
Bulletin of the Technical Community on

Data
Engineering
March 2023 Vol. 46 No. 1 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . Haixun Wang 1
Letter from IEEE TCDE Chair . Murat Kantarcioglu 2
Letter from the Special Issue Editor . Yangqiu Song 3

Opinions
A Risk-Aware Paradigm for Privacy-Preserving Machine Learning . Murat Kantarcioglu 4

Special Issue on Federated Machine Learning
Federated Computing: Query, Learning, and Beyond .

. Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Boyi Liu, Yexuan Shi, Shuyuan Li, Ke Xu,and Weifeng Lv 9
Federated Learning without Full Labels: A Survey Yilun Jin, Yang Liu, Kai Chen, and Qiang Yang 27
FedCLIP: Fast Generalization and Personalization for CLIP in Federated Learning .

. Wang Lu, Xixu Hu, Jindong Wang, and Xing Xie 52
Reconciling Security and Communication Efficiency in Federated Learning .

. Karthik Prasad, Sayan Ghosh, Graham Cormode, Ilya Mironov, Ashkan Yousefpour, and Pierre Stock 67
Accelerated Federated Optimization with Quantization Yeojoon Youn, Bhuvesh Kumar, and Jacob Abernethy 79
Federated Truth Discovery for Mobile Crowdsensing with Privacy-Preserving Trustworthiness Assessment

. Leye Wang, Guanghong Fan, and Xiao Han 124
Federated Ensemble Learning: Increasing the Capacity of Label Private Recommendation Systems

. Meisam Hejazinia, Dzmitry Huba, Ilias Leontiadis,
Kiwan Maeng, Mani Malek, Luca Melis, Ilya Mironov, Milad Nasr, Kaikai Wang, and Carole-Jean Wu 145

Enhance Mono-modal Sentiment Classification with Federated Cross-modal Transfer .
. Xueyang Wu, Di Jiang, Yuanfeng Song, Qian Xu, and Qiang Yang 158

NVIDIA FLARE: Federated Learning from Simulation to Real-World .
Holger R. Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, Yuan-Ting Hsieh, Kristopher Kersten, Ahmed
Harouni, Can Zhao, Kevin Lu, Zhihong Zhang, Wenqi Li, Andriy Myronenko, Dong Yang, Sean Yang, Nicola
Rieke, Abood Quraini, Chester Chen, Daguang Xu, Nic Ma, Prerna Dogra, Mona Flores, and Andrew Feng 170

News: Obituary
Obituary for Professor Gio Wiederhold . Kyu-Young Whang and Marianne Winslett 185

Conference and Journal Notices
TCDE Membership Form . 186

Editorial Board

Editor-in-Chief
Haixun Wang
Instacart
50 Beale Street
San Francisco, CA, 94107
haixun.wang@instacart.com

Associate Editors
Yangqiu Song
Hong Kong University of Science and Technology
Hong Kong, China

Karthik Subbian
Amazon
Palo Alto, California, USA

Themis Palpanas
University of Paris
Paris, France

Xin Luna Dong, Alon Halevy
Meta (Facebook)
Menlo Park, California, USA

Distribution
Brookes Little
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who
are interested in database systems. The TCDE web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Community on Data Engi-

neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be sent
to the Editor-in-Chief. Papers for each issue are solicited
by and should be sent to the Associate Editor responsible
for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Murat Kantarcioglu
University of Texas at Dallas

Executive Vice-Chair
Karl Aberer
EPFL

Executive Vice-Chair
Thomas Risse
Goethe University Frankfurt

Vice Chair
Erich J. Neuhold
University of Vienna, Austria

Vice Chair
Malu Castellanos
Teradata Aster

Vice Chair
Xiaofang Zhou
The University of Queensland

Editor-in-Chief of Data Engineering Bulletin
Haixun Wang
Instacart

Diversity & Inclusion and Awards Program Coordinator

Amr El Abbadi
University of California, Santa Barbara

Chair Awards Committee
S Sudarshan
IIT Bombay, India

Membership Promotion
Guoliang Li
Tsinghua University

TCDE Archives
Wookey Lee
INHA University

Advisor
Masaru Kitsuregawa
The University of Tokyo

SIGMOD Liaison
Fatma Ozcan
Google, USA

i

Letter from the Editor-in-Chief

We would like to extend a warm welcome to Professor Murat Kantarcioglu, the new chair of IEEE TCDE as
of 2023. In his letter published in this issue, Kantarcioglu outlined a number of initiatives for our technical
community, including data engineering for social good, better support for diversity, equity and inclusion, etc. We
look forward to working with Professor Murat Kantarcioglu on these important topics.

Several previous issues of the Data Engineering Bulletin have examined the interplay and relationship between
machine learning and data management systems. In this issue, we continue our inquiry.

The increasing use of personal data for training machine learning models has called for better privacy
preserving machine learning strategies. We feature an opinion piece by Professor Murat Kantarcioglu, who
proposes a framework that intelligently leverages existing privacy tools to combat privacy attacks.

We then dive into one specific topic: federated machine learning. At the heart of federated machine learning
is the question of how data can be utilized most effectively to train models as well as how trained models can
be used to represent raw data, which is key to privacy preserving. Professor Yangqiu Song, our associate editor,
examined the current landscape and recent developments in this field, and compiled the issue that consists of nine
papers written by leading academic and industry researchers.

Haixun Wang
Instacart

1

Letter from IEEE TCDE Chair

As the recent research trends indicate, tracking, storing and analyzing “big data” may result in significant value
gains in a wide range of domains, from health care to government services. Still, several critical issues need to be
addressed to capture the full potential of big data, from building accountable and transparent data management
systems to ensuring data privacy. Clearly, IEEE Technical Community of Data Engineering (TCDE) could play
an instrumental role in addressing these fundamental challenges, thereby further contributing to achieving the
goals of the big data revolution. As the new TCDE chair, with the help of TCDE Executive committee and our
community members, I hope to start a number of new initiatives in the following areas:

• Data Engineering for Social Good: As data storage, management and analytics are the fundamental build-
ing blocks for many different areas ranging from ML to bioinformatics, a wider range of interdisciplinary
activities could be organized by TCDE with other stakeholders. One area that we could be looking at is to
create specific activities for “Data Engineering for Social Good” and showcase the research coming out of
the TCDE community on addressing important societal challenges. For example, as a researcher that works
on data security and privacy issues, I would be very interested in exhibiting important tools and techniques
built by our community that help to address important data privacy challenges. In the coming months, we
would be looking into investing into such interdisciplinary activities. Please reach out to me if you have
some ideas.

• Increase Diversity, Equity and Inclusion (D&I): Another important challenge that we plan to focus on
is to increase the diversity and inclusion of the future data engineering workforce. As a faculty member,
I actively work on multiple initiatives to promote diversity and an inclusive atmosphere in my research
group and actively reach out to underrepresented groups via activities such as women in data science and
university clubs. TCDE could sponsor specific activities such as mentorship programs for underrepresented
groups and build mechanisms to gather feedback from the community to increase the diversity and inclusion.
Our efforts could be expanded to include not only undergrad and graduate students but also high school
students, particularly, from disadvantaged backgrounds. Specific fund raising activities and corporate
sponsorships could be arranged to fund workshops and hackathons for high school students. In particular,
we should be looking into new D&I initiatives that help the broader community and extend beyond a set of
activities in a single conference. Again, we would appreciate new D&I activity ideas and suggestions.

• New Bi-monthly Newsletter, and Web Page: Given all the great things done in our community, we
should promote some of the important initiatives and ideas more. We plan to have a new website for TCDE
that has information about all the ongoing activities and resources. In addition, we will be launching a
bi-monthly newsletter that highlights important news items, ongoing initiatives and upcoming opportunities
for our community. You would be able to get this newsletter if you are a member of TCDE (if not, please
become a member, it is FREE).

Clearly, without active support of the TCDE community, many of the above ideas and/or other initiatives will
not be successful. It is clear that getting the feedback of the entire community from around the world would be
important to make the TCDE even more relevant and successful in the future. To achieve this goal, in addition to
attending ICDE conference every year, I plan to visit IEEE local chapters and colleagues around the world and
understand their needs and suggestions. If you see me at a conference or an event, please come say hi and share
your feedback about these initiatives. I would also be happy to receive any feedback by email.

I am looking forward to working with you all to increase the TCDE profile over the years.

Murat Kantarcioglu
University of Texas at Dallas

2

Letter from the Special Issue Editor

Federated learning has attracted much attention recently, as machine learning has been widely applied to many
real applications while security concern of data and model has also arisen. In distributed systems, when the
server should have interactions with clients, users might prefer the server being not able to access each client’s
personal raw data. When different data owners want to share insight into their data, they may also share only
models instead of raw data. Such practical usage scenarios triggered many interesting new designs of federated
learning algorithms and systems, which can be summarized as horizontal federated learning, vertical federated
learning, and federated transfer learning. These variants of federated learning have show flexibility and at the
same time introduced new theoretical and experimental challenges for deployments of machine learning systems.
Particularly, the communication cost in existing federated learning can be a bottleneck for realtime deployment.
In this issue, we included several papers covering different perspectives of federated learning which makes it a
very interesting one pointing out several potential new directions of the field.

The first paper Federated Computing: Query, Learning, and Beyond and the second paper Federated
Learning without Full Labels: A Survey reviewed existing federated computing strategies and particularly on
tasks without full labels. They shed some light on the connection of modern machine learning with traditional
database technologies and the future trends of the field. The following papers FedCLIP: Fast Generalization
and Personalization for CLIP in Federated Learning, Reconciling Security and Communication Efficiency in
Federated Learning, and Accelerated Federated Optimization with Quantization studied potential new approaches
to improve the effectiveness and efficiency of federated learning algorithms. Particularly, Prasad et al., improved
the federated learning with up to 40 compression in uplink communication with no meaningful loss in utility,
and Youn et al., theoretically and experimentally proved that quantization can be used to significantly reduce
the communication complexity. Then, Federated Truth Discovery for Mobile Crowdsensing with Privacy-
Preserving Trustworthiness Assessment, Federated Ensemble Learning: Increasing the Capacity of Label Private
Recommendation Systems, and Enhance Mono-modal Sentiment Classification with Federated Cross-modal
Transfer discussed the applications to mobile crowdsensing, recommender systems, and sentiment analysis. These
applications further demonstrate novel real use of federated learning as well as the need of algorithm adaptation
when deploying to different applications. Last but not least, the paper NVIDIA FLARE: Federated Learning from
Simulation to Real-World from NVIDIA has introduced their systematic development of an open-source software
development kit that can benefit the whole field for research study and real application development.

I would like to thank all the authors for their contributions, making this issue a significant and interesting
discussion about present and future research directions related to federated learning.

Yangqiu Song
The Hong Kong University of Science and Technology

3

A Risk-Aware Paradigm for Privacy-Preserving Machine Learning

Murat Kantarcioglu
University of Texas at Dallas and Harvard University

Abstract

Over the years, the increasing use of personal data for training machine learning models raises several
privacy concerns, such as membership inference attacks (i.e., detecting whether a given individual is in
the training data) and sensitive attribute inference attacks (i.e., predicting some sensitive information
about users based on the disclosed ML model). Although privacy solutions have emerged to address
individual challenges, there is not a silver-bullet solution for all privacy problems.

In this opinion paper, we argue that to develop a complete solution to a multitude of privacy challenges,
we need a privacy-risk aware paradigm where tools and techniques targeting individual realistic privacy
threats are employed simultaneously to complement each other. To achieve this goal, we propose a generic
privacy framework to reason about the optimal combination of existing privacy tools under the set of
given attack models and discuss how the proposed framework could be applied in practice.

1 Introduction

Sharing data while preserving individual privacy has emerged as a fundamental challenge in the age of big data
and the prevalent use of machine learning (ML) models. While many privacy-preserving solutions/techniques
have been developed, it is not always clear how to strike a balance between utility and privacy. We postulate that
this fundamental problem cannot be solved with just one privacy definition/tool alone.

Different ML challenges may require the integration of the existing and new tools to achieve the desired
utility and privacy balance under different privacy definitions. We believe that such scenarios could be addressed
by moving into a privacy-risk estimation paradigm that can be used to analyze the privacy risks and the utility
provided by different privacy-preserving tools and techniques under different realistic attack models and existing
regulatory frameworks.

Such a threat aware risk assessment is already in use in several domains. For example, to measure door lock
security, the American National Standards Institute defines a series of tests that simulate real life attacks against
door locks. Examples of these attacks include the application of force (e.g., someone who is trying multiple kicks
to knock the door open), and a battery of lock picking tests. The lock is assigned a grade based on its success
against these types of likely attacks. 1 Clearly, the door locks can be picked by expert locksmiths given enough
time. In addition, they can be easily opened by deploying explosives and significant brute force. The existing
vulnerabilities to these other attacks are considered natural and different mechanisms (e.g., alarm systems) are
used to protect against these other types of attacks.

Similarly, most ATM networks use a four digit pin for money withdrawals instead of a 6 digit pin for better
usability (harder to memorize a 6 digit pin). To limit risks, usually there are limits on how much one person can
withdraw in a given day and how many times one can enter the pin before the ATM card is disabled. Such an
approach could be seen as a practical risk-aware solution against reasonable threats (e.g., someone randomly
trying the ATM card) that balances utility/usability and risks.

In many domains, risk-based data sharing ideas have been applied for many years without rigorous analysis
of the privacy risks. One example is the airline passenger wait lists used at many US airports. Figure 1 shows a
first class upgrade list for an example flight. The passengers on a given flight can use such lists to check whether
they are upgraded to the first class or whether they can stand by for the upcoming flight. To reduce privacy risks,

1https://blog.ansi.org/2020/01/ansi-grade-levels-bhma-locks-hardware-tests/#gref. Please note, ANSI is not NIST.

4

https://blog.ansi.org/2020/01/ansi-grade-levels-bhma-locks-hardware-tests/#gref

only the first character of the given name and the first three characters of the last name are used on these lists.
Furthermore, to access these waitlists, you should be at a specific airport near the flight gate and/or checked in via
the airline app. Therefore, a combination of access control rules (e.g., only certain people can access to given
waitlist data) and simple data sanitization techniques (e.g., redacting full names) provides reasonable protection
against certain threats. Clearly, above approach for disclosing passenger wait list information could be attacked
under certain scenarios. For example, if the attacker is at the airport and knows a certain targeted individual is
traveling that day, the attacker can find which flight that person is on. On the other hand, using publicly available
data (e.g., the voter registration list available for Texas or online twitter information) thousands of names will
match a given initial. To our knowledge, this information had not been successfully re-identified on a large scale.
Our own back-of-the-envelope calculations show that using just the online information such as voter registration
lists, the probability of re-identifying a random individual is very low. Hence, under a reasonable threat model
(e.g., only using publicly available information and not waiting at the airport to identify an individual), the privacy
risk for this sharing is quite limited. Furthermore, combining the data redaction approach with an access control
scheme (e.g., you need to be at the airport to launch an attack) makes the potential privacy attacks less likely.

Figure 1: Risk-based Data Sharing: Airline Wait List. Red circled individual is the author.

To establish a risk-aware privacy preserving ML framework based on ML use cases, we need to start by
understanding utility goals, existing and upcoming attack techniques, potential attacker incentives to launch
the attacks, potential attack success under the integration of different privacy-preserving technologies, and the
impact of the chosen privacy parameters to get the desired utility and privacy trade-off. For example, for sharing
individual level COVID-19 data to build an ML model, we may need to understand how such data could be used
to launch re-identification attacks under different data sanitization models and attacker background knowledge
[2]. In addition, we need to understand how different privacy tools and models impact data utility. For example,
for building ML models that are predicting pandemic progression for different race groups, preserving race
information may provide more utility than releasing more granular age information.

The above example suggests that different use cases need to be treated with realistic privacy attack models,
attacker background information, utility goals, acceptable privacy risks, and then reason about the privacy risk
vs utility trade-offs under different privacy-preserving technology combinations. This also implies that as the
technology and threat landscape evolve, we need to re-evaluate the existing privacy risks, privacy definitions, and
their evolving utility. Below, we discuss how this framework could be applied in the context of privacy-preserving
machine learning (ML) applications.

5

2 Risk-aware Privacy-preserving Machine Learning

In the face of rising privacy attacks against ML models such as model inversion and membership inference [4]
attacks, differential privacy has emerged as the main protection against these attacks. Although the differential
privacy mechanism [5] provides important protections, empirical evaluations have shown that, in many cases,
the ϵ value (one of the parameters needed for tuning the added noise) required for protecting against a certain
attack (e.g., model inversion attack) may significantly harm the utility of the ML model [3]. Therefore, finding
the privacy parameter (e.g., ϵ in differential privacy) that provides desired utility and adequate protection against
attacks may not always be feasible.

Our proposed risk-based privacy framework could be used to incorporate data sanitization based pre-
processing (e.g., sanitizing data before it is used by a differentially private learning mechanism) and post-
processing techniques (e.g, providing a wrapper for a given classifier to reduce model inversion attack success)
combined with carefully selected privacy parameters (e.g. ϵ for differential privacy) to exhibit good utility and
adequate protection against realistic privacy attacks.

The above adversarial attack modeling approach implies that we can first pre-process the data using a
data sanitization technique Q ∈ Q to get a sanitized version Q(D). In this setting, to make the optimization
problem solvable, we can specify a suitable set of sanitization options Q. For example, a feature in the Covid-19
dataset that is representing the birthday of a given patient could be replaced with two attributes representing
the age bracket the patient belongs to (e.g., replacing 01.01.1993 with 7→ (25, 35)). For each attribute, different
generalization/sanitization options could be used to describe the possible set of sanitizations available (i.e., Q).

Once the sanitized data is created, a differentially private learning algorithm L with an appropriate privacy
parameter ϵ is chosen to learn a model M . Later on, this model is post-processed using a post-processing
technique P to make sure that certain attacks are not successful. For example, for a deep learning model M ,
additional neural network layers could be added toM and these layers could be fine-tuned using publicly available
data (hence, negligible additional privacy risk) to reduce the effectiveness of specific attacks. These possible
post-processing architecture space could be leveraged to specify the potential post-processing options Q.

Similarly, for classification tasks, we can explore whether the output probabilities of a classifier can be
modified to reduce model inversion attack success. For example, an overly confident class prediction may help an
attacker to better infer a sensitive attribute. For generative machine learning models, we may explore different
post-processing models to automatically sanitize potentially sensitive output. For example, we may learn a model
P that can detect sensitive data such as a social security number (ssn) predicted by the machine learning model
M , and redact it automatically.

The proposed approach leads to an optimization problem (See Equation 1) where we find the optimal
combination of ϵ, P ∈ P, Q ∈ Q such that we maximize the model utility (e.g., accuracy) while making sure that
privacy risk (e.g., sensitive attribute prediction accuracy) due to an attack i is less than the desired privacy risk
limit γi. Depending on the use case, we need to develop define appropriate pre-processing P and post-processing
Q options for different machine learning tasks against different types of attacks, and for each attack type i (e.g.,
membership inference attack), we need to measure the privacy risk Risk-Attacki.

max
ϵ,P∈P,Q∈Q

Utility(P (Lϵ(Q(D)))

s.t. Risk-Attack1(P (Lϵ(Q(D))) ≤ γ1
......

Risk-Attackn(P (Lϵ(Q(D))) ≤ γn

(1)

6

2.1 Example Application: Privacy-preserving Explanation Generation

In our previous work [1], we applied such a risk-aware privacy approach and showed that a differentially private
explainable ML model (i.e., a rule set that explains a given ML model) could be post processed (e.g., some
rules may be pruned) to achieve better accuracy while being more resistant to model inversion attacks. Similar
to previous observations in the literature [3], a pure differentially private model could not reach the desired
protection against model inversion attacks while providing accurate prediction accuracy. Instead, our proposed
risk based approach achieved both goals while being differentially private using a higher ϵ value. Our approach is
not intended to replace differential privacy. In this approach, we use differential privacy with larger ϵ combined
with our privacy-aware data pruning technique to preserve both utility and privacy.

