [24] that also involves long-ranged links for enhancing connectivity.

3 iQAN: Fast and Accurate ANNS via Intra-Query Parallelism on Multi-Core
Architecture

Among different vector search methods, the similarity graph-based algorithms have emerged as a remarkably
effective class of methods for high-dimensional ANNS, outperforming other approaches on a wide range of
datasets to achieve the best accuracy-vs-latency [4, 5, 20, 24, 31, 37, 59, 63]. Despite their promising results,
graph-based methods still have challenges that limit their use in real-world scenarios. In particular, as the data
size grows, it becomes increasingly challenging to achieve both low latency and high accuracy simultaneously.
Existing solutions often resort to inter-query parallelism by dispatching queries across multiple processors or
nodes to be processed simultaneously [7, 24]. This approach scales from a throughput perspective, but it does not
help reduce query latency because each query still roughly performs the same amount of vector computations to
find the nearest neighbors.
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3.1 Challenges of ANNS via Intra-Query Parallelism

Another natural idea to reduce latency is to exploit intra-query parallelism on individual nodes with multi-core
processors. For example, one may parallelize the node expansion in each iteration step of the sequential search
algorithm (referred to as Node-Expansion-in-Parallel) because distance computations within a neighborhood
expansion iteration do not have dependencies, hoping that multiple worker threads can check the closeness of
multiple neighbors in parallel while performing the same computations on each step as the sequential algorithm.
Surprisingly, this solution performs quite poorly and may even perform much worse than a well-tuned sequential
algorithm, as shown in Fig. 1. There are several challenges in scaling ANNS with intra-query parallelism:

Challenge 1: Modern multi-core hardware is sensitive to synchronization overhead. Parallelism boosts
compute capacity but may also incur high synchronization overhead, especially if there are complex data depen-
dencies. While parallelizing the distance computation, Node-Expansion-in-Parallel also requires synchronization
in between expansion iterations to sort the distance order of all candidates discovered by multiple parallel workers
according to their distances to the query point, to decide which node to expand in the next iteration. We have ob-
served that the synchronization is very expensive on a multi-core architecture, and frequent sequential-to-parallel
synchronization as in Node-Expansion-in-Parallel can significantly prolong the search process. Fig. 2 shows
that as we increase the number of threads, the synchronization overhead accounts for more than 50% of the total
search time, becoming a dominating factor in the overall search latency.
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Challenge 2: Node-Expansion-in-Parallel leads to insufficient computation granularity per worker,
leading to sub-optimal memory bandwidth utilization. Node-Expansion-in-Parallel has low compute intensity
because (1) unlike matrix multiplication, the point-wise Euclidean distance computation is an operator with low
compute intensity, and (2) the number of neighbors to be expanded in one step is limited, given that similarity
graphs naturally have low out-degree to avoid the out-degree explosion problem [24]. As such, further dividing
the distance computation within each neighbor expansion iteration leads to insufficient work for each worker.

Challenge 3: Vector search using graph traversal requires many iterations to converge, resulting in long
sequential dependencies between iterations and thus limiting its scalability. The number of neighborhood
expansion iterations depends on the recall target and the graph size. For example, Fig. 3 shows that as the recall
target increases, the number of iterations to find the top-100 nearest neighbors on a hundred million scale dataset
DEEP100M grows dramatically as the recall target becomes higher (e.g., a 34.6-time increase from 0.9 to 0.999
recall). Fig. 4 shows that as the dataset size increases, the number of iterations to find the results for recall
target 0.999 also grows (e.g., 7.3 times from 1M-vector dataset to 100M-vector dataset). This long sequential
dependency makes achieving low latency with high accuracy especially challenging.

3.2 Design of iQAN

To address the aforementioned challenges, we introduce iQAN, a parallel search algorithm to accelerate graph-
based ANNS on multi-core architectures with three key optimizations: (i) reducing neighbor expansion iteration
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depth by path-wise parallelism, (ii) reducing redundant distance computation by staged expansion, and (iii)
reducing synchronization overhead by redundancy-aware synchronization.

