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Letter from the Editor-in-Chief

This special issue of the IEEE Data Engineering Bulletin is dedicated to a timely subject: high-dimensional
similarity searches.

High-dimensional similarity searches are indispensable in a variety of fields. For instance, they are employed
for time series analysis and forecasting, which have numerous applications in science, medicine, and business.
Recently, the subject of vector databases has garnered significant attention, primarily driven by the emergence
of Large Language Models (LLMs) and Retrieval Augmented Generation (RAG), where vector databases have
assumed a crucial role in facilitating various applications in the domain of generative AI ranging from chatbots to
AI agents. On the other hand, the continuous progress and widespread adoption of vector databases have been
occurring over the past few decades. Specifically, it brought about a revolution in the domain of information
retrieval by enhancing the traditional approach of term-based retrieval with embedding-based retrieval. This novel
technique, which involves utilizing vector-based semantic search, significantly enhances the ability to retrieve
relevant information.

This special issue, curated by Associate Editor Themis Palpanas, gathers insights from various branches of
this field. The articles contained within this special issue provide an array of theoretical and practical solutions for
similarity searches in high-dimensional spaces. Our authors investigate algorithms to improve similarity searches,
explore the evolution of graph-and tree-based indexes, and chart the course for improving data management
systems. The articles delve into aspects of optimal design strategies to enhance computational efficiency in the
era of AI, examine the deployment of techniques like locality-sensitive hashing and product quantization, and
delve into the improvements dynamic space partitions can offer for faster and more accurate searches.

We believe the topic of vector databases is significant for the database community, for its role as a bridge
connecting data management and artificial intelligence. While considerable progress has been made in the field of
vector-based similarity search, it is crucial to recognize the existence of ongoing obstacles that require attention
and resolution. For example, there exist numerous relationships among the vast amount of data represented by the
vector database. Given a question, how do we ensure all pertinent information is retrieved through vector search?
Additionally, what strategies can be employed to narrow the disparity between pre-training an LLM on the vast
amount of data and in-context learning via RAG, which disregards the majority of the data that could potentially
have relevance to the given question? Thus, our shared objective is to enhance the advancement of this discipline,
and our overarching aspiration encompasses two expansive domains: database and artificial intelligence.

We would like to express our profound gratitude to all the authors who contributed to this issue, to Themis
Palpanas for bringing these insightful articles to the forefront, and to Nurendra Choudhary for his assistance in
the publication process.

Haixun Wang
Instacart
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Letter from the Special Issue Editor

Similarity search in high-dimensional data spaces was a relevant and challenging data management problem in
the early 1970s, when the first solutions to this problem were proposed. Today, fifty years later, we can safely
say that the exact same problem is more relevant (from Time Series Management Systems to Vector Databases)
and challenging than ever. This is true, not because the research community has been idle; on the contrary, the
literature on this topic is very large and diverse, demonstrating both the interest in this problem, as well as the
wide range of ideas that have been applied to it and led to impressive advances. This is true, rather because very
large amounts of high-dimensional data are now omnipresent (ranging from traditional multidimensional data
to time series and deep embeddings), and the performance requirements (i.e., response-time and accuracy) of a
variety of applications that need to process and analyze these data have become very stringent and demanding.

In these past fifty years, high-dimensional similarity search has been studied in its many flavors. Similarity
search algorithms for exact and approximate, one-off and progressive query answering. Approximate algorithms
with and without (deterministic or probabilistic) quality guarantees. Solutions for on-disk and in-memory data,
static and streaming data. Approaches based on multidimensional space-partitioning and metric trees, random
projections and locality-sensitive hashing (LSH), product quantization (PQ) and inverted files, k-nearest neighbor
graphs and optimized linear scans.

Another interesting aspect of the work in high-dimensional similarity search is that research on this problem
has been conducted by different (sub-)communities in a somewhat independent fashion, that is, with not much
interaction among them. A notable example is the work on data-series (and time-series) similarity search, which
was recently shown to achieve the state-of-the-art performance for several variations of the problem, on both
time-series and general high-dimensional vector data. It is only very recently that a conscious effort is being made
in order to gather the state-of-the-art methods from these different communities, and thus, enable the comparison
of the various approaches, the extraction of useful insights, and the development of improved solutions. This
special issue contributes to this effort by including a selection of papers that represent the research activity in
several of these communities, highlighting similarities and differences, discussing the results of some initial
cross-pollination (that has already started taking place), and revealing open research directions.

In the first paper, Wang et al. summarize and discuss state-of-the-art solutions for approximate similarity
search based on k-nearest neighbor graphs, data-series tree indexes, as well as their combination, and point
to promising research directions. In the second paper, Zhang et al. list the similarity search requirements of
modern applications, and present novel algorithms based on k-nearest neighbor graphs that exploit multi-core
architectures and NVMe memory. In the third paper, Tian et al. summarize and discuss state-of-the-art solutions,
as well as future research directions, for approximate similarity search based on locality-sensitive hashing, product
quantization and k-nearest neighbor graphs, as well as combinations of these methods. In the fourth paper, Dong
et al. propose the idea of learning high-quality space partitions, and develop a novel solution that combines
k-nearest neighbor graphs with supervised learning (including deep neural networks) for approximate similarity
search. In the fifth paper, Paparrizos et al. compare many distance measures proposed for time-series similarity
search, comment on the lower bounds that speedup some of these measures, and discuss the open research
problems that their findings point to. Finally, in the sixth paper, Aumüller and Ceccarello study the very important
problem of creating appropriate benchmarks for approximate similarity search; they review recent benchmarks,
and offer guidelines for future efforts in this area.

Overall, the above papers represent an interesting sample of the ongoing work on high-dimensional similarity
search. We hope that this special issue will further help and inspire the research community in its quest to solve
this challenging problem. We would like to thank all the authors for their valuable contributions, as well as
Haixun Wang for giving us the opportunity to put together this special issue, and Nurendra Choudhary for his
help in its publication.

Themis Palpanas
Université Paris Cité
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Search: Analyses, Comparisons, and Future Directions
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†Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
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Abstract

Approximate nearest neighbor search on high-dimensional vectors is a crucial component for numerous
applications in various fields. To solve this problem efficiently, dozens of indexes have been proposed in
the past decades. Among them, graph-based indexes show superior query performance in memory while
tree-based indexes achieve the best scalability and building efficiency. In this paper, we systematically study
the evolution of these two kinds of indexes and the recent progress with ablation studies and analyses, which
help understand where the performance improvement comes from and the difference between different index
families. Moreover, we conduct a comparative study over these two index families and discuss the existing and
potential combinations of them. We believe this study can serve as a guide to the most promising directions
for addressing the open problems in this area.

1 Introduction

Approximate nearest neighbor search (ANNS) on high-dimensional vectors is a crucial component for numerous
applications in various fields, such as web search engines [15], image retrieval [72], recommendation systems [18],
and large language models [1]. Recent studies have further shown that deep neural networks can be augmented by
retrieval to enhance accuracy on the classical problems [40] (e.g., open-domain query-answering problem [14])
and decrease the magnitude of parameters [33], further emphasizing the significance of ANNS in modern AI
applications. Objects, such as images, documents, and videos, can be transformed into dense vectors in the
embedding space. Given a query vector q ∈ RD and a distance measure dist(·, ·), ANNS aims to find top-k
most similar objects (i.e., kNN(q)) in the embedding space RD of the dataset. Since the cost to find the exact
kNN(q) is prohibitively high, ANNS finds the approximate nearest neighbors A(q) instead. The search accuracy
is measured by recall, defined as Recall@k = 1

|Q|
∑

q∈Q
|A(q)∩kNN(q)|

k . For many advanced ANNS algorithms,
the recall can reach over 99% with hundreds to thousands of times of speedup over the linear scan. Therefore,
they quickly become practical and well-recognized solutions for the applications mentioned above.

A common way of ANNS algorithms is to first build an index for the dataset and probe the index when
processing queries. In the past decades, researchers have designed dozens of index structures to solve ANNS
problems. They can be roughly categorized into four index families: graph-based [69], tree-based [24, 51],
quantization-based [50] and Locality Sensitive Hashing (LSH)-based [8, 83] index family (other promising
variations of these ideas have also been proposed [38, 39]). Although all these indexes have their specialties and
advantages in certain scenarios, we focus on graph-based and tree-based indexes in this paper, because of their
wide use on production systems [2, 66, 72], and the promising future of the combination of these two techniques.

*Corresponding author
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Graph-based indexes represent the dataset with a graph where each point is one vector. The query processing
algorithm starts from some entry point(s) and finds the approximate nearest neighbors by stepping towards the
query along the edges of the graph. With an appropriate graph structure, the search route can converge to the
neighbors of the query in only a few steps, which is called the navigability of graph-based indexes. As extensively
evaluated, graph-based indexes are the most efficient and accurate in-memory ANNS index when querying [69].

Tree-based indexes on high-dimensional data are widely adopted by the industry (e.g., Postgres [2], SP-
TAG [16], ADB-V [72]) and famous open-source libraries (e.g., FAISS [36], Scikit-learn [4]), because of its
outstanding scalability, robust performance, index-building efficiency, and high interpretability. Classical tree-
based indexes like kd-tree [61], and ball-tree [12] suffer from the curse of dimensionality. In high-dimensional
space, simple partitioning cannot effectively cluster similar vectors. In recent years, many classical tree indexes
have been re-designed to adapt to high-dimensional space. These indexes show the advantage on large-scale
datasets for in-memory and disk indexes, stand-alone and distributed environments, as well as accuracy-guaranteed
and exact kNN search [15, 23, 24].

Although the design rationales of graph- and tree-based indexes are vastly different, we observe that there
are some common design philosophies, as well as some techniques that could be complementary to each other.
As verified by results of recent studies, solving the scalability problem of graph-based index turns tractable
by combining the strengths of these two kinds of indexes. Moreover, we further propose four important open
problems and directions that could be solved by this combination.

Our paper is organized as follows. In Section 2, we review the structure evolution of the graph-based index
and analyzes its performance by ablation studies. In Section 3, we summarize the recent progress of tree-based
indexes and discuss their relationships. In Section 4, we conduct a comparative study of the two kinds of indexes,
and discuss open research problems. We conclude this paper in Section 5.

2 Graph-based Index Family

Graph-based index builds a directed, unweighted graph G = (V,E) as the index where each vertex 1 v ∈ V
represents a vector in the dataset and the directed edge in E represents some kind of proximity between two
vectors. The widely-used greedy search algorithm starts from one or a group of entry points and approaches the
query step by step. Two priority queues C and Res are maintained in this process, ordered by the distance to
the query. C (with unlimited size) stores the points to be visited, while Res stores only the ef nearest points
that have been checked before. In each step, the first point from C is popped and all its out-neighbors will be
checked. If some neighbor point’s distance to the query is smaller than the furthest point in Res, it will be pushed
into C and Res. The algorithm terminates when the distance of the first point in C is larger than all the ones in
Res. Finally, the closest k elements in Res will be returned. Apparently, ef is an important parameter which
controls the accuracy-efficiency trade-off. The query processing algorithm consists of two stages [68, 73], a fast
navigating stage leading the search route from the entry point(s) to the query’s neighbors, and a recall stage that
traverses the neighbors of the query to obtain the final kNN results. Several extensions and improvements of
this search algorithm have recently been proposed, employing query parallelization [58], GPUs [75, 82], learned
early termination [42], and guided search [73]. In this section, we study the basic, common search algorithm, and
focus on the structure of the graph index.

2.1 Overview

In this subsection, we briefly review the building process of graph-based indexes, as well as the structures they
employ. The design inheritance is shown in Figure 1.

1In this paper, we use vertex, node, point, and vector for graph-based indexes interchangeably.
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Figure 1: The evolution of the structures of in-memory graph-based indexes. The solid arrows denote the
inheritance of designs.

K-Graph [19] Each node in K-Graph out-links its K nearest neighbors in the graph. To reduce the linear
complexity of index building, a dozen of accelerating techniques are proposed [19, 28].

Navigable Small World Graph (NSW) [49] NSW is built by sequential insertions of points of the dataset.
When inserting a point v, we find M nearest neighbors on the previously-inserted sub-dataset by the greedy
search algorithm. Then NSW adds bi-directional links between v and the M nearest neighbors. Note that NSW
does not have a maximal out-degree limit, and the NSW index built with parameter M has nearly the same
number of edges as the K-Graph where K = 2M .

Hierarchical Navigable Small World Graph (HNSW) [48] HNSW has a hierarchical structure where the
graph in the lower layer contains all the points in the upper layers and the bottom layer HNSW0 contains all
points in the dataset. The number of points is reduced exponentially bottom-up, and the level of a point is decided
randomly. The query starts from the top layer to find NNs as the entry points of the next layer until reaching
the bottom layer. Like NSW, HNSW is also built by sequential insertion and greedy search, but with a limited
out-degree 2M . Once a point’s out-degree exceeds 2M , HNSW prunes neighbors using the RNG rule: this is
derived from the Relative Neighborhood Graph [65]. Simply speaking, the RNG rule removes the longest edge in
the triangles existing in the graph. In this way, HNSW tries to preserve the reachability of the graph index while
limiting the out-degree, by removing the “redundant” edges, at the expense of a few more hops when querying.

Relaxed pruning rule: Vamana [64] and τ -MNG [55] Since the heuristic RNG pruning rule tends to be
“strict”, recent studies have verified that some useful edges are also pruned, which leads to a sub-optimal graph
structure. Vamana relaxes the RNG rule by allowing the inclusion of the longest edge in a triangle, if it is not
1 + α times longer than the second longest edge, where α is a user-defined relaxing parameter. In this way,
Vamana shortens the search path when querying, which helps reduce random I/Os when the index is on disk.
A recent study [55] points out that RNG rule is ineffective when the query does not belong to the dataset, and
mitigates this problem by relaxing the RNG pruning rule with a parameter τ . We omit the details for lack of space.
The resulting approach, τ -MNG, is expected to have a lower search time complexity than other graph-based
indexes when the distance between the query and its nearest neighbor is smaller than τ .

Better entry points: HVS [47] and LSH-APG [81] HVS and LSH-APG use auxiliary data structures to
obtain better entry points for the graph-based indexes. HVS leverages an adaptive hierarchical tree index with
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quantization techniques, while LSH-APG builds multiple LSB-trees for coarse-grained indexing. The graph-based
index is HNSW0 [47], or even a simpler variant [81].

Better reachability: NSG [29] and NSSG [30] Although HNSW achieves prominent average query perfor-
mance, it cannot guarantee the reachability to any point in the graph index. Since accomplishing the reachability
starting from any point in the graph is intractable, recent graph-based indexes opt to fix the entry point(s) and
guarantee the reachability from these entry points. NSG uses the medoid point of the dataset as the entry point,
and refines K-Graph to ensure reachability. Specifically, for a specific point v, NSG regards v as a query and
performs approximate greedy search in the graph index. The visited points during the search (along with the
neighbors of v in K-Graph) become the candidate neighbors of v, and are then pruned by RNG rule to limit
the out-degree. After iterating all the points, NSG tests the reachability with a Deep-First-Search Tree rooted at
the entry point. The isolated points will be linked by the nearest point in the tree. In contrast to NSG, NSSG
randomly selects a group of points as entry points, and only uses two-hop neighbors of a point in K-Graph as the
candidates of neighbors for pruning. Besides the reachability to the point in the dataset, NSSG also considers the
points that do not belong to the dataset, by studying the trade-off between the navigability and the sparsity of the
graph index under the RNG rule.

2.2 Understanding the Evolution with Ablation Studies

Although the heuristics of advanced graph-based indexes have been stated in the papers, it is yet not clear why the
proposed techniques work well. In this subsection, we describe the evolutionary process from K-Graph to NSW,
HNSW and more optimizations on HNSW by abundant ablation studies. We aim to help readers understand
which techniques actually enhance the performance and the reasons behind their effectiveness from a novel
perspective, which can inspire the future designs of ANNS algorithms.

2.2.1 The problem of K-Graph

Table 1: Skewness of in-degree distribu-
tion of graph-based indexes

Deep1M SIFT1M

K-Graph 2.436 1.875

NSW 4.642 4.107

pNSW 4.025 3.457

HNSW0 1.209 1.395

We start by examining the K-Graph approach, because not only K-
Graph is a graph-based index, but it also exhibits some inherent prop-
erties (detailed below) of high-dimensional vectors in the context of
ANNS problem. In this paper, we use exact K-Graphs instead of ap-
proximate ones to avoid the effect of approximation errors. A common
argument in the literature for the unsatisfactory query performance
of K-Graph is the loss of navigability [48, 69], which is verified on
real datasets in [34]. However, it is not yet clear the root cause of the
loss of navigability. According to previous studies, the distribution
of in-degree of points is very skewed [59]. That is, a small portion of
points occupy most of the kNN lists for all the points while most of
the other points are rarely linked by others. This is also verified by our
experiments on real datasets as shown in Table 1 with skewness (standardized third moment). For simplicity, we
denote the in-degree of a point in K-Graph by k-occurrence [59]. Note that k-occurrence is a property of a point
in a dataset, independent of the type of index built on the dataset.

Furthermore, we observe that in K-Graph the points with high in-degree (i.e., hubs) always interconnect
with each other. To describe this phenomenon, we define the out-link density of a group of points X ⊂ V

as ρout−link(X) = |{(x,y)|x,y∈X∧(x,y)∈E}|
|{(x,y)|x∈X∧y∈V ∧(x,y)∈E}| .The out-link density describes how much a group of points is

interconnected. A high out-link density means these points tend to connect to themselves rather than other
points in the graph. In Figure 2, we select different number of hubs and compute the average out-link density
of these hubs. The baseline is a random graph, where each point has K out-neighbors selected uniformly
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at random. As we can see, the out-link density of the hubs in K-Graph is much higher than the random
graph and NSW. Over half of the out-links of the 5% hubs connect to themselves instead of other points.

(a) Deep1M (b) Sift1M

Figure 2: Out-link density of the group of points with the largest in-
degree.

This phenomenon leads to local
optima in K-Graph, which is a clas-
sical problem of the greedy search al-
gorithm. Consider an extreme case
where ef = 1 for querying, i.e.,
Res only contains the nearest checked
point to the query, which means
that the points further than the cur-
rent visited point will never be vis-
ited. In other words, no backtrack-
ing exists in the search route. In
this case, if the search route steps
into a point which is closer to the
query than all its neighbors, the
search algorithm terminates directly,
as shown in Figure 3, and the actual nearest neighbors (that could be reached by detouring) are
missed. The termination point is a local optimum, in contrast to the global optimum (i.e., real kNN).
Since in K-Graph, most of the out-neighbors of a hub are also hubs, once the search route steps into one hub, it is
hard to escape from the local optimum to other regions, which may actually contain the true nearest neighbors.
Worse still, the hubs are frequently visited when querying since the points with high in-degree have a higher
probability to be visited when starting from a random point. As a result, K-Graph shows weak navigability to
acquire real kNN even with a large ef .

Figure 3: An example of local optimum
in the greedy search algorithm.

We further verify this impact by analyzing the returned results of
the greedy search algorithms. Formally, given a query q, we collect the
true positive set STP = A(q)∩kNN(q), the false positive set SFP =
A(q)− kNN(q) and the false negative set SFN = kNN(q)−A(q),
and compute the average k-occurrence of these point sets, denoted by
koccurSTP

, koccurSFP
and koccurSFN

, respectively. In the experiments, we use the
same query algorithm and the same sparsity of the graphs with K=32
for K-Graph and M=16 for the other three. As shown in Table 2,
for K-Graph, the difference between koccurSTP

and koccurSFN
is the largest,

indicating that the points with higher in-degree are easier to be recalled
whereas the missing points are markedly less connected. Moreover,
the average k-occurrence of points in SFP is also higher than SFN for K-Graph, and to achieve a higher recall
(95%), K-Graph needs the most number of steps compared with other indexes. These results verify the above
inference that the search route in K-Graph is prone to get stuck in the local optimum formed by the hubs and thus
needs to pay more effort to escape from this trap.

Recall that the problems of K-Graph is an intrinsic problem for all graph-based indexes on high-dimensional
data. On the one hand, the local proximity of K-Graph is crucial in the recall stage during the search process [68].
On the other, over-rich local connections in the graph lead to more local optimum which hinders the search
accuracy.
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Table 2: Average k-occurrence of different sets returned by the greedy search algorithm on different graph-based
indexes. #hops are the average number of points visited in the search route. NDC stands for the average Number
of Distance Calculations during search, which represents the time cost.

Dataset Accuracy Index koccur
STP

koccur
SFP

koccur
SFN

koccur
STP

− koccur
SFN

#hops NDC

Deep1M

recall@50=0.90

K-Graph 61.08 41.86 14.44 46.64 116 1716

NSW 61.06 40.72 32.99 28.07 57 1709

pNSW 62.15 46.36 24.66 37.49 90 1379

HNSW0 61.00 45.46 37.05 23.95 79 1287

recall@50=0.95

K-Graph 60.38 27.30 7.62 52.76 176 2319

NSW 60.17 28.28 19.55 40.62 108 2734

pNSW 61.22 31.96 15.37 45.85 162 2170

HNSW0 60.72 32.57 24.39 36.33 108 1781

SIFT1M

recall@50=0.90

K-Graph 53.81 28.90 11.72 42.09 386 4927

NSW 54.07 41.78 37.86 16.21 70 2015

pNSW 54.98 45.44 31.84 23.14 106 1690

HNSW0 54.18 44.40 40.10 14.08 71 1336

recall@50=0.95

K-Graph 52.86 37.27 17.17 35.69 423 5336

NSW 54.03 32.77 27.71 26.32 112 2881

pNSW 54.55 35.59 23.01 31.54 169 2464

HNSW0 54.03 34.04 29.70 24.33 108 1890

2.2.2 The Benefit of Long-range Connections

To mitigate the problem of K-Graph, NSW introduces long-range connections to break the traps formed by hubs,
and enhance global navigability. The long-range connections can be defined as the edges that do not exist in
the K-Graph (whose graph sparsity is similar to NSW). NSW introduces these connections by randomization.
Recall that when inserting a point, NSW finds its nearest neighbors by greedy search on the existing graph, and
then builds bi-directional links with these neighbors. In this way, the degree 2 of points in NSW is significantly
influenced by the insertion order: the points inserted earlier have a higher possibility to be linked by other points
than the later ones. This is demonstrated in Table 3, where the NSW (second line) Pearson correlation coefficients
for k-occurrence and insertion order are (almost) the same. Given that the insertion order is usually random, the
lengths of the new links introduced in NSW also tend to be random. Thus, long-range connections are introduced.

We quantify the size of long-range connections by graph quality [34, 69], which is defined as the overlapping
ratio of edges with K-Graph under similar sparsity. As shown in Table 5, NSW preserves nearly half of the short
edges belonging to K-Graph, while introducing long-range connections for the other half. Although affected by
the random selection of the previously inserted points, these connections can substantially improve the navigability
of graph indexes, as we explain below. We note that the hubs do not necessarily have high k-occurrence, but are
also determined by the insertion order. In other words, the distribution of hubs is “disrupted” by randomization.
As a result, the hubs in NSW are not interconnected, and the out-link density of hubs significantly drops compared
to K-Graph (see Figure 2). It means that although the hubs are still visited frequently, the cases of local optimum

2Note that in NSW, the in-degree of a point is equal to its out-degree since all edges are bi-directional. Thus, we simply use the term
degree.
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Table 3: Pearson correlation coefficients
between in-degree and insertion-order/k-
occurrence of points on different indexes.

Deep1M Sift1M

Ins. ord. k-occur. Ins. ord. k-occur.

K-Graph 0.00 1.00 0.00 1.00

NSW -0.53 0.56 -0.53 0.56

pNSW -0.44 0.68 -0.43 0.67

HNSW0 -0.63 0.22 -0.52 0.26

Table 4: Query analyses under re-
call@1=99%, on different graph-
based indexes.

Deep1M Sift1M

#hops NDC #hops NDC

5001 29315 2047 17698

137 3244 150 3644

156 3074 663 7246

156 2422 111 1943

Table 5: Graph quality of
different indexes, where
K=32 and M=16

Deep1M Sift1M

GQ GQ

100% 100%

51.84% 53.76%

51.82% 52.71%

30.80% 32.17%

are reduced and thus the navigability on NSW is enhanced.
Table 2 shows that in order to achieve the same recall, NSW needs on average only 32% of the K-Graph

steps. The difference between koccurSTP
and koccurSFN

is reduced by half, clearly demonstrating that the missing nearest
neighbors are less susceptible to local optima, and leading to performance improvements. In some cases though,
e.g., in the Deep1M dataset, the improvement is marginal and even negative, despite the short search paths. The
reason is that the degree of NSW is not fixed. Since the search cost of the greedy search algorithm is the product
of the length of the search route and the out-degree of each point in the route, a high out-degree will linearly
increase the time complexity. Worse still, the distribution of degree of points in NSW is even more skewed than
K-Graph (see Table 1), which further degrades the worst-case time complexity.

A simple optimization is to restrict the out-degree to 2M by selecting the nearest 2M neighbors. We call
this method pruned-NSW (pNSW). pNSW mainly removes the long-range connections, which can be verified
by the fact that the graph quality is nearly the same as NSW (see Table 5). As shown in Table 2 pNSW seems
have a better performance than NSW by sacrificing a little navigability and achieves a remarkable gain in overall
performance. However, as shown in Table 4, under high-recall constraint (99% recall@1), pNSW suffers a
significant degradation on Sift1M dataset, nearly two times slower than NSW. The results of pNSW further
demonstrate that the long-range connections, especially the links of the hubs, significantly influence the global
navigability of the graph index.

2.2.3 The RNG Pruning Rule

Up to this point, there seems to exist a tradeoff in the design of graph indexes between search efficiency and
navigability. If we limit the (out-)degree of points for efficiency, navigability will be hurt, as in K-Graph and
pNSW. If we break the degree limit, the search efficiency will degrade, as in NSW. To address this situation, we
observe that the distribution skewness of the points’ in-degree is a key point. A skewed distribution means the
existence of hubs in the graph, and given the high visit frequency of these hubs, these hubs bear the responsibility
of high navigability. In order to provide navigability, hubs need a high degree and more long-range connections,
causing the problem mentioned above. Therefore, if we can render in-degree distribution less skewed, then hubs
will no longer exist and the navigability will be provided equally by all the points in the graph. In this case, the
bounded degree and the navigability can be achieved at the same time.

HNSW is a nice example of this rationale. Given that the skewness of the k-occurrence distribution is an
inherent property of high-dimensional vectors, “amortizing” the navigability to all points is very challenging.
HNSW leverages two techniques to accomplish this target. One is randomization, like NSW, which disrupts the
distribution of hubs. The other is RNG pruning rule, which is a key design inherited by most of the following
graph-based techniques [29, 30, 69]. Specifically, for a point v to be inserted, HNSW first collects sufficient
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nearest neighbors on the existing graph as candidates by greedy search, and then prunes these candidate neighbors
down to M , using the RNG rule. Finally, like NSW, HNSW tries to add M reversed links from the M selected
neighbors to v. Once the reversed link exceeds the out-degree limit 2M , the RNG rule will be used to prune these
neighbors to no more than 2M . For clarity, we only consider HNSW0 in this section to avoid the influence of the
hierarchy, which will be discussed separately in the next section.

When pruning candidate neighbors, HNSW sorts them according to the distance to the inserted point v and
checks them in order. The inserted neighbor c should satisfy that ∀c′ ∈ C(v), dist(v, c) < dist(c, c′), where
C(v) is the set of already selected neighbor points. Consider the example in Figure 4 (left), where C = {c1, c2}.
The next candidate neighbor c will be pruned, because dist(v, c) > dist(c, c2). The heuristic behind the RNG
rule is that for the pruned neighbors like c, even though v does not directly link to c, v can reach c by detouring
from c2. Since c2 is closer to c, v must not be the local optimum if the query is on, or near to c. As a result,
compared to NSW, HNSW filters out many of the M nearest neighbors found during the greedy search, without
losing the reachability to them 3. In this way, the saved slots of out-neighbors can be used to accommodate more
long-range connections. As shown in Table 5, only about 30% of the edges in K-Graph are preserved in HNSW.

Figure 4: RNG rule.

Besides pruning some “unnecessary” edges, the RNG rule also
helps mitigate the skewness of in-degree distribution for high-
dimensional vectors. Specifically, the points with high k-occurrence
tend to reject more in-links from other points because of the RNG rule.
Consider the example in Figure 4 (right), where C(v) = {a, b}, and
the candidate neighbor H has been linked by some points because
of closeness. In this case, H will be pruned since it can be reached
indirectly from a and b. This example indicates that if a point is close
to many other points (i.e., points with high k-occurrence like H), it
has to “compete” against these close points for becoming the neighbor
of an inserted point. Naturally, the probability of building links with
such points is lower than the point with low k-occurrence. This is exactly the opposite to the linking strategy of
the K-Graph index. As shown in Table 3, the correlation coefficient between the in-degree and k-occurrence for
HNSW is less than 0.3, indicating a very weak correlation. As a result, the inherent skewness of the in-degree
distribution of high-dimensional vectors is optimized by the RNG rule: the skewness value drops to nearly a half
when compared to K-Graph, as shown in Table 1. Moreover, for every point in HNSW, there exists a sufficient
number of short edges for local proximity, but also enough long-range connections for global navigability, which
ensure the query efficiency in the recall and navigation stage respectively. As shown in Tables 2 and 4, even
though HNSW has a limited out-degree, it uses a similar number of steps to NSW in order to reach a low/high
recall. This demonstrates that the RNG rule successfully preserves the navigability in these datasets. As for the
overall query performance, HNSW always achieves the best results (well ahead of the second best), across all
settings.