Our strategy proceeds as follows:

1. We build a differentially private machine learning model;

2. The predictions produced by the machine learning model are used as an input to a rule-based explanation
model. Therefore, the rules are generated from the predictions produced by differentially private learning
models;

3. Our privacy risk estimator named α-violation is applied to prevent model inversion attacks.

4. Using the estimated risks and potential utility, some rules that are too risky are pruned.

The complete strategy for combining differential privacy with our privacy risk estimator is given in Figure 2.
Our results indicate that such an approach could use a much higher ϵ value (i.e., much less noise) to increase

the utility of the generated rules while being resistant to model inversion attacks.

Figure 2: The steps for combining differential privacy with privacy risk estimator.

3 Future Trajectories and Conclusions

In this opinion paper, we just sketched the basic outline of the proposed risk-aware privacy framework where
different data privacy tools can be combined to prevent realistic attacks.

One important implication for the proposed framework is that we need to understand the attacks and the
attacker capabilities well enough to come up with realistic threat models. Errors in the threat model may result in
solutions that may not preserve the privacy well enough in practice. In addition, as the attacker’s capabilities
evolve, we may need to revisit the protections provided by the existing privacy solutions. To prevent potential
privacy attacks, it may be prudent to have a margin of error in our threat model assessment and evolution. For
example, even though it may be hard for an attacker to learn all the training data, we may build our threat model
assuming that the attacker has the entire training data available to launch a private attribute inference attack. One
important challenge would be to find the realistic threat model that could not be easily invalidated in practice
in the near future. As in the explanation generation example, certain techniques (e.g., building a differentially
private based model before generating rules to prevent certain privacy attacks) could be used to limit the potential

7

negative outcomes. Furthermore, we believe that our framework can be also widely applicable to other types of
attacks, from data poisoning [6] to test time evasion attacks.

References

[1] Yasmeen Alufaisan, Murat Kantarcioglu, and Yan Zhou. Robust transparency against model inversion attacks.
IEEE Trans. Dependable Secur. Comput., 18(5):2061–2073, 2021.

[2] J. Thomas Brown, Chao Yan, Weiyi Xia, Zhijun Yin, Zhiyu Wan, Aris Gkoulalas-Divanis, Murat Kantarcioglu,
and Bradley A. Malin. Dynamically adjusting case reporting policy to maximize privacy and public health
utility in the face of a pandemic. J. Am. Medical Informatics Assoc., 29(5):853–863, 2022.

[3] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, pages 1322–1333, NY, USA, 2015. ACM.

[4] Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1895–1912, Santa Clara, CA, August 2019.
USENIX Association.

[5] Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis.
SIGMOD, 2009.

[6] Mustafa Safa Özdayi, Murat Kantarcioglu, and Yulia R. Gel. Defending against backdoors in federated
learning with robust learning rate. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
pages 9268–9276. AAAI Press, 2021.

8

Federated Computing: Query, Learning, and Beyond

Yongxin Tong† Yuxiang Zeng†,‡ Zimu Zhou♯ Boyi Liu† Yexuan Shi†

Shuyuan Li† Ke Xu† Weifeng Lv†

† State Key Laboratory of Software Development Environment,
Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing,

School of Computer Science, Beihang University, Beijing, China
{yxtong,turf1013,liuby,skyxuan,lishuyuan,kexu,lwf}@buaa.edu.cn

‡ The Hong Kong University of Science and Technology, Hong Kong SAR, China
♯ City University of Hong Kong, Hong Kong SAR, China zimuzhou@cityu.edu.hk

Abstract

Big data has played an important role in the development of the economy. However, the “data isolation”
problem largely hinders its full potential. To solve this problem, it is crucial to enable collaborative
computing among multiple data sources. Federated computing, a new collaborative computing paradigm
that keeps the raw datasets decentralized, has emerged as a hot research topic in both databases and
artificial intelligence. This paper introduces the concepts of federated computing, reviews recent topics,
which include “federated queries” and “federated learning”, and discusses the future trends.

1 Introduction

In the era of big data, governments, organizations, companies, and individuals rely heavily on data analysis for
decision-making. However, the “data isolation” problem remains a major bottleneck for big data analysis. As
the name implies, data is stored as islands among multiple data owners, which seriously hinders the sharing and
circulation of big data. For example, medical big data can be used to build accurate machine learning models for
disease prediction and diagnosis. However, patients’ data, e.g., medical examination results, may distribute across
multiple autonomous hospitals, which hinders joint analysis due to privacy concerns. Another example is the
smart city applications with big spatiotemporal data. In these applications, the spatiotemporal data are distributed
in multiple platforms, e.g., taxi and ride data on multiple travel platforms, meal data on the catering platform, and
cell tower data on telecommunications operation service providers. Due to the privacy concerns, it is difficult to
collect these data directly, which hinders the rapid response of smart city applications. Therefore, how to break
the data isolation and unite multiple data owners for computation is crucial to strengthen the circulation of data
and the development of the big data industry.

To break the data isolation dilemma, “federated computing” is proposed as a new collaborative computing
paradigm, where multiple data owners are united as a data federation and process collaborative computing while
keeping the raw data locally at each data owner [1, 2, 3]. Its idea is to push the computation on raw data to the

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

9

data owners, while only summary information from the raw data is communicated back to the server for secure
aggregation.
Challenges. Federated computing mainly faces three challenges. (i) Privacy. Federated computing poses new
privacy constraint, i.e., the raw data of each data owner is kept locally, while allowing collaborative computing
among data owners. (ii) Efficiency. Since privacy and security constraints often introduce extra communication
and computation, it is important to comply with these constraints while allowing high-efficiency computing. (iii)
Effectiveness. As the data of multiple data owners may not be independent and identically distributed (non-IID),
how to conduct accurate analysis in presence of data heterogeneity is also a challenge.
Milestones. Two hot topics in current federated computing are “federated queries" and “federated learning".

• The federated queries indicate that the data federation should support secure queries over multi-party data
owners. It serves as the basis of federated computing. Several data federation systems have been proposed
to support various federated queries, such as SMCQL [2], Hu-Fu [4], FedGraph [5], which are designed
for relational, spatial, and graph queries, respectively.

• Upon a data federation, machine learning algorithms can be further implemented to support upper-layer
applications. Such algorithms are often known as “federated learning”. For example, FedAvg [6] is one of
the most popular federated learning algorithms, and there have been extensions to more generic frameworks
[1].

Roadmap. In the rest of this paper, we first introduce the basic concepts and general framework of federated
computing in Section 2. Then, we review the related work on federated queries (Section 4.2) and federated
learning (Section 4), respectively. Finally, we summarize the future directions in Section 5 and conclude in
Section 6.

2 Basic Concepts and General Framework

This section introduces the basic concepts and general framework of federated computing in Section 2.1 and
Section 2.2, respectively.

2.1 Basic Concepts of Federated Computing

In the following, we introduce the key concepts in federated computing and the problem statement.
Data Federation. Federated computing is performed over a special data system, i.e., data federation.

Definition 1 (Data Federation): A data federation F is a federation of local datasets {D1,D2, · · · ,Dm} held
by m data owners, where each local dataset Di has ni objects {o1, o2, · · · , oni} and each object oj has kj
attributes {x1, x2, · · · , xkj}. Then, the (virtual) database of this data federation is denoted by the union of these
local datasets, i.e., D = D1 ∪ D2 ∪ · · · ∪ Dm.

When local datasets are data silos of data owners like enterprises and organizations, we call this setting
“cross-silo”. By contrast, when data owners are individuals like mobile phone users or edge device users, we call
this setting “cross-device”. Accordingly, the application settings of federated computing can be categorized into
cross-silo and cross-device [7]. For example, a data federation system was built to answer collaborative queries
over clinical data across organizations under the cross-silo setting [8], while Google allowed their mobile users to
jointly train language models under the cross-device setting [6].
Data Integration Mode. On the other hand, from the perspective of how the local datasets are integrated into
the virtual database, a data federation can be categorized into horizontal data federation (a.k.a., horizontally

10

(a) Horizontal data federation (b) Vertical data federation

Figure 1: Two ways for data owners’ local datasets to integrate into a data federation, including (a) horizontal
data federation and (b) vertical data federation.

partitioned data [9]) and vertical data federation (a.k.a., vertically partitioned data [10]). As shown in Figure 1,
in a horizontal data federation, each data owner has a disjoint subset of rows in the virtual database. By contrast,
in a vertical data federation, each data owner has a disjoint subset of columns in the virtual database. Both types
are commonly seen in existing literature [1].
Problem Statement. A formal definition of federated computing is as follows.

Definition 2 (Federated Computing): Given a data federation F of m data owners {Di} and a computing task
T (D) over the (virtual) database D = ∪mi=1Di, a federated computing algorithm aims to compute the result of
T (D) while satisfying the following constraints:

• Autonomous Constraint: any data owner does not share his raw data to others.

• Security Constraint: during the computation, except for the result, any sensitive data of a data owner
cannot be leaked to others.

In Definition 2, the autonomous constraint is aligned with real-world scenarios, since a data owner would like
to autonomously manage his local dataset.
Attacker Models. The security constraint is due to the concern of privacy attacks, which are commonly seen
nowadays and can be categorized into two kinds, semi-honest adversary and malicious adversary.

• Semi-honest Adversary: a semi-honest adversary will honestly follow the specified computation procedure,
but may attempt to infer sensitive data of data owners in the meantime.

• Malicious Adversary: a malicious adversary may arbitrarily deviate from the specified computation
procedure to infer sensitive data.

2.2 General Framework for Federated Computing

Solutions to federated computing can be summarized into a two-phase general framework. The main idea of this
general framework is as follows.

11

• Local Computation. First, motivated by the idea of computation pushdown, a federated computing task
is decomposed into several computing tasks over the local datasets, and hence data owners can locally
compute their partial results.

• Secure Computation. After that, a well-designed protocol is performed across data owners to derive the
final result based on their partial results in a privacy-preserving manner. Finally, the final answer will be
returned to the service user.

The federated computing task T in existing work can be mainly classified into two kinds, federated query
and federated learning, which will be elaborated later in Section 4.2 and Section 4, respectively. To evaluate
the performance of solutions to federated queries and federated learning, commonly-used metrics include result
accuracy, time efficiency, communication cost, etc.

3 Federated Queries

In this section, we introduce how to process federated queries over a data federation. Specifically, we first present
the key concepts and main workflow of federated queries in Section 3.1. Then, we introduce the techniques of
processing federated queries from three aspects, query rewrite (Section 3.2), local queries (Section 3.3), and
secure operations (Section 3.4). Finally, we summarize these studies in Section 3.5.

3.1 Overview

Problem Statement. Based on Definition 3, we introduce the formal definition of federated queries as follows.

Definition 3 (Federated Query): Given a data federation F of m data owners {Di} and a query request Q
over the (virtual) database D = ∪mi=1Di, a federated query aims to retrieve the result Q(D) while satisfying the
autonomous constraint and security constraint in Definition 2.

For an exact queryD, the answerQ(D) should be equal to the (exact) result under an ideal case when all local
datasets {Di} have been integrated into one database D. By contrast, for an approximate query D, the answer
Q(D) may be different from the (approximate) result under such a case. Instead, an approximation guarantee is
often studied to control the result error for approximate queries.
Workflow of Processing Federated Queries. As shown in Figure 2, a service user first submits his query request
Q to the central server (a.k.a., coordinator or broker). Next, the server parses and rewrites the query Q to form a
series of local queries and secure operations, which is generally aligned with our general framework in Section 2.2.
Then, the server sends local queries to data owners, and asks them to perform local queries. When all of them
have computed the local results, the server will coordinate these data owners to jointly perform secure operations
by following the pre-designed protocols and obtain intermediate results or final results. The procedure ends after
one or multiple rounds of local queries and secure operations, depending on the query type.

Here, we take the federated range counting query over a horizontal data federation as an example. As shown
in Figure 1(a), data owners in a horizontal data federation hold different rows of the (virtual) table D. According
to the aforementioned workflow, a federated range counting query can be answered by performing a local range
counting query over each local dataset Di and a secure summation of these partial results across all data owners.

Intuitively, the performance of local queries and secure operations is critical to the performance of federated
query processing. Thus, in the following, we introduce existing techniques for managing data federation from
three categories, query rewrite (Section 3.2), local queries (Section 3.3), and secure operations (Section 3.4).

12

Figure 2: Workflow of processing federated queries over a data federation.

3.2 Query Rewrite

The common idea of query rewriters in federated queries is to use as many local queries and as few secure
operations as possible [4]. This is because a secure operation across a large number of data owners is often more
time-consuming than local queries that could be naturally sped up by modern database techniques. Based on this
idea, existing query rewriter can be classified into two kinds, query rewriter via annotating query plan tree and
query rewriter via customized rule.
Query Rewriter via Annotating Query Plan Tree. In this category, after receiving the query request, the
coordinator will parse the federated query into a directed acyclic graph (DAG) by using well-known solutions
(e.g., Apache Calcite [11]). This DAG, which represents the query plan (when data is plaintext), is usually a
tree of relational algebraic operations. After that, the coordinator will traverse the tree bottom-up (or sometimes
up-down) to annotate the operations that require extra security protections (i.e., secure operations).

Specifically, SMCQL [2], a system for processing federated queries, classified the levels of data access into
three categories, public, protected, and private attributes. Here, public attributes are accessed by anyone (e.g., the
other data owners), and protected attributes could be accessed by the data owner, coordinator, and query user.
By contrast, private value can be only accessed by the data owner himself. Accordingly, operators in the query
plan tree can be categorized into three preservation kinds, plaintext operators, secure operators, and prohibitive
operators (i.e., three kinds of annotations). Then, the annotations can be determined by examining the data
access levels of its output attributes and considering the most stringent level of its source attributes. For example,
consider the federated top-k query over the attribute ID in the following:

SELECT ID FROM F ORDER BY ID LIMIT k ;

(i) If ID is public, the query plan consists of two plaintext operators, i.e., sort and limit k (by ID).

(ii) If ID is protected, the aforementioned two operators should be securely executed.

13

(iii) If ID is private, any query plan is prohibitive, since a private output attribute cannot be revealed to the
service user.

To further optimize the query plan, Bater et al. [2] proposed a technique called slicing with the goal of
minimizing the time cost of secure operations. They aimed to slice the secure operators into “smaller and more
manageable units of computation” [2]. For instance, when ID is protected in the above example, one can slice the
secure sort into first plaintext limit k over each data owner’s local dataset and then secure sort over the remaining
mk IDs, where m is the number of data owners. The query rewriters of other systems for federated queries,
such as ShrinkWrap [12] and SAQE [13], followed a similar idea with that of SMCQL. The system Conclave
[14] considered the scenario that a data owner may permit specific selectively-trusted parties (e.g., a government
regulator) to access his sensitive attributes and optimized the query rewriter under this assumption.
Query Rewriter via Customized Rule. Another way is to design customized query decomposition rules for
specific query types. A typical example is the federated k-nearest-neighbor (kNN) query [4] in the spatial data
federation. Although it is a spatial query, its query plan can be referred to that of federated top-k query, as
aforementioned. Unfortunately, the efficiency has been shown to be low in large-scale datasets [4], since a secure
sort is very time-consuming. Thus, Tong et al. [4] were motivated to design a novel query plan for federated kNN
in their system Hu-Fu. The basic idea is to (1) determine the kth nearest distance to the query object by binary
search and (2) retrieve the answer by a range query with the radius of the kth nearest distance. Accordingly,
the query plan of the first step consists of local range counting queries (with the searching distance) and secure
comparison (between the summation of all local counts and threshold k), and the query plan of the second step is
the same as that of a federated range query. Another example is that Wang et al. [15] devised an efficient query
plan for federated join-aggregate queries. Their basic idea is to decompose federated join-aggregate queries into
semijoins and full joins.

3.3 Local Query

After getting the query plan, the coordinator often sends local queries to data owners prior to the secure operations.
Thus, in the following, we introduce mainstream optimization techniques for processing local queries in a data
federation from two aspects, indexing and sampling.
Optimization By Indexing. Indexing is usually used to improve the time efficiency of processing local queries. In
particular, local queries in a data federation can be benefited from the recent development of indexing techniques.
In recent years, the learned index is one of the most popular indexing techniques in existing literature. The main
idea of a learned index is to view the data indexing problem as a machine learning problem that learns the mapping
function between the search key and its corresponding location in the storage. Based on this idea, promising
results of lookup queries and range queries over 1-dimensional data have been achieved by 1-dimensional learned
indexes, such as RMI [16], PGM-index [17], ALEX [18], and LIPP [19]. Multi-dimensional learned indexes have
also been devised to support kNN queries, such as ZM-Index [20], IF-Index [21], Lisa [22], and RSMI [23]. For
more details, please refer to the tutorials [24] and experimental work [25].
Optimization By Sampling. Another way of optimizing local queries is to use sampling that may sacrifice result
accuracy for efficiency. Such techniques in federated queries can be classified into two kinds, sampling data
owners and sampling data records.

• Sampling Data Owners. The main idea of sampling data owners is to utilize the local results of the
sampled data owners to estimate the local results of the others. For example, to process federated range
aggregation queries over a spatial data federation, Shi et al. [26] used the result of a local range aggregation
query over one data owner to derive an unbiased estimation of the others, where local datasets are identically
and independently distributed (IID). To break the IID assumption and tackle the non-IID scenario, they
proposed a grid index to decompose the underlying spatial area into small enough regions and achieve a

14

more fine-grained approximation by aggregating the estimation result in each region. They also proved that
the estimated result can be closed enough to the exact result with high probability [26].

• Sampling Data Records. The main idea of sampling data records is to use the results of sampled data
records to estimate the results of all data records within a local dataset. For example, Bater et al. [13]
have applied three sampling strategies in their system for SAQE federated queries, i.e., uniform sampling,
stratified sampling, and distinct sampling, which are well-known sampling strategies in approximate query
processing [27]. Shi et al. [26] adopted level sampling to achieve load balancing when performing local
queries over unbalanced local datasets. Notice that, different from a traditional distributed database system,
data partition or re-partition, which is a commonly-used technique for load balancing, is not allowed in a
data federation, since each data owner would like to autonomously manage his own data.

In general, the strategy of sampling data owners is orthogonal to that of sampling data records. The technical
challenge of jointly using both sampling strategies is how to make a proper trade-off between result accuracy and
efficiency, especially under the non-IID scenario.

3.4 Secure Operation

After getting the results of local queries, secure operations are often invoked to jointly compute an intermediate
result or a final result across all data owners and guarantee that no sensitive information (e.g., private attributes)
of one data owner is leaked to others during this collaborative computation. We introduce existing solutions
to secure operations when processing federated queries from two aspects, i.e., secure multi-party computation
(SMC) based solution and differential privacy (DP) based optimization.
SMC based Solution. SMC has been studied for over three decades in academia [28]. The goal of SMC is to
jointly compute some functions based on the private inputs of data owners in the data federation. Moreover, SMC
also requires that (1) the result should be accurate and (2) no information can be leaked except for that derived
from the output, which is coincident with the constraints of federated queries in Definition 3. Thus, SMC is a
prevalent method to implement secure operations.