3.2.1 Reduce Iteration Depth by Intra-Query Path-Wise Parallelism

In each search iteration, a Best-First-Search (BFiS) algorithm is often used to perform node expansion to the most
promising unchecked candidate [24, 40]. In iQAN, we make a small modification to this process by relaxing
the priority order and letting each thread expand a few more nodes (e.g., top W unchecked candidates) in every
step as active nodes for expansion. We also relax the synchronization such that a global synchronization is only
performed after a few expansion steps. We call this new way of expanding nodes path-wise parallelism (PP).
This small change in algorithm results in a significant reduction in iteration depths for queries, e.g., from a few
thousands to tens in some cases.

Why would this change reduce the iteration depth? The multi-node expansion and relaxed synchronizations
are equivalent to letting each thread explore paths in a local region instead of a single node’s neighbor list before
doing a global synchronization. By doing so, it increases the likelihood of finding nearest neighbors in less
number of iterations. Fig. 5 shows the comparison results of iteration depths between BFiS and PP on dataset
SIFT1M using 10K queries with a 0.90 recall target. We set W to 64. Overall, while BFiS takes 10.1, 69.4, and
88.1 steps to find the top-1, top-50, and top-100 near neighbor, PP only takes 3.4, 5.0, and 5.4 steps on average,
respectively, a significant reduction. From the unchecked node’s perspective, Fig. 6 shows that PP also takes
much fewer steps to converge to a local optimum (i.e., finish examining all the unchecked vertices) than BFiS.

3.2.2 Reduce Redundant Computation by Staged Expansion

Although reducing the iteration depth significantly, does it mean the search process will now get desired speedups
on multi-core architectures? The answer is no. The path-wise parallelism reduces iteration depths but at the same
time introduces a considerate amount of additional distance computations, especially when the number of parallel
workers is large. Fig. 7 shows that to reach the same recall (0.9–0.999), the path-wise parallelism often needs to
perform significantly more distance computations than BFiS (1.3–3.5 times). Moreover, we also observe that
although the iteration depths continue to decrease by increasing the concurrent expansion width W , the number
of distance computations inversely increases, as shown in Fig. 8. The huge amount of redundant computations
adversely affects search efficiency as many threads are loading vectors for unnecessary computations, wasting
memory bandwidth and compute resources.

To mitigate it, we investigate the usefulness of path-wise parallelism at different search stages: at which stage
does the path-wise parallelism reduce the iteration depths the most? We found that overall, in the beginning, since
all candidates are far from the query, those early expanded candidates are likely to be discarded by closer ones
that are visited later. In other words, candidates expanded and checked at an earlier stage have a high likelihood
of becoming unnecessary from a future perspective. As the search moves forward toward the region that has near
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neighbors, a larger expansion width that covers more search paths can effectively prevent the search from getting
stuck at a local minimum.

Based on these observations, we propose a staged expansion (SE) scheme by gradually increasing the
expansion width W and the number of workers every t steps during the search procedure. In practice, we set
the starting value of W to 1 and the maximum value as the number of available hardware threads. Then for
every t steps (e.g., t = 1) we double the value of W until W reaches its maximum. Fig. 9 shows the comparison
results of path-wise parallelism without and with staged expansion. The staged expansion reduces the number of
redundant distance computations significantly, leading to distance computations comparable to BFiS. On the other
hand, staged expansion is able to preserve the benefits of path-wise parallelism in terms of obtaining reduced
iteration depths, as shown in Fig. 10. These results indicate that by performing path-wise parallelism at where
they are most effective (i.e., the later phase of the search), the parallel search process can effectively converge
with reduced iteration depths and minimal addition of redundant computations among multiple workers.