2.2.4 Hierarchy and Selection of Entry Points

The classical hierarchical index structure of HNSW is widely employed in both research and industrial settings [29,
34, 64, 66]. Intuitively, the upper layers in HNSW form long-range connections providing navigability, while
the bottom layer uses small-range links to cover “the last mile”. However, we claim that this strategy does not
provide any significant benefits in the case of high-dimensional spaces. As shown in Figure 5, using HNSW0

(the bottom layer of HNSW) alone, leads to nearly the same query performance as (the original, hierarchical)
HNSW. This result, which is verified on a dozen of public datasets (omitted due to lack of space) as well as by
other studies [43], casts some doubt about the usefulness of the hierarchical structure. We make the following

3This is not strict since there is no guarantee on the existence of edge (c2, c).
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(a) Sift1M (b) Deep1M (c) Deep10M

Figure 5: The query performance of HNSW and HNSW0: the difference is negligible.

two observations that try to explain the above result: (i) Due to the distance concentration phenomenon [27], the
query is not far away from a random point in the same dataset. For example, in Sift1M and Deep1M datasets,
the average distance between a random point and the query is merely 5.3x and 3.5x, respectively, larger than the
average length of the short edges in K-Graph. (ii) The bottom layer can provide the navigability necessary to
quickly approach the local neighborhood. For example, to achieve 99% recall@1, HNSW0 needs 111 hops on the
Sift1M dataset, compared to 108 hops for HNSW; on Deep1M, HNSW0 needs 156 hops, compared to 151 hops
for HNSW. These small differences verify the efficient navigability of HNSW0.

In this case, the benefit of the selection of entry points for graph-based indexes relies on the accuracy of
the entry points and the cost of obtaining these entry points. Unfortunately, the upper layers of HNSW do not
show an obvious benefit since they only contain a small portion of data. According to our experiments, only less
than half of the queries obtain one of the 50NN in the upper layers, which means that a significant part of the
work actually takes place at the bottom layer. To break this limit, subsequent works, including HVS [47] and
LSH-APG [81] (both discussed earlier), use another index as an auxiliary structure to help obtain high-quality
entry points. The quality of entry points is largely improved, and as reported, HVS achieves over 3x faster query
answering time than HNSW on hard datasets and high recall range, while LSH-APG achieves 1.5x faster query
answering time, while offering more efficient index construction.

3 Tree-based Index Family

The tree-based index family hierarchically partitions the high-dimensional space, which may be transformed or
projected, and groups similar vectors in the same partition as leaf nodes. Usually, the root node of the tree-based
indexes covers the whole high-dimensional space and the children nodes of it cover disjoint or overlapped
sub-spaces. When querying, we traverse the tree-based index from the root node to one or more leaf nodes by
judging which sub-spaces the query vector belongs to or is close to. Then the data inside these leaf nodes are
candidates of kNN . In this section, we will survey the latest tree-based indexes proposed in the past five years
and summarize the evolution in Figure 6. It can be viewed as an extension of the previous survey of tree-based
indexes [51].

3.1 Preliminaries and Overview

The designs of tree-based indexes (in a single machine) can be decomposed into three parts, including data
summarization (i.e., dimension reduction), indexing, and querying algorithms. In this subsection, we briefly
describe the preliminaries of these techniques leveraged in recent works.
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Figure 6: The evolution of tree-based index in the past 6 years, as an extended figure of [51]. The solid arrows
denote the inheritance of the index design; the dashed arrows denote the correlation of the design features; indexes
in double-lined boxes are in-memory solutions, while the rest are on-disk solutions. Note that HNSW is not a
tree-based index; it is included, because ELPIS (discussed in Section 4.2) inherits some of its features.

iSAX-index family iSAX summarization is a dynamic prefix of SAX words [44], and SAX is a symbolization
of Piecewise Aggregate Approximation (PAA for short). PAA represents a vector with the means of disjoint
equal-length segments, and SAX discretizes PAA with symbols. iSAX word is a prefix of the corresponding
SAX word, which can flexibly represent a sub-space in the reduced space. Based on iSAX, the iSAX index
family [51] organizes data in a tree structure, where each node is summarized by an iSAX word. The root node
covers the whole space and it can be split by refining one segment of its iSAX word. The children nodes own
disjoint sub-spaces of their parent. When querying, the iSAX word of each node can be used to prune irrelevant
data benefiting from that the distance between iSAX summarization lower bounds the actual distance.

EAPCA-index family The EAPCA-index family [71] differs itself from iSAX by 1) using dynamic segmenta-
tion that is determined on the fly when building index, 2) using mean and standard deviation to represent each
segment and thus providing tighter bounds when querying, 3) more splitting choices and adaptive split criteria.

Ordered-index family The Ordered-index family [37] sorts high-dimensional data with space-filling curves
(e.g., Z-order curve, Hilbert-order curve) and then index them with classical B-tree, etc. Space-filling curves
approximately preserve the proximity between points that are close in high-dimensional space. The approximation
error increases as the dimensionality goes larger. So usually dimension-reduction techniques are used beforehand.
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3.2 Optimized Disk Index Structure

Managing large-scale high-dimensional vectors on disk is challenging since the data locality (i.e., similar vectors
should be placed together such that they can be fetched by one I/O) and the index quality (i.e., nearest neighbors
should be quickly located by the index) should be considered at the same time. Recent progress has remarkably
advanced the state-of-the-art to hour-level indexing time and ms-level query time on billion-sized datasets.

HD-Index [9]. HD-Index, as an ordered index, builds multiple B+ trees each of which stores the Hilbert keys
of a segment of dimensions. In this way, HD-Index mitigates the loss of accuracy due to the dimensionality
reduction. To facilitate the refinement, HD-Index randomly places pivots and stores in the index the distance
between an entry and the nearest reference point, which provides the ability to prune when querying. However,
the search cost of HD-Index increases linearly with dimensionality, leading to an inefficient solution for very
high-dimensional vectors.

Coconut [37]. In contrast to HD-Index which sorts raw (sub)-vectors, Coconut first reduces dimensionality
using SAX, and then sorts SAX words by the z-order curve. In this way, the most significant dimensions (i.e.,
bits) of the SAX words are considered first. This process matches exactly the principle of SAX summarization,
i.e., coarse-grained partitioning is encoded in the most significant bits, while fine-grained partitioning in the least
significant bits. Using only one B-tree to index the keys, Coconut has a very fast query time, and the highly
packed leaves also lead to a small improvement in the results of approximate search.

Dumpy [67]. Dumpy is an iSAX-based index designed for high-precision approximate search and fast index-
building for large datasets. Dumpy leverages the trade-off between the proximity inside the leaf node and the
compactness (i.e., the fill factor) of these nodes by dynamically selecting the number of segments and which
segments to split along according to the data distribution. It also proposes a leaf node packing algorithm and a
vector duplication mechanism that further optimizes the data layout on the index. As a result, Dumpy can provide
high-recall answers with much fewer random I/Os.

3.3 Parallel Processing

Parallel indexing and querying on the tree-based index is not trivial for dynamic structure and pruning-based
query [54, 57]. The difficulties include the reduction of race conditions and load balancing among threads. The
ParIS+ index [57], parallelizes the building and querying algorithms of ADS+ [84], an adaptive variant of the
iSAX index. MESSI [54] further optimizes the race conditions for in-memory datasets, while SING [56] extends
the query answering algorithm to make use of GPUs. In recent years, the research boundary has been pushed by a
parallel and fully-materialized disk index, and a novel lock-free parallelism mechanism.

Hercules [22]. Hercules is an EAPCA-based parallel disk-based index. Designed for large-scale datasets,
Hercules optimizes memory management with a two-level buffer model to reduce the time cost of memory
management. Besides that, Hercules delicately schedules different tasks with a given number of threads,
resulting in (1) CPU-intensive tasks being executed in parallel to I/O-intensive tasks, (2) the number of I/Os being
significantly reduced, and (3) avoiding race conditions. Moreover, Hercules proposes a composite query algorithm
with hierarchical pruning by different distance approximations. Being the first parallel dynamic (EAPCA-based)
tree index, Hercules shows robust and remarkable index-building and query answering performance improvements.
(Hercules also inherits properties to ELPIS [23], a parallel in-memory index for approximate search, which we
discuss in Section 4.2.)
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FreSh [26]. FreSh is an iSAX-based parallel in-memory index, proposing a novel lock-free approach for
building and querying the index. FreSh modularizes iSAX-based indexes, and parallelizes the tasks of these
modules under Refresh, a generic framework that can be applied on top of any locality-aware data series algorithm
to ensure lock-freedom. FreSh also designs a helping mechanism with a small synchronization cost for load
balancing among threads. The combination of the tree-based index and lock-free mechanism opens more
directions for improving the parallelism of tree-based indexes.

3.4 Distributed Processing

The core challenges of distributed indexes are how to place the dataset into different machines, how to achieve
load balancing among these machines, and how to coordinate these machines to serve queries. The previous
study in this area, i.e., DPiSAX [74], partitions data by the distribution on the SAX space of the sampling data
and dispatches queries to corresponding partitions. Recent studies have advanced it from the aspects of partition
quality, load balance, and scalability of indexing and querying, by introducing and designing novel techniques for
distributed systems.

TARDIS [79]. As an iSAX-based index, the rationale of TARDIS is to cluster similar nodes into the same pack.
The pack is organized as middle-sized and the placement of these packs depends on the downstream distributed
file systems (e.g., HDFS). The clustering is based on a variant of iSAX, invSAX, which places the prior bits into
the first positions and then the later bits. TARDIS prominently advances DPiSAX [74] by load balancing and
cooperative querying. However, it loses the ability to prune and suffers from the low proximity of data inside a
pack, limiting the practicability and the improvement.

PARROT [76]. PARROT is built as a secondary index for a partitioned data warehouse. PARROT identifies
patterns by clustering on dimension-reduced SAX space, and stores the distribution of patterns in a global index
with exception points. However, PARROT relies on the existence of a strong correlation pattern between the
partition key and the vector inside. Otherwise, the vectors of the same pattern will distribute sparsely across the
data warehouse and querying will deteriorate to a linear scan.

Odyssey [13]. Odyssey is a scalable framework for distributed in-memory data series similarity search in
clusters with multi-core servers, thus, exploiting parallelization both inside and across system nodes. Odyssey
follows the classical design principle of horizontal splitting and vertical duplication in distributed systems. Unlike
TARDIS, Odyssey tries to achieve load balancing through carefully partitioning the data across machines (by
storing similar series to different machines), assigning queries to machines using a clever scheduling algorithm
(by estimating the execution time of each query), and employing more resources for hard queries (by using a
light-weight work-stealing technique). Odyssey also duplicates the data splits across several machines, which
enables further parallelization in query answering, as well as load-balancing (through work-stealing). As a result,
Odyssey achieves nearly linear scalability on an increasing number of machines, or queries.

3.5 Discussion

From the summarization and analyses above, we can observe that tree-based indexes are developed toward
practical, large-scale, parallel, and distributed scenarios. These extensions fully leverage the data locality and
high efficiency of tree-based indexes. On the other hand, an inherent drawback of the tree-based indexes is that it
is hard to overcome the curse of dimensionality. The similarity between the points in a partition of a tree index is
decided by a hyperplane in high dimensions, which usually needs to balance separability and the proximity of the
data. As the height of a tree is limited (which influences the search performance), only limited dimensions and
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Table 6: A comparative study of graph- and tree-based indexes.

Comparison Items Graph Tree

Basic Properties

Rationale Navigability Space-partitioning

Data locality × ✓

Dimension reduction × ✓

Query Answering

Search pattern Best-first-search Prioritized tree traversal

Two-stage search ✓ ✓

Navigating stage Fast Fast

Recall stage Fast Slow

Progressive search ✓ ✓

Pruning/ ϵ-accuracy
guarantee

× ✓

Early termination of
distance calculation

✓ ✓

Parallelism
Index construction ✓ ✓

Intra-query parallelism ✓ ✓

Distributed
indexing

Load balance × ✓

Query collaboration × ✓

features are considered to form the hyperplane. Therefore, it is not easy to quickly locate all the nearest neighbors
in a tree index.

4 Comparative Study and Open Directions

4.1 Comparison Between Graph- and Tree-based Indexes

As shown in Table 6, we compare graph- and tree-based indexes along four dimensions, namely, basic properties,
query answering, parallelism, and distributed indexing.

Basic properties. The motivations of these two kinds of indexes are different. Graph-based indexes are
motivated by the navigability of a small-world graph model whereas tree-based indexes organize data according
to the proximity of neighboring vectors. Therefore, tree-based indexes group similar vectors together and own
data locality while graph-based indexes are not aware of the data locality explicitly. Since graph-based indexes
only use the absolute distance between points for indexing, the dimensions of the vectors are usually ignored
and hence no dimension reduction techniques are used, despite that the dimensions of space are impacting the
quality of indexes implicitly. On the contrary, tree-based indexes need to explicitly split the partitions and a high
dimensionality will severely impact the quality of splits. Thus, dimensionality reduction has become the rule of
thumb for tree-based indexes.

Tree-based indexes can usually be deployed either on disk or in memory, and enjoy cache acceleration by
virtue of the data locality. However, it is hard for graph-based indexes to leverage data locality as they are
secondary indexes (i.e., the data is not stored inside the index). Moreover, inserting a vector into a graph-based
index usually means a change in the topology of the graph. This indicates that ingestion throughput is limited,
especially when the graph is large. Some promising studies propose efficient on-disk solutions [15, 64, 80]
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and effective update strategies [63] to address these problems, which nevertheless, remain interesting research
directions for graph-based indexes.

Query answering. As for querying, graph-based indexes follow a best-first-search pattern on the graph, while
tree-based indexes find the closest partitions to the query vector by prioritized tree traversal. Nevertheless, both
these two algorithms are reminiscent of two-stage searching [77] (i.e., navigating and recall stages). For both
algorithms, the navigating stage can be very fast while in the recall stage, graph-based indexes are far more
efficient than the tree-based ones. This is because the kNN of the candidates are directly linked in the graph
index. On the other hand, the tree-based index provides a bound for the query vector and a group of database
vectors, allowing multi-level pruning with no false negatives, which can also be used to build mechanisms that
provide (deterministic or probabilistic) guarantees for the approximate search answers [24, 32]. On the contrary,
graph-based indexes cannot safely prune any of the visited points. As a common point, when pruning fails, both
graph- and tree-based indexes can early stop the exact distance calculations between the query and the candidate
answers (i.e., without having to process all the dimensions) [31, 60]. Note that while graph-based indexes can
only support ANNS (with no quality guarantees), the tree-based indexes discussed in this paper support all flavors
of similarity search, ranging from ANNS without and with (probabilistic and deterministic) quality guarantees to
exact similarity search.

Another direction that has been studied in the context of both graph- and tree-based indexes is progressive
search [32, 35, 42, 78]. In the recall stage, ANNS tries to answer two questions: (i) Is the current Best-So-Far
(BSF) answer the exact kNN? (ii) If not, when will the exact kNN occur? Note that the answers to these questions
are not known during query answering. However, estimations of the answers to these questions can benefit
the query algorithms. First, if the answer to the first question is positive, the query algorithm can terminate
immediately. As demonstrated in an earlier study [32], the time needed for ANNS to determine the answer to
the first question after having already found the exact kNN, corresponds to the vast majority of the total query
answering time. Therefore, an agile termination can significantly accelerate high-precision search. Recently,
ProS [32] proposed the use of simple machine learning models to provide various probabilistic quality guarantees
(such as, on the current result being the exact kNN, the distance of the current answer being less than ϵ from
the exact kNN distance, and others) for intermediate (i.e., progressive) results during the query answering
process. Moreover, by answering the second question, we can dynamically schedule the computing resources by
controlling the search parameters, such as ef , and the number of leaves to visit for a precision target. To achieve
this, for tree-based indexes, ProS uses quantile regression that estimates the 1− ϕ quantile of the time needed to
find the exact answer with the BSF answers. For graph-based indexes, a recent study [42] enriches the features by
(a) the query itself, (b) the progress made from the start point to the current point, and (c) the ratio of existing
features. With these features, it trains Gradient Boosting Decision Trees for regression.

Parallelism. Both kinds of indexes have been extended to support parallelization. For index construction,
tree-based indexes have evolved to the solutions described above, and such parallelism for graph-based indexes is
also natural. For intra-query parallelism, these two kinds of index families also propose corresponding extensions,
like Hercules [22], MESSI [54], SING [56], FreSh [26] and ELPIS [23] for tree-based indexes, and SONG [82]
and iQAN [58] for graph-based indexes.

Distributed indexing. While some studies have focused on distributed solutions for tree-based indexes [13, 74,
76, 79], the direction of distributed graph-based indexes has not been studied in depth. Existing solutions [29, 66]
use random data partitioning and independent building of the corresponding parts of the index. Therefore, the
computing power of the machines is not fully leveraged, and there are untapped opportunities for improving
scalability [21, 78].
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4.2 Existing Combinations of the Two Kinds of Indexes

In this subsection, we survey the existing solutions that combine these two kinds of indexes and analyze their
common points and design principles.

SPTAG [16] and SPANN [15]. Similar to HVS and LSH-APG, SPTAG adopts a balanced K-means tree [45]
to locate better entry points. While SPANN as a disk index, partitions data by a balanced K-means tree, and each
partition is stored sequentially on disk. The data partitions are further refined by duplication. To quickly find the
nearest partitions, SPANN builds a SPTAG index in memory for the partition centroids. As a result, it shows
remarkable improvement compared with dumping an optimized graph into the disk [64].

LANNS [20] and ELPIS [23]. Another family of solutions constructs a tree index to partition the data, and
builds a graph within each partition (leaf node). LANNS uses a learned hyperplane for splitting and a multi-path
search in the tree. ELPIS [23] leverages Hercules [22] to partition the data. In contrast to LANNS, ELPIS can
prioritize the leaf node according to the lower bound distance to the EAPCA of the query. In this way, ELPIS
provides higher intra-query parallelism, leading to a remarkable improvement in query performance on large-scale
datasets. Since the indexing cost of the tree index is lower than a graph index, ELPIS significantly improves
indexing efficiency by 3x-8x, and reduces memory consumption by 40%. Interestingly, ELPIS shows the trade-off
between query efficiency and accuracy when varying the number of partitions. That is, more partitions improve
search efficiency at the expense of accuracy, but there exists a sweet point that optimizes performance.

Discussion. So far we have studied three kinds of combinations of graph- and tree-based indexes, including (1)
using the tree index to obtain better entry points for the graph index (HVS, LSH-APG, and SPTAG); (2) using the
graph index to find the closest leaf nodes in the tree index (SPANN); (3) using the tree index to partition data and
building graph indexes on each leaf node (LANNS and ELPIS). We can deduce the following key ideas from
these combinations. (i) The tree index can promote the representation granularity from vector-level to node level,
even in sub-tree level, which makes it easy to handle large-scale and disk-resident datasets. (ii) The cases in
large-sized datasets (billion-level) are not the same as middle-sized (million-level), where the pros and cons of
different index families should be re-considered carefully. (iii) The tree index still suffers from the boundary issue
and must be adapted to improve the search accuracy (e.g., duplication). (iv) It is yet intractable to build the graph
index on the whole dataset, while at the same time, the graph index is irreplaceable for achieving high recall
efficiently. Based on these explorations, in the next section, we will introduce more possible directions where
tree-based, as well as other kinds of indexes can assist the graph index to overcome more inherent limitations.

4.3 Open Problems and Promising Future Directions

In this subsection, we propose four open problems that are crucial for solving ANNS problems in practice and at
scale. More importantly, combining the techniques from the tree- and graph-based index is a promising way to
solve these problems.

Dimension reduction and pruning. The most costly operation for graph-based indexes is the distance cal-
culation, reducing dimensions can provide a linear improvement on query [31]. For example, by rotating the
vectors in the directions of the principal component vectors, the early termination mechanisms can behave more
efficiently as most of the variations are concentrated in the first dimensions. The results are shown in Figure 7,
where the query time is reduced to 50% with this simple optimization. Moreover, representation learning is also
a promising way of embedding high-dimensional vectors in a low-dimensional space. A lower bound of the
distance measure in the embedded space is often designed at the same time, in order to safely perform pruning. As
demonstrated by GRAIL [53] and SEAnet [70], representation learning is more flexible in capturing the “shape” of
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high-dimensional vectors than traditional methods, because it can adapt to the data at hand. Similar data-adaptive
techniques have been studied in the context of quantization [7, 52]. Besides that, inspired by the hierarchical
structure of tree-based indexes, after dimension reduction (or rotation, projection), it would be helpful if different
vectors can be summarized with a common representation and be safely pruned, i.e., through node-level pruning.

Figure 7: Early termination techniques in HNSW on
Gist1M. ADS [31] is the state-of-the-art technique.

Distributed indexing. Distributed indexing is a must
for managing large-scale high-dimensional data in pro-
duction. Distributed tree-based indexes, like Odyssey,
have been designed for exact kNN search; their ANNS
performance can be further improved. On the other
hand, partitioning a graph index is inherently difficult
since it is not evident how to partition the graph with
load-balanced partitions. As demonstrated in [78],
combining the results from multiple disjoint graph in-
dexes split at random is sub-optimal for this problem,
and other clustering algorithms like k-means, suffer
from imbalance problems. Therefore, designing a load-
balance-oriented data partition scheme that minimizes
the loss of efficiency will provide substantial improve-
ments to vector database performance [3, 66, 72]. In this case, a promising direction is to leverage the space-
partitioning scheme of tree-based indexes for splitting data, while estimating the load of each split dynamically,
in order to provide more opportunities for collaborative (parallel) work during query answering time.

Reliable ANNS. Current ANNS algorithms are not reliable. In different datasets (similar cardinality and
dimensionality), the search performance is significantly different. For example, to achieve 90% recall@20 on
HNSW, the search cost is 90x larger for Glove dataset than Deep1M dataset. Such a result is not a special
case [31, 43, 55, 68]. The reason is closely related to our analyses in Section 2. Although HNSW removes the
hubs and mitigates the skewness, the effect of these techniques actually depends on the distribution of the original
dataset. If the distribution of the original dataset is very skewed, the phenomenon that hubs are clustered to
trap the search route occurs again in HNSW. It means that the high efficiency for navigation, and the high local
proximity for recalling no longer exist in graph-based indexes. To further mitigate the skewness, it will be helpful
to use (approximate) range search to further filter edges. It is possible to remove the bias on the nodes with high
k-occurrence and provide a robust performance over datasets of any distribution.

Reliable benchmarks. With the rapid growth of the ANNS area, the development of appropriate benchmarks is
urgently required, in order to evaluate the solutions based on the different index families we outlined earlier, as well
as new solutions that combine and extend the ideas of existing techniques. Some works in the literature [24, 25, 41]
have been pioneering in this respect, but the latest techniques are not included in them. Other benchmarks such
as [62] and [10, 11] provide an open framework to evaluate the performance of different ANNS algorithms.
However, many engineering tricks can be added to improve the literal performance which on the other hand, might
confuse readers without detailed ablation studies. Moreover, common public datasets such as Sift [6], Gist [6],
Deep [5], were produced over a decade ago representing the application of ANNS in the machine learning era.
As the model architecture has evolved significantly in the past decade, it would be beneficial to produce and use
newer datasets that correspond to modern applications (e.g., Transformer-based models).

Furthermore, it would be interesting to assess the difficulty of similarity search queries: the different difficulty
levels represented by various datasets, as well as various queries on the same dataset, have been observed in the
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literature [10, 85]. However, we still lack a comprehensive analysis and theoretical characterization of the difficulty
level of datasets and queries alike, which directly affect the performance of the various indexing approaches, and
may also lead to biased evaluation results. Previous work has studied local intrinsic dimensionality [10], as well
as measures related to the tightness of lower bound and data distribution [85], in order to evaluate the difficulty
of a query and a dataset, or more precisely, of a query with respect to a given dataset. These approaches study
the difficulty of pruning candidate points in the dataset, in response to a given kNN query. Nevertheless, more
extensive and comprehensible studies and benchmarks are needed to more accurately and fairly characterize and
evaluate the performance of different ANNS indexes.

5 Conclusions

In this paper, we study the evolution of the graph-based index family with ablation studies and observe that the
keys to its success lie in the randomization and the RNG-based pruning rule. These techniques preserve the local
proximity with fewer edges while building effective long-range connections to enhance navigability. We also
survey the recent progress of the tree-based index family and discuss their relationships. Moreover, we conduct a
comparative study over these two index families and observe that several of these techniques can complement
each other in solving practical problems in ANNS. Finally, we point to some interesting research directions in the
context of ANNS.
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Abstract

The field of vector search has seen a surge in interest from both researchers and practitioners due to
its potential in emerging AI applications. Understanding how to optimize its performance is crucial for
numerous tasks, but there remain a lot of challenges in practice. The advent of new hardware architectures and
platforms has prompted a reevaluation of the design of large-scale vector search systems. However, current
state-of-the-art vector search algorithms have not fully leveraged new hardware architectures to maximize
performance.

In this study, we propose design strategies to enhance the computational and memory efficiency of large-
scale vector search. Our novel search algorithm, iQAN, delivers up to an order of magnitude faster search
speeds on multi-core architectures through efficient intra-query parallelism, effectively utilizing the combined
computational power of modern multi-core chips. Our new design, HM-ANN, employs a novel form of
index that effectively leverages heterogeneous memory, enabling billion-scale vector search at a low cost.
This paper delves into the challenges and algorithms associated with iQAN and HM-ANN, with a focus on
improvements in computational and memory efficiency. The paper also includes the results of our experiments
that demonstrate the outstanding performance of vector search when modern hardware architectures are
effectively utilized through our proposed methods. Lastly, the paper explores open questions and future
directions for supporting high-dimensional vector search with speed and scale.

1 Introduction

1.1 Approximate Nearest Neighbor Search

Finding the top-k nearest neighbors among database vectors for a query has long been a key building block to
solve problems such as large-scale information retrieval and image search [33, 38, 49], recommendation [17],
entity resolution [27], and sequence matching [10]. As database size and vector dimensionality increase, exact
nearest neighbor search becomes expensive and impractical due to latency and memory constraints [11, 12, 62].
Therefore, to reduce the search cost, various approximate nearest neighbor search (ANNS) algorithms have been
proposed to improve efficiency substantially while mildly relaxing accuracy constraints, leading to the so-called
accuracy-vs-efficiency tradeoffs.

Over the years, a variety of algorithms for Approximate Nearest Neighbor Search (ANNS) have been
developed with the goal of enhancing computational and memory efficiency. To improve the compute efficiency,
well-designed indexes have been introduced, including tree structure-based [8, 9, 44], hashing-based [26], and
proximity graph-based approaches [24, 40]. To improve memory efficiency, various compression algorithms have
also been applied to ANNS, such as product quantization-based methods [25, 31, 32, 36, 46]. These methods
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can also be combined to improve both compute and memory efficiency simultaneously. For a more detailed
understanding and comparison of ANNS algorithms, we recommend several literature that provide excellent
surveys [3, 37, 58].

1.2 Modern Applications and Requirements

ANNS holds significant relevance in contemporary applications, particularly in conjunction with deep learning
models, as it facilitates innovative search scenarios. Traditional entity retrieval relies on keyword matching and
user behavior signals. However, with the progression of deep learning, it is now possible to construct models
that yield vectors with close distances for entity inputs sharing similar “views”. With these models, one then can
encode unstructured data into embedding vectors in a high dimensional space Rd [28, 65]. These vectors capture
the similarities between various entities within the latent space. As a result, the nearest embeddings for a specific
query often symbolize entities with similar semantics in the latent space. ANNS then emerges as a natural choice
for managing these vectors while ensuring both speed and accuracy in retrieval.

Vector-based search has already been integrated into many modern applications. For instance, Web-scale
search engines like Google [56] and Bing [14, 55] utilize embeddings for documents (e.g., word2vec [43] and
doc2vec [34]) and images (e.g., VGG [54]) to retrieve semantically related entities in response to user queries.
Major e-commerce players like Amazon [45] have developed recommendation systems that embed both the
product catalog and the search query, recommending products whose embeddings are closest to the embedded
search query. YouTube has built search engine that embeds videos to vectors for video recommendation [16].
More recently, vector search has been employed in retrieval augmented generation in large language models
(LLMs), where vector search can be used to expand LLMs knowledge by incorporating external data sources [13].
Vector search also presents a fertile ground for exploring future applications. For instance, recent advancements
in deep learning have enabled models to capture multimodal relationships, such as through the use of multimodal
foundation models [21]. Consequently, the underlying vector search systems can also leverage ANNS to handle
multi-modality entities. However, how to effectively handle different modalities and capture the full range of
interconnections and relationships among them via ANNS remains an open question. This includes whether
various modalities benefit from using the same or different vector search methods, which is an exciting area for
future exploration.