Specifically, the systems for federated queries, SMCQL [2] and ShrinkWrap [12], used a general-purpose
programming framework of SMC (a.k.a., SMC compilers), called ObliVM [29]. ObliVM mainly combines two
well-known techniques in SMC, i.e., Garbled Circuits (GC) [30] and Oblivious RAM (ORAM) [31]. GC can
securely compute most of operations over two data owners, and ORAM is a safe memory abstraction to safely
store the intermediate results of GC without leaking any information about the data access pattern. Other SMC
compilers, such as Obliv-C [32] and Sharemind [33], are used in Conclave [14] to support two or three data
owners. The other studies, such as [4] and [34], adopted customized SMC protocols to support specific operations,
which could potentially improve the efficiency. Different from above systems, which assumed semi-honest
adversaries, Senate [35] optimized a GC-based SMC protocol [36] to protect the security even with malicious
data owners.
DP based Optimization. Differential privacy (DP) [37] is the state-of-the-art privacy protection technique to
theoretically guarantee that one can hardly re-construct the database based on the query results by DP. In existing
studies for federated queries, DP can be used to further improve the efficiency of secure operations by SMC. For
example, ShrinkWrap [12] adopted DP to remove quite a few dummy tuples from the intermediate result in
ORAM while still protecting the data access pattern. SAQE [12] used DP to hide the true cardinality of data
records when performing oblivious sampling and perturb the query result. Hu-Fu [4] applied DP to speed up the
time efficiency of secure comparison with the threshold k when processing federated kNN queries.

Beyond the above techniques, trusted hardware enclaves, such as Intel SGX [38], can be also used to
implement secure operations in the system Opaque [39].

15

Table 1: Comparison of existing systems for federated queries

System Data Type
Data Integration

Mode
Attacker Model Data Size #(Data Owner)

SMCQL [2] Relational Horizontal Semi-honest ≤1K ≤2
ShrinkWrap [12] Relational Horizontal Semi-honest ≤40K ≤2

SAQE [13] Relational Horizontal Semi-honest ≤500K ≤2
Conclave [14] Relational Horizontal/Vertical Semi-honest ≤1B ≤3

Hu-Fu [4] Spatial Horizontal Semi-honest ≤1B ≤10
Senate [35] Relational Horizontal Malicious ≤160K ≤16
Opaque [39] Relational Vertical Malicious ≤1M ≤5

3.5 Discussion

Table 1 summarizes the representative work on federated queries, and we have the following observations. First,
most of the existing systems for federated queries concern more about semi-honest adversaries than malicious
adversaries, although considering malicious adversaries are more challenging. Second, most of these studies
focused on the horizontal data federation, while vertical data federation had less attention. Finally, the scalability
of existing solutions is sometimes not large enough, especially when processing federated join queries.

4 Federated Learning

In this section, we introduce how to perform federated learning over a data federation. Specifically, we first
present the problem statement and main workflow in Section 4.1. Then, we introduce the mainstream solutions to
federated learning from two aspects, local training (Section 4.2) and secure aggregation (Section 4.3). Finally, we
make discussions in Section 4.4.

4.1 Overview

Problem Statement. Federated learning (FL) was first proposed by Google in 2016 for language prediction tasks
[6]. The main idea of federated learning is to train a global model in collaboration with different data owners
while preserving the privacy of their local data. The definition of federated learning is as follows.

Definition 4 (Federated Learning): Given a data federation F of m data owners (a.k.a., clients) {Di} and a
computing task of training a learning modelM over the (virtual) database D = ∪mi=1Di, a federated learning
algorithm aims to collaboratively train the learning modelM(D) on the data federation and make the accuracy of
M(D) close to that of the modelM that directly trains over the virtual database, while satisfying the autonomous
constraint and security constraint in Definition 2.

Taxonomy. Federated learning algorithms can be categorized into three kinds, horizontal federated learning,
vertical federated learning, and federated transfer learning [1] from the perspective of data integration mode
across data owners.

• Horizontal/Vertical Federated Learning. Horizontal/vertical federated learning is named after the data
integration mode (a.k.a., data partition mode) in a data federation as shown in Figure 1. Notice that, for
supervised learning tasks, all data owners’ datasets in horizontal federated learning have labels, while only
one of them in vertical federated learning has labels.

16

Figure 3: Workflow of federated learning over a data federation.

• Federated Transfer Learning. Federated transfer learning denotes the scenario where two data owners
have different samples and feature spaces in the same time. In other words, federated transfer learning
enables one data owner to make use of data from another data owner, although there is only little intersection
between the feature spaces of their datasets.

Workflow of Federated Learning. According to the general framework of federated computing in Section 2.2,
the workflow of federated learning algorithms is as follows. In the procedure of federated learning, the server first
initializes a global model and distributes the global model to selected data owners. Each selected data owner
then trains his local model through the local loss function and uploads his local model to the server. The server
securely aggregates all the uploaded local models into the global model. Finally, the above steps are repeated
until convergence.
A Case Study: FedAvg. One representative work in federated learning is FedAvg [6], which supports training
several machine learning models, such as MLP, CNN and LSTM, in a data federation. Here, we take training
a CNN model as an example to explain the aforementioned workflow of federated learning. After the server
distributes the global model, data owners train their local CNN models with stochastic gradient descent (SGD).
When the local training ends, data owners will upload the parameters of their local CNN models to the server.
Then, the server aggregates all the received model parameters into a new global CNN model by weighted average.
Now, Google has deployed such an algorithm in a text entry data prediction task on users’ mobile devices.

Although the FedAvg algorithm [6] is a seminal work, there are still many opportunities for optimizations in
federated learning. In the following, we review existing studies from two aspects, i.e., local training (Section 4.2)
and secure aggregation (Section 4.3).

4.2 Local Training

In this subsection, we introduce optimizing techniques for local training from two categories, optimization through
training and optimization through data, as follows.
Optimization through Training. Optimization techniques through model training are widely used in recent
years. It contributes to more stable convergence and better generalization of aggregated global models.

• Regularized Loss. The main idea of regularized loss methods in federated learning is to add a regularization
term to local sub-problem and is widely used for limiting local model updates and stabilizing global model.

17

For example, FedProx [40] proposed a regularization term to take similarity between local model and
global model into account. The regularization term keeps the differences between the local and global
models within a certain range. FedDyn [41] introduces a dynamic regularization method, and ensures
that the objective is dynamically updated and the local optima is close to the stationary point of the global
empirical loss.

• Extra Variable. Some federated learning algorithms introduce extra variable to help improving model
generalization. The main difference between regularized loss and extra variable is that the extra variable is
usually updated during local updates. SCAFFOLD [42] set a control variable to correct the local update
moving towards the true optimum. Several studies [43, 44] introduced dual variables, converting the local
object at the client side (i.e., the data owner side) into a dual problem. The optimization to the dual problem
contributes to automatic adaptation to global data distributions.

Optimization through Data. Due to statistical heterogeneity caused by non-IID data across data owners, several
data-based optimization techniques were proposed to alleviate the accuracy drop of a federated learning algorithm.

• Data Augmentation. Data augmentation, which enriches a dataset, is commonly used to fix the issue of
non-IID data distribution on the client side to an IID one. FAug [45] trained a Generative Adversarial
Network (GAN) at the server and distributed the GAN to clients, where GAN could generate data to the
local dataset to achieve an IID data distribution. Fed-ZDAC [46] proposed a zero-shot data augmentation
method, which synthesized data based on the model information (only) without sharing data with the server.
Compared with FAug [45], Fed-ZDAC [46] achieved a higher privacy preservation level.

• Data Source Selection. During the training process of federated learning, some data owners may hold
extremely skewed data, which may lead to slow and unstable convergence of the global model. The main
idea of data source selection is to select proper data owners to participate the training, which alleviates the
influence brought by skewed datasets. For instance, FDSS [47] observed the data source selection problem
from the perspective of submodular optimization. By combining lazy evaluation and approximation of
aggregated models with greedy selection, FDSS ensured a constant approximation ratio. Oort [48] modeled
selecting data owners as a multi-armed bandit problem, and improved the time-to-accuracy performance of
training procedure.

4.3 Secure Aggregation

While local training optimization contributes to better generalization and convergence, techniques of secure
aggregation are important as well for satisfying the security constraint. Techniques of secure aggregation in
federated learning can be categorized into two kinds, secure multi-party computation (SMC) based solution and
differential privacy (DP) based solution.
SMC based Solution. Secure multi-party computation (SMC) enables several participants to collaboratively
compute without revealing their data to each other. When the number of data owners is large, some SMC
techniques, such as garbled circuit (GC) and oblivious transfer (OT), could be inefficient for secure aggregation
in federated learning. Under this setting, efficient SMC based solutions are secret sharing (SS) and homomorphic
encryption (HE).

• Secret Sharing. In a secret sharing scheme, a secret consists of multiple shares and can be re-constructed
only when there is a sufficient number of shares. When secret sharing is used in a federated learning
framework, the gradients of each data owner represent a secret and are re-constructed on the server side
only when enough gradients are uploaded. Bonawitz et al. [49] presented a protocol to securely compute
the sum of vectors, which has been used in federated learning. This protocol permits the server to securely

18

average updates uploaded by data owners without leaking these updates. By this way, secret sharing is
commonly seen in federated learning algorithms [50, 51, 52] to protect the data privacy.

• Homomorphic Encryption. Homomorphic encryption guarantees security by conducting the calculation
in ciphertext, and the result after decryption is same as that in plaintext calculation. For homomorphic
encryption based secure aggregation in federated learning, data owners encrypt their local models and send
them back to the server for later aggregation in ciphertext. Then, data owners decrypt the received global
model and update local gradients. Several studies [53, 54, 55, 56] have adopted homomorphic encryption
in the federated learning framework. BatchCrypt [57] introduced a batch encryption based technique to
reduce the encryption and communication overhead caused by homomorphic encryption. It encodes a batch
of gradients into a long integer data type to replace the original full precision encryption.

DP based Solution. Differential privacy (DP) protects privacy by adding perturbations to data. Compared with
SMC, DP based solution is computationally more efficient. Thus, DP is widely used in federated learning to
improve the efficiency. Existing DP based solution in federated learning can be mainly classified into two kinds,
central differential privacy (CDP) and local differential privacy (LDP).

• Central Differential Privacy. Central differential privacy provides a security guarantee by adding
perturbation to the aggregated model on the server side. For example, Geyer et al. [58] proposed a central
differential privacy based method. During the training stage, data owners update their model weights and
upload parameters to the server. The server then aggregates model parameters with Gaussian noise. Based
on a similar idea, Shi et al. [59] applied the central differential privacy to topic modeling, and NbAFL
[60] added perturbation to local gradients in the meantime, and was shown to protect data owners from an
untrusted server that planned to steal the gradients.

• Local Differential Privacy. By contrast, the local differential privacy based method adds noise to model
parameters on the client side, such that model parameters can be prevented from being inferred by
adversaries. For instance, Bao et al. [61] proposed a novel local differential privacy based federated
learning framework, which injects noise from shifted symmetric Skellam distributions. It broadened the
data type of model gradients, which contributed to a lower noise level required for differential privacy.
Local differential privacy based solutions have also been adopted in several federated learning algorithms
[60, 62, 63, 64] to achieve better protection for local model parameters and more scalable efficiency.

4.4 Discussion

In this subsection, we give a brief introduction on the comparison of representative work in Table 14. We can
observe that more studies on federated learning were studied over the horizontal data federation, while less work
studied vertical federated learning and federated transfer learning. Moreover, we can also observe that both SMC
and DP strategies are used for satisfying the security constraint. By comparison, DP based solutions tend to
achieve better scalability by supporting more data owners than SMC based solution. As shown in Figure 4, these
techniques of federated learning have been integrated into algorithm framework by industry and academia, such
as FATE [69], PySyft [70], and FederatedScope [71].

5 Future Direction

In the following, we identify the future directions of federated computing.
Exploring more federated queries and learning models. To facilitate more applications on more diversified
data, it will be important to explore more federated queries and federated learning models.

19

Table 2: Comparison of representative work on federated learning.

Reference
Data Integration

Mode
Local

Training
Secure

Aggregation
Learning
Model

#(Data Owner)

NbAFL [60] Horizontal
Regularized

Loss
DP MLP ≤50

SMM [61] Horizontal / DP MLP ≤240

FedADMM [44] Horizontal
Extra

Variable
/ CNN ≤100

FedAvg [6] Horizontal / / CNN, LSTM ≤600
FederatedScope [65] Horizontal / SMC, DP CNN, GNN ≤260

VF2Boost [66] Vertical / SMC GBDT ≤4
Pivot [67] Vertical / SMC GBDT ≤10

FTL [68] Transfer* Regularized
Loss

SMC AutoEncoder ≤2

FedHealth [55] Transfer
Regularized

Loss
SMC CNN ≤25

* The term “Transfer” here represents federated transfer learning.

Figure 4: Representative frameworks for federated learning.

On one hand, as shown in Table 1, existing federated queries are mainly studied over relational data and
spatial data. Other data types, such as trajectory data and graph data, are also important for data sharing. For
example, Yuan et al. [5] have recently proposed the concept of graph data federation, and studied subgraph
matching under this setting. Another application of graph data federation is a cross-platform ride-hailing [72],
where each taxi company can be viewed as a data owner and their requests and passengers form a bipartite graph
data federation. As a result, Wang et al. [72] studied how to obtain maximum weighted bipartite matching under
a data federation. Graph data federation may have other applications (e.g., social networks), and many other
federated graph queries have not been studied yet, which leaves a great opportunity for future research.

On the other hand, although federated learning has been widely studied in the AI and data mining community,
quite a few of them ignored the issue of data security. For instance, recent learning models, such as ViT [73],
ResNets [74], and GraphSAGE [75], have been studied in the federated learning setting without protecting security
and privacy rigorously. What is worse, recent surveys [76] have reviewed many FL attacks such as poisoning
attacks. The attacks could probe and infer sensitive information from data owners’ model parameters, leading to
severe privacy leakage. Therefore, research on how to effectively defend these attacks for the aforementioned
models in federated learning is still anticipated.
Marrying Federated Queries and Federated Learning. In the past five years, we have seen many promising
results of marrying artificial intelligence (AI) and databases (DB), which is also known as DB4AI and AI4DB.

20

One typical example of AI4DB is the concept of learned index [16] that uses learning models to enhance, or even
replace conventional indexes like B-Trees. Another example of DB4AI is the structure-aware learning system
LMFAO [77] that decomposes the training procedure into batches of aggregate queries and further improves the
efficiency by the optimization techniques of processing aggregate queries.

Motivated by these research trends, we envision that it is also possible that federated queries and federated
learning could help each other. For instance, most of existing systems for federated queries have no support for a
global index, which is often used to improve the query efficiency in a distributed DBMS. By contrast, in a data
federation system for federated queries, a global index additionally needs to protect the sensitive information of
all data owners. Since there are existing studies that have shown learned indexes can reduce the index size and
running time, it might be possible that federated learning could be safely used to construct such a global index for
federated queries.
Multi-Model Federated Computing. The variety is known as one of the fundamental challenges in managing
big data. To fit a DBMS into diversified application settings, many data models have been proposed, such as
relational, spatial, key/value, and graph. Intuitively, data-intensive applications, such as E-commerce [78] and
transportation [79], may need to manipulate and analyze data with heterogeneous data models at the same time.
Multi-model databases [78] have been proposed to tackle this problem. For example, PostgreSQL can now
support several data models, including relational, key/value, JSON, XML, etc. However, most of these studies
assume that all data have been collected and stored by only one data owner. By contrast, emerging applications
have been deployed over a data federation.

On this basis, we propose a new concept called multi-model big data federated computing (“multi-model
federated computing” as short) as the last line of future research. This computational paradigm aims to bridge
the connections between data owners with diversified data models and provide joint queries and analytics while
preserving data privacy/security. Under this setting, one fundamental challenge could be how to overcome the
security heterogeneity [80] which inherits from data model variety. To the best of our knowledge, no existing
work has built such a system, which leaves a valuable opportunity for future work.

6 Conclusion

Federated computing is a promising paradigm for data sharing, which enables secure querying and analysis
across multiple autonomous data owners. This paper introduces the fundamental concepts and general framework
of federated computing, along with discussions of the challenges and related studies on federated queries and
federated learning. We also point out the future directions of federated computing and envision it as a practical
solution to overcome the data isolation problem, fostering the prosperity of the information society.

Acknowledgements

This work is partially supported by National Science Foundation of China (NSFC) under Grant No. U21A20516
and 62076017, the Beihang University Basic Research Funding No. YWF-22-L-531, and WeBank Scholars
Program. Yuxiang Zeng is the corresponding author.

References

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM
Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 12:1–12:19, 2019.

[2] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers, “SMCQL: secure query processing for
private data networks,” PVLDB, vol. 10, no. 6, pp. 673–684, 2017.

21

[3] A. Bharadwaj and G. Cormode, “An introduction to federated computation,” in SIGMOD, 2022, pp. 2448–
2451.

[4] Y. Tong, X. Pan, Y. Zeng, Y. Shi, C. Xue, Z. Zhou, X. Zhang, L. Chen, Y. Xu, K. Xu, and W. Lv, “Hu-Fu:
Efficient and secure spatial queries over data federation,” PVLDB, vol. 15, no. 6, pp. 1159–1172, 2022.

[5] Y. Yuan, D. Ma, Z. Wen, Z. Zhang, and G. Wang, “Subgraph matching over graph federation,” PVLDB,
vol. 15, no. 3, pp. 437–450, 2021.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in AISTATS, 2017, pp. 1273–1282.

[7] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. A. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, R. G. L. D’Oliveira, H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu,
M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint,
Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar, M. Raykova,
D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu,
Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances and open problems in federated learning,” Found. Trends
Mach. Learn., vol. 14, no. 1-2, pp. 1–210, 2021.

[8] T. G. A. for Genomics and Health, “A federated ecosystem for sharing genomic, clinical data,” Science, vol.
352, no. 6291, pp. 1278–1280, 2016.

[9] J. Vaidya and C. Clifton, “Privacy preserving association rule mining in vertically partitioned data,” in
SIGKDD, 2002, pp. 639–644.

[10] M. Kantarcioglu and C. Clifton, “Privacy-preserving distributed mining of association rules on horizontally
partitioned data,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1026–1037, 2004.

[11] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire, “Apache calcite: A foundational
framework for optimized query processing over heterogeneous data sources,” in SIGMOD, 2018, pp.
221–230.

[12] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers, “Shrinkwrap: Efficient SQL query processing
in differentially private data federations,” PVLDB, vol. 12, no. 3, pp. 307–320, 2018.

[13] J. Bater, Y. Park, X. He, X. Wang, and J. Rogers, “SAQE: practical privacy-preserving approximate query
processing for data federations,” PVLDB, vol. 13, no. 11, pp. 2691–2705, 2020.

[14] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A. Bestavros, “Conclave: secure
multi-party computation on big data,” in EuroSys, 2019, pp. 3:1–3:18.

[15] Y. Wang and K. Yi, “Secure Yannakakis: Join-aggregate queries over private data,” in SIGMOD, 2021, pp.
1969–1981.

[16] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned index structures,” in
SIGMOD, 2018, pp. 489–504.

[17] P. Ferragina and G. Vinciguerra, “The PGM-index: a fully-dynamic compressed learned index with provable
worst-case bounds,” PVLDB, vol. 13, no. 8, pp. 1162–1175, 2020.

[18] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang, B. Chandramouli, J. Gehrke, D. Kossmann,
D. B. Lomet, and T. Kraska, “ALEX: an updatable adaptive learned index,” in SIGMOD, 2020, pp. 969–984.

22

[19] J. Wu, Y. Zhang, S. Chen, Y. Chen, J. Wang, and C. Xing, “Updatable learned index with precise positions,”
PVLDB, vol. 14, no. 8, pp. 1276–1288, 2021.

[20] H. Wang, X. Fu, J. Xu, and H. Lu, “Learned index for spatial queries,” in MDM, 2019, pp. 569–574.

[21] A. Hadian, A. Kumar, and T. Heinis, “Hands-off model integration in spatial index structures,” in
AIDB@VLDB, 2020.

[22] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “LISA: A learned index structure for spatial data,” in SIGMOD,
2020, pp. 2119–2133.