3.2.3 Reduce Synchronization Overhead by Redundancy-Aware Synchronization

The remaining performance challenge in parallel search resides in the synchronization, as we still need to
decide when to do synchronization. However, reducing the synchronization overhead for graph-based ANNS
is non-trivial. Fig. 11 shows that as we skip synchronizations in between search iterations (i.e., increasing the
interval between two synchronizations), the synchronization overhead (shown as the ratio to the total time)
decreases significantly. However, decreasing synchronization increases distance computations, especially when
the synchronization intervals become large. This is because as we increase the synchronization interval, it increases
the likelihood that individual workers would search their local but unpromising areas without switching to newly
identified promising regions found by other workers. As such, one cannot infinitely delay synchronization, and a
small set but useful synchronizations are desired to achieve overall high search efficiency without incurring too
many redundant computations.

Finding such intervals turns out to be non-trivial since the relative distance of a query to its near neighbors
changes all the time at different stages. It is also hard to find one fixed synchronization interval for all queries. To
mitigate the synchronization overhead, iQAN performs redundancy-aware synchronization (RAS), which allows
workers to perform a search with low redundant computations by adding a minimal set of global synchronizations.
We introduce a metric — update positions — to capture the redundancy during expansion. When a worker thread
expands an unchecked candidate, its unchecked neighbors are then inserted into the worker’s local queue, and
we define the update position as the lowest (best) position of all newly inserted candidates. Thus, the average
update position (AUP) is the mean of all update positions of workers. Fig. 12 demonstrates how an example
query’s AUP changes during the search process without doing any global synchronizations. We observe that the
AUP increases gradually to be equal to the local queue capacity and remains flat to the end. When the AUP is
close to the queue capacity, it indicates that a majority of workers are searching areas that cannot find promising
candidates to update their local results. Therefore, a high AUP indicates that most workers are doing redundant
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Figure 13: Latency comparison among HNSW, NSG, and iQAN on Skylake (16T).

computations, and it would benefit from a global synchronization such that all workers can focus on searching for
more promising areas that have a higher probability of including closer near neighbors.

3.3 Evaluation of iQAN

iQAN offers significant speedups than two state-of-the-art graph-based ANNS, NSG [23, 24] and HNSW [39, 40]
over several public datasets, including SIFT1M (128D), GIST1M (960D), DEEP10M (96D), DEEP100M (96D),
and SIFT100M (128D). We measure the latency and Recall@100 (R@100), which measures the accuracy of
finding the top-100 nearest neighbors for every query. We conduct our experiments on a workstation with Xeon
Gold 6138 (2.00 GHz) with 20 cores and 128 GB DRAM (Skylake for short).

Fig. 13 compares the latency of HNSW, NSG, and iQAN on Skylake. NSG and HNSW use their sequential
search algorithm, whereas iQAN uses 16 threads on Skylake. Across all five datasets, iQAN consistently provides
latency speedups over existing sequential-based approaches NSG and HNSW over a wide range of recall targets.
In particular, the speedups from iQAN increase as the recall target moves to the high accuracy regime (e.g., from
0.90 to 0.999). Notably, iQAN achieves up to 12.9⇥ speedups over NSG on DEEP100M on Skylake, obtaining
an incredibly low latency of <5ms or <3ms at the recall target 0.999 by leveraging aggregated multi-core
computation and memory bandwidth resources. This enables vector search with very high accuracy on large-scale
graphs, even in extremely interactive online applications.

iQAN achieves significant latency speedups mainly for three reasons. First, iQAN’s path-wise parallelism
effectively reduces the iteration depths, making the sequential dependencies no longer a major bottleneck. This
is particularly critical for a large graph (e.g., DEEP100M) and high recall (e.g., 0.999) as seen in Section 3.2
that the iteration depths increase significantly as we either scale the graph size or increase the recall targets.
Second, the reduced iteration depths do not come at the cost of many redundant computations as iQAN leverages
staged expansion to effectively avoid redundant computations from doing path-wise parallelism. Third, iQAN
significantly reduces the synchronization overhead through redundancy-aware synchronization. It is also worth
mentioning that iQAN achieves excellent speedups as we increase the dimensionality of the embedding vectors.
iQAN achieves up to 24.9⇥ speedups over HNSW on GIST1M on Skylake. This is higher than the speedups
we get on a dataset with a similar scale but much smaller dimensionality (e.g., SIFT1M). iQAN is able to
achieve better speedups on higher dimensional vectors because as the vector dimension increases, the amount of
computation workload for the pair-wise distance computation also increases, which allows iQAN to benefit more
from parallel computing.

