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Abstract

With the prevalence of smart mobile devices empowered by considerable sensing capabilities, crowd-
sensing has become one promising way to sense urban phenomena (e.g., traffic and environment) at
a large scale. In crowdsensing, a fundamental issue is discovering the truth from participants’ noisy
sensed data. Traditionally, participants need to upload their raw sensed data with locations for truth
discovery, but this may leak participants’ private information such as home and work locations. In
this paper, we propose a federated truth discovery method that can learn the truth without collecting
participants’ sensed data and locations. Our method ensures that the obtained truth quality has no
performance loss compared to the original truth discovery method if all the participants keep online; even
if some participants lose connections unpredictably, our method can still learn the truth based on rest
participants’ data. Meanwhile, as participants’ sensed data are unknown to the server, it is hard for the
crowdsensing organizer to justify each participant’s sensing trustworthiness. This brings difficulties to
crowdsensing management such as participant recruitment and incentive allocation. We further propose
a federated ranking mechanism to generate a leader-board for participants’ trustworthiness, which can
also tolerate participants’ connection loss. Both theoretical analysis and real-data empirical evaluations
have been done to verify the effectiveness of FedTruthFinder.

1 Introduction

With the popularity of smart mobile devices, such as smartphones, pads, and vehicles, crowdsensing has become
one promising paradigm for sensing urban dynamics [3]. A typical crowdsensing process first recruits participants
and then asks them to upload the data of interest to the central server. Afterward, the server aggregates the data
from participants toward a synthetic sensed result [39, 11]. While each participant’s sensed data may include
noise, an important issue is how to ensure the accuracy of the aggregated sensed result, often called truth discovery
[26, 12, 24].
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Many research studies have been devoted to the truth discovery for crowdsensing applications. Generally,
most relevant studies model participant trustworthiness and sensed data confidence iteratively to obtain the final
aggregated sensed result [36]. The basic idea is that a high-credit participant’s sensed data should be assigned
with high confidence; a user whose sensed data are more confident should be more trustworthy. While this has
been verified to be effective, the iterative computation process needs a central server to collect every participant’s
raw sensed data, which may bring privacy threats to crowdsensing participants. For example, crowdsensing
usually asks participants to do sensing tasks at specific locations, and thus most sensed data are associated with
detailed location information [39]. The traditional truth discovery process would inevitably leak crowdsensing
participants’ visited locations during sensing periods, which may be exploited by malicious third parties to
conduct serious location privacy breaches such as physical stalking [19]. With the user privacy and personal data
regularization (e.g., General Data Protection Regulation1) becoming more and more important nowadays, we
believe that a privacy-preserving truth discovery algorithm is urgently required for facilitating more extensive
crowdsensing campaigns in practice.

Privacy-preserving truth discovery has been recently studied in crowdsensing. Existing studies are usually
based on some hardly realized assumptions such as every participant being always online and/or non-colluding
[13, 15, 14]2, or two non-colluding servers (or fog nodes) are required [23, 40, 38, 37]. These assumptions hinder
the practical applications of the prior mechanisms. More importantly, almost all the prior studies do not discuss
two fundamental issues in privacy-preserving truth discovery.

i) Participants’ Completed Tasks Protection. Existing mechanisms focus on protecting participants’ sensed
data, but most assume that participants’ completed tasks are known to the crowdsensing server [34, 13, 14, 40].
However, sometimes task information is more sensitive than sensed data. Suppose the tasks are air quality sensing
at certain points of interest. If a participant’s task completion information is disclosed (e.g., finish a sensing task
at the Times Square NYC), then her location is revealed without the need to know her sensed air quality value.

ii) Participants’ Trustworthiness Assessment. Trustworthiness assessment is a key part of crowdsensing for
participant recruitment and incentive design [17], while privacy-preserving truth discovery needs to hide partici-
pants’ trustworthiness scores for privacy protection. To address the dilemma, a privacy-preserving trustworthiness
assessment method needs to be proposed.

In this paper, we aim to design a novel and practical privacy-preserving truth discovery mechanism for
crowdsensing to overcome the pitfalls of prior studies. In particular, our design follows the federated learning
(FL) paradigm [5, 35]. We thus call our method as FedTruthFinder. In general, FL requires user clients to do
some local computation (e.g., learning the gradients for updating the parameters of the model) on their devices
and then only upload the computation results instead of raw data. For a specific algorithm, the local computation
and uploading process usually incorporates certain secure mechanisms (e.g., homomorphic encryption and secure
multi-party computation) to ensure that no user privacy is leaked theoretically [2, 10]. Based on FL, we aim to
consider the following specific issues in the design of FedTruthFinder.

No Accuracy Loss: We expect that FedTruthFinder will not hurt the accuracy of the aggregated sensed results
compared to the centralized truth discovery. Without the loss of accuracy, crowdsensing organizers would be
likely to adopt the method in practice.

No Third Party: Crowdsensing involves a central server and a set of participants’ clients. To make
FedTruthFinder easy to deploy, we do not want to introduce any more third parties which are usually hard to find
in reality [1, 27].

Robustness against Unpredictable Connection Loss: While crowdsensing participants travel around the
whole city, their device connection with the central server is not always stable. Hence, it is necessary to make
FedTruthFinder effective when some participants lose connections suddenly.

1https://gdpr.eu/eu-gdpr-personal-data
2Some participants’ relations can be very close such as family members, and thus it is non-reasonable to assume that they will not

collude with each other.
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Figure 1: Overview of Iterative Truth Discovery

With the above issues in consideration, this paper makes the following contributions:
(1) To the best of our knowledge, this paper is the first study that addresses the problem of privacy-preserving

crowdsensing truth discovery with (i) participants’ completed task protection, and (ii) participants’ trustworthi-
ness assessment.