[23] J. Qi, G. Liu, C. S. Jensen, and L. Kulik, “Effectively learning spatial indices,” PVLDB, vol. 13, no. 11, pp.
2341–2354, 2020.

[24] S. Idreos and T. Kraska, “From auto-tuning one size fits all to self-designed and learned data-intensive
systems,” in SIGMOD, 2019, pp. 2054–2059.

[25] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper, T. Neumann, and T. Kraska, “Bench-
marking learned indexes,” PVLDB, vol. 14, no. 1, pp. 1–13, 2020.

[26] Y. Shi, Y. Tong, Y. Zeng, Z. Zhou, B. Ding, and L. Chen, “Efficient approximate range aggregation over
large-scale spatial data federation,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 418–430, 2023.

[27] S. Chaudhuri, B. Ding, and S. Kandula, “Approximate query processing: No silver bullet,” in SIGMOD,
2017, pp. 511–519.

[28] Y. Lindell, “Secure multiparty computation,” Commun. ACM, vol. 64, no. 1, pp. 86–96, 2021.

[29] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A programming framework for secure
computation,” in S&P, 2015, pp. 359–376.

[30] A. C. Yao, “Protocols for secure computations (extended abstract),” in FOCS, 1982, pp. 160–164.

[31] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,” J. ACM, vol. 43,
no. 3, pp. 431–473, 1996.

[32] S. Zahur and D. Evans, “Obliv-C: A language for extensible data-oblivious computation,” IACR Cryptology
ePrint Archive, vol. 2015, p. 1153, 2015.

[33] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-preserving computa-
tions,” in ESORICS, 2008, pp. 192–206.

[34] K. Zhang, Y. Tong, Y. Shi, Y. Zeng, Y. Xu, K. Xu, W. Lv, and Z. Zheng, “Approximate k-Nearest Neighbor
Query over Spatial Data Federation,”, in DASFAA, 2023, pp. 351–368.

[35] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa, and J. M. Hellerstein, “Senate: A maliciously-secure
MPC platform for collaborative analytics,” in USENIX Security, 2021, pp. 2129–2146.

[36] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty computation,” in CCS, 2017, pp.
39–56.

[37] N. Li, M. Lyu, D. Su, and W. Yang, Differential Privacy: From Theory to Practice, ser. Synthesis Lectures
on Information Security, Privacy, & Trust. Morgan & Claypool Publishers, 2016.

23

[38] W. Zheng, Y. Wu, X. Wu, C. Feng, Y. Sui, X. Luo, and Y. Zhou, “A survey of intel SGX and its applications,”
Frontiers Comput. Sci., vol. 15, no. 3, p. 153808, 2021.

[39] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Opaque: An oblivious and
encrypted distributed analytics platform,” in NSDI, 2017, pp. 283–298.

[40] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heteroge-
neous networks,” in MLSys, vol. 2, 2020, pp. 429–450.

[41] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough, and V. Saligrama, “Federated
learning based on dynamic regularization,” in ICLR, 2021.

[42] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh, “SCAFFOLD: stochastic
controlled averaging for federated learning,” in ICML, vol. 119, 2020, pp. 5132–5143.

[43] Q. Tran-Dinh, N. H. Pham, D. T. Phan, and L. M. Nguyen, “FedDR - randomized Douglas-Rachford
splitting algorithms for nonconvex federated composite optimization,” in NeurIPS, 2021, pp. 30 326–30 338.

[44] Y. Gong, Y. Li, and N. M. Freris, “FedADMM: A robust federated deep learning framework with adaptivity
to system heterogeneity,” in ICDE, 2022, pp. 2575–2587.

[45] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S. Kim, “Communication-efficient on-device machine
learning: Federated distillation and augmentation under non-iid private data,” CoRR, vol. abs/1811.11479,
2018.

[46] W. Hao, M. El-Khamy, J. Lee, J. Zhang, K. J. Liang, C. Chen, and L. Carin, “Towards fair federated learning
with zero-shot data augmentation,” in CVPR Workshops, 2021, pp. 3310–3319.

[47] R. Zhang, Y. Wang, Z. Zhou, Z. Ren, Y. Tong, and K. Xu, “Data source selection in federated learning: A
submodular optimization approach,” in DASFAA, vol. 13246, 2022, pp. 606–614.

[48] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient federated learning via guided
participant selection,” in OSDI, 2021, pp. 19–35.

[49] K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal,
and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in CCS, 2017, pp.
1175–1191.

[50] Y. Dong, X. Chen, L. Shen, and D. Wang, “Privacy-preserving distributed machine learning based on secret
sharing,” in ICICS, vol. 11999, 2019, pp. 684–702.

[51] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and verifiable federated learning,” IEEE
Trans. Inf. Forensics Secur., vol. 15, pp. 911–926, 2020.

[52] S. Sharma, C. Xing, Y. Liu, and Y. Kang, “Secure and efficient federated transfer learning,” in IEEE BigData,
2019, pp. 2569–2576.

[53] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-preserving deep learning via additively
homomorphic encryption,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1333–1345, 2018.

[54] J. Zhang, B. Chen, S. Yu, and H. Deng, “PEFL: A privacy-enhanced federated learning scheme for big data
analytics,” in GLOBECOM, 2019, pp. 1–6.

24

[55] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated transfer learning framework for
wearable healthcare,” IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93, 2020.

[56] Y. Zhang, Y. Shi, Z. Zhou, C. Xue, Y. Xu, K. Xu, and J. Du, “Efficient and Secure Skyline Queries over
Vertical Data Federation,” IEEE Trans. Knowl. Data Eng., pp. 1–12, 2023.

[57] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt: Efficient homomorphic encryption for
cross-silo federated learning,” in USENIX ATC, 2020, pp. 493–506.

[58] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A client level perspective,”
CoRR, vol. abs/1712.07557, 2017.

[59] Y. Shi, Y. Tong, Z. Su, D. Jiang, Z. Zhou, and W. Zhang, “Federated Topic Discovery: A Semantic Consistent
Approach,” IEEE Intell. Syst., vol. 36, no.5, pp. 96–103, 2021.

[60] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S. Quek, and H. V. Poor, “Federated
learning with differential privacy: Algorithms and performance analysis,” IEEE Trans. Inf. Forensics Secur.,
vol. 15, pp. 3454–3469, 2020.

[61] E. Bao, Y. Zhu, X. Xiao, Y. Yang, B. C. Ooi, B. H. M. Tan, and K. M. M. Aung, “Skellam mixture
mechanism: a novel approach to federated learning with differential privacy,” PVLDB, vol. 15, no. 11, pp.
2348–2360, 2022.

[62] R. Liu, Y. Cao, M. Yoshikawa, and H. Chen, “FedSel: Federated SGD under local differential privacy with
top-k dimension selection,” in DASFAA, vol. 12112, 2020, pp. 485–501.

[63] M. Seif, R. Tandon, and M. Li, “Wireless federated learning with local differential privacy,” in ISIT, 2020,
pp. 2604–2609.

[64] Y. Wang, Y. Tong, and D. Shi, “Federated Latent Dirichlet Allocation: A Local Differential Privacy Based
Framework,” in AAAI, 2020, pp. 6283–6290.

[65] Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang, Y. Li, B. Ding, and J. Zhou, “Federatedscope: A
flexible federated learning platform for heterogeneity,” PVLDB, vol. 16, no. 5, p. 1059–1072, 2022.

[66] F. Fu, Y. Shao, L. Yu, J. Jiang, H. Xue, Y. Tao, and B. Cui, “VF2Boost: Very fast vertical federated gradient
boosting for cross-enterprise learning,” in SIGMOD, 2021, pp. 563–576.

[67] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving vertical federated learning for tree-based
models,” PVLDB, vol. 13, no. 11, pp. 2090–2103, 2020.

[68] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated transfer learning framework,” IEEE
Intell. Syst., vol. 35, no. 4, pp. 70–82, 2020.

[69] “FATE,” https://github.com/FederatedAI/FATE, last accessed 28 Feb 2023.

[70] “PySyft,” https://github.com/OpenMined/PySyft, last accessed 28 Feb 2023.

[71] “FederatedScope,” https://github.com/alibaba/FederatedScope, last accessed 28 Feb 2023.

[72] Y. Wang, Y. Tong, Z. Zhou, Z. Ren, Y. Xu, G. Wu, and W. Lv, “Fed-LTD: Towards cross-platform ride
hailing via federated learning to dispatch,” in SIGKDD, 2022, pp. 4079–4089.

25

https://github.com/FederatedAI/FATE
https://github.com/OpenMined/PySyft
https://github.com/alibaba/FederatedScope

[73] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers
for image recognition at scale,” in ICLR, 2021.

[74] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016, pp.
770–778.

[75] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in NeurIPS,
2017, pp. 1024–1034.

[76] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-preserving federated learning: A taxonomy,
review, and future directions,” ACM Comput. Surv., vol. 54, no. 6, pp. 131:1–131:36, 2022.

[77] D. Olteanu, “The relational data borg is learning,” PVLDB, vol. 13, no. 12, pp. 3502–3515, 2020.

[78] J. Lu and I. Holubová, “Multi-model databases: A new journey to handle the variety of data,” ACM Comput.
Surv., vol. 52, no. 3, pp. 55:1–55:38, 2019.

[79] J. Lu, I. Holubová, and B. Cautis, “Multi-model databases and tightly integrated polystores: Current
practices, comparisons, and open challenges,” in CIKM, 2018, pp. 2301–2302.

[80] Y. Cao, W. Fan, Y. Wang, and K. Yi, “Querying shared data with security heterogeneity,” in SIGMOD, 2020,
pp. 575–585.

26

Federated Learning without Full Labels: A Survey

Yilun Jin† Yang Liu‡ Kai Chen† Qiang Yang†

† Department of CSE, HKUST, Hong Kong, China
yilun.jin@connect.ust.hk, {qyang,kaichen}@cse.ust.hk

‡ Institute for AI Industry Research, Tsinghua University, Beijing, China
liuy03@air.tsinghua.edu.cn

Abstract

Data privacy has become an increasingly important concern in real-world big data applications such
as machine learning. To address the problem, federated learning (FL) has been a promising solution
to building effective machine learning models from decentralized and private data. Existing federated
learning algorithms mainly tackle the supervised learning problem, where data are assumed to be fully
labeled. However, in practice, fully labeled data is often hard to obtain, as the participants may not have
sufficient domain expertise, or they lack the motivation and tools to label data. Therefore, the problem
of federated learning without full labels is important in real-world FL applications. In this paper, we
discuss how the problem can be solved with machine learning techniques that leverage unlabeled data.
We present a survey of methods that combine FL with semi-supervised learning, self-supervised learning,
and transfer learning methods. We also summarize the datasets used to evaluate FL methods without full
labels. Finally, we highlight future directions in the context of FL without full labels.

1 Introduction

Deep learning (DL) algorithms have achieved great success in the past decade. Powered by large-scale data such
as ImageNet [1], ActivityNet [2], BookCorpus [3], and WikiText [4], deep learning models have been successfully
applied to image classification [5], object detection [6], and natural language understanding [7]. However, the
success of DL relies on large-scale, high-quality data, which is not always available in practice for two reasons.
On one hand, collecting and labeling data is costly, making it difficult for a single organization to accumulate and
store large-scale data. On the other hand, it is also infeasible to share data across organizations to build large-scale
datasets, as doing so leads to potential leakage of data privacy. In recent years, a series of laws and regulations
have been enacted, such as the General Data Protection Regulation (GDPR) [8] and the California Consumer
Privacy Act (CCPA) [9], imposing constraints on data sharing. Therefore, how to jointly leverage the knowledge
encoded in decentralized data while protecting data privacy becomes a critical problem.

Federated Learning (FL) [10, 11] is a promising solution to the problem and has received great attention from
both the industry and the research community. The key idea of FL is that participants (also known as clients or
parties) exchange intermediate results, such as model parameters and gradients, instead of raw data, to jointly
train machine learning models. As the raw data never leave their owners during model training, FL becomes an

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

27

attractive privacy-preserving solution to the problem of decentralized machine learning. Up to now, a plethora
of FL techniques has been proposed, focusing primarily on addressing the issues of data heterogeneity [13, 15],
system heterogeneity [14, 17], data privacy and security [16, 18], and communication efficiency [12, 19].

Despite the significant research efforts, there is still one important yet under-explored topic in FL, which is
how to effectively leverage unlabeled data to learn better federated models. In existing efforts of FL [12, 13, 14],
it is assumed that all data held by all participants are fully labeled, and that a supervised learning problem is to
be solved. However, the assumption may not hold in practice for two reasons. First, participants may not be
sufficiently motivated to label their data. For example, suppose a sentiment classification model is to be trained
with FL, smartphone users would be unwilling to spend time and effort to label all sentences typed in the phone.
Second, participants may not have sufficient expertise to label their data. For example, wearable devices record
various data (e.g. heart rate, breath rate, etc.) about the user’s physical conditions, labeling which would require
domain expertise in medical science and cannot be done by ordinary users. Based on the above observations, we
argue that unlabeled data widely exist in real-world FL applications, and that the problem of Federated Learning
without Full Labels is an important problem to study.

There are generally three learning paradigms in centralized machine learning (ML) that tackle the problem of
learning without full labels, semi-supervised learning [20, 21], self-supervised learning [24, 23], and transfer
learning [22], all of which have drawn much attention from researchers. Among them, semi-supervised learning
aims to leverage unlabeled data to assist the limited labeled data [25, 26, 27]. Self-supervised learning aims to
learn indicative feature representations from unlabeled data, which are then used to assist downstream supervised
learning tasks [28, 29, 30]. Transfer learning aims to use sufficient data from a source domain to assist learning
in a target domain with insufficient data [31, 32, 33], where the target domain commonly contains unlabeled data.
However, despite the large number of existing works in these areas, it is not straightforward to apply them in FL
due to the following challenges.

• Isolation of labeled and unlabeled data. In traditional semi-supervised learning and transfer learning, the
server has access to both labeled and unlabeled data. However, in FL without full labels, it is common for
a participant to have unlabeled data only. For example, a medical institute may not have the expertise to
diagnose a complex illness, leaving all its data unlabeled. Moreover, it is not allowed in FL to exchange
labeled data to solve the problem. The isolation of labeled and unlabeled data may compromise the overall
performance. As observed in [34, 35], training with only unlabeled data leads to forgetting the knowledge
learned from labeled data, which negatively impacts the overall performance. Therefore, it is important to
bridge the knowledge between labeled and unlabeled data, without data exchange.

• Privacy of labeled data. In the problem of FL without full labels, the number of labeled data is often
limited. Therefore, participants have to repetitively access and exchange information about them to exploit
the knowledge in the labels. This leads to risks of privacy leakage of the labeled data. For example,
semi-honest participants can learn to reconstruct the labeled data via gradient inversion attacks [36].

• Data heterogeneity. Data heterogeneity, i.e. the local data held by different participants have different
data distributions, is an important property in FL that causes accuracy degradation [13, 14]. Similarly, data
heterogeneity also poses challenges in the problem of FL without full labels. For example, as the number
of labeled data is limited, local models tend to overfit the local data more easily, which causes a greater
amount of weight divergence [37] and performance degradation.

• Balancing performance and efficiency. The large-scale unlabeled data in the problem creates a tradeoff
between performance and efficiency. Specifically, while large-scale unlabeled data is available for training,
their impacts on the model performance may be marginal, and the overall efficiency can be improved by
sampling a fraction of unlabeled data without compromising model performance.

28

In this paper, we present a survey of the problem of FL without full labels and its existing solutions. The
rest of the paper is organized as follows. Section 2 presents necessary backgrounds about FL as well as machine
learning paradigms without full labels, including semi-supervised learning, self-supervised learning, and transfer
learning. Sections 3, 4, 5 then review methods on federated semi-supervised learning, federated self-supervised
learning, and federated transfer learning, respectively. Section 6 summarizes the datasets used for evaluating FL
methods without full labels. Section 2 analyzes the similarities and differences between our work and related
surveys. Finally, Section 8 presents an outlook on potential directions in the context of FL without full labels.

2 Preliminaries

In this section, we formally introduce backgrounds about FL, as well as the machine learning paradigms leveraging
unlabeled data, semi-supervised learning, self-supervised learning, and transfer learning.

2.1 Federated Learning (FL)

Federated Learning aims to virtually unify decentralized data held by different participants to train machine
learning models while protecting data privacy. Depending on how the data is split across participants, FL can be
divided into horizontal federated learning (HFL) and vertical federated learning (VFL) [10]. In HFL, participants
own data with the same feature space (e.g. participants own image data from different users), while in VFL,
participants own data with the same user space but different feature spaces (e.g. a financial institute owns
transaction records of a user, while an e-commerce corporation owns purchase records). In this paper, following
the majority of existing research efforts, we primarily focus on HFL1, i.e. all participants share the same feature
space. Formally, we consider an FL scenario with C participants, denoted as 1, . . . , C. Each participant i owns a
dataset Di = {Xij , yij}Ni

j=1, where Ni = |Di| is the number of data held by participant i, and Xij , yij denote the
features and the label of the j-th sample from client i, respectively. We use pi(X, y), pi(X), pi(y|X) to denote
the joint distribution, marginal distribution, and conditional distribution of client i, respectively. Denoting the
model parameters as θ ∈ Rd, the overall optimization objective of FL is as follows,

min
θ
ffl(θ) =

1

C

C∑
i=1

ffl,i(θ),where ffl,i(θ) =
1

Ni

Ni∑
j=1

l (Xij , yij ; θ) , s.t. Mp(θ) < εp, (2)

where ffl,i(θ) is the local optimization objective of participant i, and l(X, y; θ) is a loss function, such as the
cross-entropy loss for classification problems. In addition, Mp(θ) denotes a metric measuring the privacy leakage
of θ (e.g. the budget in differential privacy (DP) [72]), and εp is a privacy constraint.

The training process of FL generally involves multiple communication rounds, each of which contains two
steps, local training, and server aggregation.

• In the local training stage, a subset of all participants is selected. They are given the latest global model
and will train the model with their local data for several epochs.

• In the server aggregation stage, participants upload their updated parameters to the server. The server
aggregates received parameters via weighted averaging to obtain the global model for the next round.

Depending on the properties of participants, FL can be categorized into cross-device FL and cross-silo FL
[11]. Participants of cross-device FL are commonly smart devices (e.g. phones, sensors, wearables) connected
with wireless networks, while participants of cross-silo FL are commonly large organizations with connected
datacenters, implying the following differences:

1Unless otherwise specified, we will use FL to refer to HFL throughout this paper.

29

• Computation/communication capability. Participants in cross-device FL commonly have limited computa-
tion (e.g. small memory, limited power supply) and communication capability (e.g. wireless network).

• Stability. Participants in cross-device FL are not stable and may drop out due to network breakdown.

• Participant states. In general, participants in cross-device FL cannot carry state vectors, in that they may
only participate in one round of FL, and then drop out indefinitely.

2.2 Machine Learning with Unlabeled Data

2.2.1 Semi-supervised Learning

In semi-supervised learning, there are two datasets, a labeled dataset L = {Xj , yj}|L|j=1, and an unlabeled dataset

U = {Xk}
|U|
k=1, |U| ≪ |L|. In addition, the marginal distributions of L,U are the same, i.e. pL(X) = pU (X).