Comparison with DiskANN. Fig. 14 compares the latency of DiskANN [30] (using 1 thread with its in-
memory index) and iQAN (using 32 threads) for Recall@1 targets. For building its indices of datasets SIFT1M
and GIST1M, DiskANN uses L = 125, R = 70, ↵ = 2, which are the same setting as shown in its paper. For
DEEP10M, DiskANN uses L = 100, R = 100, ↵ = 1.2. Fig. 14 shows that iQAN achieves significant latency
speedups over DiskANN, especially for the high recall regime. For example, for recall target 0.999, iQAN has
about 180.5⇥ average speedup on DiskANN among these three datasets.

Scaling to billion points. This experiment is conducted on a machine with a 1.5 TB memory. It is worth
mentioning that even 1.5 TB of memory is not enough to build a 100-NN graph with one billion data vectors.
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Figure 14: Recall@1 latency of DiskANN and iQAN.
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Therefore, we limit the out-degree of NSG when generating the corresponding NSG index so that the index
construction can finish in a reasonable amount of time (e.g.,<10 days). We also note that this is the first time to
evaluate an NSG graph at a billion scale as the maximum graph prior work such as NSG evaluated contained less
than 100M data points. Fig. 15 compares the latency of iQAN and NSG. iQAN uses up to 64 threads, and the
recall target is 0.9. When using 64 threads, iQAN follows the trend of scalability we observed as we increase
the graph size and outperform NSG with 11.5⇥ and 16.0⇥ speedup for SIFT1B and DEEP1B, respectively,
confirming the excellent scalability of iQAN on large-scale graphs again.

4 HM-ANN: Efficient Billion-Point Vector Search via Heterogeneous Memory

This section describes a large-scale vector search solution built on top of Heterogeneous Memory. The HNSW
index is modified to make it HM-aware, and the search algorithm is also modified to make the search more
efficient. With these modifications, this solution enables fast and highly accurate billion-scale ANNS on HM.

4.1 Design of HM-ANN

The design of HM-ANN generalizes HNSW, whose hierarchical structure naturally fits into HM. Elements in the
upper layers consume a small portion of the memory, making them good candidates to be placed in fast memory
(small capacity); The bottom-most layer has all the elements and has the largest memory consumption, which
makes it suitable to be placed in slow memory. Unlike HNSW, where the majority of search happens in the
bottom-most layer, elements in the upper layers now have faster access speed, so it is a reasonable strategy to
increase the access frequency of the upper layers. On the other hand, since accessing L0 is slower, it is preferable
to have only a small portion of it to be accessed by each query. The key idea of HM-ANN is, therefore, to build
high-quality upper layers and make most memory accesses happen in fast memory, in order to provide better
navigation for search at L0 and reduce memory accesses in slow memory.

Notations. In the rest of the paper, we let V denote the dataset with N = |V | to build the graph; we
refer the graph in the layer i 2 {0, 1, ..., l} of HM-ANN as Gi = (Vi, Ei) where Vi is the vertex set and Ei

is the edge set. We refer Ni as the number of elements in the layer i, and we have Ni = |Vi|. Because L0
contains all the elements in the database, we have V0 = V and N0 = N . Based on the hierarchical structure of
HM-ANN, we have Vi ( Vi�1. Similar to the existing effort [40], we introduce Mi as the maximum number of
established connections for each point v in the layer i. For v 2 V , we let D(v) denote the degree of node v, and
D(v) =

P
u2V m(v, u) where m(v, u) = 1 if there exists a link between node v and node u.