(2) We propose FedTruthFinder, a novel privacy-preserving truth discovery mechanism following the federated
learning paradigm [35]. FedTruthFinder does not need any third party and can tolerate participants’ unpredictable
connection loss. The two key components of FedTruthFinder are (i) federated confidence computation to learn
the probability of a sensed event, and (ii) federated trustworthiness ranking to assess participants’ sensed data
quality.

(3) We have conducted both theoretical analysis and empirical evaluations for FedTruthFinder. In particular,
FedTruthFinder can reduce the system failure probability significantly compared to state-of-the-art privacy-
preserving truth discovery approaches [1, 34], and achieve good detection accuracy.

2 Preliminary: Truth Discovery

Truth discovery algorithms usually follow an iterative method to calibrate user trustworthiness and data confidence
alternatively until convergence [36]. Figure 1 shows the framework of iterative truth discovery methods. In this
paper, for clarity, we assume that sensed data is a binary spatial event. That is, for a specific location, the sensed
data can be 1 or 0. Our method can be easily extended to multi-class and continuous-value events (see Appendix).

As shown in Figure 1, first, participants upload all of their sensed data and locations Ei to the central server.
The central server would assign an initial trustworthiness score τi to each participant ui (e.g., 0.9 by assuming
that 90% of the sensed data are accurate). Then, for each sensed event ej , the truth discovery algorithm will
calculate its confidence ρj (i.e., the probability of ej = 1) by considering the users who have sensed ej as:

ρj = Fρ(Uj,1,Uj,0) (73)

where Uj,k is the users who have sensed the event ej with the reported data k; Fρ is an event confidence calculation
function which we will elaborate on later.

With ρj for each event ej , we can then update the trustworthiness score τi of each participant ui by:

τi = Fτ (Ei,1, Ei,0) (74)
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where Ei,k is the users’ sensed event set with the reported data k; Fτ is a user trustworthiness calculation function
which we will elaborate on later.

Once τi is updated for each user ui, we can continue updating ρj for each event ej according to Eq. 73, and
so on, leading to an alternative updating process for both τi and ρj . This process can be terminated after a fixed
number of iterations or until convergence. Next, we elaborate on the common choices of Fρ and Fτ in literature.

Sum Function
An intuitive selection of the updating functions of Fρ and Fτ is the weighted sum:

ρj = Fρ(Uj,1,Uj,0) =
∑

ui∈Uj,1
τi∑

ui∈Uj,1
τi +

∑
uk∈Uj,0

τk
(75)

τi = Fτ (Ei,1, Ei,0) =
∑

ej∈Ei,1 ρj +
∑

ek∈Ei,0 1− ρk
|Ei,1|+ |Ei,0|

(76)

Logistic Function
Another widely used updating function is the Logistic function [36]. Its basic idea is seeing every user

independently, so that the probability of event happening, i.e., ej = 1, can be formulated as:

ρj = 1−
∏

ui∈Uj,1

(1− τi) (77)

As 1− τi may often be small and multiplying many of them may lead to underflow, prior studies proposed to use
the logarithm to define a log-trustworthiness score of ui as [36]:

τ∗i = − ln(1− τi) (78)

Similarly, a log-confidence score of event ej is defined as:

ρ∗j = − ln(1− ρi) (79)

Then, we can infer
ρ∗j =

∑
ui∈Uj,1

τ∗i (80)

The above equation does not consider the users’ trustworthiness who report ej = 0, and thus we refine it:

ρ∗j =
∑

ui∈Uj,1

τ∗i −
∑

uk∈Uj,0

τ∗k (81)

Finally, a logistic function is used to calculate the final confidence ρj of event ej [36]:

ρj = Fρ(Uj,1,Uj,0) = (1 + e−ρ∗j )−1 (82)

τi is updated same as Eq. 76.

3 Federated Truth Discovery: Overview and Key Issues

3.1 Overall Design

Figure 2 overviews the workflow of our method FedTruthFinder. The general design principle follows the
federated learning paradigm [35], which requires the user clients to conduct local computations of their raw
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Figure 2: Overview of FedTruthFinder

data and then upload processed data that do not reveal the user’s privacy to the server. With these uploaded
privacy-preserving data, the server can still find the aggregate truth of the sensed events, the same as the server
receiving the raw sensed data and locations from participants.

By analyzing the original truth discovery algorithm in the previous section, we note that there exist two
alternative computation processes: (i) ρ-computation: updating the confidence ρj for each event ej , and (ii)
τ -computation: updating the trustworthiness τi for each participant ui. In the two computation processes, τ -
computation (e.g., Eq. 76) can be naturally offloaded to each participant ui’s device, as long as the server sends
all the current ρj , ∀ej to the participants. However, ρ-computation needs to know each user’s sensed data (and
locations) and then do aggregation (e.g., sum). This needs a dedicated design to enable the privacy-preserving
truth discovery, which will be illustrated in Sec. 4.

Besides, the trustworthiness of each participant’s sensed data (i.e., τi) is a key metric in crowdsensing
organization for participant recruitment and incentive allocation. Hence, we also design a federated privacy-
preserving mechanism to rank participants’ trustworthiness. Particularly, instead of transferring raw τi to the
server, we leverage certain security mechanisms to upload f(τi) to the server, while f(τi) keeps the same ranking
orders as τi. Particularly, in FedTruthFinder, f(τi) = r1τi + r2τ

2
i + ...+ rkτ

k
i , where ri > 0. In this regard, even

though the server cannot know the specific τi of each participant ui, the ranked list of participants according to
the trustworthiness can still be learned with f(τi). Specifically, during the whole computation process, the server
cannot know ri, and each participant will also not know all the ri, so that none of the server or participant can
infer other participants’ private τi. How to compute f(τi) securely will be introduced in Sec. 5.