The goal of semi-supervised learning, involving both labeled and unlabeled data, is as follows,

min
θ
fsemi(θ) =

1

|L|

|L|∑
j=1

ls(Xj , yj ; θ) +
1

|U|

|U|∑
k=1

lu(Xk; θ), (3)

where ls, lu denotes the loss for labeled (supervised) and unlabeled data, respectively.
We then introduce some widely adopted techniques in semi-supervised learning.
Pseudo-Labeling [79]. Pseudo-labeling is a simple but effective trick for semi-supervised learning. Specifi-

cally, for each unlabeled data sample, its pseudo-label is taken as the class with the highest predicted probability,

ŷk = argmax
c
gθ(Xk)c, (4)

where gθ is the model with parameter θ, and gθ(Xk)c denotes the predicted probability of class c for Xk. There
is often a confidence threshold τ , such that pseudo-labels are only taken on confident samples with ŷk > τ . After
that, the pseudo-labels are used to supervise learning on unlabeled data, i.e.

lu(Xk; θ) = ls(Xk, ŷk; θ). (5)

Teacher-student Models [25]. Teacher-student models in semi-supervised learning leverage two networks, a
teacher model θtea and a student model θstu. On one hand, the student model is trained to be consistent with the
teacher model to enhance its robustness

lu(Xk; θ) = d (gθstu(Xk), gθtea(Xk)) , (6)

where d(·, ·) is a distance metric. On the other hand, the teacher model is updated with moving averaging
(parameterized by α) over the student model after each iteration

θtea = (1− α)θtea + αθstu. (7)

2.2.2 Self-supervised Learning

Self-supervised learning aims to learn good feature representations from unlabeled data to facilitate downstream
machine learning tasks. There are in general two ways to perform self-supervised learning, generative learning,
and contrastive learning [24]. Generative learning trains the model to reconstruct the original data X from masked
data to learn the internal semantics within X, while contrastive learning trains the model to distinguish between

30

Machine Learning Paradigm Assumptions Application Limitations
Train-test i.i.d. Labeled Data

Supervised Learning ✓ ✓ Sufficient labeled data Labeled data is hard to obtain.

Semi-supervised Learning ✓ Insufficient
A few labeled data Labeled and unlabeled data

should have the same distribution.+ large-scale unlabeled data

Self-supervised Learning ✓ × Large-scale unlabeled data Cannot directly perform supervised tasks.

Transfer Learning × From another domain
Unlabeled data Hard to select a helpful

source domain.
Potential negative transfer.

+ labeled data
from another domain

Table 3: A comparison between supervised learning, semi-supervised learning, self-supervised learning, and
transfer learning.

‘positive’ and ‘negative’ samples. In this survey, we primarily focus on contrastive learning, whose objective is
given as follows.

min
θ
fctr(θ) =

∑
X∈U

[d (gθ(X), gθ(X+))− λ · d (gθ(X), gθ(X−))] , (8)

where U is the unlabeled dataset, gθ is a neural network parameterized by θ, X+,X− are positive and negative
samples sampled for data X, λ is the weight for negative samples, and d(·, ·) is a distance metric. By minimizing
fctr, the model gθ learns to minimize the distance between positive samples in the feature space, while maximizing
the distance between negative ones. Some representative contrastive learning methods include SimCLR [45],
MoCo [46], BYOL [48], and SimSiam [47]. We briefly explain their similarities and differences.

Similarities. All four methods employ a Siamese structure – two networks with the same architecture. One
of them is called the online network θo and the other is called the target network θtar. The main difference is that
the online network is directly updated via gradient descent, while the target network is generally not.

Differences. The differences between existing self-supervised learning methods are generally three-fold.

1. Architecture. In SimCLR and MoCo, the online and the target networks have the same architecture. On the
contrary, for SimSiam and BYOL, the online network contains an additional predictor, i.e. θo = (θfo , θ

p
o).

The predictor aims to transform features between different views, enabling additional diversity.

2. Target Network Parameter. For SimCLR and SimSiam, the target network shares the same parameters as
the online network θo = θtar, while for BYOL and MoCo, the target network is updated with an exponential
moving average similar to Eqn. 7.

3. Negative Samples. On one hand, SimCLR and MoCo require negative samples X−. MoCo generates
negative samples from previous batches, while SimCLR takes all other samples in the same batch as
negative samples. On the other hand, SimSiam and BYOL do not require negative samples (i.e. λ = 0).

2.2.3 Transfer Learning

Both semi-supervised learning and self-supervised learning assume that the training and test data are independent
and identically distributed (i.i.d.), regardless of whether labels are present. However, transfer learning [22] does
not require the assumption. Specifically, transfer learning deals with multiple data distributions (also called
domains) pi(X, y), i = 1, 2, . . . T , where the model is trained on one, and tested on another. Without loss of
generality, we assume that T = 2. We denote L1 = {X1i, y1i}|L1|

i=1 ∼ p1(X, y) as the source dataset, and
U2 = {X2j}|U2|

j=1 ∼ p2(X) as the target dataset. The overall goal is to minimize the error on the target dataset.
However, as there are no labeled target data, we resort to the abundant source data to learn a model that generalizes

31

well to the target dataset. A commonly studied optimization objective is as follows,

min
θf ,θc

|L1|∑
i=1

ls(X1i, y1i; θf , θc)︸ ︷︷ ︸
fcls(L1;θf ,θc)

+λ · d
(
gθf (L1) , gθf (U2)

)︸ ︷︷ ︸
fdom(L1,U2;θf)

, (9)

where θf , θc, are parameters of the feature extractor and the classifier, respectively, d(·, ·) is a distance metric,
gθf (L1) = {gθf (X1i)}|L1|

i=1 denotes the set of source features extracted by θf , and fcls, fdom denote the classifier
loss on the source domain and the domain distance between domains, respectively. Intuitively, Eqn. 9 aims to
minimize the classification error on the source domain, while minimizing the distance between source domain
features and target domain features. In this way, the feature extractor θf is considered to extract domain-invariant
features, and the classifier can be reused in the target domain. Commonly used distance metrics d(·, ·) include L2

distance, maximum mean discrepancy (MMD) [32] and adversarial domain discriminator [33].
In addition, if an additional labeled target dataset L2 is available, θf , θc can be further fine-tuned with L2.
Transfer learning can generally be categorized into homogeneous transfer learning and heterogeneous transfer

learning [22]. Homogeneous transfer learning assumes that domains share the same feature and label space, while
heterogeneous transfer learning does not make such an assumption. For example, consider a movie recommender
system that would like to borrow relevant knowledge from a book recommender system. If both systems rely
on text reviews and ratings for recommendation, then a homogeneous transfer learning is to be solved, with the
shared feature space being texts, and the shared label space being the ratings. However, if the movie recommender
wants to leverage additional video clips, then the problem becomes a heterogeneous transfer learning problem, as
the book recommender does not have video features. Heterogeneous transfer learning generally requires explicit
cross-domain links to better bridge heterogeneous features and labels. For example, a novel and its related movie
products should have similar feature representations.

2.2.4 Summary and Discussion

We summarize the three learning paradigms involving unlabeled data in Table 3. As shown, supervised learning
has two key assumptions, the i.i.d. property between training and test data, and sufficient labeled data. Therefore,
supervised learning is not applicable when either the labeled data is insufficient, or the training and test data come
from different distributions. To address the drawback, semi-supervised learning, self-supervised learning, and
transfer learning are proposed to relax the two key assumptions.

• Semi-supervised learning relaxes the assumption of sufficient labeled data. With limited labeled data,
semi-supervised learning aims to exploit large-scale unlabeled data that have the same distribution as
labeled data with techniques such as pseudo-labeling or teacher-student models. The main limitation of
semi-supervised learning is the difficulty to obtain i.i.d. unlabeled data. For example, for the task of
medical imaging, the images taken from multiple hospitals may follow different distributions due to device
differences, demographic shifts, etc.

• Self-supervised learning further relaxes the assumption of labeled data. It aims to learn meaningful feature
representations from the internal structures of unlabeled data, such as patches, rotations, and coloring in
images. The main limitation of self-supervised learning is that, although it does not require labels to learn
feature representations, they cannot be directly used to perform supervised tasks (e.g. classification).

• Transfer learning further relaxes the assumption of i.i.d. train and test data. Given unlabeled data in a
domain, it aims to learn from a different but related domain with sufficient labeled data, and to transfer
helpful knowledge to the unlabeled data. The main limitation of transfer learning is that it commonly
requires trial-and-errors to select an adequate source domain. When inadequate source domains are chosen,
negative transfer [83] may happen which compromises model accuracy.

32

Setting Method Label Data Data Efficiency
Isolation Privacy Heterogeneity Tradeoff

Label-
at-client

RSCFed [38]
Teacher-student × Sub-consensus models & ×

model distance-weighted aggregation

FedSSL [39] Pseudo-labeling Differential privacy (DP) Global generative model ×

FedMatch [35] Pseudo-labeling × Inter-client consistency Disjoint & sparse learning

FedPU [41]
Negative labels × × ×

from other clients

AdaFedSemi [40] Pseudo-labeling × × Tuning confidence threshold
and participation rate.

DS-FL [42]
Ensemble × Entropy reduction averaging

Transmit logits,
pseudo-labeling not parameters

Label-
at-server

SemiFL [34]
Alternate training & × × ×

Pseudo-labeling

FedMatch [35]
Pseudo-labeling × Inter-client

Disjoint & sparse learning
& Disjoint learning consistency loss

Table 4: Summary of techniques for federated semi-supervised learning. × indicates that the proposed method
does not focus on this issue.

3 Federated Semi-supervised Learning

In this section, we present an overview of federated semi-supervised learning, whose main goal is to jointly use
both labeled and unlabeled data owned by participants to improve FL. Before introducing detailed techniques, we
first categorize federated semi-supervised learning into two settings following [35]:

• Label-at-client, where the labeled data are located at the clients, while the server only has access to
unlabeled data. For example, when a company would like to train an FL model for object detection
using images taken from smartphones, the company has no access to the local data of users, and labeling
can only be done by users. However, users are generally unwilling to label every picture taken from
their smartphones, creating a label-at-client setting for federated semi-supervised learning. Formally, the
objective function of this setting is as follows,

min
θ

1

C

C∑
i=1

fsemi,i(θ), s.t. Mp(θ) < εp (10)

where fsemi,i(θ) denotes the semi supervised learning loss (Eqn. 3) evaluated on the dataset of participant
i, and Mp, εp follow Eqn. 2.

• Label-at-server, where the labeled data are located at the server, while clients have only unlabeled data.
For example, consider a company of wearable devices that would like to train a health condition monitoring
model with FL. In this case, users generally do not have the expertise to label data related to health
conditions, leaving the data at clients unlabeled. The objective can be similarly formulated as

min
θ

1

|L|

|L|∑
j=1

ls(Xj , yj ; θ) +
1

C

C∑
i=1

 1

|Ui|

|Ui|∑
k=1

lu(Xik; θ)

 , s.t. Mp(θ) < εp. (11)

Methods for each federated semi-supervised learning setting are discussed in the following sections. We also
summarize existing methods in Table 4.

33

3.1 The Label-at-client Setting

The label-at-client setting of federated semi-supervised learning is similar to conventional FL (Eqn. 2), in that
clients can train local models with their labeled data, and the updated parameters are aggregated by the server.
Therefore, the label-at-client setting inherits the challenges of data heterogeneity, data privacy, and efficiency
tradeoff from conventional FL. In addition, some clients may not have labeled data to train their local models,
causing the label isolation problem. We introduce how existing works address these problems in this section.

RSCFed [38] primarily focuses on the label isolation problem and the data heterogeneity problem in federated
semi-supervised learning. For local training, the teacher-student model (introduced in Section 2.2.1) is adopted for
training on unlabeled data. To further address the data heterogeneity problem, RSCFed proposes a sub-consensus
sampling method and a distance-weighted aggregation method. In each round, several sub-consensus models
are aggregated by independently sampling multiple subsets of all participants, such that each sub-consensus
model is expected to contain participants with labeled data. Moreover, the local models are weighted according to
their distance to sub-consensus models, such that deviating models receive low weights and their impacts are
minimized.

FedSSL [39] tackles the label isolation problem, the data privacy problem, and the data heterogeneity problem.
To facilitate local training of unlabeled clients, FedSSL leverages the technique of pseudo-labeling. Further, to
tackle the data heterogeneity problem, FedSSL learns a global generative model to generate data from a unified
feature space, such that the data heterogeneity is mitigated by the generated data. Finally, to prevent privacy
leakage caused by the generative model, FedSSL leverages differential privacy (DP) to limit the information
leakage of the training data in the generative model.

FedMatch [35] proposes an inter-client consistency loss to address the data heterogeneity problem. Specifi-
cally, top-k nearest clients are sampled for each client, and on each data sample, the output of the local model is
regularized with those of the top-k client models to ensure consistency. In addition, FedMatch proposes disjoint
learning that splits the parameters for labeled and unlabeled data, and the parameters for unlabeled data are sparse.
Upon updates, clients with only unlabeled data upload sparse tensors, reducing the communication cost.

FedPU [41] studies a more challenging setting within semi-supervised learning, positive and unlabeled
learning, in which each client has only labels in a subset of classes. In this setting, a client has only information
about a part of all classes, leading to a severe label isolation problem. To tackle the problem, FedPU derives a
novel objective function, such that the task of learning the negative classes of a client is relegated to other clients
who have labeled data in the negative class. In this way, each client is only responsible for learning the positive
classes and can do local training by itself. Empirically, the proposed FedPU outperforms FedMatch [35] in the
positive-and-unlabeled learning setting.

AdaFedSemi [40] proposes a system to achieve the tradeoff between efficiency and model accuracy in
federated semi-supervised learning with server-side unlabeled data. For every round, the model is trained with
labeled data at clients and aggregated at the server. The server-side unlabeled data are incorporated into the
training process via pseudo-labeling. AdaFedSemi [40] identifies two key parameters to balance the tradeoff
between efficiency and performance, the client participation rate P , and the confidence threshold of pseudo-labels
τ . A lower P reduces both the communication cost and the model accuracy, while a high τ reduces the server-side
computation cost while also limiting the usage of unlabeled data. Therefore, AdaFedSemi designs a tuning
method based on multi-armed bandits (MAB) to tune both parameters as training proceeds. Experiments show
that AdaFedSemi achieves a good balance between efficiency and accuracy by dynamically adjusting P and τ in
different training phases.

DS-FL [42] tackles a similar problem to AdaFedSemi, where clients own labeled data while the server
owns unlabeled data. It proposes an ensemble pseudo-label solution to leverage the server-side unlabeled data.
Specifically, instead of a single pseudo-label ŷk for a data sample Xk, it averages the pseudo-labels generated by
all clients, i.e. ŷk = MEANC

c=1gθc(Xk). This creates an ensemble of client models and offers better performance.
Moreover, as only pseudo-labels are transmitted instead of model parameters, the communication cost can be

34

significantly saved. In addition, DS-FL observes that training on pseudo-labels leads to a high prediction entropy.
It then proposes an entropy-reduced aggregation, which sharpens the local outputs gθc(Xk) before aggregation.

3.2 The Label-at-server Setting

The label-at-server setting, where clients do not have any labeled data, is more challenging than the label-at-client
setting. The reason is that all clients own unlabeled data only and cannot provide additional supervision signals to
the FL model. As shown in [35] and [34], training with only unlabeled data may lead to catastrophic forgetting of
the knowledge learned from labeled data, and thus compromises the model performance.

To address the isolation between labeled data and unlabeled data, FedMatch [35] proposes a disjoint learning
scheme that involves two sets of parameters for labeled and unlabeled data, respectively. The parameters for
labeled data are fixed when training on unlabeled data, and vice versa, to prevent the knowledge from being
overwritten. Disjoint learning brings additional benefits in communication efficiency, in that the parameters for
unlabeled data, which are transmitted between participants and the server, are set to be sparse. In addition, to
address the heterogeneous data held by different clients, FedMatch proposes an inter-client consistency loss, such
that local models from different participants generate similar outputs on the same data.

SemiFL [34] takes another approach to solving the challenges. It proposes to fine-tune the global model
with labeled data to enhance its quality and to alleviate the forgetting caused by unsupervised training at clients.
Furthermore, instead of regularizing model outputs across clients, SemiFL proposes to maximize the consistency
between client models and the global model. Specifically, the global model generates pseudo-labels for client-side
unlabeled data, and the local models of clients are trained to fit the pseudo-labels. Empirical results show that
SemiFL yields more competitive results than FedMatch.

4 Federated Self-supervised Learning

In this section, we introduce how self-supervised learning can be combined with FL to learn with decentralized
and purely unlabeled data. Although there are two types of self-supervised learning, generative and contrastive
learning, so far only contrastive methods have been studied in the FL setting, and thus we limit the discussions
within federated contrastive self-supervised learning. The objective function can be formalized as

min
θ

1

C

C∑
i=1

fctr,i(θ), s.t. Mp(θ) < εp, (12)

where fctr,i denotes fctr (Eqn. 8) evaluated at participant i. Compared to FL with full supervision, federated
contrastive learning does not have globally consistent labels, and thus, the local contrastive objectives may
deviate from one another to a greater extent. Therefore, heterogeneous data poses a greater challenge to federated
contrastive learning. Table 5 summarizes existing works in federated contrastive self-supervised learning.

FedCA [49], as one of the earliest works to study federated self-supervised learning, proposes a dictionary
module and an alignment module to solve the feature misalignment problem caused by data heterogeneity.
Extending SimCLR, the dictionary module in FedCA aims to use the global model to generate consistent negative
samples across clients, while the alignment module uses a set of public data to align the representations generated
by local models. However, the alignment module of FedCA requires sharing a public dataset, which compromises
data privacy.

SSFL [52] addresses the data heterogeneity problem in federated self-supervised learning with a personalized
FL framework [53, 54], in which each participant trains s unique local model instead of training a shared global
model. The drawback of SSFL is that the adopted self-supervised learning method requires a large batch size,
which is hard to achieve on resource-limited edge devices.

35

Method Label Data Data Efficiency
Isolation Privacy Heterogeneity Tradeoff

FedCA [49] SimCLR × Dictionary & Alignment module ×
SSFL [52] SimSiam × Personalized models ×
FedU [44] BYOL × Selective divergence-aware update ×

FedEMA [50] BYOL × Moving average client update ×
FedX [51] Local relation loss × Global contrastive & relation loss ×

Orchestra [43]
Rotation prediction Sending local centroids

Bi-level clustering ×
& clustering instead of all representations

Table 5: Summary of techniques for federated self-supervised learning. × indicates that the proposed method
does not focus on this issue.

FedU [44] designs a heterogeneity-aware aggregation scheme to address data heterogeneity in federated
self-supervised learning. As discussed in Section 2.2.2, there are generally two networks in contrastive learning,
an online network and a target network. Therefore, how to aggregate and update the two networks in FL with
data heterogeneity becomes an important research question. With empirical experiments, FedU discovers that
aggregating and updating only the online network yields better performances. Moreover, as FedU extends
BYOL with an additional predictor model, it is also necessary to design an update rule for it. FedU designs a
divergence-aware predictor update rule, which updates the local predictor only when its deviation from the global
predictor is low. These rules ensure that data heterogeneity is well captured by local and global models.

Extending FedU, FedEMA [50] presents an extensive empirical study on the design components of federated
contrastive learning. It performs experiments combining FL with MoCo, SimCLR, SimSiam, and BYOL, and
identifies BYOL as the best base method. Based on the results, FedRMA with a divergence-aware moving average
update rule is proposed. The difference between FedEMA and FedU is that, FedU overwrites the local online
model with the global online model

θro,c = θr−1
o , (13)

where θro,c denotes the local online model at client c and round r, and θr−1
o denotes the global online model

aggregated at the previous round. On the contrary, FedEMA updates the local online model by interpolating
between the global and local online models to adaptively incorporate global knowledge, i.e.

θro,c = (1− µ)θr−1
o + µθr−1

o,c , (14)

where µ is a parameter based on weight divergence,

µ = min(λ∥θr−1
o,c − θr−1

o ∥, 1). (15)

While FedU and FedEMA are simple and effective, they both require stateful clients to keep track of the divergence
between local and global models, and are thus not applicable in cross-device FL.