As vector search goes to a larger scale, where the dimension scales from ∼100 to ∼1000 and the number of
vectors scales from millions to billions, the challenge of serving latency becomes more prominent even with novel
ANNS algorithms. For instance, online interactive services (e.g., web search engine) often require responses to
be returned within a few or tens of milliseconds, as delayed responses could degrade user satisfaction and affect
revenue [22]. However, as the number of entities (such as images and documents) grows rapidly and deep learning
embeddings expand to higher dimensions (from embedding sentences to full documents), it becomes increasingly
difficult to find highly accurate results in large datasets while adhering to latency constraints. Many vector search
services, such as text and image search, require intensive computation and may not be feasible due to latency
violations. Therefore, how to transform these applications from impossible to ship due to latency violation to
well-fitting SLA is crucial for the practical adoption of vector search. Another big requirement for large-scale
vector search is cost reduction. Large-scale services deal with a vast volume of requests and could necessitate
thousands of machines for a single application. Therefore, decreasing the number of machines while maintaining
the same search quality and latency is crucial for reducing the total cost of ownership for the application.

1.3 New Hardware Architectures and Opportunities

Existing ANN algorithms have mostly exploited the uni-core CPU infrastructure and standard memory hierarchy.
This infrastructure uses processors whose performance increased with Moore’s Law, thus limiting the need for
high levels of concurrent execution on a single machine. However, processors are no longer providing ever
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higher uni-core performance. Meanwhile, the prior infrastructure used DRAM for main memory. However, the
main memory capacity is often quite limited to hold a large volume of data. As multi-core processors become
ubiquitous and new memory architecture such as heterogeneous memory becomes available, new opportunities
for large-scale vector search exist:

• Design for multi-core: Modern CPUs are often equipped with high-performance multi-core. Since uni-core
speed has pretty much saturated, we need to get better at exploiting a large number of cores by addressing
at least two important aspects:

1. Multi-core CPUs provide high concurrency, but as the level of concurrency increases, synchronization
among different cores are more likely to block and limit scalability.

2. The performance of multi-core processes also depend on the shared memory bandwidth utilization.
According to the roofline model [64], the performance of an application is not only bounded by
the compute capability but also the bandwidth performance. So how to make the best utilization of
memory bandwidth needs great care.

• Design for modern memory devices: Vector search at large scale is very memory consuming and easily
runs out of memory with a few hundred millions of vectors. When the dataset becomes too large to fit on
a single machine, one approach is to use the compressed representations of the database points, such as
Hamming codes [47] and product quantization [19, 25, 31, 32, 46]. However, the performance of these
methods deteriorates rapidly at higher recall targets, because they calculate approximate distance based
on compressed vectors instead of on the original data vectors. Another approach is to exploit storage.
In DiskANN [55], the authors explore slow storage to achieve billion-scale ANNS in a single machine.
However, disk latency is a major problem. While persistent media such as SSD offers lower latency and
much higher I/O ops per second than traditional disks, they are still several orders of magnitude slower than
DRAM. Based on this assumption, data access to the persistent media during search should be minimized.
As a result, DiskANN maintains a copy of compressed data in memory with product quantization [55],
which results in loss of in-memory search quality. It then performs a re-ranking using full-precision
coordinates stored on SSD, using block-level data accesses but with expensive SSD accessing time. While
methods such as DiskANN show promising results, the emergence of Heterogeneous Memory (HM) brings
opportunities to significantly improve ANNS. HM combines cheap, slow but extremely large memory with
expensive, fast but small memory (e.g., traditional DRAM) to achieve a good balance between production
cost, memory performance and capacity. Because of the large memory capacity, HM can use full-precision
vectors with accurate distance computation. Since memory access latency/bandwidth of slow memory
components in HM is much faster than slow storage such as SSD, it is possible to occasionally access data
in slow memory during search without paying the expensive cost of data accesses. That being said, realizing
the full performance potential of HM for ANNS is still quite challenging. Although slow memory such as
PMM performs ∼80X times faster than SSD, it is still ∼3X slower than DRAM in terms of random access
latency [60]. Therefore, a naive data placement strategy can hurt the search efficiency badly. Therefore, one
may still wonder if we can leverage HM for ANNS to achieve both high search accuracy and low search
latency, especially when the dataset cannot fit in DRAM (fast memory)?

In this work, we revisit the similarity search problem in light of the recent advances in the field. Two
new system optimization methods are introduced, dedicated to improving the efficiency and scaling of vector
search while simultaneously delivering high accuracy. They are particularly appropriate for the new hardware
architectures discussed above. Specially:

• iQAN [48] is a parallel search algorithm that exploits intra-query parallelism in graph-based vector search
to obtain significant latency reduction in vector search on multi-core architectures with high accuracy.
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This approach includes a set of optimizations that boost convergence, avoid redundant computations, and
mitigate synchronization overhead.

• HM-ANN [51] is a heterogeneous memory-based technique that shatters the memory barrier of deploying
large-scale vector search via NVMe memory, enabling billion-scale vector search with low deployment
cost. It carefully constructs vector search indices via a memory hierarchy-aware algorithm, hence leading
to substantially better search performance as the vectors grow to be larger than the DRAM capacity. It also
employs parallel search algorithms to boost the in-memory search efficiency, leading to faster search speed.

In drawing broader lessons from this work, we believe that effectively leveraging multi-core and exploiting
the memory hierarchy are the keys to high-performance vector search on modern processors. Further, based on
the above methods, we discuss open research problems, including exploring hierarchical parallelism to meet both
latency and throughput targets, highly concurrent vector search with addition and deletion, automating the index
construction for vector search, and the interactions with modern applications in Section 5.

2 Background

The literature on nearest neighbor search is vast, and hence, we focus our attention on the most relevant works
here. There has been a lot of work on building effective ANN indices to accelerate the search process. Earlier
works focus on space partitioning-based methods. For example, Tree-based methods (e.g., KD-tree [53] and R*
tree [8]) hierarchically split the data space into lots of regions that correspond to the leaves of a tree structure
and only search a limited number of promising regions. However, the complexity of these methods becomes no
more efficient than brute-force search as the dimension becomes large (e.g., >16) [35]. Prior works also have
spent extensive efforts on locality-sensitive hashing-based methods [1, 2, 18, 29], which map data points into
multiple buckets with a certain hash function such that the collision probability of nearby points is higher than
the probability of others. These methods have solid theoretical foundations. LSH and its variations are often
designed for large sparse vectors with hundreds of thousands of dimensions. In practice, LSH-based methods
have been outperformed by other methods, such as graph-based approaches, by a large margin on large-scale
datasets [4, 24, 40]. More recently, Malkov and Yashunin found graphs that satisfy the small-world property
exhibit excellent navigability in finding nearest neighbors. They introduce the Hierarchical Navigable Small
World (HNSW) [40], which builds a hierarchical k-NN graph with additional long-range links that help create
the small-world property. For each query, it then performs a walk, which eventually converges to the nearest
neighbor in logarithmic complexity. Subsequently, Fu et al. proposed NSG, which approximates Monotonic
Relative Neighbor Graph (MRNG) [24] that also involves long-ranged links for enhancing connectivity.

3 iQAN: Fast and Accurate ANNS via Intra-Query Parallelism on Multi-Core
Architecture

Among different vector search methods, the similarity graph-based algorithms have emerged as a remarkably
effective class of methods for high-dimensional ANNS, outperforming other approaches on a wide range of
datasets to achieve the best accuracy-vs-latency [4, 5, 20, 24, 31, 37, 59, 63]. Despite their promising results,
graph-based methods still have challenges that limit their use in real-world scenarios. In particular, as the data
size grows, it becomes increasingly challenging to achieve both low latency and high accuracy simultaneously.
Existing solutions often resort to inter-query parallelism by dispatching queries across multiple processors or
nodes to be processed simultaneously [7, 24]. This approach scales from a throughput perspective, but it does not
help reduce query latency because each query still roughly performs the same amount of vector computations to
find the nearest neighbors.
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3.1 Challenges of ANNS via Intra-Query Parallelism

Another natural idea to reduce latency is to exploit intra-query parallelism on individual nodes with multi-core
processors. For example, one may parallelize the node expansion in each iteration step of the sequential search
algorithm (referred to as Node-Expansion-in-Parallel) because distance computations within a neighborhood
expansion iteration do not have dependencies, hoping that multiple worker threads can check the closeness of
multiple neighbors in parallel while performing the same computations on each step as the sequential algorithm.
Surprisingly, this solution performs quite poorly and may even perform much worse than a well-tuned sequential
algorithm, as shown in Fig. 1. There are several challenges in scaling ANNS with intra-query parallelism:

Challenge 1: Modern multi-core hardware is sensitive to synchronization overhead. Parallelism boosts
compute capacity but may also incur high synchronization overhead, especially if there are complex data depen-
dencies. While parallelizing the distance computation, Node-Expansion-in-Parallel also requires synchronization
in between expansion iterations to sort the distance order of all candidates discovered by multiple parallel workers
according to their distances to the query point, to decide which node to expand in the next iteration. We have ob-
served that the synchronization is very expensive on a multi-core architecture, and frequent sequential-to-parallel
synchronization as in Node-Expansion-in-Parallel can significantly prolong the search process. Fig. 2 shows
that as we increase the number of threads, the synchronization overhead accounts for more than 50% of the total
search time, becoming a dominating factor in the overall search latency.
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Challenge 2: Node-Expansion-in-Parallel leads to insufficient computation granularity per worker,
leading to sub-optimal memory bandwidth utilization. Node-Expansion-in-Parallel has low compute intensity
because (1) unlike matrix multiplication, the point-wise Euclidean distance computation is an operator with low
compute intensity, and (2) the number of neighbors to be expanded in one step is limited, given that similarity
graphs naturally have low out-degree to avoid the out-degree explosion problem [24]. As such, further dividing
the distance computation within each neighbor expansion iteration leads to insufficient work for each worker.

Challenge 3: Vector search using graph traversal requires many iterations to converge, resulting in long
sequential dependencies between iterations and thus limiting its scalability. The number of neighborhood
expansion iterations depends on the recall target and the graph size. For example, Fig. 3 shows that as the recall
target increases, the number of iterations to find the top-100 nearest neighbors on a hundred million scale dataset
DEEP100M grows dramatically as the recall target becomes higher (e.g., a 34.6-time increase from 0.9 to 0.999
recall). Fig. 4 shows that as the dataset size increases, the number of iterations to find the results for recall
target 0.999 also grows (e.g., 7.3 times from 1M-vector dataset to 100M-vector dataset). This long sequential
dependency makes achieving low latency with high accuracy especially challenging.

3.2 Design of iQAN

To address the aforementioned challenges, we introduce iQAN, a parallel search algorithm to accelerate graph-
based ANNS on multi-core architectures with three key optimizations: (i) reducing neighbor expansion iteration
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depth by path-wise parallelism, (ii) reducing redundant distance computation by staged expansion, and (iii)
reducing synchronization overhead by redundancy-aware synchronization.

3.2.1 Reduce Iteration Depth by Intra-Query Path-Wise Parallelism

In each search iteration, a Best-First-Search (BFiS) algorithm is often used to perform node expansion to the most
promising unchecked candidate [24, 40]. In iQAN, we make a small modification to this process by relaxing
the priority order and letting each thread expand a few more nodes (e.g., top W unchecked candidates) in every
step as active nodes for expansion. We also relax the synchronization such that a global synchronization is only
performed after a few expansion steps. We call this new way of expanding nodes path-wise parallelism (PP).
This small change in algorithm results in a significant reduction in iteration depths for queries, e.g., from a few
thousands to tens in some cases.

Why would this change reduce the iteration depth? The multi-node expansion and relaxed synchronizations
are equivalent to letting each thread explore paths in a local region instead of a single node’s neighbor list before
doing a global synchronization. By doing so, it increases the likelihood of finding nearest neighbors in less
number of iterations. Fig. 5 shows the comparison results of iteration depths between BFiS and PP on dataset
SIFT1M using 10K queries with a 0.90 recall target. We set W to 64. Overall, while BFiS takes 10.1, 69.4, and
88.1 steps to find the top-1, top-50, and top-100 near neighbor, PP only takes 3.4, 5.0, and 5.4 steps on average,
respectively, a significant reduction. From the unchecked node’s perspective, Fig. 6 shows that PP also takes
much fewer steps to converge to a local optimum (i.e., finish examining all the unchecked vertices) than BFiS.

3.2.2 Reduce Redundant Computation by Staged Expansion

Although reducing the iteration depth significantly, does it mean the search process will now get desired speedups
on multi-core architectures? The answer is no. The path-wise parallelism reduces iteration depths but at the same
time introduces a considerate amount of additional distance computations, especially when the number of parallel
workers is large. Fig. 7 shows that to reach the same recall (0.9–0.999), the path-wise parallelism often needs to
perform significantly more distance computations than BFiS (1.3–3.5 times). Moreover, we also observe that
although the iteration depths continue to decrease by increasing the concurrent expansion width W , the number
of distance computations inversely increases, as shown in Fig. 8. The huge amount of redundant computations
adversely affects search efficiency as many threads are loading vectors for unnecessary computations, wasting
memory bandwidth and compute resources.

To mitigate it, we investigate the usefulness of path-wise parallelism at different search stages: at which stage
does the path-wise parallelism reduce the iteration depths the most? We found that overall, in the beginning, since
all candidates are far from the query, those early expanded candidates are likely to be discarded by closer ones
that are visited later. In other words, candidates expanded and checked at an earlier stage have a high likelihood
of becoming unnecessary from a future perspective. As the search moves forward toward the region that has near
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neighbors, a larger expansion width that covers more search paths can effectively prevent the search from getting
stuck at a local minimum.

Based on these observations, we propose a staged expansion (SE) scheme by gradually increasing the
expansion width W and the number of workers every t steps during the search procedure. In practice, we set
the starting value of W to 1 and the maximum value as the number of available hardware threads. Then for
every t steps (e.g., t = 1) we double the value of W until W reaches its maximum. Fig. 9 shows the comparison
results of path-wise parallelism without and with staged expansion. The staged expansion reduces the number of
redundant distance computations significantly, leading to distance computations comparable to BFiS. On the other
hand, staged expansion is able to preserve the benefits of path-wise parallelism in terms of obtaining reduced
iteration depths, as shown in Fig. 10. These results indicate that by performing path-wise parallelism at where
they are most effective (i.e., the later phase of the search), the parallel search process can effectively converge
with reduced iteration depths and minimal addition of redundant computations among multiple workers.

3.2.3 Reduce Synchronization Overhead by Redundancy-Aware Synchronization

The remaining performance challenge in parallel search resides in the synchronization, as we still need to
decide when to do synchronization. However, reducing the synchronization overhead for graph-based ANNS
is non-trivial. Fig. 11 shows that as we skip synchronizations in between search iterations (i.e., increasing the
interval between two synchronizations), the synchronization overhead (shown as the ratio to the total time)
decreases significantly. However, decreasing synchronization increases distance computations, especially when
the synchronization intervals become large. This is because as we increase the synchronization interval, it increases
the likelihood that individual workers would search their local but unpromising areas without switching to newly
identified promising regions found by other workers. As such, one cannot infinitely delay synchronization, and a
small set but useful synchronizations are desired to achieve overall high search efficiency without incurring too
many redundant computations.

Finding such intervals turns out to be non-trivial since the relative distance of a query to its near neighbors
changes all the time at different stages. It is also hard to find one fixed synchronization interval for all queries. To
mitigate the synchronization overhead, iQAN performs redundancy-aware synchronization (RAS), which allows
workers to perform a search with low redundant computations by adding a minimal set of global synchronizations.
We introduce a metric — update positions — to capture the redundancy during expansion. When a worker thread
expands an unchecked candidate, its unchecked neighbors are then inserted into the worker’s local queue, and
we define the update position as the lowest (best) position of all newly inserted candidates. Thus, the average
update position (AUP) is the mean of all update positions of workers. Fig. 12 demonstrates how an example
query’s AUP changes during the search process without doing any global synchronizations. We observe that the
AUP increases gradually to be equal to the local queue capacity and remains flat to the end. When the AUP is
close to the queue capacity, it indicates that a majority of workers are searching areas that cannot find promising
candidates to update their local results. Therefore, a high AUP indicates that most workers are doing redundant
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Figure 13: Latency comparison among HNSW, NSG, and iQAN on Skylake (16T).

computations, and it would benefit from a global synchronization such that all workers can focus on searching for
more promising areas that have a higher probability of including closer near neighbors.

3.3 Evaluation of iQAN

iQAN offers significant speedups than two state-of-the-art graph-based ANNS, NSG [23, 24] and HNSW [39, 40]
over several public datasets, including SIFT1M (128D), GIST1M (960D), DEEP10M (96D), DEEP100M (96D),
and SIFT100M (128D). We measure the latency and Recall@100 (R@100), which measures the accuracy of
finding the top-100 nearest neighbors for every query. We conduct our experiments on a workstation with Xeon
Gold 6138 (2.00 GHz) with 20 cores and 128 GB DRAM (Skylake for short).

Fig. 13 compares the latency of HNSW, NSG, and iQAN on Skylake. NSG and HNSW use their sequential
search algorithm, whereas iQAN uses 16 threads on Skylake. Across all five datasets, iQAN consistently provides
latency speedups over existing sequential-based approaches NSG and HNSW over a wide range of recall targets.
In particular, the speedups from iQAN increase as the recall target moves to the high accuracy regime (e.g., from
0.90 to 0.999). Notably, iQAN achieves up to 12.9× speedups over NSG on DEEP100M on Skylake, obtaining
an incredibly low latency of <5ms or <3ms at the recall target 0.999 by leveraging aggregated multi-core
computation and memory bandwidth resources. This enables vector search with very high accuracy on large-scale
graphs, even in extremely interactive online applications.

iQAN achieves significant latency speedups mainly for three reasons. First, iQAN’s path-wise parallelism
effectively reduces the iteration depths, making the sequential dependencies no longer a major bottleneck. This
is particularly critical for a large graph (e.g., DEEP100M) and high recall (e.g., 0.999) as seen in Section 3.2
that the iteration depths increase significantly as we either scale the graph size or increase the recall targets.
Second, the reduced iteration depths do not come at the cost of many redundant computations as iQAN leverages
staged expansion to effectively avoid redundant computations from doing path-wise parallelism. Third, iQAN
significantly reduces the synchronization overhead through redundancy-aware synchronization. It is also worth
mentioning that iQAN achieves excellent speedups as we increase the dimensionality of the embedding vectors.
iQAN achieves up to 24.9× speedups over HNSW on GIST1M on Skylake. This is higher than the speedups
we get on a dataset with a similar scale but much smaller dimensionality (e.g., SIFT1M). iQAN is able to
achieve better speedups on higher dimensional vectors because as the vector dimension increases, the amount of
computation workload for the pair-wise distance computation also increases, which allows iQAN to benefit more
from parallel computing.

Comparison with DiskANN. Fig. 14 compares the latency of DiskANN [30] (using 1 thread with its in-
memory index) and iQAN (using 32 threads) for Recall@1 targets. For building its indices of datasets SIFT1M
and GIST1M, DiskANN uses L = 125, R = 70, α = 2, which are the same setting as shown in its paper. For
DEEP10M, DiskANN uses L = 100, R = 100, α = 1.2. Fig. 14 shows that iQAN achieves significant latency
speedups over DiskANN, especially for the high recall regime. For example, for recall target 0.999, iQAN has
about 180.5× average speedup on DiskANN among these three datasets.

Scaling to billion points. This experiment is conducted on a machine with a 1.5 TB memory. It is worth
mentioning that even 1.5 TB of memory is not enough to build a 100-NN graph with one billion data vectors.
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Figure 14: Recall@1 latency of DiskANN and iQAN.

1 2 4 8 16 32 640

100

200

300

400

1

2

4

8

16

La
te

nc
y 

(m
s)

SIFT1B

Latency (ms)
Speedup

NSG’s latency

1 2 4 8 16 32 640

100

200

300

400

1

2

4

8

16DEEP1B
Speedup 

NSG’s latency

Latency (ms)
Speedup

Number of threads

Figure 15: Performance comparison of iQAN
and NSG on two billion-scale datasets SIFT1B
(bigann) and DEEP1B.

Therefore, we limit the out-degree of NSG when generating the corresponding NSG index so that the index
construction can finish in a reasonable amount of time (e.g.,<10 days). We also note that this is the first time to
evaluate an NSG graph at a billion scale as the maximum graph prior work such as NSG evaluated contained less
than 100M data points. Fig. 15 compares the latency of iQAN and NSG. iQAN uses up to 64 threads, and the
recall target is 0.9. When using 64 threads, iQAN follows the trend of scalability we observed as we increase
the graph size and outperform NSG with 11.5× and 16.0× speedup for SIFT1B and DEEP1B, respectively,
confirming the excellent scalability of iQAN on large-scale graphs again.

4 HM-ANN: Efficient Billion-Point Vector Search via Heterogeneous Memory

This section describes a large-scale vector search solution built on top of Heterogeneous Memory. The HNSW
index is modified to make it HM-aware, and the search algorithm is also modified to make the search more
efficient. With these modifications, this solution enables fast and highly accurate billion-scale ANNS on HM.

4.1 Design of HM-ANN

The design of HM-ANN generalizes HNSW, whose hierarchical structure naturally fits into HM. Elements in the
upper layers consume a small portion of the memory, making them good candidates to be placed in fast memory
(small capacity); The bottom-most layer has all the elements and has the largest memory consumption, which
makes it suitable to be placed in slow memory. Unlike HNSW, where the majority of search happens in the
bottom-most layer, elements in the upper layers now have faster access speed, so it is a reasonable strategy to
increase the access frequency of the upper layers. On the other hand, since accessing L0 is slower, it is preferable
to have only a small portion of it to be accessed by each query. The key idea of HM-ANN is, therefore, to build
high-quality upper layers and make most memory accesses happen in fast memory, in order to provide better
navigation for search at L0 and reduce memory accesses in slow memory.

Notations. In the rest of the paper, we let V denote the dataset with N = |V | to build the graph; we
refer the graph in the layer i ∈ {0, 1, ..., l} of HM-ANN as Gi = (Vi, Ei) where Vi is the vertex set and Ei

is the edge set. We refer Ni as the number of elements in the layer i, and we have Ni = |Vi|. Because L0
contains all the elements in the database, we have V0 = V and N0 = N . Based on the hierarchical structure of
HM-ANN, we have Vi ⊊ Vi−1. Similar to the existing effort [40], we introduce Mi as the maximum number of
established connections for each point v in the layer i. For v ∈ V , we let D(v) denote the degree of node v, and
D(v) =

∑
u∈V m(v, u) where m(v, u) = 1 if there exists a link between node v and node u.

4.1.1 HM-aware Index Construction via Top-Down Insertions and Bottom-up Promotions

To make the ANNS index aware of HM architecture, we generalize the HNSW construction algorithm to include
two phases: a top-down insertion phase and a bottom-up promotion phase.
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Top-down insertions. The top-down insertion phase is the same as HNSW, where we incrementally build
a hierarchical graph by iteratively inserting each vector v in V as a node in G. Each node will generate up to
M (i.e., the neighbor degree) out-going edges. Among those, M − 1 are short-range edges, which connect v
to its M − 1 nearest neighbors according to their pair-wise Euclidean distance to v. The rest is a long-range
edge that connects v to a randomly picked node, which may connect other isolated clusters. It is theoretically
justified that graphs (e.g., L0) constructed by inserting these two types of edges guarantee to have the small world
properties [24, 40, 61].

Bottom-up promotions. The goal of the second phase is to build a high-quality projection of L0 elements
into the layer 1 (L1), such that the search in L0 can find the true nearest neighbors of the query with only a few
hops. Ideally, HM-ANN wants to achieve the goal that performing 1-greedy search in L0 is sufficient to achieve
high recall, so that the slowdown caused by accessing the slow memory is minimal. A straightforward way to
project the L0 elements into L1 is to randomly select a subset of elements in L0 to be L1, similar to what HNSW
already does to build upper layers. However, we observe that such an approach leads to poor index quality. As a
result, many searches end up happening in L0 (slow memory), causing long search latency.

HM-ANN uses a high-degree promotion strategy. This strategy promotes elements with the highest degree in
L0 into L1. From the layer i (i ≥ 2) to i+ 1, HM-ANN promotes high-degree nodes to the upper layer with a
promotion rate of 1/M , where M is the maximum number of neighbors for each element (i.e., Mi = M , where
i = 2...l). A similar promotion rate setting is used in HNSW [40] and typical skip list [50]. HM-ANN increases
search quality in L1 by promoting more nodes from L0 to L1 and setting the maximum number of neighbors for
each element in L1 to 2×M (i.e., M1 = 2×M ). The number of nodes in upper layers (Ni, where i = 1..l) is
decided by available fast memory space.

The high-degree promotion strategy is based on the following observation. The hub nodes of the graph at L0
are those nodes with a large number of connections (i.e., high degree). In the small world navigation algorithm, a
higher degree node provides better navigability [6]. Most of the shortest paths between nodes flow through hubs.
In other words, the average length of the navigation path (i.e., number of hops) is the smallest, when the adjacent
node with the highest degree is selected as the next hop. By promoting the high-degree nodes, the resulting
L1 layer allows HM-ANN to effectively reduce the number of search steps in L0, compared with the random
promotion strategy.

4.1.2 HM-ANN Graph Search Algorithm

Fast memory search. The search in fast memory begins at the entry point in the top layer and then performs a
1-greedy search from the top layer to layer 2, which is the same as in HNSW. To narrow down the search space in
L0, HM-ANN performs the search in L1 with a search budget controlled by efSearchL1. efSearchL1 defines
the size of dynamic candidate list in L1. Those candidates in the list are used as entry points for search in L0
(HNSW uses just one entry point), in order to improve search quality in L0.

Parallel L0 search. In L0, HM-ANN evenly partitions the candidates from searching L1 and uses them as
entry points to perform parallel multi-start 1-greedy search with Thr threads in parallel. The top candidates from
each search are collected to find the best candidates. Parallel search makes the best use of memory bandwidth
and improves search quality without increasing search time. Thr is determined by peak memory bandwidth
constrained by hardware divided by memory bandwidth consumption by one thread, which is easy to calculate.

Different from the SSD-based ANNS [55, 66], the data in slow memory in HM-ANN can be directly accessed
by processors, and there is no duplication between fast and slow memories. However, due to high latency and
low bandwidth of slow memory, HM-ANN should still make memory accesses in fast memory as many as
possible. HM-ANN implements a software-managed cache in fast memory to prefetch data from slow memory to
fast memory before the memory access happens. In particular, HM-ANN reserves a space in fast memory (∼2
GB) called migration space. When searching L1, HM-ANN asynchronously copies neighbor elements of those
candidates in efSearchL1 and the neighbor elements’ connections in L1 from slow memory to the migration
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Table 1: Indexing time and memory consumption for graph-based methods on billion-scale datasets

BigANN DEEP1B
Indexing Search Indexing Search

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

Graph
size

Indexing
time

Promo.
rate

Fast-mem
usage

Slow-mem
usage

HNSW 475GB 90h 0.02
96GB

(hw caching) 490GB 723GB 108h 0.02
96GB

(hw caching) 748GB

NSG 285GB 115h -
96GB

(hw caching) 303GB 580GB 134h -
96GB

(hw caching) 599GB

HM-ANN 536GB 96h 0.16 96GB 462GB 756GB 117h 0.11 96GB 681GB

space in fast memory. When the search in L0 happens, there is already a portion of to-be-accessed data placed in
fast memory, which leads to shorter query time.

4.2 Evaluation of HM-ANN

Billion-scale algorithm comparison. We compare HM-ANN with the graph- (HNSW and NSG) and quantization-
based algorithms (IMI+OPQ and L&C). For HNSW, we build graphs with efConstruction and M set to 200
and 48 respectively; For NSG we first build a 100-NN graph using Faiss [42] and then build NSG graphs with
R = 128, L = 70 and C = 500. We collect results on NSG and HNSW using Memory Mode since it leads
to overall better performance than using first-touch NUMA. For IMI+OPQ, we build indexes with 64- and
80-byte code books on BIGANN and DEEP1B respectively. We present the best search result with search
parameters nprobe=128 and ht=30 for BIGANN and with autotuning parameter sweep on DEEP1B. For L&C,
we use 6 as the number of links on the base level, and use 36- and 144-byte OPQ code-books. We use the same
parameters (efConstruction=200 and M=48) as HNSW to construct HM-ANN. We set efSearchL0=2 and
vary efSearchL1 to show the latency-vs-recall trade-offs.

Figures 16 (a)-(d) visualize the results. Overall, HM-ANN provides the best latency-vs-recall performance.
Figure 16 (a) and (b) show that HM-ANN achieves the top-1 recall of > 95% within 1ms, which is 2x and 5.8x
faster than HNSW and NSG to achieve the same recall target respectively. IMI+OPQ and L&C cannot reach a
similar recall target, because of precision loss from quantization. As another point of reference, the SSD-based
solution, DiskANN [55] (not open-sourced), provides 95% top-1 recall in 3.5ms. In contrast, HM-ANN provides
the same recall in less than 1ms, which is at least 3.5× faster. We compare the top-100 recall shown in Figures 16
(c) and (d). HM-ANN provides higher performance than all other approaches. For example, it obtains top-100
recall of > 90% within 4 ms, while performing 2.8x and 5x faster than HNSW and NSG with the same recall
target respectively. Quantization-based algorithms perform poorly and have difficulties to reach a top-100 recall
of 30%.