4.1.1 HM-aware Index Construction via Top-Down Insertions and Bottom-up Promotions

To make the ANNS index aware of HM architecture, we generalize the HNSW construction algorithm to include
two phases: a top-down insertion phase and a bottom-up promotion phase.
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Top-down insertions. The top-down insertion phase is the same as HNSW, where we incrementally build
a hierarchical graph by iteratively inserting each vector v in V as a node in G. Each node will generate up to
M (i.e., the neighbor degree) out-going edges. Among those, M � 1 are short-range edges, which connect v
to its M � 1 nearest neighbors according to their pair-wise Euclidean distance to v. The rest is a long-range
edge that connects v to a randomly picked node, which may connect other isolated clusters. It is theoretically
justified that graphs (e.g., L0) constructed by inserting these two types of edges guarantee to have the small world
properties [24, 40, 61].

Bottom-up promotions. The goal of the second phase is to build a high-quality projection of L0 elements
into the layer 1 (L1), such that the search in L0 can find the true nearest neighbors of the query with only a few
hops. Ideally, HM-ANN wants to achieve the goal that performing 1-greedy search in L0 is sufficient to achieve
high recall, so that the slowdown caused by accessing the slow memory is minimal. A straightforward way to
project the L0 elements into L1 is to randomly select a subset of elements in L0 to be L1, similar to what HNSW
already does to build upper layers. However, we observe that such an approach leads to poor index quality. As a
result, many searches end up happening in L0 (slow memory), causing long search latency.

HM-ANN uses a high-degree promotion strategy. This strategy promotes elements with the highest degree in
L0 into L1. From the layer i (i � 2) to i + 1, HM-ANN promotes high-degree nodes to the upper layer with a
promotion rate of 1/M , where M is the maximum number of neighbors for each element (i.e., Mi = M , where
i = 2...l). A similar promotion rate setting is used in HNSW [40] and typical skip list [50]. HM-ANN increases
search quality in L1 by promoting more nodes from L0 to L1 and setting the maximum number of neighbors for
each element in L1 to 2 ⇥ M (i.e., M1 = 2 ⇥ M ). The number of nodes in upper layers (Ni, where i = 1..l) is
decided by available fast memory space.

The high-degree promotion strategy is based on the following observation. The hub nodes of the graph at L0
are those nodes with a large number of connections (i.e., high degree). In the small world navigation algorithm, a
higher degree node provides better navigability [6]. Most of the shortest paths between nodes flow through hubs.
In other words, the average length of the navigation path (i.e., number of hops) is the smallest, when the adjacent
node with the highest degree is selected as the next hop. By promoting the high-degree nodes, the resulting
L1 layer allows HM-ANN to effectively reduce the number of search steps in L0, compared with the random
promotion strategy.

4.1.2 HM-ANN Graph Search Algorithm

Fast memory search. The search in fast memory begins at the entry point in the top layer and then performs a
1-greedy search from the top layer to layer 2, which is the same as in HNSW. To narrow down the search space in
L0, HM-ANN performs the search in L1 with a search budget controlled by efSearchL1. efSearchL1 defines
the size of dynamic candidate list in L1. Those candidates in the list are used as entry points for search in L0
(HNSW uses just one entry point), in order to improve search quality in L0.

Parallel L0 search. In L0, HM-ANN evenly partitions the candidates from searching L1 and uses them as
entry points to perform parallel multi-start 1-greedy search with Thr threads in parallel. The top candidates from
each search are collected to find the best candidates. Parallel search makes the best use of memory bandwidth
and improves search quality without increasing search time. Thr is determined by peak memory bandwidth
constrained by hardware divided by memory bandwidth consumption by one thread, which is easy to calculate.

Different from the SSD-based ANNS [55, 66], the data in slow memory in HM-ANN can be directly accessed
by processors, and there is no duplication between fast and slow memories. However, due to high latency and
low bandwidth of slow memory, HM-ANN should still make memory accesses in fast memory as many as
possible. HM-ANN implements a software-managed cache in fast memory to prefetch data from slow memory to
fast memory before the memory access happens. In particular, HM-ANN reserves a space in fast memory (⇠2
GB) called migration space. When searching L1, HM-ANN asynchronously copies neighbor elements of those
candidates in efSearchL1 and the neighbor elements’ connections in L1 from slow memory to the migration
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Table 1: Indexing time and memory consumption for graph-based methods on billion-scale datasets