Contrary to FedU and FedEMA, Orchestra [43] proposes a theoretically guided federated self-supervised
learning method that works with cross-device FL. Orchestra is based on the theory that feature representations
with good clustering properties yield low classification errors. Therefore, in addition to contrastive learning,
Orchestra aims to simultaneously enhance the clustering properties of all data representations. However, sharing
all data representations for clustering may cause the problem of privacy leakage. Orchestra addresses the problem
with a bi-level clustering method, in which clients first cluster their data representations, and send only the
local centroids to the server. The server performs a second clustering on the local centroids to obtain global
clustering centroids, which are sent back to clients to compute cluster assignments. As local centroids reveal less
information than all data representations, this bi-level clustering method better preserves data privacy.

36

Orthogonal to the above methods, FedX [51] proposes a versatile add-on module for federated self-supervised
learning methods. FedX consists of both local and global relational loss terms that can be added to various con-
trastive learning modules. The local relational loss aims to ensure that under the local model, two augmentations
of the same data sample have similar relations (similarities) to samples within the same batch B, i.e.

rji =
exp(sim(zi, zj))∑
k∈B exp(sim(zi, zk))

, rji+ =
exp(sim(zi+, zj))∑
k∈B exp(sim(zi+, zk))

, (16)

Lrel = JS(ri, ri+), (17)

where zi, zi+ denotes the feature representation of the i-th sample (with different augmentations) in the batch,
ri denotes the (normalized) similarity between the i-th sample and all other samples, and JS denotes the
Jensen-Shannon divergence. The global relational loss is similarly defined such that under the local model, two
augmentations of the same data sample have similar relations to the global representations. Empirical results
show that FedX is versatile and can improve the performance of various contrastive learning methods in FL,
including FedSimCLR, FedMoCo, and FedU.

5 Federated Transfer Learning

In this section, we summarize efforts that combine FL with transfer learning (FTL). We categorize existing works
in FTL into homogeneous FTL and heterogeneous FTL, whose differences are introduced in Section 2.2.3.

5.1 Homogeneous FTL

In this section, we introduce research works on homogeneous FTL. Assuming that there are S source domains
and T target domains, each of which is held by one participant, the objective of homogeneous FTL is as follows,

min
θf ,θc

S∑
i=1

fcls(Li; θf , θc) +
S∑

i=1

T∑
j=1

λijfdom(Li,Uj ; θf), s.t. Mp(θf , θc) < εp, (18)

where Li,Uj denote the labeled/unlabeled dataset held by the i-th source/target domain, respectively, fcls, fdom
follow Eqn. 9, and λij are hyperparameters used to select helpful source domains. If source domain i and
target domain j are similar, we can assign a high λij , and vice versa. Depending on how many source or target
domains are involved, we can categorize existing works into two settings, single-source, and multi-source. In the
multi-source setting, selecting the most appropriate source domain poses an additional challenge compared to the
single-source setting. We introduce related works in both settings in the following sections.

5.1.1 Single-source Setting

The single-source setting in federated transfer learning commonly involves one server with labeled data, and
multiple clients with unlabeled data. As the clients themselves may have different data distributions, each client
creates a unique target domain, which requires a flexible adaptation method to tackle multiple targets.

To our knowledge, DualAdapt [56] is the first work to tackle the single-source, multi-target federated transfer
learning problem. DualAdapt extends from the maximum classifier discrepancy (MCD) method [61]. Specifically,
MCD involves a feature extractor θf and two classifiers θc1, θc2, trained with the following steps iteratively:

• First, θf , θc1, θc2 are trained to minimize the error on the source domain L1.

• Second, given a target domain sample Xt, we fix the feature extractor θf and maximize the discrepancy
between the classifiers, i.e. maxθc1,θc2 Lcd = d(gθf ,θc1(Xt), gθf ,θc2(Xt)). This step aims to find target
samples that are dissimilar to the source domain.

37

Method Homo-
geneous # Source # Target Label Data Data Efficiency

Isolation Privacy Heterogeneity Tradeoff

DualAdapt [56] ✓ 1 > 1
MCD & Pseudo-labeling& × GMM weighting ×

MixUp approximation

FRuDA [58] ✓ 1 > 1
DANN [33] & × Optimal collaborator selection Lazy update

Optimal collaborator selection

FADA [55] ✓ > 1 1
DANN [33] & × Gap statistics weighting ×

Representation sharing

FADE [57] ✓ > 1 1 DANN No representation sharing
CDAN ×

Squared adversarial loss
EfficientFDA [60] ✓ > 1 1 Max. mean discrepancy (MMD) Homomorphic encryption (HE) × Optimized HE operation

PrADA [86] ✓ 2 1 Grouped DANN Homomorphic encryption (HE) × ×
SFTL [85] × 1 1 Sample alignment loss HE & Secret sharing (SS) Sample alignment loss ×

SFHTL [84] × 1 >1 Label propagation Split learning [87] Unified feature space ×

Table 6: Summary of techniques for (unsupervised) federated transfer learning. × indicates that the proposed
method does not focus on this issue. ’Homogeneous’ indicates whether the work focuses on homogeneous FTL
(✓) or heterogeneous FTL (×). # Source, # Target denote the number of source and target domains considered in
the work, respectively.

• Third, the classifiers are fixed, and the feature extractor θf is trained to minimize Lcd to generate domain
invariant features.

The FL setting creates two challenges for MCD. First, Step 2 should be taken at clients, yet as no labels are
available, Step 2 may result in naive non-discriminative solutions. To address the problem, DualAdapt proposes
client self-training, where pseudo-labels generated by the server model are used to train the classifiers in addition
to Lcd. Second, to maintain a single feature extractor θf , Step 3 is done at the server, which has no access to target
samples Xt. DualAdapt proposes to use mixup [62] to approximate target samples Xt. To further mitigate the
impact of domain discrepancy, DualAdapt proposes to fit Gaussian mixture models (GMM) at each participant.
At each participant, samples from other participants are re-weighed via the fit GMMs, such that impacts of highly
dissimilar samples are mitigated.

FRuDA [58] proposes a system for single-source, multi-target federated transfer learning with DANN [33]
Similar to DualAdapt, it also considers the setting with multiple unlabeled target domains, for which it proposes
an optimal collaboration selection (OCS) method. The intuition of OCS is that, for a new target domain, instead
of always transferring from the only source domain, it is also possible to transfer from an existing target domain
that is closer to the new domain. To implement the intuition, OCS derives an upper bound for the transfer learning
error from one domain to another,

εCE,D2(h, h
′) ≤ θCE(εL1,D1(h, h

′) + 2θW (D1, D2)), (19)

where εM,D(h, l) denotes the error, measured by metric M , of the hypothesis h on data distribution D with the
label function l, θCE , θ are constants, h, h′ are source and target hypotheses, D1, D2 are source and target data
distributions, respectively, and W (D1, D2) denotes the Wasserstein distance between D1, D2. With Eqn. 19, the
optimal collaborator of each target domain can be selected by minimizing the right-hand side. To further improve
efficiency, a lazy update scheme, exchanging discriminator gradients every p iteration, is further proposed.

5.1.2 Multi-source Setting

A more challenging setting of federated transfer learning is the multi-source setting, where multiple source
domains with labeled data are available to transfer knowledge to a single unlabeled target domain. In this setting,
it is necessary to select a source domain with helpful knowledge without directly observing source data.

To our knowledge, FADA [55] is the first work to tackle the multi-source federated transfer learning problem.
FADA extends the adversarial domain adaptation [33] method, with a domain discriminator between each source
domain and the target domain. The domain discriminator aims to tell whether each feature representation

38

belongs to the source and the target domain, and the feature extractor is then trained to fool the domain
discriminator to learn domain invariant features. To train the domain discriminator, FADA directly exchanges
feature representations from both domains, which may lead to potential privacy threats. In addition, to select the
most relevant source domain to transfer from, FADA proposes a source domain weighting method based on gap
statistics. Gap statistics [63] measures how well the feature representations are clustered,

I =

k∑
r=1

1

2nr

∑
i,j∈Cr

∥zi − zj∥2, (20)

where fi denotes the feature representation of the i-th sample, C1 . . . Ck denote the index set of k clusters, and nr
is the number of samples in cluster r. A low I indicates that the feature representations can be clustered with low
intra-cluster variance, which usually indicates good features. FADA then computes how the gap statistics of the
target domain drop after learning with each source domain, i.e.

Igaini = Ir−1
i − Iri , (21)

where r denotes the communication round, and i denotes the source domain index. Finally, FADA applies weights
on source domains via with Softmax(Igain1 , Igain2 . . . ,).

FADE [57] improves over FADA by not sharing representations to learn the domain discriminator, thus better
protecting data privacy. Instead, the domain discriminator is kept local at each client, and is trained locally and
updated via parameter aggregation. FADE theoretically shows that the design leads to the same optimal values
as FADA, but empirically leads to negative impacts. The issues of the design are that the trained discriminator
may have low sensitivity (and thus takes longer to converge) and user mode collapse (and thus fail to represent
heterogeneous data). To address the drawbacks, FADA presents two tricks. To tackle the low sensitivity issue,
FADE squares the adversarial loss such that it is more reactive under large loss values. To tackle the user
mode collapse issue, FADE proposes to maximize the mutual information between users (related to classes) and
representations, and implements the idea with conditional adversarial domain adaptation (CDAN) [80].

EfficientFDA [60] is another improvement over FADA in that source and target domain feature representations
are encrypted with homomorphic encryption (HE) [64], and the maximum mean discrepancy (MMD) [32] is
computed over ciphertexts. As homomorphic encryption incurs large computation and communication costs,
EfficientFDA further proposes two ciphertext optimizations. First, ciphertexts in each batch of samples are
aggregated to reduce communication overhead. Second, for computing gradients with ciphertexts, the chain rule
is applied to replace ciphertext computations with plaintexts to improve computational efficiency. Experiments
show that EfficientFDA achieves privacy in federated transfer learning, while being 10-100x more efficient than
naive HE-based implementations.

While the above works tackle the problem with multiple source domains with the same feature space, PrADA
[86] tackles a different problem, involving two source domains with different feature spaces. PrADA considers
a partially labeled target domain A {XA

l , y
A
l } ∪ {XA

u }, a labeled source domain B {XB ∈ RNB×D, yB}, and
a feature source domain C {XA

C ∈ RNA×DC} ∪ {XB
C ∈ RNB×DC}. Domains A and B share the same feature

space with different distributions, while domain C aims to provide rich auxiliary features for samples in both A
and B. PrADA presents a fine-grained domain adaptation technique, in which features from domain C are first
manually grouped into g tightly relevant feature groups. Each feature group is then assigned a feature extractor
and a domain discriminator to perform fine-grained, group-level domain adaptation. In addition, to protect data
privacy, the whole training process is protected with homomorphic encryption. Experiments show that with the
grouped domain adaptation, PrADA achieves better transferability and interpretability.

5.2 Heterogeneous FTL

In this section, we introduce existing works about heterogeneous FTL. Compared to homogeneous FTL, the main
difference of heterogeneous FTL is that it commonly requires cross-domain links between data (e.g. different

39

features of the same user ID, the same features from different users, etc.) to bridge the heterogeneous feature
spaces. Formally, assuming a heterogeneous FTL setting with two parties, A and B, with data DA,DB , with
DAB = DA ∩ DB being the overlapping dataset (i.e. cross-domain links), the objective of heterogeneous FTL is

min
θA,θB

LA(DA; θA) + LB(DB; θB) + λLalgn(DAB; θA, θB), s.t. Mp(θA, θB) < εp, (22)

where LA, LB are loss functions on dataset DA,DB , respectively, and Lalgn is an alignment loss that aims to
align the overlapping dataset DAB between domains. However, in FL, sharing sample features or labels pose
potential privacy threats. How to leverage the cross-domain sample links to transfer knowledge while preserving
privacy thus becomes a key challenge to solve.

To our knowledge, SFTL [85] is the first work to tackle the heterogeneous FTL problem. It considers a
two-party setting and assumes that some user IDs IAB exist in both parties (with different features). SFTL
proposes an alignment loss to minimize the difference between features of the same users to achieve knowledge
transfer,

Lalgn =
∑

i∈IAB

d(gθA(X
A
i), gθB (X

B
i)), (23)

where IAB denotes the overlapping user ID set, gθA , gθB denote neural network models of party A and B, and
XA

i ,X
B
i denote the features of user i held by party A and B, respectively. In addition, SFTL addresses the data

privacy problem by designing two secure protocols for SFTL, one based on homomorphic encryption, and the
other based on secret sharing (SS).

The drawbacks of SFTL are that it is limited to the two-party setting, and both A and B have only partial
models and cannot perform independent inference. To address these drawbacks, SFHTL [84] proposes an
improved framework that supports multiple parties. The main difficulty in the multi-party heterogeneous FTL
is the lack of overlapping samples and labels. To address the lack of overlapping samples, SFHTL proposes a
feature reconstruction technique to complement the missing non-overlapping features. Specifically, all parties
are trained to project their features into a unified latent feature space. Then, each party learns a reconstruction
function that projects the unified features to raw features. With the reconstruction functions, each party can
expand the feature spaces of non-overlapping samples, thus enlarging the training dataset. In addition, SFHTL
proposes a pseudo-labeling method based on label propagation [20] to address the lack of labels. Specifically, a
nearest neighbor graph based on feature proximity in the unified feature space is constructed, and the labels are
propagated from labeled samples to unlabeled samples via the graph. Finally, to protect the privacy of labels,
SFHTL is trained with split learning, such that labels are not directly shared with other parties.

6 Datasets and Evaluations

Benchmarking datasets are important for the development of machine learning research. In this section, we
introduce commonly used datasets and benchmarks for the problem of FL without full labels in the existing
literature. A summary of datasets can be found in Table 7. We find out that for both federated semi-supervised
and unsupervised learning, existing works mainly partition (e.g. according to Dirichlet distributions) datasets
for centralized machine learning (e.g. CIFAR-10, CIFAR-100, SVHN) manually, and manually sample a subset
of labels. On the contrary, for federated transfer learning, datasets generally form natural partitions (e.g. city
in GTA5, product types in AmazonReview, etc.) based on different domains. We thus conclude that real-world
datasets representing realistic data heterogeneity and label isolation problems are still needed to credibly evaluate
federated semi-supervised and self-supervised methods.

40

Dataset FL Methods without Full Labels Application # Domains # Samples PartitionSemi Self Trans.

CIFAR-10 ✓[38, 39, 35, 40, 34] ✓[52, 44, 43, 51, 50] × CV 1 60000 Dirichlet & Uniform
CIFAR-100 ✓[38, 34] ✓[43, 44, 50] × CV 1 60000 Dirichlet & Uniform

SVHN ✓[40, 34] ✓[51] × CV 1 73257 Dirichlet & Uniform
Sent140 ✓[39] × × NLP 1 1600498 Natural (Twitter User)
Reuters ✓[42] × × NLP 1 11228 Dirichlet
IMDb ✓[42] × × NLP 1 50000 Dirichlet

Landmark-23K × ✓[52] × CV 1 1600000 Natural (Location)
Digit-Five × × ✓[55, 58] CV 5 107348 Natural (Style)

Office-Caltech10 × × ✓[55, 58, 60] CV 4 2533 Natural (Style)
DomainNet × × ✓[55, 58] CV 6 416401 Natural (Style)

AmazonReview × × ✓[55] NLP 4 8000 Natural (Product Category)
Mic2Mic × × ✓[58] Speech 4 65000 Natural (Device Type)

GTA5 × × ✓[56] CV 4 25000 Natural (Location)

Table 7: Commonly used datasets for evaluating FL methods without full labels. ✓and × indicate that the dataset
has or has not been used for evaluating an FL setting without full labels, respectively. # domains, # samples
denote the number of domains and the total number of samples in the dataset. Datasets with multiple domains are
more commonly used for unsupervised federated transfer learning.

7 Related Surveys

Federated learning has attracted the attention of researchers worldwide. Therefore, there have been many survey
papers that cover various aspects of FL. In this section, we summarize and analyze existing survey papers
compared to our work. Table 8 shows a summary of comparisons between related surveys and ours.

First, our work differs from general surveys on FL [11, 10, 88] in that they provide comprehensive reviews
on a wide range of FL aspects, including privacy preservation, communication reduction, straggler mitigation,
incentive mechanisms, etc. Among them, communication and privacy are also important issues in the problem
of FL without full labels and are covered in our survey. On the contrary, our survey is focused on a specific
aspect, namely how to deal with unlabeled data. Second, our work also differs from surveys on semi-supervised
learning [21], self-supervised learning [24], and transfer learning [22] in the centralized setting, in that while they
extensively summarize machine learning techniques for unlabeled data, they fail to cover FL-specific challenges,
such as label isolation, data privacy, etc. Finally, compared to surveys that focus on FL algorithms on non-i.i.d.
data [89, 90, 91], our work focuses on leveraging unlabeled data to assist FL, while these surveys focus on FL
with fully labeled data, but are not independent and identically distributed. Nonetheless, these surveys are related
to our work in that non-i.i.d. data is an important challenge in all FL settings, and we also summarize how existing
works address the challenge in the problem of FL without full labels.

The most related survey to our work is [59], which surveyed FL techniques to tackle data space, statistical,
and system heterogeneity. Our work is similar to [59] in two ways. On one hand, statistical heterogeneity is a
key challenge in FL, and we also summarize how existing works address the challenge in FL without full labels.
On the other hand, homogeneous and heterogeneous FTL (Section 5) are powerful tools to solve statistical and
data space heterogeneity, respectively, which are also covered in Sections 3 and 4 in [59]. Nonetheless, the main
focus of [59] lies in supervised FL with labeled data, which is different from our work which additionally covers
federated semi-supervised and self-supervised methods.

41

Survey Papers Similarities Differences

[10, 11, 88]

Similar to our survey, these papers
review existing solutions to protect

data privacy and reduce
communication/computation overhead.

These papers cover a wide range of
aspects in general FL, while

our survey focuses on a specific problem
of leveraging unlabeled data.

[22, 23, 24, 21, 92, 93]

Similar to our survey, these papers
review machine learning methods

for unlabeled data, including semi-supervised,
self-supervised, and transfer learning.

These papers do not cover
FL specific challenges, such as

labeled data isolation, data heterogeneity,
data privacy, etc.

[90, 89, 91]

Similar to our survey, these papers
review methods in FL that

address the problem of non-i.i.d. data
(i.e. data heterogeneity).

These papers primarily focus on
optimization algorithms for fully supervised FL,

while our work focuses specifically
on leveraging unlabeled data.

[59]

Similar to our survey, [59] covers
methods to tackle data heterogeneity.

Also, [59] reviews existing works
on homogeneous and heterogeneous FTL.

[59] primarily focuses on heterogeneity
in supervised FL, while our work focuses on

leveraging unlabeled data and covers
federated semi-supervised and self-supervised learning.

Table 8: Comparative analysis between our survey and related surveys.

Learning Paradigm Main Techniques Advantages Disadvantages

Federated Semi-
supervised Learning

Enhancing methods in centralized settings with
1. Label isolation: Pseudo-labeling,
domain alignment, etc.
2. Privacy: DP, HE, etc.
3. Data heterogeneity: Source domain selection,
divergence-aware update, etc.
4. Efficiency tradeoff: Sample selection,
communication reduction, HE optimization, etc.

Similar formulation to conventional FL.
Can directly perform supervised tasks.

Data heterogeneity inherently violates
i.i.d. assumption. Large-scale unlabeled data

creates an efficiency tradeoff.

Federated Self-
supervised Learning

Full utilization of client data.
Suitable for unsupervised tasks

like retrieval, clustering, etc.

Data heterogeneity inherently violates
i.i.d. assumption. Need labels for

supervised tasks.

Federated
Transfer Learning

Models data heterogeneity, which is
a key challenge in FL. Flexible

formulation (heterogeneous FTL).

Source domain selection requires
intricate design or manual effort.

