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Abstract

Over the years, the increasing use of personal data for training machine learning models raises several
privacy concerns, such as membership inference attacks (i.e., detecting whether a given individual is in
the training data) and sensitive attribute inference attacks (i.e., predicting some sensitive information
about users based on the disclosed ML model). Although privacy solutions have emerged to address
individual challenges, there is not a silver-bullet solution for all privacy problems.

In this opinion paper, we argue that to develop a complete solution to a multitude of privacy challenges,
we need a privacy-risk aware paradigm where tools and techniques targeting individual realistic privacy
threats are employed simultaneously to complement each other. To achieve this goal, we propose a generic
privacy framework to reason about the optimal combination of existing privacy tools under the set of
given attack models and discuss how the proposed framework could be applied in practice.

1 Introduction

Sharing data while preserving individual privacy has emerged as a fundamental challenge in the age of big data
and the prevalent use of machine learning (ML) models. While many privacy-preserving solutions/techniques
have been developed, it is not always clear how to strike a balance between utility and privacy. We postulate that
this fundamental problem cannot be solved with just one privacy definition/tool alone.

Different ML challenges may require the integration of the existing and new tools to achieve the desired
utility and privacy balance under different privacy definitions. We believe that such scenarios could be addressed
by moving into a privacy-risk estimation paradigm that can be used to analyze the privacy risks and the utility
provided by different privacy-preserving tools and techniques under different realistic attack models and existing
regulatory frameworks.

Such a threat aware risk assessment is already in use in several domains. For example, to measure door lock
security, the American National Standards Institute defines a series of tests that simulate real life attacks against
door locks. Examples of these attacks include the application of force (e.g., someone who is trying multiple kicks
to knock the door open), and a battery of lock picking tests. The lock is assigned a grade based on its success
against these types of likely attacks. 1 Clearly, the door locks can be picked by expert locksmiths given enough
time. In addition, they can be easily opened by deploying explosives and significant brute force. The existing
vulnerabilities to these other attacks are considered natural and different mechanisms (e.g., alarm systems) are
used to protect against these other types of attacks.

Similarly, most ATM networks use a four digit pin for money withdrawals instead of a 6 digit pin for better
usability (harder to memorize a 6 digit pin). To limit risks, usually there are limits on how much one person can
withdraw in a given day and how many times one can enter the pin before the ATM card is disabled. Such an
approach could be seen as a practical risk-aware solution against reasonable threats (e.g., someone randomly
trying the ATM card) that balances utility/usability and risks.

In many domains, risk-based data sharing ideas have been applied for many years without rigorous analysis
of the privacy risks. One example is the airline passenger wait lists used at many US airports. Figure 1 shows a
first class upgrade list for an example flight. The passengers on a given flight can use such lists to check whether
they are upgraded to the first class or whether they can stand by for the upcoming flight. To reduce privacy risks,

1https://blog.ansi.org/2020/01/ansi-grade-levels-bhma-locks-hardware-tests/#gref. Please note, ANSI is not NIST.
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only the first character of the given name and the first three characters of the last name are used on these lists.
Furthermore, to access these waitlists, you should be at a specific airport near the flight gate and/or checked in via
the airline app. Therefore, a combination of access control rules (e.g., only certain people can access to given
waitlist data) and simple data sanitization techniques (e.g., redacting full names) provides reasonable protection
against certain threats. Clearly, above approach for disclosing passenger wait list information could be attacked
under certain scenarios. For example, if the attacker is at the airport and knows a certain targeted individual is
traveling that day, the attacker can find which flight that person is on. On the other hand, using publicly available
data (e.g., the voter registration list available for Texas or online twitter information) thousands of names will
match a given initial. To our knowledge, this information had not been successfully re-identified on a large scale.
Our own back-of-the-envelope calculations show that using just the online information such as voter registration
lists, the probability of re-identifying a random individual is very low. Hence, under a reasonable threat model
(e.g., only using publicly available information and not waiting at the airport to identify an individual), the privacy
risk for this sharing is quite limited. Furthermore, combining the data redaction approach with an access control
scheme (e.g., you need to be at the airport to launch an attack) makes the potential privacy attacks less likely.

Figure 1: Risk-based Data Sharing: Airline Wait List. Red circled individual is the author.

To establish a risk-aware privacy preserving ML framework based on ML use cases, we need to start by
understanding utility goals, existing and upcoming attack techniques, potential attacker incentives to launch
the attacks, potential attack success under the integration of different privacy-preserving technologies, and the
impact of the chosen privacy parameters to get the desired utility and privacy trade-off. For example, for sharing
individual level COVID-19 data to build an ML model, we may need to understand how such data could be used
to launch re-identification attacks under different data sanitization models and attacker background knowledge
[2]. In addition, we need to understand how different privacy tools and models impact data utility. For example,
for building ML models that are predicting pandemic progression for different race groups, preserving race
information may provide more utility than releasing more granular age information.

The above example suggests that different use cases need to be treated with realistic privacy attack models,
attacker background information, utility goals, acceptable privacy risks, and then reason about the privacy risk
vs utility trade-offs under different privacy-preserving technology combinations. This also implies that as the
technology and threat landscape evolve, we need to re-evaluate the existing privacy risks, privacy definitions, and
their evolving utility. Below, we discuss how this framework could be applied in the context of privacy-preserving
machine learning (ML) applications.
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2 Risk-aware Privacy-preserving Machine Learning

In the face of rising privacy attacks against ML models such as model inversion and membership inference [4]
attacks, differential privacy has emerged as the main protection against these attacks. Although the differential
privacy mechanism [5] provides important protections, empirical evaluations have shown that, in many cases,
the ϵ value (one of the parameters needed for tuning the added noise) required for protecting against a certain
attack (e.g., model inversion attack) may significantly harm the utility of the ML model [3]. Therefore, finding
the privacy parameter (e.g., ϵ in differential privacy) that provides desired utility and adequate protection against
attacks may not always be feasible.