3.2 Key Issues

Issue 1. Privacy-Preserving ρ-computation: Suppose there are a set of crowdsensing participants U and a set
of spatial events to sense E , each participant ui(∈ U) with sensed events Ei,1(⊆ E) and Ei,0(⊆ E) corresponding
to the sensed value being 1 and 0, respectively. How to calculate confidence ρj for each event ej(∈ E) while
every participant ui will not leak Ei,1, Ei,0, and Ei,1 ∪ Ei,0 to the server and other participants?

Some factors need to be carefully considered:
(1) Computation: In ρ-computation, the value to share is a complicated equation instead of a single value,

and the equation may even be varied depending on the truth discovery algorithm implementation (e.g., Eq. 75 or
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Eq. 82).
(2) Network Connection: In crowdsensing, the network connections of mobile participants may not be

always stable. Hence, our mechanism should tolerate the scenario when a few participants lose connections.
(3) No Leakage of Task Completion: For protecting participants’ privacy, not only the sensed data but also

the completed tasks (i.e., Ei,1 ∪ Ei,0) should not be disclosed.

Issue 2. Secure Trustworthiness Ranking: Suppose there are a set of crowdsensing participants U and each
participant ui(∈ U) has a private trustworthiness score τi. How to rank participants according to τi while every
participant ui will not leak τi to the server and other participants?

Addressing this issue also needs to consider the unstable network connections of participant clients as
aforementioned.

Remark on security definition: In this work, we assume that the crowdsensing server and participants are
semi-honest (honest-but-curious): they will follow our designed protocol and not maliciously modify the inputs
or outputs; however, the server and the participants will try their best to infer others’ data from the data that
they have received. Besides, our mechanism can defend against collusion attacks to a certain extent (i.e., some
participants may collude with each other), which we will elaborate on later.

4 Federated Truth Computation

We first introduce a basic scheme for ρ-computation in a federated manner assuming no connection loss. Then,
we improve the scheme to be against the participants’ unpredictable connection loss.

4.1 Basic Scheme of ρ-Computation with SSS

In this section, we propose our basic scheme for the ρ-computation problem with the federated learning paradigm
leveraging secret sharing. Given a spatial crowdsensing event ej , we first consider ρ-computation with the sum
function, i.e., Eq. 75.

4.1.1 ρ-computation with the sum function.

Our process includes three steps as follows:
Step 1 (Share Dispatching). Each participant ui dispatches dij and sij with secret sharing to all the n

participants (U = {u1 · · ·un}), where

dij =

{
τi ej ∈ Ei,1
0 ej ∈ E \ Ei,1

(83)

sij =

{
τi ej ∈ Ei,1 ∪ Ei,0
0 ej ∈ E \ (Ei,1 ∪ Ei,0)

(84)

Specifically, dij is divided into n shares
{d1ij , · · · , dnij}

where d1ij , · · · , d
n−1
ij are random numbers and

dnij = dij −
n−1∑
k=1

dkij
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Hence,
∑n

k=1 d
k
ij = dij . Then, ui sends dkij to uk. Similarly, sij is split to n shares

{s1ij , · · · , snij = sij −
n−1∑
k=1

skij}

and uk receives skij from ui.
Step 2 (Client Summation). For each event ej , an participant uk uploads d̂kj =

∑n
i=1 d

k
ij and ŝkj =

∑n
i=1 s

k
ij

to the server.
Step 3 (Server Aggregation). After receiving d̂kj and ŝkj from ∀uk ∈ U , the server can add them together:

dj =
n∑

k=1

d̂kj =
n∑

k=1

n∑
i=1

dkij =
n∑

i=1

n∑
k=1

dkij =
n∑

i=1

dij (85)

sj =
n∑

k=1

ŝkj =
n∑

k=1

n∑
i=1

skij =
n∑

i=1

n∑
k=1

skij =
n∑

i=1

sij (86)

Then, ρj is computed as:

ρj =
dj
sj

(87)

4.1.2 ρ-computation with the logistic function.

The computation process with the logistic function is not much different from the one with the summation
function. Actually, for the event ej , we only need to modify dij to:

dij =


− ln(1− τi) ej ∈ Ei,1
ln(1− τi) ej ∈ Ei,0
0 ej ∈ E \ (Ei,1 ∪ Ei,0)

(88)

Besides, we do not need sij , so every participant uk only receives dkij from other ui ∈ U . Finally, in Step 3, we
can compute ρj as:

ρj = (1 + e−dj )−1 (89)

Remark on our novelty. In our ρ-computation for an event ej , the participant ui who has not sensed ej also
needs to upload data to the server, e.g., dij = sij = 0 for the sum function. As dij and sij are sent by secret
shares, the other participants and the server would not know whether ui senses ej or not. In comparison, prior
studies usually assume that participants send only the data of their sensed events, which may disclose user privacy
from event information (e.g., event locations) [13, 15, 14, 40, 41, 38].

4.2 Connection Robustness Improvement

The basic scheme can learn ρj in an ideal environment when all the participants are always online. In practice,
participants move around and their network connections are often sporadic. This inspires us to make three
improvements to the basic scheme design.
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4.2.1 Bias-avoidance adaptive truth updating.

While participants may drop during the iterative truth discovery process due to bad connections, the original event
confidence updating function would be ineffective. Specifically, if ui loses the connection at the kth iteration, ui’s
data would not be considered in the ρ-computation (e.g., Eq. 75) from then on. This leads to unreliable ρj as the
finally alive participants dominate the results. To address this pitfall, we propose an adaptive updating function
for kth iteration’s ρj,k as,

ρj,k = wkFρ + (1− wk)ρj,k−1 (90)

where Fρ is an original event confidence updating function (e.g., sum and logistic). With Eq. 90, the data
contribution of the participants who drop at the kth iteration can still be kept (by ρj,k−1) to avoid the truth bias
toward alive participants. wk can be set as,

wk = (
|Ualive,k|
|U|

)α (91)

where Ualive,k is the alive participants at the kth iteration. When alive participants decrease with more iterations,
wk becomes smaller, reflecting that fewer participants should occupy lower weights. From our experiments, we
find that α = 3 is a proper setting.