Table 9: A summary of techniques, advantages, and disadvantages of learning paradigms reviewed in this paper.

42

8 Conclusion and Future Directions

8.1 Summary of the Survey

In this paper, we present a survey about the problem of federated learning without full labels. We introduce three
learning paradigms to solve the problem, federated semi-supervised learning, federated self-supervised learning,
and federated transfer learning. We further review existing works in these paradigms and discuss how they address
the crucial challenges, i.e. label isolation, privacy protection, data heterogeneity, and efficiency tradeoff. Table 9
shows a summary of the main techniques, advantages, and disadvantages of learning paradigms discussed in this
paper. We finally present a summary of the datasets and benchmarks used to evaluate FL methods without full
labels.

8.2 Future Directions

Compared to general FL with full supervision, the problem of FL without full labels is still under-explored. We
highlight the following future directions in the context of FL without full labels.

8.2.1 Trustworthiness

Trustworthiness is an important aspect in real-world machine learning systems like FL. Generally speaking, users
of machine learning systems would expect a system to be private, secure, robust, fair, and interpretable, which is
what trustworthiness mean in the context of FL.

Unlabeled data can play an important role in enhancing trustworthiness from multiple aspects.

• Robustness: A robust system requires that its output should be insensitive to small noises added to the
input. A machine learning system that is not robust can significantly compromise its security in real-world
applications. For example, studies [69] have shown that is it possible to tweak physical objects to fool an
object detection model. In applications like autonomous driving, this property becomes a security threat.

Many research works have studied how to enhance robustness with unlabeled data [68, 67]. For example,
Carmon et al. and Uesato et al. [67, 70] show that pseudo-labeling, one of the most common semi-
supervised learning techniques, can boost the robustness by 3-5% over state-of-the-art defense models.
Deng et al. [68] additionally find out that even out-of-distribution unlabeled data helps enhance robustness.
Therefore, how these techniques can be adapted in the FL setting with heterogeneous data is an interesting
future direction. Also, as common methods of learning robust models (i.e. adversarial training [81]) are
inefficient, it is promising to study whether FL methods without full labels can be an efficient substitute.

• Privacy: In real-world machine learning applications, labeling data itself is a compromise of data privacy,
as domain experts have to directly observe the data. Therefore, solving the FL problem without full labels
inherently leads to better data privacy. In addition, unlabeled data provides a better way of navigating
through the privacy-utility tradeoff in differential privacy (DP) [72]. For example, PATE [71] shows that
with an additional set of unlabeled data, it simultaneously achieves a higher model accuracy and a tighter
privacy bound compared to the state-of-the-art DPSGD method [73]. Therefore, how to select and leverage
unlabeled data to aggregate client knowledge privately while maintaining good model accuracy is also a
promising direction.

• Interpretability: Interpretability indicates that a machine learning system should be able to make sense
of its decision, which generally creates trust between users and system developers. There are many ways
to instill interpretability in machine learning, among which disentangled representation learning [74] is
a popular direction. Informally speaking, disentangled representation aims to map the inputs to latent
representations where high-level factors in the input data are organized in a structured manner in the

43

representations (e.g. brightness, human pose, facial expressions, etc.). Thus, disentangled representations
provide intuitive ways to manipulate and understand deep learning models and features.

Much progress has been made in unsupervised disentangled representation learning. For example, InfoGAN
[75] learns disentangled representations by maximizing the mutual information between the features and
the output. Beta-VAE [76] disentangles features by adding an independence regularization on the feature
groups. Therefore, it is promising to instill interpretability in FL via unlabeled data with disentangled
representations. In FL, the participants commonly hold data with varying data distributions. Therefore,
how to stably disentangle the heterogeneous feature distributions from multiple participants is a challenge
for interpretable FL without full labels.

• Fairness: As machine learning models are increasingly involved in decision-making in the daily lives
of people, the models should not discriminate one group of users against another (e.g. gender, race,
etc.). Informally speaking, the fairness of a machine learning model gθ over a sensitive attribute s can be
described as the difference between the model performances given different values of s,

∆s,θ = ∥m(gθ|s = 1)−m(gθ|s = 0)∥, (24)

where ∥ · ∥ is a distance, and m(gθ|s = 1) is a performance metric stating how well the model performs
when the sensitive attribute s = 1.

Whenm(gθ|s) does not involves labels (e.g. some groups have a higher probability to be predicted positive),
FADE [57] provides a good solution to ensure group fairness. However, when m(gθ|s = 1) requires
labeled data (e.g. classification accuracy is lower for under-represented groups), enforcing fairness with
unlabeled data remains an open problem, both for general machine learning and FL.

8.2.2 Generalization to Unseen Domains

All the introduced techniques in this paper require at least observing the test domain such that it can work well
on it. Even for federated transfer learning, some unlabeled samples in the target domain are still needed for
successful adaptation. However, in real-world applications, it is often required to adapt to completely unseen
domains. For example, FL models should try to adapt to new users that constantly join mobile applications,
who, at the time of joining, have no interaction data available. The problem setting triggers research in federated
domain generalization (FedDG). However, existing works in FedDG [77, 78] assume that all domains are fully
labeled, which, as stated in this survey, is not realistic. It is thus important to study the FedDG problem under
limited labeled data and large-scale unlabeled data.

8.2.3 Automatic FL without Full Labels

Automatic machine learning (AutoML) [82] is a class of methods that aim to achieve good model performances
without manual tuning (e.g. architecture, hyperparameters, etc.). In FL without full labels, as different participants
may hold heterogeneous labeled or unlabeled data, it may not be optimal for them to share the same model
architecture. Integrating AutoML to FL without full labels thus enables participants to find personalized
architectures to achieve the performance-efficiency tradeoff. However, participants with only unlabeled data
cannot independently evaluate the performance of the model, creating challenges to automatic FL without full
labels.

44

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-scale Hierarchical
Image Database. 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 248–255,
2009.

[2] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. ActivityNet: A Large-
scale Video Benchmark for Human Activity Understanding. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 961–970, 2015.

[3] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and
Reading Books. 2015 IEEE International Conference on Computer vision (ICCV), 19–27, 2015.

[4] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture Models.
International Conference on Learning Representations, 2017.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778, 2016.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. 2017 IEEE International
Conference on Computer Vision (ICCV), 2961–2969, 2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 4171–
4186, 2019.

[8] The European Parliament. General Data Protection Regulation.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504, 27 April 2016.

[9] State of California Department of Justice. California Consumer Privacy Act. https://oag.ca.gov/privacy/ccpa,
2018.

[10] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated Machine Learning: Concept and
Applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10.2 (2019): 1-19.

[11] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, and Others. Advances and Open
Problems in Federated Learning. Foundations and Trends® in Machine Learning, 14.1–2 (2021), 1–210.

[12] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient Learning of Deep Networks from Decentralized Data. International Conference
on Artificial Intelligence and Statistics (AISTATS), 1273–1282, 2017.

[13] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
Optimization in Heterogeneous Networks. Proceedings of Machine Learning and Systems (MLSys), 429–
450, 2020.

[14] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient Feder-
ated Learning via Guided Participant Selection. USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 19–35, 2021.

45

[15] Sai Praneeth Karimireddy, Satyen Kale, Mahryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda
Theertha Suresh. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. International
Conference on Machine Learning (ICML), 5132–5143, 2020.

[16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical Secure Aggregation for Privacy-preserving Machine
Learning. ACM SIGSAC Conference on Computer and Communications Security (CCS), 1175–1191,
2017.

[17] Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and Communication Efficient Federated
Learning for Heterogeneous Clients. International Conference on Learning Representations (ICLR), 2021.

[18] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. BatchCrypt: Efficient
Homomorphic Encryption for Cross-Silo Federated Learning. USENIX Annual Technical Conference
(ATC), 493–506, 2020.

[19] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fed-
PAQ: A Communication-efficient Federated Learning Method with Periodic Averaging and Quantization.
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021–2031, 2020.

[20] Xiaojin Jerry Zhu. Semi-supervised Learning Literature Survey. University of Wisconsin-Madison, 2005.

[21] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised Learning. IEEE Transactions
on Neural Networks, 20.3 (2009), 542–542.

[22] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge
Discovery and Data Engineering, 22.10 (2010), 1345–1359.

[23] Longlong Jing and Yingli Tian. Self-supervised Visual Feature Learning with Deep Neural Networks: A
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 43.11 (2020), 4037–
4058.

[24] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-supervised
Learning: Generative or Contrastive. IEEE Transactions on Knowledge and Data Engineering (TKDE),
35.1 (2021), 857–876.

[25] Antti Tarvainen and Harri Valpola. Mean Teachers are Better Role Models: Weight-averaged Consistency
Targets Improve Semi-supervised Deep Learning Results. Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[26] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual Adversarial Training: A
Regularization Method for Supervised and Semi-supervised Learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 41.8 (2018), 1979–1993.

[27] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicholas Papernot, Avital Oliver, and Colin A Raffel.
MixMatch: A Holistic Approach to Semi-supervised Learning. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[28] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised Visual Representation Learning by
Context Prediction. IEEE International Conference on Computer Vision (ICCV), 1422–1430, 2015.

[29] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised Representation Learning by Predicting
Image Rotations. International Conference on Learning Representations, 2018.

46

[30] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked Autoencoders
are Scalable Vision Learners. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16000–
16009, 2022.

[31] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How Transferable are Features in Deep Neural
Networks?. Advances in Neural Information Processing Systems (NIPS), 2014.

[32] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning Transferable Features with Deep
Adaptation Networks. International Conference on Machine Learning (ICML), 97–105, 2015.

[33] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial Training of Neural Networks. Journal of
Machine Learning Research (JMLR), 17.1 (2016), 2096–2130.

[34] Enmao Diao, Jie Ding, and Vahid Tarokh. SemiFL: Semi-supervised Federated Learning for Unlabeled
Clients with Alternate Training. Advances in Neural Information Processing Systems (NeurIPS), 2022.

[35] Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Federated Semi-supervised Learning
with Inter-client Consistency & Disjoint Learning. International Conference on Learning Representations
(ICLR), 2021.

[36] Jonas Geiping, Hartmut Bauermeister, Hannah Droöge, and Michael Moeller. Inverting Gradients-How
Easy Is It to Break Privacy in Federated Learning? Advances in Neural Information Processing Systems
(NeurIPS), 16937–16947, 2020.

[37] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated Learning
with Non-iid Data. arXiv preprint arXiv:1806.00582, 2018.

[38] Xiaoxiao Liang, Yiqun Lin, Huazhu Fu, Lei Zhu, and Xiaomeng Li. RSCFed: Random Sampling Consensus
Federated Semi-supervised Learning. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 10154–10163, 2022.

[39] Chenyou Fan, Junjie Hu, and Jianwei Huang. Private Semi-supervised Federated Learning. International
Joint Conference on Artificial Intelligence (IJCAI), 2009–2015, 2022.

[40] Lun Wang, Yang Xu, Hongli Xu, Jianchun Liu, Zhiyuan Wang, and Liusheng Huang. Enhancing Federated
Learning with In-cloud Unlabeled Data. IEEE International Conference on Data Engineering (ICDE),
136–149, 2022.

[41] Xinyang Lin, Hanting Chen, Yixing Xu, Chao Xu, Xiaolin Gui, Yiping Deng, and Yunhe Wang. Federated
Learning with Positive and Unlabeled Data. International Conference on Machine Learning (ICML),
13344–13355, 2022.

[42] Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto. Distillation-based
Semi-supervised Federated Learning for Communication-efficient Collaborative Training with Non-iid
Private Data. IEEE Transactions on Mobile Computing (TMC), 22.1 (2021), 191–205.

[43] Ekdeep Lubana, Chi Ian Tang, Fahim Kawsar, Robert Dick, and Akhil Mathur. Orchestra: Unsupervised
Federated Learning via Globally Consistent Clustering. International Conference on Machine Learning
(ICML), 14461–14484, 2022.

[44] Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang, and Shuai Yi. Collaborative Unsupervised Visual
Representation Learning from Decentralized Data. IEEE/CVF International Conference on Computer
Vision (ICCV), 4912–4921, 2021.

47

[45] Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton. A Simple Framework for Contrastive
Learning of Visual Representations. International Conference on Machine Learning (ICML), 1597–1607,
2020.

[46] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for Unsupervised
Visual Representation Learning. IEEE/CVF Conference on Computer Vision and Pattern Recognition,
9729–9738, 2020.

[47] Xinlei Chen and Kaiming He, Exploring Simple Siamese Representation Learning. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 15750–15758, 2021.

[48] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernado Avila Pires, and Others. Bootstrap Your Own Latent-A New Approach to Self-
supervised Learning. Advances in Neural Information Processing Systems, 21271–21284, 2020.

[49] Fengda Zhang, Kun Kuang, Zhaoyang You, Tao Shen, Jun Xiao, Yin Zhang, Chao Wu, Yueting Zhuang,
and Xiaolin Li. Federated Unsupervised Representation Learning. arXiv prepring arXiv:2010.08982, 2020.

[50] Weiming Zhuang, Yonggang Wen, and Shuai Zhang. Divergence-aware Federated Self-supervised Learning.
International Conference on Learning Representations (ICLR), 2022.

[51] Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Chuhan Wu, Xing Xie, and Meeyoung Cha.
FedX: Unsupervised Federated Learning with Cross Knowledge Distillation. European Conference on
Computer Vision (ECCV), 691–707, 2022.

[52] Chaoyang He, Zhengyu Yang, Erum Mushtaq, Sunwoo Lee, Mahdi Soltanolkotabi, and Salman Avestimehr.
SSFL: Tackling Label Deficiency in Federated Learning via Personalized Self-supervision. arXiv preprint
arXiv:2110.02470, 2021.

[53] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards Personalized Federated Learning. IEEE
Transactions on Neural Networks and Learning Systems, Early Access, 2022.

[54] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and Robust Federated Learning
through Personalization. International Conference on Machine Learning (ICML), 6357–6368, 2021.

[55] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated Adversarial Domain Adaptation.
International Conference on Learning Representations (ICLR), 2020.

[56] Chun-Han Yao, Boqing Gong, Hang Qi, Yin Cui, Yukun Zhu, and Ming-Hsuan Yang. Federated Multi-
Target Domain Adaptation. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
1424–1433, 2022.

[57] Junyuan Hong, Zhuangdi Zhu, Shuyang Yu, Zhangyang Wang, Hiroko H. Dodge, and Jiayu Zhou. Federated
Adversarial Debiasing for Fair and Transferable Representations. ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (KDD), 617–627, 2021.

[58] Shaoduo Gan, Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas D. Lane.
FRuDA: Framework for Distributed Adversarial Domain Adaptation. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 33.11 (2022), 3153–3164.

[59] Dashan Gao, Xin Yao, and Qiang Yang. A Survey on Heterogeneous Federated Transfer Learning. arXiv
preprint arXiv:2210.04505, 2022.

48

[60] Hua Kang, Zhiyang Li, and Qian Zhang. Communicational and Computational Efficient Federated Domain
Adaptation. IEEE Transactions on Parallel and Distributed Systems (TPDS), 33.12 (2022), 3678–3689.

[61] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum Classifier Discrepancy
for Unsupervised Domain Adaptation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 3723–3732, 2018.

[62] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. MixUp: Beyond Empirical Risk
Minimization. International Conference on Learning Representations (ICLR), 2017.

[63] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the Number of Clusters in a Data
Set via the Gap Statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63.2
(2001), 411–423.

[64] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, and Others. Privacy-preserving Deep Learning
via Additively Homomorphic Encryption. IEEE Transactions on Information Forensics and Security, 13.5
(2017), 1333–1345.

[65] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha Madhyastha, and Mosharaf
Chowdhury. FedScale: Benchmarking Model and System Performance of Federated Learning at Scale.
International Conference on Machine Learning, 11814–11827, 2022.

[66] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H. Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. LEAF: A Benchmark for Federated Settings arXiv preprint
arXiv:1812.01097, 2018.

[67] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, and Percy S. Liang. Unlabeled Data
Improves Adversarial Robustness. Advances in Neural Information Processing Systems (NeurIPS), 2019.

[68] Zhun Deng, Linjun Zhang, Amirata Ghorbani, and James Zou. Improving Adversarial Robustness via Un-
labeled Out-of-domain Data. International Conference on Artificial Intelligence and Statistics (AISTATS),
2845–2853, 2021.

[69] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial Examples in the Physical World.
Artificial Intelligence Safety and Security, 99–112, 2018.

[70] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth, and Pushmeet
Kohli. Are Labels Required for Improving Adversarial Robustness? Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[71] Nicholas Papernot, Martin Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data. Internation Conference on Learning
Representations (ICLR), 2017.

[72] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations and
Trends®in Theoretical Computer Science, 9.3–4 (2014), 211–407.

[73] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep Learning with Differential Privacy. ACM SIGSAC Conference on Computer and Communications
Security (CCS), 308–318, 2016.

[74] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse Image-to-
image Translation via Disentangled Representations. European Conference on Computer Vision (ECCV),
35–51, 2018.

49

[75] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. Advances
in Neural Information Processing Systems (NeurIPS), 2016.

[76] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. Beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework. International Conference on Learning Representations (ICLR), 2017.

[77] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. FedDG: Federated Domain Generaliza-
tion on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 1013–1023, 2021.

[78] A. Tuan Nguyen, Philip Torr, and Ser-Nam Lim. FedSR: A Simple and Effective Domain Generalization
Method for Federated Learning. Advances in Neural Information Processing Systems (NeurIPS), 2022.

[79] Dong-Hyun Lee. Pseudo-Label: The Simple and Efficient Semi-supervised Learning Method for Deep
Neural Networks. Workshop on Challenges in Representation Learning, ICML, 2013.

[80] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional Adversarial Domain
Adaptation. Advances in Neural Information Processing System (NIPS), 2018.

[81] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards Deep Learning Models Resistant to Adversarial Attacks. International Conference on Learning
Representations (ICLR), 2018.

[82] Xin He, Kaiyong Zhao, Xiaowen Chu. AutoML: A Survey of the State-of-the-art. Knowledge-Based
Systems, 212 (2021), 106622.

[83] Michael T. Rosenstein, Zvika Marx, Leslie Pack Kaelbling, and Thomas G. Dietterich. To Transfer or Not
to Transfer. NIPS 2005 Workshop on Transfer Learning, 2005.

[84] Siwei Feng, Boyang Li, Han Yu, Yang Liu, and Qiang Yang. Semi-Supervised Federated Heterogeneous
Transfer Learning. Knowledge-Based Systems, 252 (2022), 109384.

[85] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A Secure Federated Transfer
Learning Framework. IEEE Intelligent Systems, 35.4 (2020), 70–82.

[86] Yan Kang, Yuanqin He, Jiahuan Luo, Tao Fan, Yang Liu, and Qiang Yang. Privacy-Preserving Federated
Adversarial Domain Adaptation over Feature Groups for Interpretability. IEEE Transactions on Big Data,
2022.

[87] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split Learning for Health:
Distributed Deep Learning Without Sharing Raw Patient Data. arXiv preprint arXiv:1812.00564, 2018.

[88] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated Learning: Challenges, Methods,
and Future Directions. IEEE Signal Processing Magazine, 37.3 (2020), 50–60.

[89] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat, and
Others. A Field Guide to Federated Optimization. arXiv preprint arXiv:2107.06917, 2021.

[90] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated Learning on Non-iid Data Silos: An
Experimental Study. IEEE International Conference on Data Engineering (ICDE), 965–978, 2022.

50

[91] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated Learning on Non-iid Data: A Survey.
Neurocomputing, 465 (2021), 371–390.

[92] Jesper E. Van Engelen and Holger H. Hoos. A Survey on Semi-supervised Learning. Machine Learning,
109.2 (2020), 373–440.

[93] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109.1 (2020), 43–76.