Table 1 shows the index construction time and index size of HNSW, NSG, and HM-ANN. Among the three,
HNSW takes the shortest time to build the graph. HM-ANN takes 8% longer time than HNSW because it takes
an additional pass for the bottom-up promotion. However, HM-ANN is still faster to construct than NSG. In
terms of memory usage, HM-ANN indexes are 5–13% larger than HSNW, because it promotes more nodes from
L0 to L1. In terms of memory usage, HM-ANN consumes less fast memory than HNSW and NSG, which is
valuable to reduce production cost [41, 52]. HNSW and NSG use all fast memory because they do not explicitly
manage HM and by default using Memory Mode consumes all fast memory. The sum of slow and fast memory
consumption can be larger than the index size because there are metadata needed for search that are not counted
in the index size.
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Figure 16: Query time vs. recall curve in (a) DEEP1B top-1, (b) BigANN top-1, (c) DEEP1B top-100, (b)
BigANN top-100, respectively.

5 Research Opportunities

In this paper, we have concentrated on the computational and memory efficiency of large-scale vector search. Our
iQAN and HM-ANN designs achieve exceptional performance. However, large-scale vector search still requires
further attention, and we expect that additional improvements can be made. This section explores the challenges
and research opportunities associated with vector search.

High-performance vector search through hierarchical parallelism. Inference demand varies across
different applications and scenarios, with some being latency-critical, and others being latency-sensitive or
throughput-oriented. Additionally, the hardware resources available to each application may also vary significantly.
To meet these diverse requirements and make efficient use of all computational resources, we can combine different
parallelism approaches:

• Distributed vector search. Libraries such as Milvus [57] allow the development of distributed versions of
vector search systems using a cluster.

• Inter-query parallelism. Multithreading enables the use of multiple cores to improve the throughput of
answering user requests.

• Intra-query parallelism. Methods such as iQAN enable the system to speed up individual queries by
leveraging the aggregated computational capacity of multiple cores.

These techniques can be combined hierarchically to meet given latency, throughput, and cost objectives.
The research opportunity here is: Build systems for large-scale vector search that fully exploit parallelism at
different levels, providing millisecond-level latency, high throughput, and low hardware cost. Furthermore,
while techniques such as iQAN optimize search efficiency by modifying the graph traversal process to leverage
intra-query parallelism, the underlying index has not been specifically designed to take advantage of intra-query
parallelism. Intuitively, a different index structure could achieve better search efficiency under intra-query
parallelism if it naturally helps avoid redundant computations across different threads and also leads to better data
locality. The research opportunity here is: Design vector search indices that maximize search efficiency through
both inter- and intra-query parallelism.

Highly concurrent vector search with addition and deletion. Most existing vector search systems build
indices offline and become read-only once deployed. In some applications, data capture may occur more
frequently than query processing, or the application may need to index continuous data streams while serving
query requests. In these cases, the index organization should be optimized for addition and update in addition to
query performance. The complexity arises with concurrent read and update operations (e.g., addition, deletion), as
it is challenging to achieve both correctness and speed simultaneously. Concurrent updates and reads can lead to
data races, making it difficult to ensure correctness on shared-memory architectures. Lock-based synchronization
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can be used to coordinate access to shared-memory data, but while using one lock for the entire index simplifies
reasoning about correctness, it also leads to serialized execution, severely impacting scalability. Another solution
is to use fine-grained locking, where multiple locks are associated with the index. However, fine-grained locking
increases the complexity of operations that access shared data, leading to issues such as deadlock, atomicity
violation, and high locking overhead. The research opportunity here is: Build a highly concurrent vector search
system that supports robust addition and deletion with high search efficiency.

Automating index construction for vector search. Several advances have been made in support of large-
scale vector search, introducing novel algorithms and system optimizations [15, 51, 55, 66]. However, applying
these methods to large-scale datasets still requires a significant amount of engineering effort specific to the data,
hardware environment, and performance objectives. For instance, deploying a large dataset to a given cloud VM
requires a careful selection of vector search indices, with NVMe/SSD/remote storage, the number of cores to
use, and multiple index-specific parameters. Correctly choosing the algorithm and tuning the parameters can
deliver significant improvements in search performance but also depend on strong system expertise. Therefore,
automating the selection and construction of vector search indices would help alleviate the burden on deployment
engineers, but it also requires navigating a complex space of choices that grows exponentially with different
algorithm choices, each with its own trade-offs, and data sizes and hardware resources. The research opportunity
here is: Build a framework and optimization algorithm that automatically finds the optimal index construction
strategy for a given dataset to deliver fast search speed with low cost.

6 Conclusion

We have designed and implemented iQAN and HM-ANN to enhance the system efficiency of vector search. We
have followed the state-of-the-art vector search algorithm, but at every level, we have introduced innovations
that stretch prior methods and tailor our system for the newer hardware setting of multi-core processors and
heterogeneous memory. Our innovations, such as intra-query path-wise parallelism, staged expansion, redundancy-
aware synchronization, and HM-aware index construction, improve the computational and memory efficiency of
large-scale vector search. Many of these methods should work well in other settings, such as SSD-based methods
and compression-based indices. Finally, we propose several open research directions from a system perspective
that have the potential to further improve large-scale vector search. We hope these directions will inspire new
research that can advance vector search and make it more efficient, robust, and easy-to-use.
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Abstract

Approximate nearest neighbor search is an important research topic with a wide range of applications. In
this study, we first introduce the problem and review major research results in the past. We then discuss the
current work in the database research community, categorizing the work by their key underlying methodologies,
such as locality-sensitive hashing, product quantization, and approximate nearest neighbor graphs. Finally, we
examine several new directions, with a focus on vector databases to support large language models.

1 Introduction

1.1 Dense Vector and Searching

We are witnessing a notable transition towards vectorized data representations, emerging as the go-to method
for encapsulating diverse data forms, from text and images to videos. This transformation is deeply rooted in
the successes of deep neural network-based representation learning. The value of such vector representations is
further accentuated by the recent breakthroughs of large language models like ChatGPT and the rapid strides in
the multi-modal domain. Specifically, dense vectors representations have gained traction across diverse sectors,
including recommendation systems, search engines, and e-commerce, etc.

To understand the significance of dense vector representations, it is essential to differentiate them from
sparse vectors. While sparse vectors contain bits of information distributed sparsely, dense vectors contain the
compressed information across every dimension, making them more information rich. Such distinction can be
likened to the difference between syntax and semantics in natural language processing. Sparse vectors allow for
syntax-based comparisons of sequences, which is efficient in storage. Even if two sentences differ in meaning
but share the same syntax, sparse vectors might closely match them. In contrast, dense vectors can be seen as
numerical encodings of semantic meaning, which contain their abstract meaning and relationships. Consequently,
searches on dense vectors that are derived from text, can be treated as semantic-based searches. This stands in
contrast to the traditional syntax-based searches that are typically conducted on sparse vectors.

The adoption of dense vector representations offers clear benefits, including simplicity of data representation
and increased computational efficiency. The utility is particularly evident in foundational computational tasks
such as search, classification, and clustering, which underpin more complex challenges. Among all operations on
dense vectors, the nearest neighbor search, which aims to locate the closest point to a specific reference point,
stays in the central position. Unfortunately, it is often infeasible to retrieve the exact nearest neighbors of the
query point due to a phenomenon known as “the curse of dimensionality”. As a result, approximate nearest

*The authors are listed in alphabetical order. Bolong Zheng and Xiaofang Zhou are co-corresponding authors.
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neighbors (ANN) search algorithms have been designed to retrieve the neighbors that are close enough to the
reference point. The goal of an ANN search algorithm is to retrieve approximate nearest neighbors of the query
point in a low response time, which results in the accuracy-vs-efficiency trade-off [54].

ANN search is a well-established problem that has garnered significant research attention. The computational
complexity is determined by the number of data points (n) and the dimensionality (d), resulting in a complexity of
O(nd). Many existing methods aim to address this challenge by focusing on either reducing the number of data
points to examine or decreasing the dimensionality. In terms of reducing the number of data points to examine,
two widely employed approaches are space partitioning and proximity graph. Notable methods falling within this
category include the kd-tree, Approximate Nearest Neighbors Oh Yeah (ANNOY) [68], and the Hierarchical
Navigable Small World (HNSW) algorithm [69]. On the other hand, in the realm of dimensionality reduction,
quantization and hashing techniques have gained considerable popularity. Representative methods in this category
include Locality-Sensitive Hashing (LSH) [3], Spectral Random Sampling (SRS) [70], and Product Quantization
(PQ) [35].

1.2 Vector Search Libraries and Vector Database

The growing need for high-dimensional ANN search in areas such as social media, e-commerce, and digital
advertising has shifted the focus from individual algorithms to more integrated libraries. A leading example is
Faiss [42], also known as Facebook AI Similarity Search. Faiss is a C++ library with Python bindings that tailored
for the efficient clustering and search of dense vectors. The library encompasses a broad range of similarity
metrics and is equipped with widely recognized methods for ANN search, including but not limited to IVFADC
[35], HNSW [58], and LSH [3]. Notably, Faiss has several GPU-optimized algorithms and seamlessly supports the
IVF-PQ series on both CPU and GPU platforms [56]. Alongside Faiss, libraries such as ANNOY and Non-Metric
Space Library (NMSLIB) provide similar toolkits. ANNOY [68] is utilized by Spotify, while NMSLIB [43]
has been integrated into Amazon’s Elasticsearch Service. Additionally, Alibaba Cloud has introduced a vector
analysis framework within their AnalyticDB for PostgreSQL, designed to fetch unstructured data and facilitate
association analysis between unstructured and structured data sets.

While libraries like Faiss offer significant capabilities, they might not fully address the complexities of
real-world applications. Recognizing this limitation, the concept of vector databases emerges. They are designed
much like traditional relational databases but specifically for vector management. They not only offer efficient
data indexing, storage, and filtering of vector attributes but also bolster distribution, parallel processing, and
facilitate real-time data and index updates. Parallel to the features of a conventional DBMS, they prioritize data
safety with backup and collection functionalities. The adaptability is evident in their effortless integration with
various data processing tools, analytics platforms, visualization instruments, and AI plugins, enhancing the overall
data management workflow. Moreover, these databases are equipped with robust security features and access
controls, ensuring the protection of sensitive data, an aspect sometimes overlooked in standalone vector indices.
To sum it up, vector databases refine and strengthen the data management landscape with their advanced security
and integration capabilities.

In the vector database domain, Pinecone [75], Milvus [76], and Weaviate [77] emerge as frontrunners. While
all three offer robust solutions for storing, indexing, and searching vast datasets, Pinecone differentiates itself
as a closed-source platform. It is exclusively available as a SaaS service, with all user interactions channeled
through its API. Conversely, both Milvus and Weaviate are open-source vector databases, benefiting from the
collaborative efforts of a varied mix of companies and individual contributors. Some of these participants also
extend specialized commercial services and support.
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Figure 1: Framework for Enhancing Answer Quality in LLM-based Chatbots using Vector Databases

1.3 Vector Database for LLM

With the development of large language models such as ChatGPT, chatbots have become more advanced and
can now be used for a wide range of applications [72–74]. While they are effective at accurately retrieving
information, they face challenges that can be resolved through vector databases. First, searches on dense vectors
derived from text are mainly based on semantics. Vector databases use index structures for ANN search, which
enables them to efficiently locate the most semantically relevant information. This allows chatbot models to
access a knowledge base where context can be stored for extended periods in a memory-efficient manner. Second,
incorporating new data into LLMs without costly retraining is a challenge since current LLMs are static. However,
many vector indexes are designed to manage dynamic datasets [60], which can help extract key information
from these datasets when training a new LLM from a trained old one. Finally, data exists in multiple types, and
LLMs as a language model do not learn enough about other types of data besides text. Vector databases can
help manage these multimodal data in the unified embedding space and feed them to the LLMs. This approach
would be a crucial step for LLMs to process various kinds of data sources. Figure 1 shows a framework for
enhancing answer quality in LLM-based chatbots. This framework utilizes a vector database as a multi-functional
component, serving as a cache, extended memory, and external knowledge base. The vector database not only
offers essential indexing and ANN search services but also incorporates comprehensive functionalities expected
from a database, including sharding, access control, and query optimization. By leveraging the vector database,
the chatbot gains the ability to efficiently retrieve and store relevant information, leading to improved answer
quality and enhanced performance.

1.4 Contribution

In this study, our objectives are manifold. 1) We delve into the historical trajectory and evolution of the ANN
search problem. Based on our research results, we provide a comprehensive overview of the state-of-the-art
methods that have been developed. We discuss the foundational principles, key milestones, and the most recent
advancements in ANN search. 2) We transition into the challenges that ANN search methods may encounter in the
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(a) LSH-Based Method (b) Quantization-Based Method

Entry point

(c) Graph-Based Method

Figure 2: Difference in the LSH-based method, graph-based method and PQ-based method. The red triangle is
the query point q. The three points in the black dashed circle are the 3NN of q. The orange points denote those
that are accessed during the search.

burgeoning era of large language models (LLMs). As the application of ANN search becomes more intertwined
with LLMs, a myriad of complexities arise. These challenges span from issues of scalability, where the sheer
volume of data can overwhelm traditional methods, to the intricacies of parallel computation, which demands
efficient synchronization and communication mechanisms. Furthermore, the need for on-disk indexing introduces
another layer of complexity, necessitating efficient data retrieval methods that minimize latency. Additionally, as
with any data-centric application, data security remains paramount, prompting rigorous measures to ensure data
integrity and confidentiality. 3) We conclude by projecting forward, offering our insights into the potential future
research directions in the ANN search landscape. This will encompass emerging trends, potential breakthroughs,
and areas that warrant deeper exploration in light of the challenges and opportunities presented by LLMs.

2 Notation and Preliminaries

We start by clearly defining ANN search. Then, we introduce key index structures used in high-dimensional ANN
search. We cover seminal methods such as Locality-Sensitive Hashing (LSH), Product Quantization (PQ), and
Hierarchical Navigable Small World (HNSW). The aim is to arm the readers with essential terminologies and
foundational concepts, paving the way for the comprehensive discussions that ensue.

2.1 Problem Definition

We take (c, k)-ANN search in the Euclidean space as an example to illustrate the ANN search problem in
high-dimensional spaces. Let D be a set of points in d-dimensional Euclidean space Rd with cardinality |D| = n
and ∥o1, o2∥ denote the Euclidean distance between points o1, o2 ∈ D.

Definition 2.1 ((c, k)-ANN Search [19]) Given a query point q, an approximation ratio c > 1 and a positive
integer k, a (c, k)-approximate nearest neighbor search returns k points o1, . . . , ok that are sorted in ascending
order w.r.t. their distances to q. If o∗i is the i-th nearest neighbor of q in D, it satisfies that ∥q, oi∥ ≤ c · ∥q, o∗i ∥.

We denote the (c, k)-ANN search with k = 1 as c-ANN search. An LSH-based method can ensure a correct
c-ANN with high probability [5, 19]. While in the graph-based and quantization-based methods, we usually do
not explicitly use c but use recall to control the query quality where recall measures how many exact kNN results
is found during the search.
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2.2 Seminal Algorithms for High-dimensional ANN Search

2.2.1 Locality-Sensitive Hashing

Among solutions to the high-dimensional ANN search problem, locality-sensitive hashing (LSH) is known for
its sub-linear query time and robust theoretical guarantee of query accuracy. The basic idea behind LSH is to
map data points into buckets using a set of hash functions such that nearby points in the original space have a
higher probability of being hashed into the same bucket than those far-apart points. As shown in Figure 2(a),
two groups of parallel lines (purple and green lines) act as two hash functions dividing the space into several
parallelogram-shaped buckets. When conducting the ANN search, we check the points in the bucket where the
query point falls. A hash function with such locality-preserving property is called locality-sensitive hashing. LSH
was first proposed in [1, 2] for the Hamming distance and later extended to several more popular distances, such
as the Euclidean distance. E2LSH [3] is a seminal algorithm for ANN search in the Euclidean space. It adopts
the p-stable distribution-based function proposed in [4] as its LSH function. The algorithm concatenates a set
of K(K ≪ d) independent LSH functions to form a hash table, which is then repeated L times to generate L
K-dimensional hash tables. Two points in the original space are considered a collision if they are mapped into
the same bucket at least once. Intuitively, the probability of two different points being hashed into the same
bucket increases (or decreases) with K (or L). Theoretical results validate that, with properly chosen values for
K and L, E2LSH can solve the ANN search problems in sub-linear time with a constant success probability.
However, E2LSH needs to prepare a large number of hash tables, which causes large storage costs. Additionally,
points close to the query points may be partitioned into buckets different from the one containing the query point,
especially when the query is near the bucket boundaries, which jeopardizes the accuracy.

2.2.2 Product Quantization

Product Quantization (PQ) [35] is a widely-used vector quantization technique. It aims to compress high-
dimensional vectors into short codes to reduce the space overhead in ANN search. It first divides the d dimensions
equally into M groups. Thus each vectors are divided into M sub-vectors and the whole space is divided into M
orthogonal d/M -dimensional sub-spaces. Then, in each sub-space, sub-vectors are clustered into K groups, and
each sub-space centroid is encoded by a single integer code from 1 to K. Finally, each vector can be identified
by the concatenation of codes of the nearest sub-space centroid in each sub-space, and the concatenation of the
these sub-space centroids is the corresponding quantized vector. In search procedure, the Euclidean distance is
replaced by the asymmetric distance as an approximation, which is the Euclidean distance between the query
and the quantized vector. The asymmetric distance can be efficiently computed by table lookup and addition of
sub-space distances, after the distances between sub-space centroids and sub-vector of query in each sub-space
are computed and saved in a distance table. IVFPQ is a variant of PQ, which employs inverted file (IVF) index to
index vectors before quantization. Vectors are clustered into different cells, and each IVF list corresponds to one
cell and stores the identities of all vectors in it. During ANN search, only vectors located in a few nearest cells
are evaluated. Therefore, IVFPQ achieves higher efficiency. As shown in Figure 2(b), the 2D space is divided
into two orthogonal 1D sub-spaces with 2 and 3 centroids respectively, thus forming 6 quantizers (the blue stars)
in the whole space. Vectors are clustered into 4 cells, and only the nearest one is evaluated during ANN search.

2.2.3 Proximity Graph

Graph-based methods have recently come to the forefront as a superior approach for ANN search. They leverage
the power of proximity graphs (PG) and have demonstrated superior performance in terms of both accuracy and
efficiency [58, 59, 62]. The fundamental structure of graph-based methods is a proximity graph, represented as
G = (V,E). Here, the vertex set V symbolizes all data points in the dataset D, while the edge set E encompasses
all edges between vertices if the corresponding points are sufficiently proximate in the original space. As it is
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computationally challenging to identify neighbors for each vertex, the construction cost of an exact proximity
graph escalates to a minimum of O(n2) distance computations. This is prohibitively expensive for large-scale
datasets. So, even though many well-designed graph structure has been used for nearest neighbor search in
multi-dimensional space several decades ago, such as MRNG [53], Delaunay Graph and NN graph, they are
hardly adaptive for high-dimensional ANN search problem due to the high indexing cost. Hence, existing
graph-based methods concentrate on devising more efficient strategies to construct an approximate proximity
graph (APG), such as approximate Delaunay Graph and approximate NN graph, while ensuring robust query
performance. As shown in Figure 2(c), each data point in graph has 2-4 neighbors. The query begins from the
bottom right point and approaches to the correct results via greedy search in the APG.

3 Current Research Activities

We proceed to introduce the evolutionary trajectories of the above-mentioned representative categories of
indexing structures for ANN search. For each category, we trace its development from inception to its current
state, highlighting key milestones and innovations. Additionally, we spotlight the state-of-the-art studies in each
category, offering a comprehensive view of the present landscape.

3.1 Locality-Sensitive Hashing based Methods

To remedy the issues with space and hash boundaries in seminal work, a range of methodologies have been
ramified based on different indexing frameworks, alternative search strategies, and elaborate hash functions. One
such method is Multi-Probe [6], which proposes examining close-by buckets along with the one containing the
query point, following an ascending distance score. Rather than utilizing hash tables, LSB-forest [5] leverages
the Z-order curve and B+-trees to index the projected spaces and finds candidates by finding the data point
with the greatest Length of the Longest Common Prefix (LLCP). LCCS-LSH [7] introduces the concept of
the Longest Circular Co-Substring (LCCS) and a data structure Circular Shift Array (CSA), with which the
candidates are identified by the largest LCCS. These methods carry not only theoretical guarantees of accuracy
and efficiency in E2LSH, but also reduce the space cost. The techniques of Collision Counting and Virtual
Rehashing, introduced in C2LSH [8], offer further space optimization at the cost of query efficiency. Based on
the intuition that the incidence of collisions among nearby points tends to exceed that of points distant from
each other, C2LSH relaxes the collision criteria from exactly K collisions to any l collisions, where l < K is a
given value. Consequently, C2LSH manages to maintain solely K one-dimensional hash tables, as opposed to
the original L K-dimensional hash tables. Building upon C2LSH, QALSH [9] introduces a query-aware LSH
function. By constructing dynamically evolving query-centric buckets, QALSH mitigates the hash boundary issue.
R2LSH [10] enhances the performance of QALSH by projecting data onto multiple two-dimensional spaces
rather than one-dimensional projections. VHP [11] treats QALSH’s buckets as hyperplanes, and introduces the
concept of a virtual hypersphere to achieve a reduced space complexity. I-LSH [12] and EI-LSH [13] introduce an
incremental search strategy and a set of adaptive early termination conditions. This strategy enables incremental
access to data pointss based on their projected distances and early stops the query process if a good enough result
is found. Upon LSH’s locality-preserving property, SRS [14] and PM-LSH [15] propose leveraging distances
between two points in projected spaces to estimate their corresponding distances in the original space. This
enables the determination of ANNs in the original space via lots of exact nearest neighbor searches in projected
spaces. These methods rely on a sole multi-dimensional index, yielding gains in space efficiency. However, it’s
worth noting that the query costs of C2LSH, SRS, and their variants no longer maintain a sub-linear advantage.
Concerning hash functions, random linear projections stand out as the prevailing LSH function, while a multitude
of studies continue their dedicated efforts to innovate and enhance hash functions and strategies [16–18, 21].
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3.1.1 DB-LSH: Locality-Sensitive Hashing with Query-based Dynamic Bucketing

DB-LSH [19] is a state-of-the-art work that can achieve the lowest query time complexity to date. It organizes
the projected spaces with multi-dimensional indexes instead of fixed-width hash buckets, which significantly
reduces space costs. During the query phase, DB-LSH dynamically constructs query-centric buckets with the
required widths and conducts multi-dimensional window queries to efficiently generate candidates. Different from
other query-centric methods, the buckets in DB-LSH are still multi-dimensional cubes like in E2LSH, making
it possible to not only generate high-quality candidates but also to achieve sub-linear query cost. Furthermore,
DB-LSH achieves a much smaller bound on query cost compared to existing work, while using an proper and
practical bucket size. Rigorous theoretical analysis and extensive experiments show that DB-LSH outperforms
the existing LSH methods significantly for both efficiency and accuracy. DB-LSH 2.0 [20] is an extension work
of DB-LSH, including DBI-LSH and DBA-LSH. Instead of exponentially enlarging the radius of query window,
DBI-LSH always probes the next best point in L projected spaces. Such a strategy makes the search terminate at a
more proper search radius, and thus can achieve better accuracy and efficiency. Recognizing the wide variance in
the number of candidates required to reach a given accuracy across queries, DBA-LSH is developed on DBI-LSH.
This variant incorporates several adaptive early termination conditions by leveraging the intermediate query
information, which aggressively reduces the number of points accessed. It has been proven that DBA-LSH can
achieve a faster search without breaking the theoretical guarantee.

In summary, LSH-based methodologies offer fast query processing and probabilistic theoretical guarantees
of query accuracy. Moreover, due to their straightforward architecture, LSH-based indexes exhibit quicker
construction, streamlined support for updates, and notably smaller index sizes in comparison to alternative
approaches for ANN search. Recently, studies adopt the LSH framework to solve other kinds of queries, such as
maximum inner product search (MIPS) [22] and point-to-hyperplane NN search [23] in high-dimensional spaces.
These examples demonstrate the superior performance and great flexibility of LSH. Nevertheless, as evidenced by
various studies [24], despite their theoretical assurances, LSH-based methods frequently encounter difficulties in
outperforming proximity graph-based and product quantization-based techniques in terms of practical accuracy, a
topic that will be delved into in the upcoming sections.

3.2 Quantization based Methods

Although PQ reduces the space overhead, the process of compression is lossy. The error incurred when vectors
are approximated by their quantized vectors, which is called quantization distortion. This results in inadequate
search accuracy. Furthermore, due to the coarse-grained structure of IVF index, its effect of pruning deteriorates
on large datasets. Therefore, studies on PQ mainly falls in two directions, thus reducing quantization distortion
for higher recall [33, 34, 36, 38] and pruning candidates to evaluate for higher efficiency [29, 30, 37, 41].

OPQ [33] and LOPQ [36] attempt to reduce the quantization distortion by introducing rotation matrix. OPQ
adopts a global orthogonal matrix to optimize space decomposition. The original space is first transformed by
the matrix, and then decomposed in the way PQ does. On the contrary, LOPQ adopts multiple local orthogonal
matrices, in order to better fit data with strongly multi-modal distribution. It indexes and partitions vectors with
coarse quantizers, and applies a local rotation transformation on residual vectors in each partition. DPG [34] uses
additional bits to quantize the distance between the vector and corresponding quantizer, because quantization
distortion increases when this distance is large. Distance quantizers serve as an error correction term in distance
estimation, and improve the search accuracy. Noh et al. [38] propose a jointly optimization mechanism of coarse
and fine quantizers. The coarse quantizers are initialized by K-means, and then optimized with fine quantizers
iteratively. In each step, fine quantizers are trained, and each coarse quantizer is updated by the mean error of
corresponding vectors.

Some studies are devoted to design more fine-grained index structure to reduce the number of candidates. IMI
[29] employs the idea of PQ and leverages orthogonal space decomposition to generate inverted indices. Therefore
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the one-dimensional header in inverted list becomes a multi-dimensional one, and finer partitions are achieved.
GNO-IMI [30] adopts a non-orthogonal space decomposition method, because orthogonal decomposition cannot
fit data with significant correlations between dimensions. It uses two-order clustering to cluster the original vectors
and residual vectors respectively, so that each centroid can be represented by the weighted sum of corresponding
centroids from two order. Li et al. [37] propose a learned adaptive early termination mechanism in IVFPQ. The
gradient boosting decision tree model is build and trained, which takes the query vector and intermediate search
results as input features, and decides online whether to early terminate search.

3.2.1 Probing Cardinality Estimation IVFPQ

In IVFPQ and its variants, an input parameter nprobe is required. It determines the nearest number of nprobe
cells to probe, and thus controls the trade-off between accuracy and efficiency. However, it turns out that there is
no such a single nprobe that is optimal for all queries. Intuitively, if a query locates at the center of a cell, its
nearest neighbors may all fall in this cell, so that an nprobe = 1 is enough. On the contrary, if a query locates on
the boundary of several cells, we need to set nprobe to a large number to include its nearest neighbors distributed
in different cells. A fixed nprobe will result in that some queries probe either redundant or insufficient cells.
Therefore, nprobe is an “impossible-to-set" parameter that should be eliminated.

PCE-IVFPQ (Probing Cardinality Estimation IVFPQ) [41] formally defines and addresses the probing
cardinality estimation problem for the first time. The probing cardinality estimation problem aims to learn a
function to estimate a query-dependent minimum probing cardinality (i.e. nprobe) for a target recall, given a
query vector, a target number of nearest neighbors, and distances between the query and all cell centroids. This
problem is a regression problem and can be solved by deep learning techniques. However, using deep learning to
estimate probing cardinality faces two main challenges. (1) Due to the sparsity of high-dimensional space, it is
difficult to capture the distance distribution between the query vector and database vectors if applying a DNN
directly. (2) The data distribution is imbalanced across cells. This results in that the number of vectors to evaluate
varies significantly for different queries even with the same nprobe, which leads to poor estimation. For the first
challenge, specialized modules are designed to process different features. PCE-Net consists of three encoder
networks and one decoder network. The query vector, target number of nearest neighbors and distances to all
centroids are encoded by three encoders respectively, and then concatenated to feed into the decoder. The decoder
outputs the estimated probing cardinality. To mitigate the data distribution imbalance across cells, a hierarchical
balanced clustering algorithm is designed, which can generate balanced cells efficiently. Besides, two additional
optimization strategies are proposed and further reduce distance computations during cell probing.

In summary, PCE-IVFPQ reduces redundant candidate vectors greatly and achieves the state-of-the-art
performance among IVFPQ-based methods w.r.t. search efficiency. The study of probing cardinality estimation is
orthogonal to existing studies such as OPQ or IMI, and can be easily adopted by them.

3.3 Graph based Methods

Efficiently constructing an Approximate Proximity Graph (APG) is a significant challenge when designing a
graph-based index. Various strategies have been proposed to address this challenge. NN-Descent is a prevalent
technique for constructing approximate Nearest Neighbor (NN) graphs. This method involves building an
Approximate Proximity Graph (APG) from a random graph, with the edges for each point updated iteratively
through a local search among the query’s close neighbors. The construction complexity of NN-Descent is reduced
to Õ(n1.14), making it significantly more efficient than brute-force methods. The NN-Descent algorithm is
employed in numerous graph-based approaches, such as EFANNA [47], NSG [48] and others [57, 65]. Several
derivatives of this algorithm have also been developed [44]. On the other hand, the Hierarchical Navigable Small
World (HNSW) algorithm constructs its graph by sequentially inserting points. When inserting a point, denoted as
o, the number of layers o should be placed in is determined through a random number. A query is then conducted
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for o in the current index, and o’s neighbors are chosen from the obtained results. Additionally, HNSW employs
an edge occlusion rule to decrease the out-degree, a procedure proven to be identical to the one used in NSG.
This rule enhances the distribution diversity of neighbors and boosts query efficiency. Known for its superior
performance in addressing the ANN search problem, HNSW is implemented in several widely-used libraries like
NMSLib [43] and Faiss [42], which offer efficient tools for similarity search.