4.2.2 Server-coordinated communication structure.

In Sec. 4.1, we assume that one participant ui can establish a secure communication channel with every other
participant uk so as to transfer the secret share dkij and skij . Hence, each participant needs to establish n − 1
channels with others. Considering the sporadic property of the mobile connections, this may not be easy for
a participant to keep so many channels stable in practice. To alleviate this issue, we convert the peer-to-peer
communication structure to a server-coordinated one. In the server-coordinated structure, every participant first
transmits all the data to the server, and then the server dispatches the desired data to the corresponding participant.
In this way, each participant needs to establish only one secure channel to the server.

To ensure that the transmitted data will not be directly observed by the server, we leverage a public-key
encryption system to encrypt the data before the transmission. In particular, each participant ui first generates a
pair of keys, the public key pki and the private key ski. The public key pki is sent to all the other participants
(e.g., through the server) at the beginning of the crowdsensing campaign. For details, readers can refer to [1].

Then, for computing ρj , each participant ui first transmits Ei = {Encrypt(dkij , pkk)|k = 1 · · ·n} to
the server.3 After receiving n participants’ Ei, the server re-organizes the received data and sends Êk =
{Encrypt(dkij , pkk)|i = 1 · · ·n} to each participant uk. Afterward, uk decrypts the received data with her pri-
vate key, obtains {dkij |i = 1 · · ·n}, and then uploads d̂kj =

∑
i d

k
ij to the server. The server can then recover

dj =
∑

i dij from participants’ uploaded d̂kj and computes ρj accordingly.

4.2.3 (t, n)-Shamir secret sharing (SSS)

While the server-coordinated communication structure reduces the burden of secure channel establishing for
mobile participants. It may still fail if a user loses the connection during the campaign and cannot link back. For
example, suppose a participant ui has sent Ei to the server and then quit the crowdsensing campaign (e.g., ui’s
mobile device runs out of battery). Then, in Step 3, the server will not be able to receive d̂ij from ui, and thus
cannot recover dj .

To address this pitfall, in practical deployment, we can leverage the threshold secret sharing method proposed
by Shamir [21], namely (t, n)-Shamir secret sharing (SSS). With (t, n)-SSS, the server only needs to receive

3If sij is needed (e.g., for the sum function), it can be encoded in Ei same as dij .
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t (t ≤ n) participants’ d̂ij for recovering dj . In particular, to leverage (t, n)-SSS to dispatch dij , we first create a
(t− 1)-polynomial:

Dij(x) = dij + aij1x+ aij2x
2 + · · ·+ aijt−1x

t−1 (92)

where aij1, · · · , aijt−1 are random numbers selected by ui. Then, ui dispatches Dij(k) to uk. If we obtain more
than t participants’ Dij(k), according to linear algebra, we can infer dij .

Similar to Step 2 of our basic scheme, d̂kj =
∑

iDij(k) is uploaded to the server by each uk. Then, in Step 3,
after receiving more than t participants’ d̂kj , the server will be able to infer dj =

∑
i dij according to the additive

homomorphism property of SSS [21].
Remark on our novelty. In the truth discovery part, the key advantage of our mechanism beyond literature

is its robustness against connection loss. Preliminary privacy-preserving truth discovery papers rarely consider
the connection loss issue [15]. Some work tries to deal with drop-out users by letting alive participants send
extra information [38, 31]; however, when the connection condition is so bad that certain alive participants
again lose connections during the extra information communication, this process would be uncontrolled and
time-consuming. Recent work also adopts SSS to enhance connection robustness [34]. The basic idea is using the
double-masking secure aggregation algorithms proposed by [1], and every participant needs two connections to
do event confidence computation for one iteration. In comparison, our mechanism only needs every participant
to connect once for one iteration of computation. Our numerical experiments (Sec. 6.1) will show that this
connection reduction can lead to a significantly difference in the algorithm success probability (e.g., increasing
the success probability from 1% to 99% under certain conditions).

4.3 Theoretical Analysis

4.3.1 Correctness

The process to calculate ρi in FedTruthFinder follows the original algorithm shown in Sec. 2. Hence, we can
obtain the same aggregate truth results as the original algorithm, as long as the SSS scheme is valid. In this regard,
the correctness of our algorithm is theoretically guaranteed.

4.3.2 Robustness to Connection Loss & Security

Setting t to a small value allows our mechanism to tolerate more users dropping the campaign due to connection
losses. Meanwhile, a small t reduces the security level of our mechanism — if t participants collude with each
other, they can recover the other participants’ sensed data and locations, leading to privacy leakage.

Theorem 4.1. If there are ≤ n− t participants losing the connection in one iteration of ρ-computation, the
server can learn the event confidence ρj .

Theorem 4.2. If t′(< t) semi-honest users collude with each other, they cannot infer any other users’ secret
information.

The two theorems hold based on the property of (t, n)-SSS.

4.3.3 Complexity

We analyze the algorithm from both communication and computation complexity perspectives. Particularly, since
the participant clients are more sensitive to the communication and computation overhead, our current analysis
focuses on the client side, while the server part analysis is similar.

Communication Complexity - O(nne). For each participant client, she needs to transfer n share pieces
of the secret to the other participants and receive the corresponding shares from every other participant, so the
complexity is O(n) for one event. Suppose there are ne events, the total communication complexity is O(nne).
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Computation Complexity - O(nne). Each client needs to do two local computation processes. The first
process is to generate the random coefficients for (t, n)-SSS and calculate the secret shares sent to all the other
participants (Step 1), which is O(nne). The second process is to do local summation (Step 2), which is also
O(nne). Hence, the total computation complexity is O(nne).