BigANN DEEP1B
Indexing Search Indexing Search

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

HNSW 475GB 90h 0.02 96GB
(hw caching) 490GB 723GB 108h 0.02 96GB

(hw caching) 748GB

NSG 285GB 115h - 96GB
(hw caching) 303GB 580GB 134h - 96GB

(hw caching) 599GB

HM-ANN 536GB 96h 0.16 96GB 462GB 756GB 117h 0.11 96GB 681GB

space in fast memory. When the search in L0 happens, there is already a portion of to-be-accessed data placed in
fast memory, which leads to shorter query time.

4.2 Evaluation of HM-ANN

Billion-scale algorithm comparison. We compare HM-ANN with the graph- (HNSW and NSG) and quantization-
based algorithms (IMI+OPQ and L&C). For HNSW, we build graphs with efConstruction and M set to 200
and 48 respectively; For NSG we first build a 100-NN graph using Faiss [42] and then build NSG graphs with
R = 128, L = 70 and C = 500. We collect results on NSG and HNSW using Memory Mode since it leads
to overall better performance than using first-touch NUMA. For IMI+OPQ, we build indexes with 64- and
80-byte code books on BIGANN and DEEP1B respectively. We present the best search result with search
parameters nprobe=128 and ht=30 for BIGANN and with autotuning parameter sweep on DEEP1B. For L&C,
we use 6 as the number of links on the base level, and use 36- and 144-byte OPQ code-books. We use the same
parameters (efConstruction=200 and M=48) as HNSW to construct HM-ANN. We set efSearchL0=2 and
vary efSearchL1 to show the latency-vs-recall trade-offs.

Figures 16 (a)-(d) visualize the results. Overall, HM-ANN provides the best latency-vs-recall performance.
Figure 16 (a) and (b) show that HM-ANN achieves the top-1 recall of > 95% within 1ms, which is 2x and 5.8x
faster than HNSW and NSG to achieve the same recall target respectively. IMI+OPQ and L&C cannot reach a
similar recall target, because of precision loss from quantization. As another point of reference, the SSD-based
solution, DiskANN [55] (not open-sourced), provides 95% top-1 recall in 3.5ms. In contrast, HM-ANN provides
the same recall in less than 1ms, which is at least 3.5⇥ faster. We compare the top-100 recall shown in Figures 16
(c) and (d). HM-ANN provides higher performance than all other approaches. For example, it obtains top-100
recall of > 90% within 4 ms, while performing 2.8x and 5x faster than HNSW and NSG with the same recall
target respectively. Quantization-based algorithms perform poorly and have difficulties to reach a top-100 recall
of 30%.

Table 1 shows the index construction time and index size of HNSW, NSG, and HM-ANN. Among the three,
HNSW takes the shortest time to build the graph. HM-ANN takes 8% longer time than HNSW because it takes
an additional pass for the bottom-up promotion. However, HM-ANN is still faster to construct than NSG. In
terms of memory usage, HM-ANN indexes are 5–13% larger than HSNW, because it promotes more nodes from
L0 to L1. In terms of memory usage, HM-ANN consumes less fast memory than HNSW and NSG, which is
valuable to reduce production cost [41, 52]. HNSW and NSG use all fast memory because they do not explicitly
manage HM and by default using Memory Mode consumes all fast memory. The sum of slow and fast memory
consumption can be larger than the index size because there are metadata needed for search that are not counted
in the index size.
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Figure 16: Query time vs. recall curve in (a) DEEP1B top-1, (b) BigANN top-1, (c) DEEP1B top-100, (b)
BigANN top-100, respectively.

5 Research Opportunities

In this paper, we have concentrated on the computational and memory efficiency of large-scale vector search. Our
iQAN and HM-ANN designs achieve exceptional performance. However, large-scale vector search still requires
further attention, and we expect that additional improvements can be made. This section explores the challenges
and research opportunities associated with vector search.