While APG has emerged as the most promising method for solving ANN search problems, updating APGs
for dynamic datasets can be quite challenging. As the dataset evolves, many points in the proximity graph need to
be inserted and deleted. Inserting a point in the APG is relatively easy using the same strategy as the consecutive
insertion strategy. However, deleting points in the APG is difficult as the point is connected to other points and
many edges need to be dropped. There are two typical policies to address deletions in an APG [60]. The first
policy is to drop graph vertices corresponding to deleted points, including their in-edges and out-edges. However,
this policy can make some vertices connected to it become sparse, resulting in a degradation of graph quality.
The second policy is that when deleting vertex o, for any pair of directed edges (oin → o) and (o → oout) in the
graph, we add the edge (oin → oout) in the updated edge set of oin. This policy addresses the problem in the
former policy and ensures the graph quality does not degrade during updating, but heavily increases the deletion
cost because it is time-consuming to update the edge sets of all oins. Therefore, ensuring graph quality and update
efficiency when updating APGs is a challenging task.

3.3.1 Locality Sensitive Hashing-Approximate Proximity Graph

Locality Sensitive Hashing-Approximate Proximity Graph (LSH-APG) [67] is an innovative graph-based method
that leverages lightweight LSH indexes to construct the APG and expedite ANN search processing. LSH indexes,
while swiftly constructed, often fall short in terms of query accuracy. On the other hand, graph-based methods
excel in query processing performance but are hindered by the high construction cost due to their intricate
construction and edge selection strategies. LSH-APG aims to mitigate these limitations inherent in both LSH
and graph-based methods. It utilizes LSH indexes to quickly retrieve preliminary query results as the starting
point for a search in an APG, then employs graph-based techniques to further refine the accuracy of the query
result. In a departure from HNSW and NSG, which reduce the number of edges based on the edge occlusion
rule, LSH-APG introduces an accurate and scalable pruning strategy to filter out neighbors distant from the query
point. This approach markedly reduces the number of points accessed during graph search, effectively boosting
query efficiency without increasing the construction cost. To construct the graph index, LSH-APG employs
the consecutive insertion strategy where LSH framework can help find the candidate neighbors. All points are
consecutively incorporated into the APG, where each point is treated as a query point and inserted into the graph
index based on its nearest neighbors. It addresses the issue of high construction cost with the assistance of the
LSH framework. This strategy not only curtails construction cost by enhancing search efficiency via the LSH
framework, but also allows for a formal correctness and complexity analysis of LSH-APG. The theoretical result
show that LSH-APG have a nearly O(n) query cost.

Furthermore, LSH-APG has designed a “mark-and-delete" policy to alleviate index update issues, which
aims to strike a balance between graph quality and updating efficiency. To delete a point o in the graph indexes,
LSH-APG first marks o and all its out-edges. Typically, only out-edges are stored in APGs, and finding in-edges
is a challenging task that is not considered in the previous two policies. To address this, LSH-APG uses an
approximate query algorithm to find the in-edges, with the query cost bounded by a given threshold CDm to
control deletion efficiency. If an in-edge of o is not found in the search, it is left for deletion in subsequent
searches. If it is found during an ANN search later, it is discarded, and the in-degree of o is decreased by one.
Once the in-degree of o becomes zero, all its out-edges and o itself are discarded. To prevent in-edges from
occupying space for an extended period, LSH-APG also traverses the graph and discards all edges to be deleted
when their number reaches 10% of the total number of edges in LSH-APG. To ensure graph quality, LSH-APG
controls the out-degree of each vertex to be within the interval [T, 2T ]. When an edge (u, o) is marked for
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deletion, LSH-APG checks whether u’s out-degree decreases to less than T . If so, the number of u’s neighbors is
increased to 2T by finding points in the neighbors of u’s neighbors. This approach reduces the negative impact of
deletion on graph quality with an acceptable cost.

4 Challenges and Future Directions

4.1 Hybrid Queries

Efficient ANN search algorithms have profoundly shaped a multitude of applications. However, as data becomes
increasingly complex and multifaceted, there arose a need to refine these searches further, leading to the evolution
of hybrid queries. For instance, consider an e-commerce platform where users search for products using both
textual queries and specific attributes like price range, brand, or manufacturing date. While the primary search is
still for products similar to a given product using textual similarity as the distance metric, hybrid quires require
refining results further by considering the filters applied, ensuring that the results not only match the textual query
but also fall within the specified price range, belong to the chosen brand, or were manufactured within the given
date range. This introduces an additional layer of complexity into traditional ANN search.

To address such hybrid queries, two straightforward ways are post-processing and pre-processing. The post-
processing approach involves building a standard ANN search index, querying as usual, and then post-processing
the results to select only those that align with the query filter. While simple, its performance is often found
lacking in practical scenarios. Conversely, the pre-processing method involves building a distinct index for each
possible filterable label, which can become infeasible with a large number of attribute constraints. Another
intriguing method is inline-processing which integrates filter metadata with each vector into the index, and thus
it simultaneously applies the filtering criteria as the search progresses through the dataset. Inline-processing
can potentially offer more efficient results retrieval, but the state-of-the-art algorithms [26–28] have yet to reach
satisfactory levels.

Optimizing algorithms for faster search, ensuring scalability for massive datasets, developing dynamic filtering
mechanisms that can adapt to changing data landscapes, providing instant results for real-time applications like
web search, and exploring the integration of deep learning techniques for enhanced accuracy are areas that
need further improvement. Additionally, while the foundational concept remains intact, hybrid queries manifest
in various forms, each customized to address specific application requirements. Some variants involve ANN
searches with intricate predicates, while others demand the intersection of multiple ANN search results from
distinct vector attributes. Some variants prioritize speed, while others might emphasize accuracy or the ability to
handle dynamic datasets where data points can be added or removed frequently. All of these aspects remain open
questions, beckoning further exploration and refinement.

4.2 Out-of-Distribution Queries

Out-of-distribution (OOD) queries refer to queries that are not drawn from the same distribution as the indexed
data. A practical example of OOD is when a user searches through an image index using only a textual description
as input. Even if both the image and text embeddings share the same representation space, the embeddings
generated might lie in different distributions, leading to challenges in retrieval. State-of-the-art ANN search
algorithms, such as graph-based and clustering-based indexes, achieve better query accuracy and efficiency over
prior data-agnostic methods like LSH by employing data-dependent index construction. However, when the query
data is OOD, there would be a significant performance decline due to the overfitting to the index data distribution.
By utilizing a small sample set drawn from the query distribution apriori, [25] improves the mean query latency
for OOD queries, but there is still much to explore and develop in this area. Handling OOD queries effectively
is crucial for ensuring the robustness and reliability of AI systems, especially in critical applications. An ideal
system should be able to generalize to OOD examples and flag those that are beyond its capability. It is worth
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noting that OOD detection and handling are active areas of research, not only within the scope of ANN search,
but also across various domains, spanning from computer vision to natural language processing.

4.3 Data Series Similarity Search

A data series is an ordered sequence of real numbers with length l. The most common type of data series is
time series, where values are ordered by timestamp. This kind of data is exploding as the world is increasingly
measured by sensors and other devices. Similarity search is a way to handle data series analysis task, such as
anomaly detection, clustering and frequent pattern matching.

Data series can be treated as a special kind of high-dimensional vectors with ordered dimensions and high
correlation between neighboring values. Similarly, exact and approximate k-nearest neighbors search problem
can be defined for data series. However, except similarity metrics commonly used for high-dimensional vectors
(Sec. 2), there exist a few distance functions specialized for data series. For example, Dynamic Time Warping
(DTW) [40] automatically finds the correspondence between dimensions of two data series, which maximizes
their similarity. Shape-based distance (SBD) [39] slides one data series over the other and uses the maximum
cross-correlation to determine their similarity. These methods may outperform Euclidean distance at some
scenarios since they offer better alignment, yet also incur more computation overhead. Nevertheless, Euclidean
distance still remains one of the most popular similarity metrics.

Over the years, the data series community has proposed many methods for data series similarity search,
which are seldom considered and studied together with those for high-dimensional vectors until recently [78–80].
Experiments conducted in [31, 32] compare the approaches from both communities and indicate that methods
specialized for data series can achieve better performance. In addition, extensions are proposed to enable the
existing data series indexes to support δ-ϵ-approximate search. It remains an open question if there exists a unified
framework that can bridge the two worlds.

4.4 Scalability

As we continue to generate and collect massive amounts of data in various domains, the scalability of vector
databases becomes a critical concern [56, 61, 80]. Consider the case of a global e-commerce platform, such as
Taobao. Every day, Taobao collects vast amounts of data on user behavior, product details, transactions, and much
more. The traditional approach to handling large data volumes is to distribute the data across multiple nodes
or servers [46]. However, distributing high-dimensional vector data is not straightforward. Unlike traditional
relational data, where each record is independent and can be easily partitioned, high-dimensional vectors often
need to be compared with one another during the similarity searches [64], which complicates the distribution
process. Moreover, ANN search algorithms are commonly used in vector databases to speed up the search process.
Existing algorithms use in-memory indexes for low latency and high throughput. However, as the data scales,
these algorithms may still suffer from increased latency since it becomes expensive to load all the date into
the memory and disk-based indexes must be considered. Furthermore, the infrastructure supporting the vector
database will play a significant role in query performance. Techniques such as data sharding, load balancing, and
efficient use of hardware will be crucial in ensuring that the system can handle high-concurrency, low-latency
queries. DiskANN algorithms [25, 54] index 5-10 times more points/machine using inexpensive SSDs with less
than 10ms latency, which is close to the query latency in the in-memory indexes. As we move into a future
characterized by increasingly large volumes of high-dimensional data, research and development in this area will
be crucial. Both data distribution strategies and query optimization techniques will need to evolve in tandem with
the growing demands placed on these systems.
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4.5 Data Privacy and Security

In the era of big data and machine learning, the issue of data privacy and security has taken center stage [49, 63].
Like any database system, a vector database is potentially vulnerable to unauthorized access and data breaches.
As vector databases become more widely used and the data they store becomes increasingly valuable, they will
inevitably become attractive targets for cyber-attacks [51]. This necessitates robust security measures to prevent
unauthorized access. Security protocols should include strong access controls, secure data transmission, and
encryption strategies to protect the stored data. Moreover, constant monitoring and audit trails can help detect any
suspicious activities. Implementing these measures requires a deep understanding of both database security and
the specific vulnerabilities that may be unique to vector databases. Beyond the conventional concerns of data
security, vector databases present another dimension of privacy challenge: the potential sensitivity of the vector
representations themselves. High-dimensional vectors in these databases often capture meaningful patterns and
structures in the data they represent. For instance, a vector could represent a user’s behavior patterns, a patient’s
medical record, or a document’s semantic content. This raises significant privacy concerns, as individuals might
be identifiable from their corresponding vectors, even when the original data is anonymized. A related concern is
the potential for ’information leakage’ from the vector representations . In some scenarios, it might be possible to
reverse-engineer sensitive information from the vectors, especially if the method used to generate the vectors is
known [45]. This requires careful consideration of how vectors are generated and how they can be sufficiently
anonymized or perturbed to prevent such leakage.

4.6 Hardware Efficiency

The growing dependence on vector databases for high-dimensional data processing has highlighted the importance
of hardware efficiency. These databases often utilize approximate nearest neighbor (ANN) search algorithms
to find similar vectors, resulting in a significant computational load. This challenge is further amplified in
distributed systems that rely on GPUs, DRAM, and other hardware components, where fully utilizing hardware
capabilities is crucial for performance but often difficult to achieve. Recently, GPU-based ANN indexes such
as SONG [66] and GGNN [50] have been proposed, achieving a two orders of magnitude speedup compared
to CPU-based methods for ANN search. However, there are two factors to consider when delegating distance
computation to GPUs. First, GPUs require interaction with the host’s software and/or hardware layers, resulting
in data transfer overhead for computation. Second, distance computations can be performed using a few simple,
lightweight vector processing units, making GPUs a less cost-efficient choice for these tasks. In addition, a
software-hardware collaborative approach can combine software and hardware components to achieve highly
scalable approximate nearest neighbor search services. A study called CXL-ANNS [52] disaggregates DRAM
from the host via Compute Express Link (CXL) and places all essential datasets into its memory pool. Another
study, FANNS [55], automatically co-designs hardware and algorithms on FPGAs when given a user-provided
recall requirement on a dataset and a hardware resource budget. Compared to purely CPU- or GPU-based
methods, these software-hardware collaborative approaches achieve superior performance.

5 Conclusions

As LLMs continue to be deployed in various domains, the demand for ANN search on vector representations
is expected to surge exponentially. The current vector search libraries and database products still fall short of
offering the comprehensive services on vector data. This underscores a significant gap and emphasizes the vast
scope of work that remains to be addressed. In the near future, two main challenges may stand out: managing
the scalability in the context of an exponentially increasing volume of vectors, and harnessing the potential of
embedding models to enhance indexing and querying process. These challenges will likely be key areas of
research moving forward.
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Abstract

Space partitions of Rd underlie a vast and important class of fast nearest neighbor search (NNS) algorithms.
Inspired by recent theoretical work on NNS for general metric spaces [8, 9], we develop a new framework
for building space partitions reducing the problem to balanced graph partitioning followed by supervised
classification. We instantiate this general approach with the KaHIP graph partitioner [50] and neural networks,
respectively, to obtain a new partitioning procedure called Neural Locality-Sensitive Hashing (Neural LSH).
On several standard benchmarks for NNS [3], our experiments show that the partitions obtained by Neural
LSH consistently outperform partitions found by quantization-based and tree-based methods as well as classic,
data-oblivious LSH.

1 Introduction

The Nearest Neighbor Search (NNS) problem is defined as follows. Given an n-point dataset P in a d-dimensional
Euclidean space Rd, we would like to preprocess P to answer k-nearest neighbor queries quickly. That is, given
a query point q ∈ Rd, we want to find the k data points from P that are closest to q. NNS is a cornerstone of the
modern data analysis and, at the same time, a fundamental geometric data structure problem that led to many
exciting theoretical developments over the past decades. See, e.g., [7, 53] for an overview.

The main two approaches to constructing efficient NNS data structures are indexing and sketching. The
goal of indexing is to construct a data structure that, given a query point, produces a small subset of P (called
candidate set) that includes the desired neighbors. Such a data structure can be stored on a single machine, or (if
the data set is very large) distributed among multiple machines. In contrast, the goal of sketching is to compute
compressed representations of points to enable computing approximate distances quickly (e.g., compact binary
hash codes with the Hamming distance used as an estimator, see the surveys [53, 54]). Indexing and sketching
can be (and often are) combined to maximize the overall performance [28, WGS+17].

Both indexing and sketching have been the topic of a vast amount of theoretical and empirical literature. In
this work, we consider the indexing problem. In particular, we focus on indexing based on space partitions. The
overarching idea is to build a partition of the ambient space Rd and split the dataset P accordingly. Given a query
point q, we identify the bin containing q and form the resulting list of candidates from the data points residing in
the same bin (or, to boost the accuracy, nearby bins as well).

Some of the popular space partitioning methods include the following:

• locality-sensitive hashing (LSH) [5, 6, 25, 37], where the partitioning is obtained by hashing the points
into “bins” such that the probability of two points colliding dependends on the distance between them,
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• quantization-based approaches [14, 29, GSL+20], where partitions are obtained via k-means clustering of
the dataset and its generalizations, and

• tree-based methods, such as random-projection trees, learned trees or PCA trees [10, 17, 20, 33, 39, 49].
Here, the partition is defined by a rooted binary tree, where each internal node v is augmented with
a hyperplane, and each edge to a child of v corresponds to one of the two halfspaces defined by the
hyperplane. In turn, each leaf v in the tree corresponds to a cell in the partition, defined as the intersection
of all halfspaces corresponding to the edges on a path from the root to v.

Compared to other indexing methods (see Section 1.2), space partitions have multiple benefits. First, they are
naturally applicable in distributed settings, as different bins can be stored on different machines [12, 15, 36, 44].
Moverover, the computational efficiency of search can be further improved by using any nearest neighbor search
algorithm locally on each machine. Second, partition-based indexing is particularly suitable for GPUs due to
the simple and predictable memory access pattern [28]. Finally, partitions can be combined with cryptographic
techniques to yield efficient secure similarity search algorithms [16]. Thus, in this paper we focus on designing
space partitions that optimize the trade-off between their key metrics: the number of reported candidates, the
fraction of the true nearest neighbors among the candidates, the number of bins, and the computational efficiency
of the point location.

Recently, there has been a large body of work that studies how modern machine learning techniques (such as
neural networks) can help tackle various classic algorithmic problems (a partial list includes [11, 13, 19, 32, 40–
42, 45]). Similar methods—under the name “learn to hash”—have been used to improve the sketching approach
to NNS [53]. However, when it comes to indexing, while some unsupervised techniques such as PCA or k-means
have been successfully applied, the full power of modern tools like neural networks has not yet been harnessed.
This state of affairs naturally leads to the following general question: Can we employ modern (supervised)
machine learning techniques to find good space partitions for nearest neighbor search?

1.1 Our contribution

In this paper we address the aforementioned challenge and present a new framework for finding high-quality
space partitions of Rd. Our approach consists of three major steps:

1. Build the k-NN graph G of the dataset by connecting each data point to k nearest neighbors;

2. Find a balanced partition P of the graph G into m parts of nearly-equal size such that the number of edges
between different parts is as small as possible;

3. Obtain a partition of Rd by training a classifier on the data points with labels being the parts of the partition P
found in the second step.

See Figure 1 for illustration. The new algorithm directly optimizes the performance of the partition-based
nearest neighbor data structure. Indeed, if a query is chosen as a uniformly random data point, then the average
k-NN accuracy is exactly equal to the fraction of edges of the k-NN graph G whose endpoints are separated by
the partition P . This generalizes to out-of-sample queries provided that the query and dataset distributions are
close, and the test accuracy of the trained classifier is high.

At the same time, our approach is directly related to and inspired by recent theoretical work [8, 9] on NNS
for general metric spaces. In particular, using the framework of [8, 9], we prove that, under mild conditions on
the dataset P , the k-NN graph of P can be partitioned with a hyperplane into two parts of comparable size such
that only few edges get split by the hyperplane. This gives a partial theoretical justification of our method.

The new framework is very flexible and uses partitioning and learning in a black-box way. This allows us
to plug various models (linear models, neural networks, etc.) and explore the trade-off between the quality and
the algorithmic efficiency of the resulting partitions. We emphasize the importance of balanced partitions for
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the indexing problem, where all bins contain roughly the same number of data points. This property is crucial
in the distributed setting, since we naturally would like to assign a similar number of points to each machine.
Furthermore, balanced partitions allow tighter control of the number of candidates simply by varying the number
of retrieved parts. Note that a priori, it is unclear how to partition Rd so as to induce balanced bins of a given
dataset. Here the combinatorial portion of our approach is particularly useful, as balanced graph partitioning is a
well-studied problem, and our supervised extension to Rd naturally preserves the balance by virtue of attaining
high training accuracy.

We speculate that the new method might be potentially useful for solving the NNS problem for non-Euclidean
metrics, such as the edit distance [55] or optimal transport distance [34]. Indeed, for any metric space, one can
compute the k-NN graph and then partition it. The only step that needs to be adjusted to the specific metric at
hand is the learning step.

Let us finally put forward the challenge of scaling our method up to billion-sized or even larger datasets. For
such scale, one needs to build an approximate k-NN graph as well as using graph partitioning algorithms that are
faster than KaHIP. We leave this exciting direction to future work. For the current experiments (datasets of size
106 points), preprocessing takes several hours. Another important challenge is to obtain NNS algorithms based on
the above partitioning with provable guarantees in terms of approximation and running time. However, we expect
it to be difficult, in particular, since all the current state-of-the-art NNS algorithms lack such guarantees (e.g.,
k-means-based [29] or graph methods [43], see also [3] for a recent SOTA survey).

Evaluation We instantiate our framework with the KaHIP algorithm [50] for the graph partitioning step,
and either linear models or small-size neural networks for the learning step. We evaluate it on several standard
benchmarks for NNS [3] and conclude that in terms of quality of the resulting partitions, it consistently outperforms
quantization-based and tree-based partitioning procedures, while maintaining comparable algorithmic efficiency.
In the high accuracy regime, our framework yields partitions that lead to processing up to 2.3× fewer candidates
than the strongest baseline.

As a baseline method we use k-means clustering [29]. It produces a partition of the dataset into k bins, in a
way that naturally extends to all of Rd, by assigning a query point q to its nearest centroid. (More generally, for
multi-probe querying, we can rank the bins by the distance of their centroids to q). This simple scheme yields
very high-quality results for indexing. Besides k-means, we evaluate LSH [6], ITQ [23], PCA tree [49], RP
tree [20], and Neural Catalyzer [48].

1.2 Related work

On the empirical side, currently the fastest indexing methods for the NNS problem are greedy graph-based
algorithms, such as HNSW [43], NSG [21] or DiskANN [30]. Their high-level idea is to construct a graph on the
dataset (it can be the k-NN graph, but other constructions are also possible), and then for each query perform
a walk, which eventually converges to the nearest neighbor. Although very fast, graph-based approaches have
suboptimal “locality of reference”, which makes them less suitable for several modern architectures. For instance,
this is the case when the algorithm is run on a GPU [28], or when the data is stored in external memory [SWQ+14]
or in a distributed manner [12, 44]. Moreover, graph-based indexing requires many rounds of adaptive access to
the dataset, whereas partition-based indexing accesses the dataset in one shot. This is crucial, for example, for
nearest neighbor search over encrypted data [16]. These benefits justify further study of partition-based methods.

Machine learning techniques are particularly useful for the sketching approach, leading to a vast body of
research under the label “learning to hash” [53, 54]. In particular, several recent works employed neural networks
to obtain high-quality sketches [38, 48]. The fundamental difference from our work is that sketching is designed
to speed up linear scans over the dataset, by reducing the cost of distance evaluation, while indexing is designed
for sublinear time searches, by reducing the number of distance evaluations.
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(a) Dataset (b) k-NN graph together
with a balanced partition

(c) Learned partition

Figure 1: Stages of our framework

We note that while sketches are not designed for indexing, they can be used for that purpose, since a b-bit
hashing scheme induces a partition of Rd into 2b parts. Nonetheless, our experiments show that partitions
induced by these methods (such as Iterative Quantization [23]) are not well-suited for indexing, and underperform
compared to quantization-based indexing, as well as to our methods.

We highlight in particular the recent work of [48], which uses neural networks to learn a mapping f : Rd →
Rd′ that improves the geometry of the dataset and the queries to facilitate subsequent sketching. It is natural to
ask whether the same family of maps can be applied to enhance the quality of partitions for indexing. However,
as our experiments show, in the high accuracy regime the maps learned using the algorithm of [48] consistently
degrade the quality of partitions.

Finally, we mention that here is some prior work on learning space partitions: [17, 39, 47]. However, all these
algorithms learn hyperplane partitions into two parts (then applying them recursively). Our method, on the other
hand, is much more flexible, since neural networks allow us to learn a much richer class of partitions.

2 Our method

Given a dataset P ⊆ Rd of n points, and a number of bins m > 0, our goal is to find a partition R of Rd into m
bins with the following properties:

1. Balanced: The number of data points in each bin is not much larger than n/m.

2. Locality sensitive: For a typical query point q ∈ Rd, most of its nearest neighbors belong to the same bin of
R. We assume that queries and data points come from similar distributions.

3. Simple: The partition should admit a compact description and, moreover, the point location process should be
computationally efficient. For example, we might look for a space partition induced by hyperplanes.

Formally, we want the partition R that minimizes the loss Eq

[∑
p∈Nk(q)

1R(p)̸=R(q)

]
s.t. ∀p∈P |R(p)| ≤

(1 + η)(n/m), where q is sampled from the query distribution, Nk(q) ⊂ P is the set of its k nearest neighbors in
P , η > 0 is a balance parameter, and R(p) denotes the part of R that contains p.

First, suppose that the query is chosen as a uniformly random data point, q ∼ P . Let G be the k-NN graph
of P , whose vertices are the data points, and each vertex is connected to its k nearest neighbors. Then the above
problem boils down to partitioning vertices of the graph G into m bins such that each bin contains roughly n/m
vertices, and the number of edges crossing between different bins is as small as possible (see Figure 1(b)). This
balanced graph partitioning problem is extremely well-studied, and there are available combinatorial partitioning
solvers that produce very high-quality solutions. In our implementation, we use the open-source solver KaHIP [50],
which is based on a sophisticated local search.
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R0

R1 R2 R3

P1 P2 P3 P4 P5 P6 P7 P8 P9

Figure 2: Hierarchical partition into 9 bins with m1 = m2 = 3. Ri’s are partitions, Pj’s are the bins of the
dataset. Multi-probe query procedure, which descends into 2 bins, may visit the bins marked in bold.

More generally, we need to handle out-of-sample queries, i.e., which are not contained in P . Let R̃ denote
the partition of G (equivalently, of the dataset P ) found by the graph partitioner. To convert R̃ into a solution to
our problem, we need to extend it to a partition R of the whole space Rd that would work well for query points.
In order to accomplish this, we train a model that, given a query point q ∈ Rd, predicts which of the m bins
of R̃ the point q belongs to (see Figure 1(c)). We use the dataset P as a training set, and the partition R̃ as the
labels – i.e., each data point is labeled with the ID of the bin of R̃ containing it. The method is summarized in
Algorithm 1. The geometric intuition for this learning step is that – even though the partition R̃ is obtained by
combinatorial means, and in principle might consist of ill-behaved subsets of Rd – in most practical scenarios, we
actually expect it to be close to being induced by a simple partition of the ambient space. For example, if the
dataset is fairly well-distributed on the unit sphere, and the number of bins is m = 2, a balanced cut of G should
be close to a hyperplane.

The choice of model to train depends on the desired properties of the output partition R. For instance, if
we are interested in a hyperplane partition, we can train a linear model using SVM or regression. In this paper,
we instantiate the learning step with both linear models and small-sized neural networks. Here, there is natural
tension between the size of the model we train and the accuracy of the resulting classifier, and hence the quality of
the partition we produce. A larger model yields better NNS accuracy, at the expense of computational efficiency.
We discuss this in Section 3.

Multi-probe querying Given a query point q, the trained model can be used to assign it to a bin of a partition
R, and search for nearest neighbors within the data points in that part. In order to achieve high search accuracy,
we actually train the model to predict several bins for a given query point, which are likely to contain nearest
neighbors. For neural networks, this can be done naturally by taking several largest outputs of the last layer. By
searching through more bins (in the order of preference predicted by the model) we can achieve better accuracy,
allowing for a trade-off between computational resources and accuracy.

Hierarchical partitions When the required number of bins m is large, in order to improve the efficiency of
the resulting partition, it pays off to produce it in a hierarchical manner. Namely, we first find a partition of Rd

into m1 bins, then recursively partition each of the bins into m2 bins, and so on, repeating the partitioning for L
levels. The total number of bins in the overall partition is m = m1 ·m2 · . . .mL. See Figure 2 for illustration.
The advantage of such a hierarchical partition is that it is much simpler to navigate than a one-shot partition with
m bins.

Neural LSH with soft labels In the primary instantiation of our framework, we set the supervised learning
component to a a neural network with a small number of layers and constrained hidden dimensions (the exact
parameters are specified in the next section). In order to support effective multi-probe querying, we need to infer
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Algorithm 1: Nearest neighbor search with a learned space partition

1 Preprocessing
2 Input: Dataset P ⊂ Rd, integer parameter k > 0, number of bins m > 0

1: Build a k-NN graph G of P .
2: Run a balanced graph partitioning algorithm on G into m parts. Number the parts arbitrarily as 1, . . . ,m.

Let π(p) ∈ {1, . . . ,m} denote the part containing p, for every p ∈ P .
3: Train a machine learning model M with training set P and labels {π(p)}p∈P . For every x ∈ Rd, let

M(x) ∈ {1, . . . ,m} denote the prediction of M on x. =0

M(·) defines our m-way partition of Rd. Note that it is possible that π(p) ̸= M(p) for some p ∈ P , if M
attains imperfect training accuracy.

Query
Input: query point q ∈ Rd, number of bins to search b

1: Run inference on M to compute M(q).
2: Search for a near neighbor of q in the bin M(q), i.e., among the candidates {p ∈ P : M(p) = M(q)}.
3: If M furthermore predicts a distribution over bins, search for a near neighbor in the b top-ranked bins

according to the ranking induced by the distribution (i.e., from the most likely bin to less likely ones). =0

not just the bin that contains the query point, but rather a distribution over bins that are likely to contain this point
and its neighbors. A T -probe candidate list is then formed from all data points in the T most likely bins. In order
to accomplish this, we use soft labels for data points generated as follows. For S ≥ 1 and a data point p, the soft
label P = (p1, p2, . . . , pm) is a distribution over the bin containing a point chosen uniformly at random among
S nearest neighbors of p (including p itself). Now, for a predicted distribution Q = (q1, q2, . . . , qm), we seek
to minimize the KL divergence between P and Q:

∑m
i=1 pi log

pi
qi

. Intuitively, soft labels help guide the neural
network with information about multiple bin ranking. S is a hyperparameter that needs to be tuned; we study its
setting in the appendix (cf. Figure 6b).