5 Federated Trustworthiness Rank

While FedTruthFinder learns the integrated event truth in a privacy-preserving manner, it brings a challenge
in justifying participants’ trustworthiness. For example, to incentivize the crowdsensing participants, it is a
common strategy to pay the high-trustworthy participants (i.e., high-quality sensing results) with higher incentives.
However, in FedTruthFinder, the sensing quality of each participant, i.e., the trustworthiness score τi is kept at
each participant side and unknown to the server. Hence, how to assess participants’ trustworthiness is required
and challenging for FedTruthFinder.

In this section, we first illustrate a concrete case to describe that τi cannot be directly known to the server,
otherwise the server may infer which event ui has sensed. As τi cannot be known to the server, we then design
a secure ranking algorithm to let the server know every participant ui’s ranking position of τi among all the
participants without leaking τi. Based on the ranked positions, the crowdsensing organizer can enable certain
trustworthiness-aware incentive mechanisms, e.g., rewarding high-position participants with bonus, which can
incentivize participants to compete with each other to get more high-quality sensed data [20].

5.1 Privacy Leakage by Trustworthiness τi
Here, we illustrate an example to show the risk of revealing τi to the server for leaking participant ui’s privacy.

Without the loss of generality, we assume that u1’s τ1 = 0.9, and other ui’s τi < 0.9 (i ̸= 1). Suppose that
one event ej’s ρj = 0.9 after truth discovery, then we can easily infer that u1 has sensed the event ej and the
sensed result is 1. This reveals the fact that u1 has visited the location of ej , leaking u1’s location privacy.

Hence, participants cannot directly upload their τi to the server for incentive allocation. Next, we design a
privacy-preserving method to enable trustworthiness-aware incentive allocation.

5.2 Secure Trustworthiness Leader-board

While revealing τi may leak participants’ private information, we propose a secure ranking algorithm to learn a
leader-board regarding participants’ trustworthiness for facilitating trustworthiness-aware incentive allocation.

Secure ranking algorithms have been studied for decades; however, prior studies cannot be directly applied in
our scenario for two reasons. First, the communication overheads are usually high. Second, prior studies mostly
assume that all the network connections are stable for all the parties, but this is unrealistic for crowdsensing.

Our secure ranking algorithm generally follows the design of [22]. However, the original design [22] cannot
tolerate any participants to lose the network connections. We thus enhance it to ensure that the ranking algorithm
can still work when certain participants lose connections. The major steps of our federated trustworthiness
leader-board generation mechanism are:

Step 1. First, we categorize all the participants into (2t+ 1) groups, and thus each group includes n/(2t+ 1)
participants. We denote gid(u) to refer to the group ID of participant u.

Step 2. For each user ui, she shares τi, τ2i , ... , τ2t+1
i with (t + 1, 2t + 1)-SSS to all the user groups.

Specifically, a user uj will receive the share piece regarding gid(uj), denoted as τi1(gid(uj)), τi2(gid(uj)), ...
τi2t+1(gid(uj)) for τi, τ2i , ... , τ2t+1

i , respectively.
Step 3. For each user group gk, it generates a random number rk(> 0) and shares rk with (t+1, 2t+1)-SSS

to all the user groups. That is, uj will receive rk’s share regarding gid(uj), denoted as rk(gid(uj)).
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Step 4. For each participant uj , she calculates the following number with the τik(gid(uj)) received from ui:

hi(gid(uj)) = λ(gid(uj))

2t+1∑
k=1

rk(gid(uj))τik(gid(uj)) (93)

= λ(gid(uj))γ(gid(uj)) (94)

where 
1 1 12 ... 12t

1 2 22 ... 22t

... ... ... ... ...
1 2t+ 1 (2t+ 1)2 ... (2t+ 1)2t


−1

=


λ(1) λ(2) λ(3) ... λ(2t+ 1)
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...


Step 5. For each user group, we randomly select one participant uj to share {hi(gid(uj))|i ∈ [1, n]} with

(t + 1, n)-SSS to all the n participants. Each user uk’s received shares from all the groups are denoted as
{hi(g, k)|i ∈ [1, n], g ∈ [1, 2t+ 1]}.

Step 6. For each participant uk, she computes:

h′i(k) =
2t+1∑
g=1

hi(g, k), ∀i ∈ [1, n] (95)

Each uk sends {h′i(k)|i ∈ [1, n]} to the server.
Step 7. After receiving at least t+ 1 participants’ {h′i(k)|i ∈ [1, n]}, the server can recover:

hi =
2t+1∑
k=1

rkτ
k
i , ∀i ∈ [1, n] (96)

Step 8. The server ranks ui according to hi and the ranked list is the leader-board regarding trustworthiness
τi.

Note that same as ρ-computation, we do not need to establish the peer-to-peer communication channels
between every two participant clients and can use the crowdsensing server for coordination. To avoid redundancy,
readers can refer to Sec. 4.2.2 for details.

Remark on our novelty. The key improvement of our secure ranking algorithm compared to [22] is the
enhanced robustness against participants’ connection loss. In [22], every participant holds a ri and we will
randomly select 2t+ 1 participants to share their ri (Step 3) and hi (Step 5). This process is easy to break if a
selected online user (Step 3) loses the connection in Step 5. Our proposed algorithm first constructs user groups
so that we only need at least one participant online in each group for both Step 3 and 5, reducing the failure
possibility incurred by connection loss. It is worth noting that this algorithm can not only rank crowdsensing
participants’ trustworthiness, but also be applied to many other applications when privacy-preserving data ranking
is needed under unstable network connections.

Remark on the ranked measurements. In the previous algorithm description, we suppose that τi needs
to be ranked. In practice, crowdsensing organizers can use the same secure ranking mechanism to rank other
key measurements of participants (e.g., the number of sensed events) to design better incentive mechanisms or
participant recruitment strategies.
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(a) pl = 0.01 (b) pl = 0.05 (c) pl = 0.1

Figure 3: Number of data for each event’s truth discovery by iterations.

(a) pl = 0.05 (b) pl = 0.1

Figure 4: Failure probability of truth discovery.