Our proposed risk-based privacy framework could be used to incorporate data sanitization based pre-
processing (e.g., sanitizing data before it is used by a differentially private learning mechanism) and post-
processing techniques (e.g, providing a wrapper for a given classifier to reduce model inversion attack success)
combined with carefully selected privacy parameters (e.g. ϵ for differential privacy) to exhibit good utility and
adequate protection against realistic privacy attacks.

The above adversarial attack modeling approach implies that we can first pre-process the data using a
data sanitization technique Q ∈ Q to get a sanitized version Q(D). In this setting, to make the optimization
problem solvable, we can specify a suitable set of sanitization options Q. For example, a feature in the Covid-19
dataset that is representing the birthday of a given patient could be replaced with two attributes representing
the age bracket the patient belongs to (e.g., replacing 01.01.1993 with 7→ (25, 35)). For each attribute, different
generalization/sanitization options could be used to describe the possible set of sanitizations available (i.e., Q).

Once the sanitized data is created, a differentially private learning algorithm L with an appropriate privacy
parameter ϵ is chosen to learn a model M . Later on, this model is post-processed using a post-processing
technique P to make sure that certain attacks are not successful. For example, for a deep learning model M ,
additional neural network layers could be added toM and these layers could be fine-tuned using publicly available
data (hence, negligible additional privacy risk) to reduce the effectiveness of specific attacks. These possible
post-processing architecture space could be leveraged to specify the potential post-processing options Q.

Similarly, for classification tasks, we can explore whether the output probabilities of a classifier can be
modified to reduce model inversion attack success. For example, an overly confident class prediction may help an
attacker to better infer a sensitive attribute. For generative machine learning models, we may explore different
post-processing models to automatically sanitize potentially sensitive output. For example, we may learn a model
P that can detect sensitive data such as a social security number (ssn) predicted by the machine learning model
M , and redact it automatically.

The proposed approach leads to an optimization problem (See Equation 1) where we find the optimal
combination of ϵ, P ∈ P, Q ∈ Q such that we maximize the model utility (e.g., accuracy) while making sure that
privacy risk (e.g., sensitive attribute prediction accuracy) due to an attack i is less than the desired privacy risk
limit γi. Depending on the use case, we need to develop define appropriate pre-processing P and post-processing
Q options for different machine learning tasks against different types of attacks, and for each attack type i (e.g.,
membership inference attack), we need to measure the privacy risk Risk-Attacki.

max
ϵ,P∈P,Q∈Q

Utility(P (Lϵ(Q(D)))

s.t. Risk-Attack1(P (Lϵ(Q(D))) ≤ γ1
......

Risk-Attackn(P (Lϵ(Q(D))) ≤ γn

(1)
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2.1 Example Application: Privacy-preserving Explanation Generation

In our previous work [1], we applied such a risk-aware privacy approach and showed that a differentially private
explainable ML model (i.e., a rule set that explains a given ML model) could be post processed (e.g., some
rules may be pruned) to achieve better accuracy while being more resistant to model inversion attacks. Similar
to previous observations in the literature [3], a pure differentially private model could not reach the desired
protection against model inversion attacks while providing accurate prediction accuracy. Instead, our proposed
risk based approach achieved both goals while being differentially private using a higher ϵ value. Our approach is
not intended to replace differential privacy. In this approach, we use differential privacy with larger ϵ combined
with our privacy-aware data pruning technique to preserve both utility and privacy.

Our strategy proceeds as follows:

1. We build a differentially private machine learning model;

2. The predictions produced by the machine learning model are used as an input to a rule-based explanation
model. Therefore, the rules are generated from the predictions produced by differentially private learning
models;

3. Our privacy risk estimator named α-violation is applied to prevent model inversion attacks.

4. Using the estimated risks and potential utility, some rules that are too risky are pruned.

The complete strategy for combining differential privacy with our privacy risk estimator is given in Figure 2.
Our results indicate that such an approach could use a much higher ϵ value (i.e., much less noise) to increase

the utility of the generated rules while being resistant to model inversion attacks.

Figure 2: The steps for combining differential privacy with privacy risk estimator.

3 Future Trajectories and Conclusions

In this opinion paper, we just sketched the basic outline of the proposed risk-aware privacy framework where
different data privacy tools can be combined to prevent realistic attacks.

One important implication for the proposed framework is that we need to understand the attacks and the
attacker capabilities well enough to come up with realistic threat models. Errors in the threat model may result in
solutions that may not preserve the privacy well enough in practice. In addition, as the attacker’s capabilities
evolve, we may need to revisit the protections provided by the existing privacy solutions. To prevent potential
privacy attacks, it may be prudent to have a margin of error in our threat model assessment and evolution. For
example, even though it may be hard for an attacker to learn all the training data, we may build our threat model
assuming that the attacker has the entire training data available to launch a private attribute inference attack. One
important challenge would be to find the realistic threat model that could not be easily invalidated in practice
in the near future. As in the explanation generation example, certain techniques (e.g., building a differentially
private based model before generating rules to prevent certain privacy attacks) could be used to limit the potential
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negative outcomes. Furthermore, we believe that our framework can be also widely applicable to other types of
attacks, from data poisoning [6] to test time evasion attacks.
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