3 Sparse hyperplane-induced cuts in k-NN graphs

We state and prove a theorem that shows, under certain mild assumptions, that the k-NN graph of a dataset
P ⊆ Rd can be partitioned by a hyperplane such that the induced cut is sparse (i.e., has few crossing edges while
the sizes of two parts are similar). The theorem is based on the framework of [8, 9] and uses spectral techniques.

We start with some notation. Let Nk(p) be the set of k nearest neighbors of p in P . The degree of p in the
k-NN graph is deg(p) = |Nk(p)∪ {p′ ∈ P | p ∈ Nk(p

′)}|. Let D be the distribution over the dataset P , where a
point p ∈ P is sampled with probability proportional to its degree deg(p). Let Dclose be the distribution over pairs
(p, p′) ∈ P × P , where p ∈ P is uniformly random, and p′ is a uniformly random element of Nk(p). Denote
α = E(p,p′)∈Dclose

[∥p − p′∥22] and β = Ex1∼D,x2∼D[∥p1 − p2∥22]. We will proceed assuming that α (typical
distance between a data point and its nearest neighbors) is noticeably smaller than β (typical distance between
two independent data points).

The following theorem implies, informally speaking, that if α ≪ β, then there exists a hyperplane which
splits the dataset into two parts of not too different size while separating only few pairs of (p, p′), where p′ is one
of the k nearest neighbors of p. For the proof of the theorem, see [18].

Theorem 3.1: There exists a hyperplane H = {x ∈ Rd | ⟨a, x⟩ = b} such that the following holds. Let
P = P1 ∪P2 be the partition of P induced by H: P1 = {p ∈ P | ⟨a, p⟩ ≤ b}, P2 = {p ∈ P | ⟨a, p⟩ > b}. Then,
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one has:
Pr(p,p′)∼Dclose

[p and p′ are separated by H]

min{Prp∼D[p ∈ P1],Prp∼D[p ∈ P2]}
≤

√
2α

β
. (1)

4 Experiments

Datasets For the experimental evaluation, we use three standard ANN benchmarks [3]: SIFT (image descriptors,
1M 128-dimensional points), GloVe (word embeddings [46], approximately 1.2M 100-dimensional points,
normalized), and MNIST (images of digits, 60K 784-dimensional points). All three datasets come with 10 000
query points, which are used for evaluation. We include the results for SIFT and GloVe in the main text, and
MNIST in [18].

Evaluation metrics We mainly investigate the trade-off between the number of candidates generated for a
query point, and the k-NN accuracy, defined as the fraction of its k nearest neighbors that are among those
candidates. The number of candidates determines the processing time of an individual query. Over the entire
query set, we report both the average as well as the 0.95-th quantile of the number of candidates. The former
measures the throughput1 of the data structure, while the latter measures its latency.2 We focus on parameter
regimes that yield k-NN accuracy of at least 0.75, in the setting k = 10. Additional results with broader regimes
of accuracy and of k are included in the appendix.

Our methods We evaluate two variants of our method, with two different choices of the supervised learning
component:

• Neural LSH: In this variant we use small neural networks. We compare this method with k-means clustering,
Iterative Quantization (ITQ) [23], Cross-polytope LSH [6], and Neural Catalyzer [48] composed over k-means
clustering. We evaluate partitions into 16 bins and 256 bins. We test both one-level (non-hierarchical) and
two-level (hierarchical) partitions. Queries are multi-probe.

• Regression LSH: This variant uses logistic regression as the supervised learning component and, as a result,
produces very simple partitions induced by hyperplanes. We compare this method with PCA trees [1, 35, 49],
random projection trees [20], and recursive bisections using 2-means clustering. We build trees of hierarchical
bisections of depth up to 10 (thus total number of leaves up to 1024). The query procedure descends a single
root-to-leaf path and returns the candidates in that leaf.

4.1 Implementation details

Neural LSH uses a fixed neural network architecture for the top-level partition, and a fixed architecture for all
second-level partitions. Both architectures consist of several blocks, where each block is a fully-connected layer
+ batch normalization [26] + ReLU activations. The final block is followed by a fully-connected layer and a
softmax layer. The resulting network predicts a distribution over the bins of the partition. The only difference
between the top-level network the second-level network architecture is their number of blocks (b) and the size
of their hidden layers (s). In the top-level network we use b = 3 and s = 512. In the second-level networks
we use b = 2 and s = 390. To reduce overfitting, we use dropout with probability 0.1 during training. The
networks are trained using the Adam optimizer [31] for under 20 epochs on both levels. We reduce the learning
rate multiplicatively at regular intervals. The weights are initialized with Glorot initialization [22]. To tune soft
labels, we try different values of S between 1 and 120.

1Number of queries per second.
2Maximum time per query, modulo a small fraction of outliers.
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GloVe SIFT
Averages 0.95-quantiles Averages 0.95-quantiles

One level 16 bins 1.745 2.125 1.031 1.240
256 bins 1.491 1.752 1.047 1.348

Two levels 16 bins 2.176 2.308 1.113 1.306
256 bins 1.241 1.154 1.182 1.192

Figure 3: Largest ratio between the number of candidates for Neural LSH and k-means over the settings where
both attain the same target 10-NN accuracy, over accuracies of at least 0.85. See details in Section 4.2.

We evaluate two settings for the number of bins in each level, m = 16 and m = 256 (leading to a total
number of bins of the total number of bins in the two-level experiments are 162 = 256 and 2562 = 65 536,
respectively). In the two-level setting with m = 256 the bottom level of Neural LSH uses k-means instead
of a neural network, to avoid overfitting when the number of points per bin is tiny. The other configurations
(two-levels with m = 16 and one-level with either m = 16 or m = 256) we use Neural LSH at all levels.

We slightly modify the KaHIP partitioner to make it more efficient on the k-NN graphs. Namely, we introduce
a hard threshold of 2000 on the number of iterations for the local search part of the algorithm, which speeds up
the partitioning dramatically, while barely affecting the quality of the resulting partitions.

4.2 Comparison with multi-bin methods

Figure 4 shows the empirical comparison of Neural LSH with k-means clustering, ITQ, Cross-polytope LSH,
and Neural Catalyzer composed over k-means clustering. It turns out that k-means is the strongest among these
baselines.3 The points depicted in Figure 4 are those that attain accuracy ≥ 0.75. In [18] we include the full
accuracy range for all methods.

In all settings considered, Neural LSH yields consistently better partitions than k-means.4 Depending on the
setting, k-means requires significantly more candidates to achieve the same accuracy:

• Up to 117% more for the average number of candidates for GloVe;

• Up to 130% more for the 0.95-quantiles of candidates for GloVe;

• Up to 18% more for the average number of candidates for SIFT;

• Up to 34% more for the 0.95-quantiles of candidates for SIFT;

Figure 3 lists the largest multiplicative advantage in the number of candidates of Neural LSH compared to
k-means, for accuracy values of at least 0.85. Specifically, for every configuration of k-means, we compute the
ratio between the number of candidates in that configuration and the number of candidates of Neural LSH in its
optimal configuration, among those that attained at least the same accuracy as that k-means configuration.

We also note that in all settings except two-level partitioning with m = 256,5 Neural LSH produces partitions
for which the 0.95-quantiles for the number of candidates are very close to the average number of candidates,
which indicates very little variance between query times over different query points. In contrast, the respective gap

3It is important to note that ITQ is not designed to produce space partitions; as explained in Section 1, it does so as a side-effect.
Simiarly, Neural Catalyzer is not designed to enhance partitions. The comparison is intended to show that they do not outperform indexing
techniques despite being outside their intended application.

4We note that two-level partitioning with m = 256 is the best performing configuration of k-means, for both SIFT and GloVe, in
terms of the minimum number of candidates that attains 0.9 accuracy. Thus we evaluate this baseline at its optimal performance.

5As mentioned earlier, in this setting Neural LSH uses k-means at the second level, due to the large overall number of bins compared
to the size of the datasets. This explains why the gap between the average and the 0.95-quantile number of candidates of Neural LSH is
larger for this setting.
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in the partitions produced by k-means is much larger, since unlike Neural LSH, it does not directly favor balanced
partitions. This implies that Neural LSH might be particularly suitable for latency-critical NNS applications.

Model sizes. The largest model size learned by Neural LSH is equivalent to storing about ≈ 5700 points
for SIFT, or ≈ 7100 points for GloVe.This is considerably larger than k-means with k ≤ 256, which stores at
most 256 points. Nonetheless, we believe the larger model size is acceptable for Neural LSH, for the following
reasons. First, in most of the NNS applications, especially for the distributed setting, the bottleneck in the high
accuracy regime is the memory accesses needed to retrieve candidates and the further processing (such as distance
computations, exact or approximate). The model size is not a hindrance as long as does not exceed certain
reasonable limits (e.g., it should fit into a CPU cache). Neural LSH significantly reduces the memory access
cost, while increasing the model size by an acceptable amount. Second, we have observed that the quality of the
Neural LSH partitions is not too sensitive to decreasing the sizes the hidden layers. The model sizes we report
are, for the sake of concreteness, the largest ones that still lead to improved performance. Larger models do not
increase the accuracy, and sometimes decrease it due to overfitting.

4.3 Comparison with tree-based methods

Next we compare binary decision trees, where in each tree node a hyperplane is used to determine which of the
two subtrees to descend into. We generate hyperplanes with the following methods: Regression LSH, the Learned
KD-tree of [17], the Boosted Search Forest of [39], cutting the dataset into two equal halves along the top PCA
direction [35, 49], 2-means clustering, and random projections of the centered dataset [20, 33]. We build trees of
depth up to 10, which correspond to hierarchical partitions with the up to 210 = 1024 bins. Results for GloVe and
SIFT are summarized in Figure 5 (see appendix). For random projections, we run each configuration 30 times
and average the results.

For GloVe, Regression LSH significantly outperforms 2-means, while for SIFT, Regression LSH essentially
matches 2-means in terms of the average number of candidates, but shows a noticeable advantage in terms of the
0.95-percentiles. In both instances, Regression LSH significantly outperforms PCA tree, and all of the above
methods dramatically improve upon random projections.

Note, however, that random projections have an additional benefit: in order to boost search accuracy, one can
simply repeat the sampling process several times and generate an ensemble of decision trees instead of a single
tree. This allows making each individual tree relatively deep, which decreases the overall number of candidates,
trading space for query time. Other considered approaches (Regression LSH, 2-means, PCA tree) are inherently
deterministic, and boosting their accuracy requires more care: for instance, one can use partitioning into blocks
as in [29], or alternative approaches like [33]. Since we focus on individual partitions and not ensembles, we
leave this issue out of the scope.

4.4 Additional experiments

In this section we include several additional experiments.
First, we study the effect of setting k. We evaluate the 50-NN accuracy of Neural LSH when the partitioning

step is run on either the 10-NN or the 50-NN graph.6 We compare both algorithms to k-means with k = 50.
Figure 6a compares these three algorithms on GloVe for 16 bins reporting average numbers of candidates. From
this plot, we can see that for k = 50, Neural LSH convincingly outperforms k-means, and whether we use 10-NN
or 50-NN graph matters very little.

Second, we study the effect of varying S (the soft labels parameter) for Neural LSH on GloVe for 256 bins.
See Figure 6b where we report the average number of candidates. As we can see from the plot, the setting S = 15

6Neural LSH can solve k-NNS by partitioning the k′-NN graph, for any k, k′; they do not have to be equal.
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(a) GloVe, one level, 16 bins (b) SIFT, one level, 16 bins

(c) GloVe, one level, 256 bins (d) SIFT, one level, 256 bins

(e) GloVe, two levels, 16 bins (f) SIFT, two levels, 16 bins

(g) GloVe, two levels, 256 bins, k-means at 2nd level (h) SIFT, two levels, 256 bins, k-means at 2nd level

Figure 4: Comparison of Neural LSH with baselines; x-axis is the number of candidates, y-axis is the 10-NN
accuracy
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Figure 5: Comparison of decision trees built from hyperplanes: x-axis – number of candidates, y-axis – 10-NN
accuracy
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Figure 6: Effect of various hyperparameters

yields much better results compared to the vanilla case of S = 1. However, increasing S beyond 15 brings
diminishing returns on the overall accuracy.

5 Conclusions and future directions

We presented a new technique for finding partitions of Rd which support high-performance indexing for sublinear-
time NNS. It proceeds in two major steps: (1) We perform a combinatorial balanced partitioning of the k-NN
graph of the dataset; (2) We extend the resulting partition to the whole ambient space Rd by using supervised
classification (such as logistic regression, neural networks, etc.). Our experiments show that the new approach
consistently outperforms quantization-based and tree-based partitions.

Our work leads to multiple exciting open problems. Perhaps the most important one is whether it is possible
to design a variant of Neural LSH that has provable correctness guarantees, without sacrificing the empirical
performance. Such guarantees could take multiple forms:

1. approximate nearest neighbor: the data structure guarantees that, given a query q, it returns a point p′

whose distance to q is at most some factor c > 1 greater than the distance from q to its true nearest neighbor.

2. probabilistic near neighbor: for a given scale parameter r and probability parameter δ > 0, given a query
q, each point p within a distance r from q is returned with probability 1− δ.
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Algorithms based on locality-sensitive hashing satisfy guarantees (1) [25] or (2) [4], depending on the
implementation. Similarly, some tree-based methods such as [10] and [20] satisfy such guarantees. It is thus
plausible that one could achieve SOTA empirical performance while guaranteeing some form of correctness.
At the same time, we expect this challenge to be somewhat difficult, as the current state-of-the-art indexing
algorithms typically lack correctness guarantees. For example, [27] has recently demonstrated that there exist
data sets for which graph-based algorithms such as HNSW [43], NSG [21] or DiskANN [30] must scan a large
percentage of data point to return a reasonable approximate nearest neighbor. Nevertheless, an initial progress
towards this goal has been already made in [2].
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Abstract

Distance measures are core building blocks in time-series analysis and the subject of active research for
decades. Unfortunately, the most detailed experimental study in this area is outdated (over a decade old) and,
naturally, does not reflect recent progress. Importantly, this study (i) omitted multiple distance measures,
including a classic measure in the time-series literature; (ii) considered only a single time-series normalization
method; and (iii) reported only raw classification error rates without statistically validating the findings,
resulting in or fueling four misconceptions in the time-series literature. Motivated by the aforementioned
drawbacks and our curiosity to shed some light on these misconceptions, we comprehensively evaluate 71
time-series distance measures. Specifically, our study includes (i) 8 normalization methods; (ii) 52 lock-step
measures; (iii) 4 sliding measures; (iv) 7 elastic measures; (v) 4 kernel functions; and (vi) 4 embedding
measures. We extensively evaluate these measures across 128 time-series datasets using rigorous statistical
analysis. For the most promising measures, we present an accuracy-to-runtime analysis and summarize recent
progress on a generalized lower bounding measure that accelerates all elastic distances. Our findings debunk
four long-standing misconceptions that significantly alter the landscape of what is known about existing
distance measures. With the new foundations in place, we discuss open challenges and promising directions.

1 Introduction

The understanding of a multitude of natural or human-made processes involves the analysis of high-dimensional
observations over time. The recording of such time-varying measurements leads in an ordered sequence of data
points called time series [64, 65]. In the last decades, time-series analysis has become increasingly prevalent,
affecting virtually all scientific disciplines and their corresponding industries [25, 39, 47, 56, 60, 71, 72]. With
sensors and devices becoming increasingly networked and with the explosion of Internet-of-Things (IoT)
applications, the volume of produced time series is expected to continue to rise [41, 42, 55, 57, 74]. This growth
and ubiquity of time series generates tremendous interest in the extraction of meaningful knowledge from time
series [31, 67].

The basis for most analytics over time series involves the detection of similarities between time series. The
measurement of similarity, through a distance or similarity measure, is the most fundamental building block in
time-series data mining, fueling tasks such as querying [2, 29, 76, 78], indexing [32, 45, 112], clustering [7, 43, 68–
70], classification [6, 67, 85, 107], motif discovery [53, 62, 108], and anomaly detection [9–12, 24, 75, 77, 96].
In contrast to other data types where distance measures often process observations independently, for time series,
distance measures consider sequences of observations together. This characteristic complicates the definition
of distance measures for time series and, therefore, it is desirable to study the factors that determine their
effectiveness.

The difficulty in formalizing accurate distance measures stems from the inability to express precisely the
notion of similarity. As humans we easily recognize perceptually similar time series, by ignoring a variety
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of distortions, such as fluctuations, misalignments, and stretching of observations. However, it is challenging
to derive definitions to reflect the similarity for mathematically non-identical time series [33]. Due to that
difficulty and the need to handle the variety of distortions, dozens of distance measures have been proposed
[5, 8, 16–18, 29, 34, 35, 61, 67, 68, 88, 95, 99].

Despite this abundance of time-series distance measures and their implications in the effectiveness for a
multitude of time-series tasks, less attention has been given in their comprehensive experimental validation.
Specifically, in the past two decades, only a single comprehensive experimental evaluation has been dedicated to
studying the accuracy of 9 influential time-series distance measures over 38 datasets [29]. Unfortunately, this
study suffers from three main drawbacks: (i) this study omitted multiple distance measures, including one of the
most classic measures in the time-series literature, namely, the cross-correlation measure [13, 79]; (ii) this study
considered only a single time-series normalization method; and (iii) this study reported raw classification error
rates without performing any rigorous statistical analysis to assess the significance of the findings. Therefore, the
analysis is incomplete, and, the findings might not be conclusive. Importantly, this study is now outdated (more
than a decade old), and, naturally, it does not reflect recent progress. Considering the previous drawbacks as well
as the remarkable interest in time-series analysis, we believe it is critical to revisit this subject.

However, our effort is not only motivated by the necessity to address the aforementioned issues or to extend
the previous study with newer datasets and distance measures. Instead, the thorough experimental evaluation
of time-series distance measures that we present in this paper is the byproduct of our attempt to challenge four
long-standing misconceptions (see M1−M4 in Section 2) that have appeared in the time-series literature. These
misconceptions are concerned with the (i) normalization of time series; (ii) identification of the state-of-the-art
distance measure in every category of measures; (iii) performance of the omitted measures against state-of-the-art
measures; and (iv) detection of the most powerful category of measures. Such misconceptions originated from
several influential papers [2, 8, 34, 40, 94], some of which date back a quarter of a century, and are fueled by recent
inconclusive findings [29] as well as successive claims in the literature that we discuss later. Considering how
widely cited and impactful these papers are, we believe it is risky not to challenge such persistent misconceptions
that might disorientate newcomer researchers and practitioners.

Motivated by the aforementioned issues and our curiosity to shed some light on these misconceptions, we
conduct a comprehensive experimental evaluation to validate the effectiveness of 71 time-series distance measures.
These distance measures belong to five categories: (i) 52 lock-step measures, which compare the ith point of
one time series with the ith point of another; (ii) 4 sliding measures, which are the sliding versions of lock-step
measures when comparing one time series with all shifted versions of the other; (iii) 7 elastic measures, which
create a non-linear mapping between time series by comparing one-to-many points in order to align or stretch
points; (iv) 4 kernel measures, which use a function (with lock-step, sliding, or elastic properties) to implicitly
map data into a high-dimensional space; and (v) 4 embedding measures, which exploit distance or kernel measures
indirectly for constructing new representations for time series. In addition, we consider 8 normalization methods
for time series.

We perform an extensive evaluation of these distance measures across 128 datasets [25] and compare
their classification accuracy obtained from one-nearest-neighbor classifiers (1-NN) under both supervised and
unsupervised settings. We conduct a rigorous statistical validation of our findings by employing two statistical
tests to assess the significance of the differences in classification accuracy when comparing pairs of measures or
multiple measures together. In summary, our study identifies (i) normalization methods leading to significant
improvements in a number of distance measures; (ii) new lock-step measures that significantly outperform the
current state of the art; (iii) an omitted baseline that most highly popular elastic measures do not outperform; and
(iv) new elastic and new kernel measures that significantly outperform the current state of the art. These findings
debunk the four long-standing misconceptions and alter the landscape of what is known about existing measures.

We start with the description of the four misconceptions in the literature (Section 2) and we review the
relevant background (Section 3). Then, we present our contributions:
• We explore for the first time 8 normalization methods along 56 distance measures (Section 4).
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• We study 52 lock-step distance measures (Section 5).
• We investigate 4 classic sliding measures omitted from every previous evaluation (Section 6).
• We compare 7 elastic measures under supervised and unsupervised settings (Section 7).
• We study for the first time 4 kernel (Section 8) and 4 embedding distance measures (Section 9).
• We present an accuracy-to-runtime analysis (Section 10).
• We summarize recent progress towards accelerating the strongest elastic distances via the use of lower

bounding measures (Section 11).
Finally, we discuss new directions (Section 12) and conclude with the implications of our work (Section 13). An
earlier version of the paper has been published in ACM SIGMOD 2020 [73].

2 The Four Misconceptions

In this section, we describe four misconceptions that have appeared in the time-series literature.
These misconceptions have originated in part from several influential papers [2, 8, 34, 40, 94]. Subsequently,

these misconceptions were fueled by a comprehensive study of time-series distance measures [29] as well
as dozens of subsequent papers in the literature trusting its findings. Even though an extension of this study
appeared five years later [102], this newer version focused on elaborating on the previous results. Recent studies
that have focused on time-series classification [6, 54] performed a statistical analysis of several classifiers,
including the distance measures in [29, 102]. Unfortunately, these studies only considered supervised tuning of
necessary parameters, which does not reflect the use of distance measures for similarity search [32]. Importantly,
some results in [6] contradict other results in [54], which, in turn, validated claims that there is no significant
difference between the evaluated elastic measures [29, 102]. Interestingly, the improved accuracy found for some
measures was attributed to the evaluation framework used while otherwise it was claimed to be undetectable
[6]. Considering such apparent difficulties in providing conclusive evidence for this important subject, it is not
surprising that the following misconceptions have persisted for so long.

Before we dive into the details, we emphasize that we do not believe or imply that any of these misconceptions
were created on purpose. On the contrary, we believe that they are based on evidence, trends, and resources
available at the given point in time. We describe the four misconceptions in the form of answers to questions a
newcomer researcher would likely identify by studying the literature.
M1: How to normalize time series? The consensus is to use the z-score or z-normalization method. Starting
with the work of Goldin and Kanellakis [40], a follow-up of the two seminal papers for sequence [2] and
subsequence [34] search in time-series databases, that suggested first to normalize the time series to address issues
with scaling and translation, z-normalization became the prevalent method to preprocess time series. Despite
the proposal of alternative methods the same year [3], the z-normalization was subsequently preferred as the
suggested transformations are also applicable to the widely popular Fourier representation [2, 34, 83]. Due to the
ubiquity of z-normalization, a valuable resource for time series, the UCR Archive [25], offered until recently
the datasets in their z-normalized form. To the best of our knowledge, no study has ever extensively evaluated
normalization methods for time series. We review 8 approaches in Section 4 and study their performance in
Sections 5 and 6.
M2: Which lock-step measure to use? The consensus is to use the Euclidean distance (ED). ED was the
method of choice in the first paper for sequence search in time series [2] due to its usefulness in many cases and its
applicability over feature vectors. Considering that ED is straightforward to implement, parameter-free, efficient,
as well as tightly connected with the Fourier representation and widely supported by indexing mechanisms (in
contrast to other Lp-norm variants [109]), there is no surprise about its popularity. Besides, evidence that with
increased dataset sizes, the classification error of ED converges to the error of more accurate measures [94],
justified its use from virtually all current time-series indexing methods [32]. (Our results in Section 10 suggest
that classification error of ED may not always converge to the error of more accurate measures, at least not always
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with the same speed of convergence.) In Section 5, we evaluate 52 lock-step measures.
M3: Are elastic better than sliding measures? The answer is currently unknown. Despite the wide popularity
of the cross-correlation measure, also known as sliding Euclidean or dot product distance, in the signal and image
processing literature [14], cross-correlation has largely been omitted from distance measure evaluations. We
believe two factors are responsible for that. First, cross-correlation was considered in the seminal paper [2] as a
typical similarity measure, but ED was preferred instead because (i) cross-correlation reduces to ED; and (ii) for
the aforementioned reasons in M2. Second, in the introduction of Dynamic Time Warping (DTW) [8], an elastic
measure, as an alternative to ED a year later, no comparison was performed against cross-correlation, an obvious
baseline. Subsequently, virtually all research on that subject focused either on lock-step or elastic measures
[32, 33], with a few exceptions [52, 68, 89]. Interestingly, cross-correlation was not considered as a baseline
method in any of the proposed elastic measures [16–18, 61, 95, 99], neither in any of the experimental evaluations
of distance measures discussed previously [6, 29, 54, 102]. Strangely, cross-correlation was also omitted from
many popular surveys [33, 84]. Therefore, it remains unknown if elastic measures outperform sliding measures.
We study 4 sliding measures in Section 6 and analyse their performance against elastic measures in Section 7.
M4: Is DTW the best elastic measure? The general consensus that has emerged is yes. Since the introduction
of DTW as a distance measure for time series [8], DTW has inspired the exploration of edit-based distances and
it is widely used as the baseline method for this problem [6, 16–18, 54, 61, 68, 95, 99]. It is not uncommon to
identify statements even in the abstracts of papers that 1-NN with DTW is exceptionally difficult to outperform
[80–82, 105]. Such statements have been backed over the years by the aforementioned extensive evaluations,
which conclude that (i) the accuracy of other elastic measures is very close to that of DTW [29, 102]; (ii) there is
no significant difference in the accuracy of elastic measures [54]; and (iii) that it is “a little embarrassing” that
most classifiers do not outperform 1-NN with DTW [6]. Therefore, there is little space to doubt that DTW is the
best elastic measure. To study that misconception, we validate 7 elastic measures in Section 7.

To complete the analysis and capture recent progress, we also include kernel measures and embedding
measures in our evaluation (Sections 8 and 9). With the detailed presentation of the four misconceptions, we
believe we have now convinced the reader that these misconceptions are not based on any personal biases but,
instead, have originated naturally along with the evolution of this area. However, it is risky to not challenge their
validity, which may result in confusion for newcomer researchers and practitioners and discourage them from
tackling problems in that area. Importantly, it is surprising to consider that half a century of scientific progress
has not resulted in any significant improvements over ED or the 50-year-old DTW [87].

Next, we review the relevant background required to validate the accuracy of the normalization methods and
distance measures. Even though the efficiency of measures is another important factor of their effectiveness,
there are many ways to accelerate each measure, ranging from hardware-aware implementations to algorithmic
solutions such as the use of indexing or comparison pruning. We refer the reader to an excellent recent study of
data-series similarity search [32], which shows the level of detail required to only evaluate ED. Therefore, we
leave such detailed study for future work but we present an accuracy-to-runtime analysis in Section 10.

3 Preliminaries and background

In this section, we review the necessary background for our experimental evaluation.
Terminology and definitions: We consider a time-series dataset as a set of n real-valued vectors X =
[x⃗1, . . . , x⃗n]

⊤∈Rn×m, where each time series, x⃗i∈Rm, is an m-dimensional ordered sequence of data points.
From this definition, it becomes clear that we consider univariate time series of equal length, where each of these
points is a scalar. Following the previous evaluations [6, 29, 102], we consider that the sampling rates of all time
series are the same and omit the discrete time stamps.
Datasets: To conduct our extensive evaluation, we use one of the most valuable public resources in the time-
series data mining literature, the UCR Time-Series Archive [25]. This archive contains the largest collection
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of class-labeled time-series datasets. Currently, the archive consists of 128 datasets and includes time series
from sensor readings, image outlines, motion capture, spectrographs, medical signals, electric devices, as well as
simulated time series. Each dataset contains from 40 to 24, 000 time series, the lengths vary from 15 to 2, 844,
and each time series is annotated with a single label. The majority of the datasets are already z-normalized and
we apply the same normalization to all datasets.

The latest version of the archive has deliberately left a small number of datasets containing time series with
varying lengths and missing values to reflect the real world. Following the recommendation of the authors of the
archive, who performed similar steps to report classification accuracy numbers on the UCR archive website [25],
we resample shorter time series to reach the longest time series in each dataset and we fill missing values using
linear interpolation. Through these steps, we make the new datasets compatible with previous versions of the
archive [66].
Evaluation framework: Following the previous studies [6, 29], we also employ the 1-NN classifier in our
evaluation framework, with important differences. 1-NN classifiers are suitable methods for distance measure
evaluation for several reasons [29]. Specifically, 1-NN classifiers: (i) resemble the problem solved in time-series
similarity search [32]; (ii) are parameter-free and easy to implement; (iii) dependent on the choice of distance
measure; and (iv) provide an easy-to-interpret (classification) accuracy measure, which captures if the query and
the nearest neighbor belong to the same class.