5.3 Theoretical Analysis

All the proofs are illustrated in Appendix.

5.3.1 Correctness

We first prove the correctness of our algorithm.

Lemma 5.1.
∑2t+1

k=1 rk(x)τik(x) can be represented as:

hi + ai1x+ ai2x
2 + ...+ ai2tx

2t

where hi =
∑2t+1

k=1 rkτ
k
i . [22]

Theorem 5.1. With t+ 1 participants’ h′i(k), we can recover hi.

Theorem 5.2. Ranking hi is equivalent to ranking τi.

5.3.2 Robustness to Connection Loss

We analyze how our secure ranking algorithm can tolerate connection losses. We assume that before Step 2, there
is no user connection loss.4

4If ui loses the connection in Step 2 and cannot share τk
i with SSS, then there is no way to rank ui’s position because the server has

no ui’s information.
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Theorem 5.3. To finish Step 3-5, there needs at least one user online for each group. Suppose that every user
has pl probability to lose connection and there are n users, the success probability ≥ (1− p⌊n/(2t+1)⌋

l )2t+1.

Theorem 5.4. To finish Step 6-8, ≥ t+ 1 users need to be online.

5.3.3 Security

Here, we analyze the security of our mechanism.

Theorem 5.5 If there are no more than t collusive participants, then these participants cannot recover all the
other users’ τi.

5.3.4 Complexity

We analyze the algorithm from communication and computation complexity perspectives for participant clients.
Communication Complexity - O(tn). In Step 2, the communication overhead of one participant to send

τi, τ
2
i , ..., τ

2t+1
i is O(t2), while each user received data is O(tn). In Step 3, the complexity is O(t). In Step 5, for

sending data, the complexity is O(n); for receiving data, the complexity is O(tn). In Step 7, the complexity is
O(n). Combing them together, the communication complexity of the whole process is O(tn) as t < n.

Computation Complexity - O(tn). The main computation processes of each client include (1) calculating
secret shares for τi, τ2i , ..., τ

2t+1
i with (t+ 1, 2t+ 1)-SSS in Step 2, which is O(t2), (2) calculating secret shares

of rk in Step 3, which is O(t), (3) computing hi in Step 4, which is O(tn), and (4) calculating h′i in Step 6, which
is O(tn). Hence, the final computation complexity is O(tn).

6 Evaluation

6.1 Numerical Analysis for Connection Loss

We have theoretically proven that our algorithm can learn the event confidence and trustworthiness ranking like
the original centralized algorithms. This experiment then focuses on how the connection loss would impact
FedTruthFinder quantitatively, since the unstable mobile network connection is a key characteristic for mobile
crowdsensing. A practical mechanism should be able to fight against the unpredictable connection loss. In general,
participants’ connection loss may bring two types of negative impacts to the iterative truth discovery algorithm.

• A small number of sensed data for truth discovery. While FedTruthFinder can learn an aggregate truth
as long as more than t participants are online, the data sources for the truth would be decreased. This would
also affect the performance of the learned truth.

• Possible failure of the whole algorithm. If a large number of participants lose the connection and only
fewer than t participants remain online, then the whole running process of FedTruthFinder would fail and
no result can be learned.

Specifically, we conduct the numerical analysis for two parts of FedTruthFinder respectively, i.e., event
confidence computation and participant trustworthiness ranking. We vary the probability of one participant losing
the connection (denoted as pl). If pl = 0.01, a participant has 1% probability of dropping out of the crowdsensing
campaign due to one-time connection loss. Then, if a participant needs to connect to the server for n times, it
has 1− (1− pl)n probability to lose the connection. In the experiment, we test pl = 0.01/0.05/0.1 to represent
good/moderate/bad connection scenarios.
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(a) pl = 0.01 (b) pl = 0.05 (c) pl = 0.1

Figure 5: Failure probability of trustworthiness ranking.

(a) Participants number (b) Connection loss

Figure 6: Detection accuracy of FedTruthFinder.

6.1.1 Event Confidence Computation

To compare with FedTruthFinder, we consider the state-of-the-art way to do iterative truth discovery with an SSS-
based secure aggregation (SA) protocol [1, 34], denoted as SA, which can also tolerate a certain level of participant
connection loss. In brief, SA leverages a double-masking method to ensure that the truth discovery can run when
some users lose the connection. However, not like FedTruthFinder which only needs a one-time connection for
each participant to finish one iteration of ρ-computation, SA needs a two-time connection (double-masking).

Figure 3 shows the number of sensed data for truth discovery in each iteration for FedTruthFinder and SA
(the total number of data is set to 100). Literature has shown that the number of iterations for truth discovery is
often smaller than 10 [36] and thus we set the number of iterations up to 10. FedTruthFinder can always obtain
more sensed data than SA as FedTruthFinder needs fewer connections. Especially, when the network connection
condition is bad (pl = 0.1), the performance improvement of FedTruthFinder over SA is more significant.

Figure 4 shows the algorithm failure probability (i.e., fewer than t users are online) for FedTruthFinder and
SA (we set the number of participants to 100 and t to 50; we do not plot pl = 0.01 as both methods are successful
almost all the time). FedTruthFinder can significantly reduce the failure probability compared to SA. For example,
when the network connection quality is moderate (pl = 0.05), FedTruthFinder has around 99% probability to
finish successfully for 10 iterations; however, SA has only around 1% probability. For the bad connection scenario
(pl = 0.1), SA will fail with more than 20% probability from iteration 3, while FedTruthFinder can keep working
well until iteration 6. This reveals that, even if both FedTruthFinder and SA cannot finish all the ten iterations due
to a bad network connection condition, FedTruthFinder can run a larger number of iterations, making the truth
more reliable.
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6.1.2 Participant Trustworthiness Rank

As none of the prior studies have addressed the privacy-preserving trustworthiness ranking problem, we cannot
directly find a baseline method to compare. Meanwhile, our proposed trustworthiness ranking algorithm is inspired
by the basic idea from [22] while significantly enhancing the capability to tolerate participants’ connection loss.
To this end, we compare FedTruthFinder and [22] when certain participants lose connections.