High-performance vector search through hierarchical parallelism. Inference demand varies across
different applications and scenarios, with some being latency-critical, and others being latency-sensitive or
throughput-oriented. Additionally, the hardware resources available to each application may also vary significantly.
To meet these diverse requirements and make efficient use of all computational resources, we can combine different
parallelism approaches:

• Distributed vector search. Libraries such as Milvus [57] allow the development of distributed versions of
vector search systems using a cluster.

• Inter-query parallelism. Multithreading enables the use of multiple cores to improve the throughput of
answering user requests.

• Intra-query parallelism. Methods such as iQAN enable the system to speed up individual queries by
leveraging the aggregated computational capacity of multiple cores.

These techniques can be combined hierarchically to meet given latency, throughput, and cost objectives.
The research opportunity here is: Build systems for large-scale vector search that fully exploit parallelism at
different levels, providing millisecond-level latency, high throughput, and low hardware cost. Furthermore,
while techniques such as iQAN optimize search efficiency by modifying the graph traversal process to leverage
intra-query parallelism, the underlying index has not been specifically designed to take advantage of intra-query
parallelism. Intuitively, a different index structure could achieve better search efficiency under intra-query
parallelism if it naturally helps avoid redundant computations across different threads and also leads to better data
locality. The research opportunity here is: Design vector search indices that maximize search efficiency through
both inter- and intra-query parallelism.

Highly concurrent vector search with addition and deletion. Most existing vector search systems build
indices offline and become read-only once deployed. In some applications, data capture may occur more
frequently than query processing, or the application may need to index continuous data streams while serving
query requests. In these cases, the index organization should be optimized for addition and update in addition to
query performance. The complexity arises with concurrent read and update operations (e.g., addition, deletion), as
it is challenging to achieve both correctness and speed simultaneously. Concurrent updates and reads can lead to
data races, making it difficult to ensure correctness on shared-memory architectures. Lock-based synchronization
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can be used to coordinate access to shared-memory data, but while using one lock for the entire index simplifies
reasoning about correctness, it also leads to serialized execution, severely impacting scalability. Another solution
is to use fine-grained locking, where multiple locks are associated with the index. However, fine-grained locking
increases the complexity of operations that access shared data, leading to issues such as deadlock, atomicity
violation, and high locking overhead. The research opportunity here is: Build a highly concurrent vector search
system that supports robust addition and deletion with high search efficiency.

Automating index construction for vector search. Several advances have been made in support of large-
scale vector search, introducing novel algorithms and system optimizations [15, 51, 55, 66]. However, applying
these methods to large-scale datasets still requires a significant amount of engineering effort specific to the data,
hardware environment, and performance objectives. For instance, deploying a large dataset to a given cloud VM
requires a careful selection of vector search indices, with NVMe/SSD/remote storage, the number of cores to
use, and multiple index-specific parameters. Correctly choosing the algorithm and tuning the parameters can
deliver significant improvements in search performance but also depend on strong system expertise. Therefore,
automating the selection and construction of vector search indices would help alleviate the burden on deployment
engineers, but it also requires navigating a complex space of choices that grows exponentially with different
algorithm choices, each with its own trade-offs, and data sizes and hardware resources. The research opportunity
here is: Build a framework and optimization algorithm that automatically finds the optimal index construction
strategy for a given dataset to deliver fast search speed with low cost.

6 Conclusion

We have designed and implemented iQAN and HM-ANN to enhance the system efficiency of vector search. We
have followed the state-of-the-art vector search algorithm, but at every level, we have introduced innovations
that stretch prior methods and tailor our system for the newer hardware setting of multi-core processors and
heterogeneous memory. Our innovations, such as intra-query path-wise parallelism, staged expansion, redundancy-
aware synchronization, and HM-aware index construction, improve the computational and memory efficiency of
large-scale vector search. Many of these methods should work well in other settings, such as SSD-based methods
and compression-based indices. Finally, we propose several open research directions from a system perspective
that have the potential to further improve large-scale vector search. We hope these directions will inspire new
research that can advance vector search and make it more efficient, robust, and easy-to-use.
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