A critical step for the effectiveness of classifiers is the splitting of a dataset into training and test sets. Previous
studies [6, 29, 102] used the k-cross-validation resampling procedure, which produces k groups of time series,
tunes necessary parameters on the k − 1 groups, and evaluates the distance measures using the group of time
series left. Strangely, [29, 102] tuned parameters only on a single group and evaluated the distance measures
using the k − 1 groups, which contradicts the common practice. In [6], the improved accuracy of some measures
is attributed to such a resampling procedure, while otherwise, it was claimed to be undetectable. Therefore, to
eliminate biases from resampling, we respect the split of training and test sets provided by the UCR archive
as well as the class distribution in the datasets (i.e., some datasets contain the same number of time series in
each class while other datasets contain imbalanced classes). This decision makes our evaluation framework
deterministic and enables reproducibility. Refer to [73] for further details on our evaluation settings.
Statistical analysis: To assess the significance of the differences in accuracy, we employ two statistical tests to
validate the pairwise comparisons of measures and the comparisons of multiple measures together. Specifically,
following the highly influential [26], we use the Wilcoxon test [103] with a 95% confidence level to evaluate
pairs of measures over multiple datasets, which is more appropriate than the t-test [86]. As with pairwise tests we
cannot reason about multiple measures together and following [26], we also use the Friedman test [36] followed
by the post-hoc Nemenyi test [63] to compare multiple measures over multiple datasets and report statistical
significant results with 90% confidence level (because these tests require more evidence than Wilcoxon).
Availability of code and results: We implemented the evaluation framework in Matlab, with imported C
and Java codes for several distance measures. To ensure the reproducibility of our findings, we make the code
available.1

Environment: We ran our experiments on 15 identical servers: Dual Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz and 196GB RAM. Each server has 24 physical cores (12 per CPU), which provided us with 360 cores
for four months.

Next, we start with the study of normalization methods.

4 Time-Series Normalizations

In this section, we review 8 normalization methods. As we discussed earlier, a critical issue when comparing time
series is how to handle a number of distortions that are characteristic of the time series. For complex distortions,

1https://github.com/TheDatumOrg/TSDistEval
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Figure 1: Example of how each of the 8 normalization methods transforms time series of ECGFiveDays [25].

sophisticated distance measures are required as offering invariances to such distortions is not trivial, which
explains the proliferation of distance measures in the literature. However, in several cases, a simple preprocessing
step is generally sufficient, as we see next.

Consider the following two examples [40]: (i) two products with similar sales patterns but different sales
volume; and (ii) temperatures of two days starting at different values but exhibiting the exact same pattern. The
first is an example of the difference in scale between two time series, whereas the second is an example of the
difference in translation. Despite such differences, in many cases, it is useful to recognize the similarity between
time series. Formally, for any constants a (scale) and b (translation), linear transformations in time series of the
form ax⃗+ b should not affect their similarity.

Several methods have been proposed to handle these popular distortions. Normalization methods transform
the data to become normally distributed, whereas standardization methods place different data ranges on a
common scale. In the machine-learning literature, feature scaling is also used to refer to such methods. In practice,
all terms are used interchangeably to refer to some data transformation.

We consider 8 popular normalization methods in our study, namely, z-score, min-max (MinMax), Mean
(MeanNorm), Median (MedianNorm), Unit length (UnitLength), Adaptive scaling (AdaptiveScaling), Logistic or
Sigmoid (Logistic), and Hyperbolic tangent (Tanh) normalization. (Please refer to [73] for more details and their
mathematical formulas.) Figure 1, shows an example of how each one of the previously described normalization
methods transforms a pair of time series from ECGFiveDays [25]. We observe that in some cases, the differences
are only visible in the range of values (e.g., z-score vs. UnitLength), but, in others, the visual effect is more
distinct (e.g., MinMax, MeanNorm, and AdaptiveScaling). The most unexpected visual effects come from the
two non-linear transformations (i.e., Logistic and Tanh). Next, we evaluate 8 methods along with the 52 lock-step
measures.

5 Time-Series Lock-Step Distances

In this section, we study 52 lock-step measures that have been proposed across different disciplines.
Distance measures provide a numerical value to quantify how distant are pairs of objects represented as points,

vectors, or matrixes. Due to the difficulty in formalizing the notion of similarity, as well as the need to handle a
variety of distortions and applications, hundreds of distance measures have been proposed in the literature. This
proliferation of distance measures across different scientific areas has resulted in multi-year efforts to organize
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this knowledge into dictionaries [27] and encyclopedias [28].
As it is understandable, not all of these measures are applicable to time-series data. Thankfully, different

endeavors have already been conducted to identify appropriate measures for a variety of tasks across different
fields [37, 110]. An influential study [15] identified 50 lock-step distance measures that we adapt in our evaluation
of time-series distance measures. We note that a previous study [38] evaluated a subset of these measures (45)
using 1-NN over 42 datasets from the UCR archive and concluded that there is no significant differences between
these lock-step distance measures.

Unfortunately, we identified issues with this study. First, several of the evaluated measures are known to
be equivalent to each other and, therefore, they should provide identical classification accuracy results. For
example, this is the case for the Euclidean distance and the inner product (or Pearson’s correlation), which under
z-normalization, they should provide the same accuracy numbers. Second, several distance measures were not
properly implemented, resulting in using as distance values either the real part of complex numbers or the first
value of a normalized vector of the input time series. Therefore, the analysis of these lock-step measures is
incomplete, and the findings are inconclusive.

In our study, we have carefully re-implemented all 50 distance measures from [15]. The distance measures
belong to 7 different families of measures: (1) 4 measures belong to the Lp Minkowski family; (2) 6 measures
belong to the L1 family; (3) 7 measures belong to the Intersection family; (4) 6 measures belong to the Inner
Product family; (5) 5 measures belong to the Fidelity family; (6) 8 measures belong to the L2 family; and (7)
6 measures belong to the Entropy family. Apart from these 42 measures, we also consider the 3 measures that
utilize ideas from multiple other measures (Combinations) as well as 5 measures proposed in the survey but not
reported in the literature (until that point).

Besides these measures, we also include two measures that have substantial differences from the previous
lock-step measures. Specifically, DISSIM [35] defines the distance as a definite integral of the function of time of
the ED in order to take into consideration different sampling rates of time series. This computationally expensive
operation can be approximated by a modified version of ED that considers in the distance of the ith points the
i+ 1th points, which is a form of a smoothing operation. Finally, the adaptive scaling distance (ASD), embeds
internally the AdaptiveScaling normalization with an inner product measure to compare time series under optimal
scaling [19, 106].
Evaluation of lock-step measures: For all mathematical formulas, we refer the reader to the previous survey
[15]. We evaluate 52 distance measures and their combinations with 8 normalization methods using our 1-NN
classifier over 128 datasets (see Section 3). From all combinations of distance measures and normalization
methods (52 · 8 = 416 in total), we observe 14 measures with some improvement in their average accuracy in
contrast to ED and overall 36 combinations with different normalization methods. However, only about half of
these combinations result in statistically significant differences according to the pairwise Wilcoxon test. (Refer
to [73] for raw numbers in Table 1.) To better understand the performance of lock-step measures, we also
evaluate the significance of their differences in accuracy when considering several distance measures together,
using the Friedman test followed by a post-hoc Nemenyi test. Specifically, we perform two analyses: (i) we
evaluate different distance measures under the same normalization; and (ii) we evaluate standalone distance
measures under different normalizations; Figure 2 shows the average rank across all datasets of the distance
measures, which under z-score normalization, outperformed previously ED. The thick line connects measures
that do not perform statistically significantly better. We observe that Lorentzian is ranked first (once we ignore
the supervised Minkowski), meaning that it performed best in the majority of the datasets. All 5 measures
significantly outperform ED, but we observe no difference between them. Figure 3 evaluates a standalone distance
measure, the Lorentzian measure that performed the best previously, with different normalization methods against
ED with z-score. We observe that the 3 out of the 4 combinations that were better than ED under the Wilcoxon
test remain better under this statistical analysis, and there is no difference between them.
Debunking M1 and M2: Our evaluation shows clear evidence that normalization methods other than z-score
can lead to significant improvements, which debunks M1. Even though for standalone measures, we did not
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Figure 2: Ranking of lock-step measures under z-score based on the average of their ranks across datasets.
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Figure 3: Ranking of normalization methods in combination with the Lorentzian distance based on the average of
their ranks across datasets. ED uses z-score normalization.

observe significant improvements (e.g., ED with MeanNorm vs. ED with z-score), that does not reject our
hypothesis. We note that the majority of the UCR datasets are in their z-normalized form and, therefore, for
fairness, we z-normalized all datasets, which may have limited this analysis. Despite that, we identified two new
distance measures, unknown until now, that only under MinMax and MeanNorm methods outperform ED with
z-score and, importantly, z-score is not suitable for them. Normalizations such as MeanNorm, which combines
z-score and MinMax methods, seems to perform the best for several measures. Similarly, our analysis shows
that distance measures other than ED can lead to significant improvements, which debunks M2. We identified 7
distance measures that significantly outperform ED. We emphasize that no previous study considered different
normalization methods in order to challenge M1, and our findings contradict both previous studies [29, 38],
which concluded that there is no significant difference in the accuracy of lock-step measures.

Next, we focus on sliding versions of lock-step measures.

6 Time-Series Sliding Distances

We study 4 variants of cross-correlation, a measure that has largely been omitted from evaluations.
Starting with the concurrent introduction of lock-step and elastic measures for the problem of time-series

similarity search [2, 8, 34], the vast majority of research focused on these two categories of measures (see M3
in Section 2). Cross-correlation, which is similar to convolution, dates back in the 1700s [30] but received
practical popularity only after the invention of Fast Fourier Transform (FFT) [20], which dramatically reduced
its computational cost. Cross-correlation is one of the most fundamental operations in signal processing [14]
and, lately, in deep neural networks [48, 49]. Recently, research focusing on time-series clustering used cross-
correlation and achieved state-of-the-art performance for this task [68, 69]. However, this work assumed
z-normalized time series and performed evaluations only against ED and DTW. (Refer to [68, 73] for the
mathematical notation.)
Evaluation of sliding measures: Due to the resemblance of cross-correlation to the sliding version of Pearson’s
correlation, when time series are z-normalized, the majority of the literature assumes this underlying data
normalization [68]. To the best of our knowledge, the performance of cross-correlation as a measure to compare
time series under different normalization methods is not well explored. We measure the performance of the
combinations of cross-correlation variants with normalization methods. Specifically, from 32 such combinations
(i.e., 4 measures × 8 normalizations), we report only those resulted in an average accuracy higher than the
one achieved by Lorentzian (with z-score followed by UnitLength), the new state-of-the-art lock-step distance
measure based on our previous analysis (Section 5). (Refer to [73] for raw numbers and detailed pairwise
analysis.)

In addition to these pairwise comparisons, we also evaluate the significance of the differences when considered
all together. Figure 4 shows the average rank across datasets of five combinations of NCCc with normalization
methods. Similarly to the pairwise analysis, we observe that combinations with z-score, MeanNorm, and
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Figure 4: Ranking of different normalization methods for NCCc based on the average of their ranks across
datasets, using Lorentzian with UnitLength as the baseline method.

UnitLength normalizations lead to significant improvements according to the Friedman test followed by a post-
hoc Nemenyi test to assess the significance of the differences in the ranking. Combinations of NCCc with
AdaptiveScaling or MinMax do not achieve significant improvement. We observe that both statistical evaluation
approaches lead to similar conclusions.

For completeness, we report another analysis using ED as the baseline instead of the Lorentzian distance
(we omit the figure due to space limitation). NCCc in combination with z-score, UnitLength, and MeanNorm
normalization methods outperform ED but, in contrast to Figure 4, now combinations with AdaptiveScaling and
MinMax are also significantly better than ED. This analysis confirms our results in Section 5 that the Lorentzian
distance (and other L1 variants) are more powerful than ED. In addition, our analysis indicates that NCCc

outperforms all lock-step measures with all different normalizations, making it a strong baseline method for
time-series comparison.

We now turn our focus to elastic measures and their performance against sliding measures.

7 Time-Series Elastic Measures

In this section, we study 7 elastic measures, a popular category of measures for time-series comparison.
As discussed earlier, sliding measures find a global alignment by sliding one time series against the other.

In contrast, elastic measures create a non-linear mapping between time-series data points to support flexible
alignment of different regions. Through this mapping, elastic measures permit time series to “stretch” or “shrink”
their observations to improve time-series matching. Most elastic measures rely on dynamic programming to find
this mapping efficiently by defining recursive formulas over a m-by-m matrix M that contains in each cell the
ED (or some other lock-step measure) between every point of one time series against every point of another time
series. In general, the goal of different elastic measures in the literature is to employ different strategies to find a
warping path, W = {w1, . . . , wk}, with k ≥ m, a contiguous set of matrix cells that shows the mapping of every
point of one time series to one, more, or none of the points of the other time series. To improve the efficiency and
the accuracy of elastic measures, it is a common practice to introduce constraints (i.e., parameters) to guide the
warping path to visit only a subset of cells in M .

The first elastic measure, DTW [87, 88], was proposed as a speech recognition tool and, later, it was introduced
in the time-series literature as a suitable approach for time-series comparison [8]. DTW finds the warping path
that minimizes the distances between all data points. In the original form, DTW is parameter-free, however, many
approaches have been proposed to define bands (i.e., the shape of the subset cells of matrix M that the warping
path is permitted to visit) and the width or window (i.e., size) of the bands. We use the Sakoe-Chiba band [88],
which is the most frequently used in practice [29], and we tune the window δ using parameters shown in Table 4
of [73]. For example, a value δ = 10 indicates a window size 10% of the time-series length.

The Longest Common Subsequence (LCSS) distance is another type of elastic measure that was derived from
the idea of edit-distances for characters. Specifically, LCSS introduces a parameter ϵ that serves as a threshold
to determine when two points of time series should match [4, 99]. Similarly to DTW, LCSS also constrains the
warping window by introducing an additional parameter δ [99]. Edit Distance on Real sequence (EDR) distance
[17] is another edit-distance-based measure that similarly to LCSS, uses a parameter ϵ to quantify the distance of
points as 0 or 1. EDR also introduces penalties for gaps between matched subsequences. Edit Distance with Real

77



1 2 3 4 5 6 7 8

MSM
TWE
DTW
EDR

NCCc

LCSS
ERP

Swale

Figure 5: Ranking of elastic and sliding distance measures based on the average of their ranks across datasets,
using supervised tuning for their parameters.
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Figure 6: Ranking of elastic and sliding distance measures based on the average of their ranks across datasets,
using unsupervised tuning for their parameters.

Penalty (ERP) distance [16] bridges DTW and EDR distance measures by more carefully computing the distance
between gaps.

Differently than the previous approaches, the Sequence Weighted Alignment model (Swale) [61] proposes
a model to compute the similarity of time series using rewards for matching points and penalties for gaps.
Apart from a threshold ϵ parameter, Swale also requires parameters for the reward r and the penalty p. The
Move–split–merge (MSM) distance [95] is another elastic measure based on edit-distance but in contrast to DTW,
LCSS, and EDR, MSM is a metric. MSM uses a set of operations to replace, insert, or delete values in time series
to improve their matching. Finally, Time Warp Edit (TWE) distance [58] is a measure that combines merits from
LCSS and DTW. TWE introduces a stiffness parameter ν to control the warping but at the same point it also
penalizes matched points.
Evaluation of elastic vs. sliding measures: With the introduction of the 7 elastic measures we are now in
position to evaluate their performance against sliding measures, an experiment that has been omitted in all
previous studies [6, 29]. Refer to [73] for detailed raw numbers and pairwise comparisons under supervised and
unsupervised settings.

To understand the performance of elastic measures against NCCc, we evaluate the significance of the
differences when considered all together. Specifically, Figure 5 shows the average ranks of the elastic measures
in the supervised setting and Figure 6 shows the average ranks in the unsupervised setting. We observe that
even under supervised settings, 4 out of the 7 elastic measures, namely, LCSS, ERP, EDR, and Swale, do not
achieve significantly better performance than NCCc. The results for MSM, TWE, and DTW, are consistent in
both statistical evaluations. For the unsupervised setting, both statistical evaluation approaches agree to an extent.
In particular, Figure 6 shows clearly that MSM and TWE outperform NCCc. However, the remaining 5 elastic
measures perform similarity to NCCc. To validate our findings, we repeat the analysis (we omit figures due to
space limitation) and evaluate the significance of the differences when we consider all elastic measures together
(i.e., excluding NCCc). Specifically, we observe that Swale, ERP, EDR, and LCSS do not outperform DTW-10
with statistically significant difference. Interestingly, the supervised LCSS is slightly worse than the unsupervised
DTW-10. ERP, which under pairwise evaluation appears to significantly outperform DTW-10, when all measures
are considered together, both appear to achieve comparable performance. MSM, TWE, and DTW also perform
similarly and all three supervised measures outperform DTW-10. However, under unsupervised settings, MSM
and TWE significantly outperform all elastic measures.
Debunking M3 and M4: Our comprehensive evaluation shows clear evidence that sliding measures are strong
baselines that most elastic measures do not manage to outperform either in supervised or unsupervised settings,
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Figure 7: Ranking of kernel measures based on the average of their ranks across datasets (supervised tuning).

which debunks M3. Specifically, from all 5 elastic measures evaluated in the decade-old study [29], namely,
LCSS, Swale, EDR, ERP, and DTW, only DTW significantly outperforms cross-correlation under the supervised
scenario. In the unsupervised setting, none of the 5 measures outperforms cross-correlation and, interestingly,
several of them perform slightly worse. This is a remarkable finding, showing that the simplest type of alignment
between time series is very effective and it should have served as a baseline method for elastic measures. Only
MSM and TWE, two measures that appeared after [29] show promising results and outperform cross-correlation
with statistically significant differences in both supervised and unsupervised settings. Importantly, MSM is the
only method that significantly outperforms DTW under supervised settings (according to Wilcoxon) and, under
unsupervised settings, both MSM and TWE significantly outperform DTW (with both statistical tests validating
this result). Therefore, there is clear evidence that the widely popular DTW is no longer the best elastic distance
measure, which debunks M4.

8 Time-Series Kernel Measures

Until now, our analysis focused on three categories of distance measures, namely, lock-step, sliding, and elastic
measures, with the goal to provide answers to the four-long standing misconceptions that we discussed in Section
2. Recently, kernel functions [91, 92], a different category of similarity measures, have started to receive attention
due to their competitive performance [1]. In contrast to all previously described measures, kernel functions must
satisfy the positive semi-definiteness property (p.s.d) [90]. The precise definition is out of the scope of this work
(we refer the reader to recent papers for a detailed review [1, 67]) but in simple terms, a function is p.s.d. if
the similarity matrix, which contains all pairwise similarity values, has positive eigenvalues. This important
property results in convex solutions for several learning tasks involving kernels [21]. In this section, we study 4
representative kernel functions and evaluate their performance against sliding and elastic measures.

Specifically, the first kernel we consider is the Radial Basis Function (RBF) [22], a general purpose kernel
function that internally exploits ED but maps data into a high-dimensional space where their separation is easier.
To capture similarities between the shifted versions of time series, [100] proposed a sliding kernel to consider all
possible alignments between time-series. We include a recently proposed variant of this kernel, namely, SINK,
that has achieved competitive results to NCCc and DTW [67]. Finally, we include two elastic kernel functions,
the Global Alignment Kernel (GAK) [23] and Dynamic Time Warping Kernel (KDTW) [59].
Evaluation of kernel functions: Having introduced the 4 kernel functions, we are now in position to evaluate
their performance against sliding and elastic measures. As before, we consider both supervised and unsupervised
settings. In the supervised setting, we observe that all kernel functions significantly outperform NCCc with the
exception of RBF, which is significantly worse. In the unsupervised settings, KDTW and GAK significantly
outperform NCCc, as before, but SINK achieves comparable performance without outperforming NCCc. To
better understand the performance of KDTW and GAK, which appear to be the strongest kernel functions, we also
evaluate the significance of the differences when considered together with all elastic and sliding measures. Figure
7 presents the results for supervised settings and Figure 8 for unsupervised settings. We have omitted elastic
measures that based on the earlier analysis did not show competitive results. We observe that GAK achieves
comparable performance to DTW under both settings. However, KDTW, significantly outperforms DTW in both
unsupervised and superivsed settings. This is in contrast to TWE and MSM measures that were significantly
better only under the unsupervised settings. To the best of our knowledge, this is the first time that a kernel
function is reported to outperform DTW in both settings.
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Figure 8: Ranking of kernel measures based on the average of their ranks across datasets (unsupervised tuning).

9 Time-Series Embedding Measures

Previously, we studied approaches that directly exploit a kernel function or a distance measure to compare
time series. In this section, we study 4 embedding measures, which are alternative approaches that employ a
similarity measure only to construct new representations [1]. These representations are similarity-preserving as
the comparison of two representations with ED approximates the comparison of the corresponding original time
series with the employed similarity measure.

We consider 4 approaches to construct embedding measures (i.e., ED over learned representations). Specifi-
cally, we consider the Generic RepresentAtIon Learning (GRAIL) framework, which employs the SINK kernel
[67], the Shift-invariant Dictionary Learning (SIDL) method, which preserves alignment between time series
[111], the Similarity Preserving Representation Learning method (SPIRAL), which employs DTW [50], and the
Random Warping Series (RWS), which preserves the GAK kernel [104].
Evaluation of embedding measures: For all approaches, we follow [67] and tune required parameters using
the recommended values from their corresponding papers. We construct representations of same length (100)
for fairness. We observe that GRAIL, is the only framework that constructs robust representations that when
ED is used for comparison (under the 1-NN settings), it achieves similar performance to NCCc, but without
significant difference. All other embedding measures perform significantly worse and none of the embedding
measures outperform DTW (see detailed raw numbers in [73]. We note, however, that embedding measures (as
well as kernel methods), achieve much higher accuracy under different evaluation frameworks (e.g., with SVM
classifiers), as shown in [67].

10 Accuracy-to-runtime Analysis

Until now, we have extensively evaluated distance measures based on their accuracy results. However, it is also
important to understand the cost associated with each one of these distance measures. In Figure 9, we summarize
the accuracy-to-runtime performance of the most prominent measures. The runtime performance includes only
inference time (i.e., evaluation on the testing sets). We observe that ED, and all other lock-step measures (omitted),
are the fastest but achieve relatively low accuracy (all these measures have O(m) runtime cost). NCCc [68] and
SINK [67], two methods that rely on the classic cross-correlation measure, provide an excellent trade-off between
runtime and accuracy in comparison to ED (these measures have O(m logm) runtime cost). We also observe
that all other elastic or kernel methods require substantially higher runtime costs to achieve comparable accuracy
results to NCCc (these measures have O(m2) runtime cost). In particular, only MSM and TWE significantly
outperform NCCc (see Figure 6) but require two orders of magnitude higher runtime cost. Instead, embedding
measures, such as GRAIL [67], show great promise as they can achieve high accuracy without sacrificing runtime
performance.

11 Accelerating Elastic Measures

Despite their promise, elastic distance measures scale quadratically to the length of the time series, as noted earlier.
Compared to ED, which has linear complexity, elastic distance measures incur an additional runtime overhead,
often between one to three orders of magnitude (see Figure 9). This cost would prevent applications from using
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Figure 10: Comparison of the pruning power of GLB variants against state-of-the-art LBs of several popular elastic
measures over 128 datasets. The blue dots above the diagonal indicate datasets over which GLB outperforms the
state of the art.

elastic measures in large-scale settings. To alleviate this issue, the idea of lower bounding was developed to filter
out unpromising candidates before carrying out the expensive elastic distance measure computation [34, 44, 46].
In simple terms, a lower bound (LB) is a fast distance measure that approximates an expensive elastic distance
measure and is computed over some summaries of the time series instead of the actual time series.

A plethora of LBs have been developed for elastic distance measures [16, 44, 46, 51, 93, 97, 98], with
the goal to improve their pruning power (i.e., tightness of LB). Unfortunately, the research effort on LBs has
been disproportionally concentrated on Dynamic Time Warping (DTW) [87, 88], which is the oldest elastic
measure with at least eight established LBs (see [78] for details). In contrast, newer and better-performing elastic
distance measures, such as MSM and TWE, have received little attention, and their LBs are performing poorly.
Unfortunately, developing LBs is a challenging task. It is unsustainable to expect a similar research effort for
each elastic measure. For this reason, a generalized framework, namely GLB, was recently proposed [78] to
accumulate the knowledge from previously developed LBs and eliminate the need for designing separate LBs
for each elastic measure. Specifically, GLB outperforms all established LBs across different elastic measures.
Figure 10 shows the improvement in pruning power (i.e., the percentage of the true distance computation avoided)
achieved by GLB for several popular elastic measures (more details in [78]). Considering that MSM and TWE
are the new state-of-the-art elastic measures, we note that GLB accelerates MSM up to 10× and TWE up to 26×
in an extensive analysis we performed across 128 datasets [25].
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12 Future Directions

With the new knowledge in place, several new challenges open that we hope to spark new research directions.
Below, we provide three areas that we believe require more attention and can potentially lead to substantial
improvements in the entire area of time-series similarity search:
• Identifying more accurate normalizations. Our work was the first to study the performance of 8 normalization

methods. We identified multiple distance measures outperforming the previous SOTA measures only when
combined with appropriate normalization methods. In our view, inventing a new normalization method that
achieves significant accuracy improvements by preprocessing data differently and without changing existing
methods and systems would be a breakthrough.

• Tuning parameters, or selecting appropriate distance measures per dataset in an unsupervised manner. Un-
fortunately, there are no principled methodologies currently for selecting distance measures or tuning their
parameters, despite significant recent attention in AutoML for other domains.

• Improving and evaluating the performance of embedding measures. These measures show the most promise
based on their runtime-to-accuracy trade-off. To the best of our knowledge and based on our comprehensive
study, there are no embedding measures that significantly outperform the most vigorous elastic measures in
terms of accuracy. Recent advances in deep neural networks [101] may lead to embeddings that substantially
outperform elastic measures.

13 Conclusion

We presented a comprehensive evaluation to validate the performance of 71 distance measures. Our study
debunked four long-standing misconceptions in the time-series literature and established new state-of-the-art
results for lock-step, sliding, elastic, kernel, and embedding measures. Our findings prepare the ground for
the development of distance measures with implications across time-series analytical tasks. Importantly, our
work has implications for general-purpose similarity search problems over high-dimensional data. For example,
several similarity search methodologies rely heavily on the concepts of lower bounding to prune unnecessary
comparisons [32, 76]. Similarly to how GLB abstracted the costs of different elastic measures and generalized
lower bounds for time series, we believe a similar concept can be applied in the case of lock-step measures
(e.g., Euclidean distance) and the corresponding data summarization methods. In addition, our work identified
lock-step measures that outperform Euclidean distance and lock-step measures performing exceptionally well
only under certain normalizations. However, the literature in the similarity search area has largely focused on
developing methods assuming Euclidean distance is the underlying distance measure. Our work may lead to new
solutions for the new, better-performing distance measures. Finally, the methodologies presented for constructing
embedding measures are sufficiently generic and can complement solutions focusing on learning embeddings
from data [101] (e.g., concatenate deep embeddings with our similarity-preserving embeddings or improve deep
embeddings by integrating our similarity-preserving embeddings in the loss functions).
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Abstract
Nearest neighbor search is a computational primitive whose efficiency is paramount to many applications.

As such, the literature recently blossomed with many works focusing on improving its effectiveness in an
approximate setting. In this overview paper, we review recent advances of the state of the art and discuss some
trends. Given the practical relevance of the problem, new approaches need to be thoroughly benchmarked. We
therefore review some recent benchmarking efforts and provide advice on the benchmarking pipeline.

1 Introduction

Nearest neighbor search is a key component in many computer science applications. For example, using CLIP
embeddings [50] both images and text can be mapped to dense vectors in a vector space; retrieving images that
match a text description then boils down to embedding the text into a query vector and searching for images
whose vectors are closest to the query vector under some distance measure. Using nearest neighbor search, large
language models (LLMs) can also be augmented with knowledge that was not present in the training data [36].
Unfortunately, exact nearest neighbor search in high-dimensional data—such as the dense vectors generated
by deep learning-based embedding pipelines—is a notoriously difficult problem that usually requires scanning
through the whole dataset. This excludes the possibility of scalable approaches for billion-scale datasets that are
common in today’s applications.

To enable scalable nearest neighbor search, the research focus turned to approximate nearest neighbor search
(ANN). In empirical settings, this usually means that an implementation does not provide a guarantee on the
quality of the returned vectors. Instead, the user provides—based on knowledge of the data distribution and the
query workloads—parameters that are used to build and to search the index data structure, respectively. Given a
query point and some search parameters, the index is used to generate a candidate set for the query. The closest
vectors among these candidates are returned as the (presumably) nearest neighbors for a given query. The smaller
the candidate set, the faster the search, but also the lower the result accuracy. Section 2 gives an overview over
general approaches to approximate nearest neighbor search.

ANN-benchmarks [10] presents the state-of-the-art benchmark on million-scale approximate nearest neighbor
search implementations. In the benchmarking run published in April 2023, more than 30 implementations were
tested on a collection of datasets. Each implementation was run on a single thread. The results for a single dataset
are depicted in Figure 1. On a high level, many implementations achieve a throughput of more than 1,000 queries
per second at an average recall of at least 90%. In particular, many implementations still perform well in the
setting of average recall at least 99%. As a baseline, a bruteforce solution using BLAS achieved a throughput of
16 queries per second. Most of the approaches that perform best implement a graph-based approach with the
notable exception of Google’s ScaNN [25] and Meta’s FAISS [35] which both implement a clustering-based
approach as their main data structure. Please see the project website for more details on the used implementations.
We review benchmarking efforts and pitfalls in Section 3.
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Figure 1: April 2023 run of ANN-benchmarks [10] (http://ann-benchmarks.com) on 100-dimensional
vectors from GloVe embeddings [47] on a twitter corpus. The x-axis represents the average fraction of true
10-nearest neighbors returned (on a logarithmic scale); the y-axis provides the queries per second achieved, on a
logarithmic scale. Both index building and searching is conducted on a single thread. Reported points represent
the Pareto-frontier over a grid search on the parameter space. Interactive visualisations are available on the project
website. Benchmarking run carried out by E. Bernhardsson.