In federated trustworthiness ranking, t is the key parameter related to how many user groups are created,
which significantly impacts the algorithm success probability (Theorem 5.3). Suppose the total number of users is
100, we set t = 10/15/20/25. The algorithm failure probability is shown in Figure 5. With the increase of t, the
failure probability of FedTruthFinder rises. This fits our expectation as a larger t means that more user groups are
generated and the user number per group is reduced. As FedTruthFinder needs at least one user online for each
group, smaller user number per group means that the robustness against connection loss is weakened, leading to
higher failure probability. Compared to [22], our algorithm significantly increases the success probability when
connection is unstable. When pl = 0.1 and t = 10, the failure probability of our ranking algorithm is 0.04%,
but [22] is 96.18%. Hence, our algorithm could be an appropriate choice for ranking crowdsensing participants’
trustworthiness scores considering the unstable mobile network connection environment.

6.2 Evaluation of Traffic Light Detection

We also test FedTruthFinder for traffic light detection, a representative crowdsensing task [16, 25]. We focus on
the truth discovery accuracy and the runtime efficiency of FedTruthFinder, which has not been evaluated in the
previous numerical analysis.

6.2.1 Data and Tasks

To evaluate FedTruthFinder on the traffic light detection task, we leverage a real-life open dataset including taxis’
trajectories. Specifically, the dataset contains time-stamped GPS trajectories from 536 taxis in San Francisco, U.S.
in one month of 2008 [18]. Following [16], we manually label 96 traffic light detection event positions using the
Street View of Google Maps (Figure 7). Then, we randomly select some taxis as participants; their trajectories in
the dataset are used to simulate their activities — if a taxi stops around an event’s location, it may report the data.
The report error rate (indicating trustworthiness) of each taxi is randomized in [0, 0.5]. The default participant
number is 60 and the connection loss probability is 0.05. The event confidence function is set to ‘logistic’ as it
performs better than ‘sum’. t in SSS is set to half of the total participant number. To increase the randomness,
each taxi randomly reports 20% of the events, and then each setting of the experiment is repeated by 50 times.

6.2.2 Experiment Platform

Our platform is an Alibaba cloud server with CPU of Intel Xeon Platinum 8163 (12 cores, 2.5GHz) and 24GB
memory. The operating system is Ubuntu 20.04. FedTruthFinder is implemented by Rust 1.56. Docker5 is
adopted to simulate the crowdsensing server and participants.

6.2.3 Truth Discovery Accuracy

Figure 6(a) and 6(b) plot the accuracy regarding the number of participants and connection loss probability,
respectively. Specifically, we compare FedTruthFinder with and without the adaptive truth updating technique
(Sec. 4.2.1). For the adaptive updating, we try α = 1/2/3 (Eq. 91), and find α = 3 performs the best. The adaptive
updating (α = 3) can consistently improve the accuracy with different participant numbers and connection losses.
Specifically, with more participants and higher connection losses, the improvement is more significant. When the

5https://www.docker.com/
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Figure 7: Traffic light event locations (red: true; blue: false). The red points represent the true event locations (i.e,
with traffic lights) and the blue points mean the false event locations.

connection loss probability increases, the accuracy decreases gradually. This again verifies the effectiveness of
FedTruthFinder over SA [34] — FedTruthFinder reduces the communication times per truth discover iteration
compared to SA, which is conceptually equivalent to the reduction of connection losses in practice.

6.2.4 Runtime Efficiency

Figure 8(a) and 8(b) record each participant’s data transmission amount and computation time, respectively. Note
that the computation time is mostly spent in the truth finding step, while the trustworthiness ranking takes only
∼0.01s. The results show that the data transmission amount and computation time are both small, verifying the
practicality of FedTruthFinder.

7 Related Work

Truth discovery is a traditional research direction as we may often receive diverse and even conflicting information
about one event [7]. In the pioneering research [36], authors discuss the truth discovery problem when there
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(a) Data transmission (b) Domputation time

Figure 8: Runtime efficiency of FedTruthFinder.

Table 15: Comparison of our work and representative related work. (NTP: No Third Party, AT: Assess Trustwor-
thiness, CA: Collusion Attacks)

Privacy Protection NTP AT Connection Loss CA
Sensed Data Completed Tasks Fault Tolerance Bias Avoidance

[15]
√

× × × × × ×
[40]

√
× × ×

√
× ×

[14]
√

×
√

×
√

× ×
[34]

√
×

√
×

√
×

√

[41]
√

×
√

×
√

×
√

[38]
√

× × ×
√

× ×
Our Work

√ √ √ √ √ √ √

are many conflicting facts about one subject on different websites. Besides information from websites, truth
discovery is also important in many other areas such as social sensing [26] and crowdsourcing [6, 33].

Mobile crowdsensing [39], as a particular type of crowdsourcing that needs workers to do location-based
sensing tasks, would also face the truth discovery problem [24]. Meanwhile, privacy protection is also an
important issue to consider in crowdsensing, especially for location privacy [4, 30, 27, 32, 29, 28]. Most prior
research focuses on protecting crowdsensing participants’ location privacy in task allocation [27, 32, 28] or for
particular crowdsensing tasks such as missing data inference [30, 29].

Recently, some studies investigate the privacy-preserving truth discovery in crowdsensing [13, 15, 14, 38, 37,
34]. One research direction is applying data perturbation methods such as differential privacy to participants’
sensed data [8, 9], but these methods degrade the truth finding accuracy. Another research direction follows the
federated learning [35] paradigm that participants’ raw data will not be directly sent to the server with certain
encryption techniques, while the aggregation results (i.e., detected truths) can be accurately learned. However, the
existing privacy-preserving truth discovery methods usually suffer from certain assumptions which may not stand
in reality, e.g., online/non-concluding participants [13, 15, 14], or third-party non-concluding servers [38, 37].
Moreover, no prior work considers hiding participants’ completed tasks or tracking participants’ trustworthiness
in a privacy-preserving manner, which has been addressed by our work.

Table 15 summarizes the characteristics of our work and representative related work published in top venues
recently. In particular, our work is the first privacy-preserving crowdsensing truth discovery research that
considers (i) providing a feasible solution to participant trustworthiness assessment when the trustworthiness
scores are not revealed, and (ii) hiding participants’ completed tasks to provide stronger privacy protection.
Moreover, when dealing with the connection loss during the iterative crowdsensing truth discovery process, our
work (i) proposes an adaptive event confidence updating function to reserve the data contributions of drop-out
participants to avoid the truth bias toward alive participants, and (ii) designs an SSS-based scheme to defend

140



against participants’ collusion attacks while ensuring the high communication efficiency.

8 Conclusion

In this paper, we propose FedTruthFinder, a crowdsensing federated truth discovery mechanism that can not
only find aggregate truth from multiple participants’ sensed data, but also rank participants’ trustworthiness in a
privacy-preserving manner. The primary characteristic of FedTruthFinder is its capability to tolerate network
connection loss of participants in both event confidence calculation and participant trustworthiness ranking.
As a byproduct, our proposed federated ranking algorithm can also serve other applications when the privacy-
preserving data ranking is needed and the network connections are unstable. Following most related papers, this
work assumes participants to be semi-honest; in the future, we would explore the more challenging scenario that
participants may behave maliciously.

9 Appendix

9.1 Theoretical Proof

Proof of Lemma 5.1. It is clear that,

2t+1∑
k=1

rk(0)τik(0) =
2t+1∑
k=1

rkτ
k
i (97)

Besides, both rk(x) and τik(x) are t-degree polynomials, and thus the degree of
∑

k rk(x)τik(x) is 2t.

Proof of Theorem 5.1. With Lemma 5.1, forN (= 2t+1) groups, γ(gid(uj)) =
∑2t+1

k=1 rk(gid(uj))τik(gid(uj))
(Step 4) is:  1 1 12 ... 12t

1 2 22 ... 22t

... ... ... ... ...
1 N N2 ... N2t


 hi

ai1
...
ai2t

 =

 γ(1)
γ(2)
...

γ(N)


then,  hi

ai1
...
ai2t

 =

 1 1 12 ... 12t

1 2 22 ... 22t

... ... ... ... ...
1 N N2 ... N2t


−1 γ(1)

γ(2)
...

γ(N)


so,

hi =

N∑
g=1

λ(g)γ(g)

In Step 5, hi(g) = λ(g)γ(g) is shared with (t + 1, n)-SSS to all the participants from every group g ∈
[1, 2t+ 1]. Hence, according to the additive homomorphism property of SSS [21], we can easily recover hi by
receiving t+ 1 participants’ h′i(k) =

∑2t+1
g=1 hi(g, k).

Proof of Theorem 5.2. As τi > 0 and rk > 0, hi =
∑

k rkτ
k
i will keep the same ranking as τi.

Proof of Theorem 5.3. For Step 3 to 5, if there is at least one user in every group, then the process can
continue. So the probability of failure incurred by one specific group g is all the users in g losing the connections,
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i.e., png ≤ p
⌊n/(2t+1)⌋
l (ng is the user number in g). So for g, the probability of at least one user online

≥ 1− p⌊n/(2t+1)⌋
l . With 2t+ 1 groups, the success probability ≥ (1− p⌊n/(2t+1)⌋

l )2t+1.

Proof of Theorem 5.4. This is based on the property of (t+ 1, n)-SSS in Step 5.

Proof of Theorem 5.5. In Step 2, τki (k = 1...2t + 1) is shared with (t + 1, 2t + 1)-SSS. So, if t participants
collude, they can get at most t · (2t+ 1) equations when t participants are from t groups. However, the number
of unknown parameters (including τi and t random coefficients for sharing each τki ) is t · (2t+ 1) + 1. Hence,
these t collusive participants cannot recover other participants’ τi.

9.2 Mechanism Extension to Multi-class and Continuous-value Events

Multi-class Events. For a multi-class event (m classes), we can see it as m binary events, so that our method can
be directly applied.
Continuous-value Events. For continuous-value events, following the literature, we may adopt other proper
event confidence and participant trustworthiness updating functions such as CRH [34, 41]. Specifically, suppose
that the discovered truth sensed value of a continuous event ej is ρj , and ui’s sensed data of ej is ρ̂ij , then the
event truth (confidence) and participant trustworthiness updating functions can be:

ρj =

∑
ui∈Uej

τi · ρ̂ij∑
ui∈Uej

τi
(98)

τi = log(
∑
ui∈U

∑
ej∈Eui

(ρj − ρ̂ij)2

|Eui |
)− log(

∑
ej∈Eui

(ρj − ρ̂ij)2

|Eui |
) (99)

where Uej is the set of users who sense ej , and Eui is the set of events that ui has sensed. For ρ-computation,
following Sec. 4.1, we can just adapt dij and sij according to Eq. 98 (the participant ui ̸∈ Uej can still send dij =

sij = 0 to protect her task completion information). For τ -computation, Eq. 99 requires
∑

ui∈U
∑

ej∈Eui
(ρj−ρ̂ij)

2

|Eui |
,

which can be done with the same SSS-based method as ρ-computation. In particular, each participant ui can send∑
ej∈Eui

(ρj−ρ̂ij)
2

|Eui |
by secret shares, and then the server can compute the sum in a privacy-preserving manner. In a

word, for continuous-value events, our mechanism can still work without revealing each participant’s raw sensed
data and completed tasks.
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