This overview paper focuses on approaches that are not covered by the current benchmarking efforts. While
theoretical breakthroughs have been achieved over the last years, for example by Andoni et al. [5], our focus
lies on approaches that are supported by efficient implementations targeted to solve nearest neighbor search on
real-world datasets. Section 4 is dedicated to this recent work. Finally, we close the overview by identifying
recent trends and promising directions for future work in Section 5.

1.1 Problem setup

Formally, the task in k-nearest neighbor search is defined as follows. Let (X , dist) be a metric space, and let
k ≥ 1 be an integer. Given a dataset S ⊆ X of n data points (p1, . . . , pn) ∈ X n, the task is to build an index data
structure that supports the following queries: Given a query point q ∈ X , return a sequence Iq = (i1, . . . , ik) of
unique indices of data points in S such that pi1 , . . . , pik minimize the distance to q.

For simplicity, we will focus on the case that X = Rd, i.e., we consider d-dimensional real-valued vectors.
Classical distance metrics are Lp norms, in particular for p = 2 (Euclidean distance), and inner product
dissimilarity, associated with the task commonly known as maximum inner product search. Other interesting
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cases are length-d bitstrings X = {0, 1}d under Hamming distance and collections of sets X = P(U) under
Jaccard similarity over a finite universe U with P(U) being the power set of U .

In the case that distances are unique, we can identify by I∗
q the set of indices of the true k-nearest neighbors of

a query point q. As a quality measure, we consider the recall |Iq ∩ I∗
q |/k. We call a method exact if it guarantees

a recall of 1, and we call it approximate otherwise. In the context of approximate methods, papers often report
on the average recall over a set Q of queries. If distances are not unique, distance-based recall variants are
available [10].

2 A general overview over high-dimensional indexing

There exists a plethora of different approaches for solving nearest neighbor search. The most successful
approaches can be categorized into clustering-based, graph-based, hashing-based, and tree-based approaches.
For the notable exception of graph-based approaches, nearest neighbor search is usually solved by partitioning
the space Rd into M disjoint parts R1, . . . , RM such that

⋃
1≤i≤M Ri = Rd.

2.1 Indexing techniques for high-dimensional data

We provide a short overview of approaches and highlight a well-established method from each category. Each
implementation comes with certain parameter choices used during the indexing phase (building the ANN data
structure) and the querying phase (searching for the approximate nearest neighbors). To ease the explanation and
make an attempt of unifying the landscape, we provide explanations that focus on a single build parameter M
and a single search parameter ℓ.

Clustering-based approaches (IVF [35]). Given a dataset S ⊆ Rd and two parameters M and ℓ, run a
clustering algorithm such as M -means to find M centroids. By associating each point with its closest centroid,
the space is partitioned into M parts. The data structure that stores the centroids and the associated lists is referred
to as an inverted file index (IVF). To find nearest neighbors to a query q ∈ Rd, inspect the points associated to the
ℓ closest centroids of q. Since this itself is a nearest neighbor search task, for large M an index over the centroids
is employed. Clustering-based approaches usually provide very compelling index size since each point is stored
only once with its associated centroid. The build time of a clustering-based approach is dominated by clustering
the data points, which is often done on a sample. The final assignment carries out O(nM) distance computations
to centroids if the assignment is exact; as before, this can be sped up by indexing the centroids.

Graph-based approaches (HNSW [43]). Given a dataset S ⊆ Rd and parameters M, ℓ, the goal is to build a
graph G = (V,E), where each point is represented by a vertex and edges exist between a point and a “diverse”
set of at most M points. Let us assume that such a graph G is given. To find the nearest neighbors of a query
point q, HNSW uses a hierarchy of graphs to find a good entry point into the bottom-layer graph that indexes all
points. Given such a start point, carry out a greedy hill climbing. In each round, consider the currently closest
point to the query not considered before. Inspect the neighborhood and compute the distances to the query point.
After each round, trim the list of current closest points (inspected and non-inspected) to ℓ, which is usually called
the beam width. Terminate if all ℓ points have been considered. (Note that this is not a bound on the number of
distance computations, since considered points might be trimmed off.) To build the graph, order all the points and
insert them one-by-one using the search algorithm¸ often with a smaller ℓ′ than used for the queries. From the
points inspected in this search, a pruned set of M points is chosen as neighbors of the inserted point. Additionally,
pruning might be necessary for its neighbors if their degree bound M is not met. Graph-based indexes usually
provide compelling index sizes when M is small (the number of edges can be as large as Mn). The index build
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time is usually rather high for graph-based approaches, since individual searches are carried out for each data
point.

Hashing-based approaches (FALCONN [3]) FALCONN is an approach based on locality-sensitive hashing
optimized for inner product similarity on unit length vectors. It uses crosspolytope LSH as its LSH function. A
crosspolytope LSH function is described by a rotation matrix, which is chosen at random. The hash value of a
point is the closest base vector in Rd when applying the random rotation to the point. Given a set of points S and
two parameter M, ℓ, the data structure works as follows. Choose M random LSH functions mapping data points
to hash values R, where each function is the concatenation of two to three random crosspolytope LSH functions.
Hash each data point M times with independent hash function choices, and store the point in M buckets, one per
hash function. These buckets together with the collection of hash functions form the index. Given a query point
and collection of M hash tables, hash the query point using the same hash functions and consider the data points
that also reside in the bucket as candidates. Traditionally, LSH suffers from large indexes since independent
repetitions provide the “best” buckets in the sense that among all buckets, it is most likely to find a close points in
the bucket identified by the query hash code. However, if space is a concern, one can use a smaller M value and
if less than ℓ points are found, check neighboring buckets using a multiprobing approach. The index build time of
a hashing-based approach is usually dominated by hashing each data point M times. Fast evaluation tricks, such
as applying the fast Hadamard transform [3] and pooling/tensoring approaches [18] can be employed to lower
this cost.

Tree-based approaches (MRPT [30]). MRPT builds a collection of trees based on sparse random projections.
Given a set of points S and two parameters M, ℓ, the data structure works as follows. First, a node in a tree
is described by a hyperplane a that splits up a point set S′ ⊆ S. At the root, the whole dataset is taken into
consideration, and a leaf is created as soon as the number of points at a node is below a certain threshold. Instead
of a single tree, M trees are created to boost the quality of the results. Given a query point and a collection of
M trees, carry out root-to-leaf-traversals in each tree for the query. In MRPT, a voting search is carried out by
considering a point in a leaf as a candidate if it appears in at least ν different trees. MRPT results in compelling
index sizes for small M values since each level of the tree contains a single random hyperplane, only storing the
split value in a node. The build time is dominated by finding the individual splits, which typically requires in
each node and over all trees, to evaluate the projection value and select the median. [32] describe a method to
automatically select hyper-parameters for this approach.

2.2 System Architecture

The standard system architecture for ANN search is depicted in Figure 2. Given a dataset S ⊆ X and a set of
build parameters Pbuild, an index is built following the approaches mentioned in the previous subsection. Both
the build time and the index size is often crucial for the feasibility of an approach. Given a query point q ∈ X
and a set of query parameters Pquery, the index is used to generate the candidate set. This candidate set is usually
refined using a quantization or sketching technique that stores small summaries of each data point. The goal of
the refinement is to discard candidate points that are unlikely to be among the k nearest neighbors. In a final
reranking step, exact distance computations between the refined candidates and the query point are carried out,
and the indices of the k points with smallest distance to the query are returned as the answer to the query. In the
case that memory resources are sparse, for example when dataset vectors do not fit into main memory, the final
re-ranking step might not be carried out, which usually results in a loss in precision.
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Figure 2: Overview of the phases of a traditional ANN implementation.

3 Benchmarking ANN implementations

Assessing the performance of a new method is at the same time crucial and challenging. The new method
itself often has a lot of configurations to explore, and the number of baselines to compare with grows by the
day, with each baseline featuring a lot of parameters. In such a scenario, benchmarking efforts such as the
ANN-benchmarks [10] mentioned in the introduction— also used for benchmarking in billion-scale settings [53]—
and the Lernaean Hydra framework for data series similarity [21] provide a very useful stepping stone.

In particular, a benchmarking infrastructure such as ANN-benchmarks provides a collection of baseline
algorithms, along with sensible ranges of their parameters to test. Algorithms are then evaluated according to a
standardized evaluation protocol: each approach is first set up with indexing parameters; then it is fed the data to
be queried, allowing it to build index structures; finally several query groups are executed on the same index, with
different query parameters.

We believe that it is much easier to integrate a new method in an existing benchmarking infrastructure,
rather than implementing a custom one for each new paper. We therefore urge the community to adopt shared
benchmarking infrastructures in order both to avoid reinventing the wheel and to make results more easily
comparable across papers. Even if the core pipeline cannot be used, the data preprocessing (for example, the
fixed definition of query workloads) and result postprocessing (for example, the availability of groundtruth data
and evaluations scripts) can be used in isolation, ensuring reproducibility of results.

Observing the evolution of results of ANN-benchmarks throughout the last couple of years, and the experi-
mental evaluations of the paper reviewed in this survey, we formulate in the following a few concrete suggestions
on how to improve benchmarking of future works.
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of several parameter combinations of HNSW
achieving at least recall 0.9.

3.1 Reporting on multiple metrics

Most of the times, the metrics considered for approximate nearest neighbor queries are the query throughput and
the average recall. The query throughput—or equivalently the query time—are however very dependent on the
implementation, and are thus measuring the performance of the implementation, rather than assessing the merits
of the underlying algorithm [38].

While the actual performance of an implementation is what people are most interested in, considering
other metrics can give further insights into the behavior of an algorithm. For instance, the number of distance
computations performed can indicate how effective an approach is at reducing the amount of work to be performed.
The interplay between the number of distance computations and the actual running time is also of interest: a
linear scan through compressed points using product quantization may be faster than a more sophisticated
index due to better use of the cache, despite carrying out more distance computations. As highlighted in [19],
this is for example true for clustering-based approaches compared to graph-based approaches in million-scale
settings. While the latter only carry out a fraction of distance computations, the more efficient memory layout of
clustering-based approaches can make up for the additional calculations.

Furthermore, the index size and the index construction time are important metrics to complement the execution
speed.

3.2 Selecting parameters

Many papers evaluate the proposed method by comparing with a few state of the art approaches, using a few
configurations for each. Some papers use just a single configuration for the baseline, namely the default one
provided by the implementation or the ones discussed in the associated publication. This approach can however
lead to misleading comparisons, in that the performance of many approaches varies wildly in response to
parameter changes, and differently across datasets.

For instance, HNSW is a commonly used baseline to compare with, and in many cases only a few parameter
combinations are tested. Figure 3 reports the results—in terms of average recall and queries per second—of
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Figure 5: Histogram of the recall of single queries for a configuration of HNSW achieving average recall 0.55.

answering 5 000 queries on glove-100-angular1 using HNSW in the implementation provided by the
FAISS library [35]. The index building parameters being used are M ∈ {4, 8, 12, 16, 24, 36, 48, 64, 96} and
efConstruction = 500; the search parameters are varied in the range ef ∈ {10, 20, 40, 80, 120, 200, 400, 600, 800}.
As one can observe, the outcomes vary wildly, both in terms of recall and in terms of query throughput. As such,
using only a single parameter configuration as a baseline for comparison is very likely to result in suboptimal
performance for the baseline itself. In this case we consider HNSW due to its popularity, but the same behavior
can be observed with most approaches.

Even fixing a target recall and focusing on a single configuration achieving it does not make the performance
more stable across parameter configurations. Figure 4 shows the distribution of the query throughput for all the
aforementioned configurations that result in an average recall between 0.9 and 0.95. As we can see, the difference
between the slowest and the fastest configurations is about two orders of magnitude.

3.3 Making workloads explicit

Many papers describe which datasets are part of their experimental section and then make a generic statement
along the lines of n queries are run from the dataset. The reader is then left to conjecture that possibly queries
are sampled at random from the dataset. However, it has been shown [8] that the practical performance of queries
is greatly influenced by the intrinsic dimensionality of the queries themselves. Some works already address
explicitly workloads with different difficulties [22, 68].

We therefore suggest to explicitly design query workloads that span a different range of difficulties, thus
allowing to assess the performance of the approaches under test in finer detail. We provide Python code to
compute intrinsic dimensionality measures of workloads at the following public repository: https://github.
com/Cecca/workloads-difficulty.

3.4 Dangers of reporting on averages

In the previous section we considered the average recall of 5 000 queries as a performance indicator. This can be
misleading at times, and hide interesting behavior.

1http://ann-benchmarks.com/glove-100-angular.hdf5

95

https://github.com/Cecca/workloads-difficulty
https://github.com/Cecca/workloads-difficulty
http://ann-benchmarks.com/glove-100-angular.hdf5


Consider again HNSW. Figure 5 reports the histogram of the recalls of individual queries of a run attaining
average recall ≈ 0.552. Strikingly, almost a third of the queries have recall 0, and a third of the queries have recall
1. In this case considering the average hides this bimodal behavior that may have important practical implications.

Therefore, we suggest to consider the distribution of the performance of individual queries, rather than
drawing conclusions based on averages alone.

3.5 Implementation accessibility

The possibility to access the implementation backing the findings reported in any paper is of paramount importance
for the community to verify and build upon results. Fortunately, in recent years the number of papers in nearest
neighbor search that make their code accessible (usually as a Git repository hosted on online services such as
GitHub or BitBucket) increased significantly.

Still, we note that code accessibility can be improved further. In some case, the code linked to a paper fails to
compile following the instructions, most often due to differences between the environments of the code’s author
and the reader. Among the many solutions to this problem, we believe the most straightforward is to pair the
code with container environments such as Docker [14] or Singularity [39]. Doing so also makes for an easier
integration in existing benchmarking efforts, which often leverage containers in their infrastructure [10].

4 New approaches to ANN search

Having covered general approaches to high-dimensional indexing and remarks on benchmarking efforts, we will
now focus on recent work. In the context of this overview paper, we report on approaches that appeared after the
publication of the benchmarking paper [10].

4.1 Hashing-based Approaches

Recent works based on hashing have focused on extending classic LSH techniques by using new data structures,
new query procedures, and by incorporating information from the data and query distribution.

PUFFINN [9] is an approach whose goal is to address approximate k-nearest neighbor queries while
providing theoretical guarantees on the failure probability. In order to do so, it leverages the theoretical framework
of Locality Sensitive Hashing (LSH) [15, 27]. While providing theoretical guarantees, LSH is known to have
many parameters, whose setting is crucial to achieve good performance. To overcome this issue, PUFFINN
adopts an adaptive approach based on the LSH forest trie data structure [13].

PM-LSH [66] is an approach focusing on Lp norms. Their key idea is as follows. A dimensionality reduction
using the Johnson-Lindenstrauss transform is applied to project each point into a lower-dimensional space. The
transformed points are then indexed by means of a PM-tree [55]. Queries are then carried out by performing
several range queries on the PM-tree. While this approach is reminiscent of the earlier SRS approach [58], there
is a somehow subtle difference. Where SRS runs k-NN queries in the projected space, which may suffer from the
inaccuracy introduced by the projection (i.e. the second nearest neighbor in the projected space might not be the
best candidate in the original space) PM-LSH runs a sequence of range queries, which they demonstrate to be
more accurate.

FARGO [65] focuses on the Maximum Inner Product Search problem (MIPS). In order to apply LSH to the
MIPS problem, the paper proposes an asymmetric transformation of data and queries so that all data points have
the same norm, while retaining the original inner products with the queries. Then data points are indexed using
LSH, and queried using a multi-probing approach.

2Using the faiss implementation of HNSW, with efConstruction = 500, M = 16 and ef = 10. Queries are the ones provided
in the glove-100-angular.hdf5 file from ANN-benchmarks.
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CEO-MIPS [48] targets the MIPS problem as well, by performing several Gaussian random projections of the
data and the queries. By leveraging the theory of concomitants of extreme order statistics, CEO-MIPS considers
among all the projections of the query only the one with maximum value. If the i-th projection maximizes the
absolute inner product, then it considers as candidates the data points whose i-th projection is large. The paper
describes several variants of the approach that reduce the space usage.

FALCONN++ [49] improves on the Cross-Polytope-based hashing used in the FALCONN library [3].
The main insight is that mapping a data point into a bucket based on the random vector that maximizes the
inner product (crosspolytope hashing), can also be used as an estimator of the distance between the point and
the query vector, similarly to [48]. The paper proposes a threshold for the inner product to keep a point in a
bucket, otherwise it is filtered away. This is the first practical implementation using the locality-sensitive filtering
technique proposed by Andoni et al. [4] and by Christiani [17] in the context of approximate nearest neighbor
search. We note that Rashtchian et al. [51] used this framework for computing similarity joins for skewed data.

LSH-CO-SUBSTRING [40] seeks to overcome one of the main hurdles of using LSH, that is selecting the
number of repetitions. The key idea is that, instead of performing L repetitions of the LSH scheme, each vector is
associated with a string of hash values of length m. Then, instead of defining buckets, a query looks for the hash
strings with the longest colliding subsequence, allowing wraparounds at the string boundaries. The experimental
analysis shows that the approach has an edge over other LSH-based approaches in terms of query time at a given
recall, with markedly smaller index sizes.

LSH-APG [64] aspires to blend together LSH and graph-based approaches. In particular, LSH is used
to speed up the construction of a graph-based index. At query time, LSH is again used to select a few entry
points into the graph; these are then used to handle the search for the best query answers. Experiments show that
LSH-APG has a larger index than graph-based methods, but such index can indeed be constructed much faster.
Furthermore, the query performance at fixed parameters is shown to be better than other graph-based approaches.

DB-LSH [62] employs a dynamic bucketing scheme, modifying the classic LSH approach, to answer range
queries. The traditional LSH approach for the Euclidean distance requires to project points onto a random
direction, and then to bucket the projections at indexing time to build the hash codes. In DB-LSH such
quantization is deferred to query time, so to be able to center the buckets around the query. In particular, at index
time the random projections of the dataset points are indexed in an R*-tree. At query time, the R*-tree is used to
answer a sequence of (rectangular) range searches, that are equivalent to dynamically bucketing the hash values
around the query.

HD-INDEX [7] answers approximate k-nearest neighbor queries with the aim to use less space than LSH.
The core idea is to partition the dataset with a regular grid, which is then traversed using a space-filling curve
(such as Hilbert of Z-order). Points are then inserted in a tree-like data structure using their position along the
space filling curve as keys. The rationale is that points that are close in a geometric sense are also close along
the space filling curve. The experiments reported in the paper show that, compared to baselines the HD-INDEX

answers queries with a better Mean Average Precision, in a shorter time.

4.2 Graph-based approaches

Graph-based approaches offer among the largest variety of known methods, see for example the survey paper
by Wang et al. [63]. In general, recent works have focused on enabling the use of graph-based approaches on
larger-than-memory data, on addressing the issue of indexing time, and on designing pruning/refinement strategies
for the graph building process.

DISKANN [56] targets approximate nearest neighbor search in an external memory setting, where the size
of the dataset makes it impossible to store the index and the data entirely in memory. Therefore, the main aim is
to develop an index that minimizes the number of disk reads per query to amortize the disk latency. To this end,
DISKANN refines a random k-regular graph using iterated beam searches from a central graph node, the medoid.
It refines the graph in two steps with different pruning values. In difference to HNSW, no hierarchy is employed.
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ELPIS [11] tackles one of the main issues of graph-based approaches, which is the index construction time.
It does so by first partitioning the datasets using a tree-based data structure, and then by using HNSW to build
graphs on the leaves. As such, the graph construction is carried out in parallel on smaller subsets of the data.
This leads to a faster index construction and to a smaller index as well. In particular, ELPIS builds its tree
by employing dimensionality reduction techniques borrowed from the data series community, observing that a
high-dimensional vector can be considered as an instance of a data series.

Dobson et al. [19] give a detailed account on scaling graph-based nearest neighbor search implementations
to billion-scale datasets. In particular, they describe parallelization techniques to deal with the potential data
dependencies that can occur during the parallel insertion of points.

4.3 Clustering-based approaches

SCANN [25] extends the standard inverted file index based on (hierarchical) k-means clustering, designed
for inner product spaces. Their motivation is that ℓ2-based k-means clustering may favor centroids that do
not preserve the ordering under inner product similarity. To mitigate this issue, they propose an anisotropic
quantization technique which is more accurate for inner product similarity. A significant ingredient to SCANN’s
performance is a very efficient product quantization implementation based on SIMD instructions as described by
Andre et al. [6]. Sun et al. [57] extend the approach with an efficient hyper-parameter selection technique.

4.4 Learning-based approaches

Algorithms with predictions [37] is a recent trend in the development of algorithms and data structures. The
idea is that an oracle, for example a machine learning model, gives predictions for data that is stored in the data
structure. An overview over progress in this field in general is given by Mitzenmacher and Vassilvitskii [45]. A
thorough survey of deep learning-based methods for approximate nearest neighbor search is given in [42].

In the context of ANN search, two main research directions are (i) using a machine learning model to guide
the candidate generation and (ii) using a machine learning model to set adaptive stopping criteria in a traditional
data structure. In the former, the indexing part is augmented with a machine learning model; in the latter, the
search phase is augmented using such a model.

ANN AS MULTILABEL CLASSIFICATION by Hyvönen et al. [31] proposes to formulate the following
multi-label classification problem: Given S ⊆ X and x ∈ X , let yi = [pi is a k-NN of x in S]. Thus, the
(high-dimensional) label y = (y1, . . . , yn) represents the set of k nearest neighbors of x. Given these pairs
{(x(i), y(i))}1≤i≤n, we can train a classifier for this multi-label classification problem. Applied to space parti-
tioning nearest neighbor search algorithms, such as trees, LSH, or clustering-based variants, the authors show
that the pre-dominant approach that collects the points that fall into the same part of the partition (i.e., a leaf or a
bucket) is not the natural classifier for the multi-label classification problem. Instead, one should use a majority
vote based on groundtruth labels y of these points to decide on the candidates to check.

NEURALLSH [20] proposes to build the k-NN graph on the dataset S, and find a balanced partition of this
graph into m disjoint parts. These m parts form the m buckets of the data structure. The label of a point x is an
m-bit string, where the i-th bit is set if x has a k-NN in part i of the graph. The labeling is learned by means
of a neural network, and the search is guided by predicting bucket probabilities using the neural network, and
checking all buckets in sorted order, thresholding at a certain value.

BLISS [26] applies iterative repartitioning by learning the bucket assignment and redistributing points
according to the learned assignments, in rounds. More precisely, data points are split up at random into B
groups/buckets. The label of a data point x is a length-B bit string; label i ∈ {1, . . . , B} is set if the nearest
neighbor of x is in group i. After learning the assignment, a prediction step is carried out for each data point,
the top-K buckets with the highest probability are retrieved, and the data point is moved to the least loaded
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bucket among these top-K. The process is repeated R times independently. Experimentally, a small value of R is
sufficient, and B is set to roughly

√
n.

LEARNING TO HASH, ROBUSTLY [2] proposes a learned LSH function for binary data under Hamming
distance. In particular, rather than sampling bit-coordinates uniformly at random as in the standard LSH scheme,
the paper describes a method to optimize the probability distribution over coordinates, for the given dataset. In
contrast to the approaches mentioned above, they can guarantee worst-case running time comparable to the best
known theoretical approaches, while being able to adapt to the difficulty of a query dynamically.

Li et al. [41] note that most approaches using indexes to reduce the number of candidates to evaluate do not
adapt to the difficulty of a query, i.e., use the same stopping condition for all queries. The consequence is that to
achieve a good recall a conservative stopping condition needs to be used, thus hurting the performance of easier
queries. Therefore, they develop a prediction pipeline based on gradient boosting decision trees, allowing the
implementation of an adaptive stopping condition. Such an adaptive stopping condition is then implemented in
the IVF and HNSW indexes, with experiments showing a general reduction in latency.

Continuing along the line of the previous paper, Zheng et al. [67] focus on IVF indexes, with the aim of
setting the number of cells to probe on a per query basis. To this end, they first modify the way data vectors are
clustered, so to ensure that each cluster has a balanced number of entries. Then they use autoencoders, trained
offline on sample queries, to estimate the number of cells to probe for a query.

4.5 Refining Candidates

In the context of nearest neighbor search, an important ingredient of the system pipeline is the refinement of a set
of candidates. To this end, one wants to compress vectors in a way such that points likely to not be part of the k
nearest neighbors are to be excluded without incurring an exact distance computation. A general overview of the
techniques is given by Pagh in [46]. The main technique used is Product Quantization as introduced by Jegou et
al. [34]. An overview over this technique and its variants is given by Matsui et al. [44].

FINGER [16] aims at improving the speed at which nearest neighbor graphs are traversed. The key
observation is that during traversals most of the distances do not need to be computed exactly. Therefore, the
paper proposes an estimation method to quickly estimate distances that can be used to improve the performance of
any graph-based nearest neighbor algorithm. To showcase the performance of the approach, the paper integrates
it in an HNSW implementation.

ADSAMPLING [23] aims at optimizing one of the most basic operations in nearest neighbor search: the
distance comparison operation, which given a pair of points returns whether the points’ distance is above or below
a given threshold. First, the same random rotation is applied to each point. Then, given two vectors their distance
is computed by considering the rotated dimensions one at a time, in a progressive sampling fashion, conducting a
statistical hypothesis test on whether the two vectors are closer or farther than the threshold.

LVQ [1] describes a locally-adaptive vector quantization technique, which uses scalar quantization with
individual lower and upper bounds on the coordinate values. Employed in a graph-based index, the authors show
compelling performance up to billion-scale datasets.

5 Trends

5.1 Billion-Scale ANN search

Scaling ANN search to billion-scale datasets has been one of the core research directions of the past years. In
particular, this is supported by the availability of diverse datasets through the NeurIPS 2021 Billion-Scale ANN
challenge [53] and other large datasets such as Laion5B [52]. On this scale, index construction time and index
size pose the most challenging part of the indexing pipeline. Dobson et al. [19] provide an empirical comparison
of the scaling of different approaches from million to billion scale, focusing primarily on graph-based approaches.
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They discuss different parallelization strategies to efficiently parallelize the index construction and the (batched)
search. They conclude that graph-based nearest neighbor search performs best on billion-scale datasets in the
high recall regime. In terms of index building times and index size, clustering- and hashing-based approaches
were shown to be competitive.

5.2 New Tasks in ANN Search

In the following we describe extension of nearest neighbor search targeted towards real-world applications.

Filtered Search When data vectors are associated with some metadata, for example for the YFCC-100M [61]
dataset or the LAION5B dataset [52], a natural extension to k-NN search is to incorporate the metadata into the
query. Technically, each data vector is associated with a bag-of-words representation of its tags. The query vector
additionally has tags t1, . . . , tT , and the task is to find the (approximate) k-NN among all points in the dataset
that contain the query’s tags. A graph-based solution to this problem is described by Gollapudi et al. [24].

Out-of-Distribution Queries A common scenario in modern approximate nearest neighbor search is that data
and query vectors originate from different distributions, but are embedded into the same space. For example,
the Yandex TEXT2IMAGE dataset [53] consists of image embeddings produced by the Se-ResNext-101 model
described by Hu et al. [28], while queries are textual embeddings produced by a variant of the DSSM model by
Huang et al. [29]. As described in [53], the mapping to the shared 200-dimensional real valued vectors under
inner product similarity is learned via minimizing a variant of the triplet loss using clickthrough data. A novel
approach to explicitly deal with out-of-distribution queries is described in [33]. As pointed out in [19], cluster-
and LSH-based approaches are particularly affected by these changes in distribution.

Streaming Search A particular challenge in the index building process is to maintain an index over dynamic
insertions and deletions. Technically, a stream of add, delete, search operations is given, where each search is
supposed to return the approximate k-nearest neighbors of all the elements that are in the index according to the
add and delete operations. Simhadri 3 describes different applications of this setting. For example, for web search
the index may contain roughly a trillion vectors and has to handle billions of updates per day. Searches have
to be handled at a latency of at most 10 milliseconds with a throughput of 10,000-100,000 queries per second.
Naïve solutions such as placing tombstones for deleted items quickly degrade performance, as would a complete
rebuild of the index in a given interval size. Singh et al. [54] describe a graph-based approach to handle this issue
and show competitive performance to the non-stream setting, and a big improvement over previous LSH-based
approaches [59]. Their system handles thousands of add/delete operations per second while maintaining high
recall/throughput comparable to the non-streaming setting. A special case of this dynamic setting is content drift,
which was studied by Baranchuk et al. [12].

5.3 Conclusions

In recent years, the field of approximate nearest neighbor search has witnessed an exciting surge in the development
of new approaches and the refinement of existing methods. Alongside the traditional k-nearest neighbor setting,
new tasks are emerging: queries can incorporate different metadata such as tags, an index has to be kept over
a dynamic stream of search, insert, and remove operations, or queries might arise from a different distribution
than the data points. Moreover, the scale of today’s datasets has reached billions of data points, requiring
unprecedented scalability while retaining accuracy.

3https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx, (accessed on Sept 25, 2023.)
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Given the practical relevance of the problem, it is crucial that new approaches are benchmarked thoroughly.
Given the effort needed to set up a benchmarking infrastructure, we invite the research community to adopt and
improve shared benchmarks which avoid the pitfalls that commonly affect experimental evaluations.
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