51

FedCLIP: Fast Generalization and Personalization for CLIP in
Federated Learning

Wang Lu1 Xixu Hu2 Jindong Wang3* Xing Xie3
1 National Engineering Research Center, Beijing, China

2 City University of Hong Kong, Hong Kong
3 Microsoft Research Asia, Beijing, China

newlw230630@gmail.com, xixuhu2-c@my.cityu.edu.hk, {jindong.wang, xingx}@microsoft.com

Abstract

Federated learning (FL) has emerged as a new paradigm for privacy-preserving computation in recent
years. Unfortunately, FL faces two critical challenges that hinder its actual performance: data distribution
heterogeneity and high resource costs brought by large foundation models. Specifically, the non-IID data
in different clients make existing FL algorithms hard to converge while the high resource costs, including
computational and communication costs that increase the deployment difficulty in real-world scenarios.
In this paper, we propose an effective yet simple method, named FedCLIP, to achieve fast generalization
and personalization for CLIP in federated learning. Concretely, we design an attention-based adapter for
the large model, CLIP, and the rest operations merely depend on adapters. Lightweight adapters can make
the most use of pretrained model information and ensure models be adaptive for clients in specific tasks.
Simultaneously, small-scale operations can mitigate the computational burden and communication burden
caused by large models. Extensive experiments are conducted on three datasets with distribution shifts.
Qualitative and quantitative results demonstrate that FedCLIP significantly outperforms other baselines
(9% overall improvements on PACS) and effectively reduces computational and communication costs
(283x faster than FedAVG). Our code will be available at: https://github.com/microsoft/
PersonalizedFL.

1 Introduction

The success of machine learning, especially deep learning, is inseparable from a large amount of data. However,
data, as an important resource, usually scatter across different individuals or organizations. In recent years,
people pay more attention to data privacy and security and some organizations even enact relevant regulations
and laws, e.g. The EU general data protection regulation (GDPR) [49] and China’s cyber power [20]. Under
this circumstance, direct raw data communication can be impossible in reality, making traditional data-centric
machine learning paradigms unlikely to work. To cope with this challenge, federated learning (FL) [53] emerges
as a new distributed machine learning paradigm and has been widely adopted in various applications.

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Corresponding author: Jindong Wang: jindong.wang@microsoft.com.

52

https://github.com/microsoft/PersonalizedFL
https://github.com/microsoft/PersonalizedFL

(a) Data distribution shifts

Large M
odel

Lim
ited Resource

(b) Huge resource demands

Figure 1: Existing issues in federated learning. In Figure 1(a), circles denote participated clients while squares
denote unseen targets.

Federated learning makes it possible to perform model aggregation without directly accessing the raw user
data from different clients. One of the earliest works in FL is called FedAVG [33] which aggregates distributed
information using a simple and powerful averaging algorithm. FedAVG mainly contains four steps, including
training local models with local data, uploading local models to the server, aggregating models in the server, and
distributing the aggregated model to each individual or organization. These four steps are executed for multiple
rounds for better information aggregation. FedAVG can ensure that raw data does not leave the local client and
thus protect data privacy and security. Due to its simplicity and great performance, FedAVG quickly became
popular in many areas [24, 40, 3].

In this paper, we are specially interested in federated learning under the large foundation models era [4].
Foundation models, as suggested by the name, have become increasingly popular in different machine learning
tasks, such as Vision Transformer in computer vision [56] and the GPT series in natural language processing [37].
Since these models are extremely large, e.g., GPT-3 [5] has 175 billion parameters, our key question is: how to
perform effective and efficient federated learning using these large models?

Specifically, two critical research challenges arise in this situation: data distribution shifts and huge resource
demands. On the one hand, data distribution shifts widely exist in the real world, e.g. figures shown in Figure 1(a).
When meeting heterogeneous data, common federated learning methods can suffer from slow convergence and
low accuracy due to inconsistent optimization directions, local optima, or some other factors [12]. A qualified
FL model can cope with both various clients and unseen targets, i.e. personalization and generalization. On

53

the other hand, huge resource demands of increasingly popular large models lead to conflicts with realistically
constrained resources, as shown in Figure 1(b). In addition to high computational costs, communication cost is
also a critical metric in federated learning. For instance, the CLIP [36] model based on VIT-B/32 contains more
than 108 trainable parameters and most existing networks cannot afford to transmit it quickly. Achieving fast
generalization and personalization with minimal resource costs is an urgent issue to be addressed.

Some existing work tried to address the issues mentioned above [32, 55, 14]. FedAP [32] attempted to learn
the similarity among clients and then leveraged the learned similarity matrix to guide aggregation. FedAP could
achieve acceptable personalization results but it ignored generalization. Another paper [55] discussed two gaps,
including the out-of-sample gap and the participation gap. These two gaps correspond to goals of generalization
and personalization respectively. This paper performed extensive empirical studies to analyze these issues but it
did not offer a possible solution for large models. PromptFL [14] only updated the prompts instead of the whole
model to accelerate the whole process. However, clients still require large amounts of computation and PromptFL
is not designed for personalization and generalization.

In this paper, we propose FedCLIP to achieve fast generalization and personalization for CLIP in federated
learning. Since larger pretrained models, e.g. CLIP, have contained enough prior information, our goal is to find
where we should focus in specific tasks. The core part of FedCLIP is AttAI, an attention-based adapter for the
image encoder in CLIP. Instead of finetuning whole networks, AttAI directly utilizes fixed features extracted
by pretrained models and explores where FedCLIP should pay attention to for specific tasks. Simply training
AttAI can ensure FedCLIP preserving prior information as much as possible while it allows models adapted for
specific tasks. Through AttAI, FedCLIP does not rely on pretrained models anymore once obtaining diversified
and robust features and thus FedCLIP can save large amounts of computational costs and communication costs.
Therefore, FedCLIP is extensible and can be deployed to many applications.

Our contributions are as follows.

1. We propose FedCLIP, a fast generalization and personalization learning method for CLIP in federated
learning. It can achieve personalization for participating clients and its remarkable generalization ability
can attract new clients.

2. Extensive experiments on three public image benchmarks demonstrate that FedCLIP can have achieved
personalization and generalization performance at the same time (9% overall improvements on PACS).
More importantly, FedCLIP reduces the number of trainable parameters thus saving communication costs
and computational costs (283x faster than FedAVG).

3. FedCLIP is extensible and can be applied in many real applications, which means it can work well in many
circumstances. We can even embed it in some other architectures, e.g. BERT [46] and ViT [16]. Our code
will be available at: https://github.com/microsoft/PersonalizedFL.

The remainder of this paper is organized as follows. In Sec. 2, we introduce related work. And then we
elaborate on the proposed method in Sec. 4. Extensive experiments are reported and analyzed in Sec. 4. Finally,
we conclude the paper and provide possible future work in Sec. 5.

2 Related Work

2.1 Challenges in Machine Learning

Machine learning has achieved great success and gradually entered people’s daily lives [42, 34, 50]. It has been
applied to many fields, e.g. human activity recognition [29], face recognition [28], and healthcare [8]. Successful
machine learning applications, especially deep learning based applications, often require a large amount of data
and lots of computational resources. In most cases, a deluge of data and computing resources can lead to easy

54

https://github.com/microsoft/PersonalizedFL

success, such as ChatGPT [47]. However, data and computation also mean money and resources. In reality, it
is impossible to aggregate all data together in some situations. There seems to be a contradiction between the
massive resource requirements of traditional methods and the limited real environment.

Generalization is another challenging problem caused by data distribution shifts. Its goal is to learn a
generalized model with limited data and it expects that the learned model can work well on unseen targets with
unknown distributions. [51] gives a survey on domain generalization and first groups existing methods into three
categories, including data manipulation [31], representation learning [30], and learning strategy [19].

2.2 Federated Learning

Data is often scatted everywhere and cannot be aggregated together due to some factors, such as laws and
regulations [49] and the awakening of people’s awareness of data security and privacy protection. In such an
environment, federated learning came into being [53, 41]. According to [53], federated learning can be grouped
into three categories, including horizontal federated learning, vertical federated learning, and federated transfer
learning. Most deep learning based methods belong to horizontal federated learning and so is this paper. For a
more detailed introduction, please refer to the survey [27].

FedAVG is a traditional horizontal federated learning method [33]. Although it is simple, it was applied
in many applications. When meeting data distribution heterogeneity, FedAVG appeared powerless [43]. And
many researchers proposed various methods to solve the above problems. FedProx [25] added a proximal
regularized term to FedAVG and it allowed slight model gaps between clients and the server. In FedBN [26],
the authors thought that parameters in batch normalization layers can represent data distribution, and keeping
specific batch normalization layers for each client could make local models personalized. Another latest method,
FedAP [32], learned the similarity between clients based on the statistics of the batch normalization layers while
preserving the specificity of each client with different local batch normalization. The above methods all achieve
satisfactory results in their corresponding scenarios. However, most of them focused on personalization and
ignored generalization issues [7].

Generalization in federated learning is a novel problem. In recent two years, some papers tried to solve this
problem. [55] first discussed the generalization in federated learning and it proposed a framework to disentangle
performance gaps, including out-of-sample gaps and participation gaps. FED-DRO [7] proposed a novel federated
learning framework to explicitly decouple a model’s dual duties with two prediction tasks and it mainly focused
on label shifts. Some other work tried to adapt existing domain generalization methods to generalization in
federated learning [15, 45, 35, 6]. FL Games [15] utilized Nash equilibrium to learn causal features that were
invariant across clients which is similar to Invariant Risk Minimization (IRM) [2]. FedSAM [35] proposed a
general effective algorithm based on Sharpness Aware Minimization (SAM) local optimizer [11]. Although
these methods can bring generalization, they were not designed for large models and could not make full use of
knowledge brought by pretrained models.

2.3 CLIP and Large Models

From perceptron [13] to AlexNet [1] to ResNet [17] to Vision transformer [56] to CLIP [36], pretrained models
have become larger and larger. The importance of pretrained models has been increasing and pretrained models
contain a growing amount of knowledge. For specific applications, researchers usually choose suitable backbone
models and then adopt some techniques, e.g. finetune [44], to slightly adapt pretrained models. Since pretrained
models are trained via a large amount of data, features extracted from them are often generalized and insightful.
Few works pay attention to large models in federated learning and high demands of computational costs and
communication costs hinder the development of this field. In this paper, we focus on CLIP in federated learning.

CLIP [36] learned SOTA image representations from scratch on a dataset of 400 million(image, text) pairs
collected from the internet. The natural language was used to reference learned visual concepts. It has been

55

applied in many fields and demonstrated its superiority [38, 22]. However, in federated learning, CLIP is still
in its infancy. PromptFL [14] replaced the federated model training with the federated prompt training to
simultaneously achieve efficient global aggregation and local training by exploiting the power of foundation
models in a distributed way. However, it still requires certain computational costs and it is not designed for data
distribution heterogeneity problems. Moreover, it is hard to tune the hyperparameters for the prompt techniques
in Transformer.In this paper, we focus on fast personalization and generalization for CLIP.

3 Method

3.1 Problem Formulation

In a generalization and personalization federated learning setting,N different clients, denote as {C1, C2, · · · , CN},
participate in exchanging information and they have data, denoted as {D1,D2, · · · ,DN} with different distribu-
tions, which means P (Di) ̸= P (Dj). In this paper, we only focus on homogeneous data with the same input
space and output space, i.e. Xi = Xj ,Yi = Yj ,∀i ̸= j. Each dataset, Di = {(xi,j , yi,j)}ni

j=1, consists of three

parts, a training dataset Dtrain
i = {(xtrain

i,j , ytraini,j)}n
train
i

j=1 , a validation dataset Dvalid
i = {(xvalid

i,j , yvalidi,j)}n
valid
i

j=1

and a test dataset Dtest
i = {(xtest

i,j , y
test
i,j)}n

test
i

j=1 . Three sub-datasets in each client have no overlap and ni =

ntraini + nvalidi + ntesti ,Di = Dtrain
i ∪ Dvalid

i ∪ Dtest
i . Our goal is to aggregate all clients’ information with

preserving data privacy and security and learn a good model f for each client Di:

min
f

1

N

N∑
i=1

1

ntesti

ntest
i∑
j=1

ℓ(f(xtest
i,j), ytesti,j), (25)

where ℓ is a loss function. Moreover, for generalization, we assume that there exist M different clients, denote as
{F1, F2, · · · , FM}, with data {DF

1 = {(xi,j , yi,j)}m1
j=1,DF

2 = {(xi,j , yi,j)}m2
j=1, · · · ,DF

N = {(xi,j , yi,j)}mM
j=1}.

These M clients do not participate in training, and we hope f can also be able to perform well on these clients.

min
f

1

M

M∑
i=1

1

mi

mi∑
j=1

ℓ(f(xi,j), yi,j), (26)

3.2 Preliminaries

CLIP CLIP, Contrastive Language Image Pre-training, is an efficient and scalable method of learning [36]. To
compensate for the problems caused by the amount of data and model parameters, it trained a large model with
over 4× 108 pairs of data. With help of natural language supervision, CLIP can better understand concepts of
visual images and better learn the semantic connections behind images. Usually, CLIP models contain more
information and they might be more robust.

A simple CLIP model regularly contains two parts, an image encoder f I and a text encoder fT . In common
models, labels are frequently represented as numbers or one-hot vectors. For CLIP, to better utilize semantic
information, these labels are often transformed into sentences, e.g. ’A photo of dogs’. And then text feature
vectors, T are extracted from these sentences via fT . Concurrently, images are encoded into visual feature
vectors, I, via f I . Cosine similarities between T and I are used to training and predicting.

FedAVG In FedAVG [33], each client trains f with local clients’ data, and then parameters of updated models,
wi, are transmitted to the server. The server typically aggregates the parameters according to Eq. 27,

w∗ =

N∑
i=1

ni∑N
j=1 nj

wi (27)

56

Encoder

I

AdapterX

I*

Encoder

T

Cosine Similarity

Encoder

I

Adapter X

I*

Encoder

T

Cosine Similarity

Client Client

……

Adapter

Adapter
……

ServerAdapter
Aggreate

Distribute

Upload

Output

Tuned

Frozen

Agg.

Figure 2: The framework of FedCLIP.

After aggregation, w∗ is distributed. When |w| is larger, the server cannot afford communication costs.

3.3 FedCLIP

To reduce computational costs and communications and make the most use of existing pretrained model infor-
mation, we propose FedCLIP. Pretrained models already have abilities to extract robust and diversified features.
Tuning whole networks with limited data can compromise the original ability of pretrained models. What we
need to do is to try our best to preserve useful prior knowledge and let it be used to a suitable extent for our task.
Besides, tuning large networks is impractical in federated learning due to limited resources in reality. Therefore,
instead of operating on the whole model, FedCLIP concentrates on a simple attention-based adapter for the image
encoder, AttAI.

Figure 2 gives the framework of FedCLIP. As shown in Figure 2, our method mainly contains four steps.

1. For Client i, we utilize a pretrained CLIP model to extract features of data, denoted as Ti and Ii.

2. In each client, we utilize Dtrain
i to train the corresponding adapter, gi. And then we upload {gi}Ni=1 to the

server.

3. In the server, the parameters of all gi are weighted averaged and we can obtain g∗. The server then
distributes g∗ to each client and updates the parameters of each gi.

4. Repeat Step 2 and Step 3 until convergence or reaching maximum rounds.

In step 1, we utilize the pretrained CLIP model to extract features. We consider the pretrained model is so
powerful that we do not need to explore some other features. For (x, y), we can obtain corresponding features,

I = f I(x),T = fT (y) (28)

57

What we need to do next is to identify which parts of features are suitable for our specific tasks. Therefore,
we introduce an attention-based adapter, g, to locate where we should concentrate on. Particularly, we utilize
one linear layer, Tahn activation function, one linear layer, and Softmax activation function to construct g. The
Softmax function is used to ensure our final outputs ranging from 0 to 1. Once we obtain the attention vector
att = g(I), we utilize it to update the visual feature via a dot multiply operation,

I∗ = g(I) · I. (29)

Then, similar to [36], we normalize I∗ and T to compute the final logits.

I =
I∗

|I∗|
,T =

T

|I|
, (30)

Î = s× I×TT ,T̂ = ÎT . (31)

where s is a scale parameter.
Now, we can utilize the ground truth, a vector ỹ = [0, 1, 2, 3, · · · , B]

ℓIcls = ℓ(Î, ỹ),

ℓTcls = ℓ(T̂, ỹ),
(32)

where ℓ is CrossEntropy loss [57] while B is the number of images in a batch.
We only exchange parameters of adapters, wg, and therefore in the server, we replace Eq. 27 with Eq. 33.

wg,∗ =
N∑
i=1

ni∑N
j=1 nj

wg
i . (33)

Since wg contains substantially less amount of trainable parameters than w, FedCLIP saves computational
costs and communication costs.

3.4 Summary

For clarity, we give a detailed description of FedCLIP in Algorithm 1. In Line 1, directly obtaining generalized
and diversified features with fixed CLIP make it possible to utilize more prior knowledge of pretrained models.
In Line 2, with adapters, we can concentrate on valuable information and eliminate the influence of redundant
information in specific tasks. Rich prior knowledge and targeted attention make the ultimately extracted features
more robust, effective, and adaptable, resulting in our method having good generalization and personalization
capabilities. From Line 2 to Line 5, performing computation and transmission merely with adapters can save a lot
of resources and ensure the efficiency of our method.

3.5 Discussion

Adapter is a common technique in transfer learning [18]. It is at a small scale and has a plug-and-play implemen-
tation. In this paper, we mainly focus on adaptations to image encoders. Actually, we also can add adapters to
text encoders. We can even change the inputs of text encoders to incorporate more semantic information.

4 Experiments

In this section, we extensively evaluate FedCLIP in three common visual image classification benchmarks.

58

Algorithm 1 FedCLIP
Input: N clients’ datasets {Di}Ni=1, a pretained CLIP model consist of an image encoder, f I , and a text encoder,
fT

Output: An adapter g
1: For client i, computer the corresponding features Ii = f I(Xi), Ti = fT (Yi)
2: For client i, train the local adapter, gi, according to Eq.5 to Eq.9
3: Send the current adapter gi to the server
4: Aggregate adapters’ parameters via Eq. 33 and obtain wg∗

5: Transmit wg∗ to each client
6: Repeat steps 2 ∼ 5 until convergence

4.1 Datasets

PACS PACS [23] is a popular object classification benchmark. It is composed of four sub-datasets, including
photo, art-painting, cartoon, and sketch. There exist 9, 991 images in total and the dataset contains 7 classes,
including dog, elephant, giraffe, guitar, horse, house, and person. Large discrepancies in image styles widely exist
among different sub-datasets. In this paper, we view each sub-dataset as a client. We choose three sub-datasets as
participated clients while the rest served as the target client to evaluate generalization ability. For each participated
client, we split the corresponding sub-dataset into three parts, 60% for training, 20% for validation, and the rest
20% for testing. Validation parts of data are used for model selection.

VLCS VLCS [10] is another widely accepted public image classification benchmark. It also consists of four
sub-datasets (VOC2007, LabelMe, Caltech10, and SUN09). It contains 10, 729 instances with 5 classes. Feature
shifts exist generally among different sub-datasets. Similar to PACS, four sub-datasets correspond to four clients.
Three sub-datasets play the roles of participants while the rest one act as an upcoming client.

Office-Home Office-Home [48] is a larger image classification benchmark, which contains 65 classes. Office-
Home comprises four sub-datasets (Art, Clipart, Product, and Real_World) with about 15, 500 images. The
feature shifts from Office-Home mainly come from image styles and viewpoints, but they are much smaller than
PACS. We assess methods on Office-Home in a similar manner to PACS.

4.2 Implementation Details and Comparison Methods

For these three common image classification benchmarks, we use the CLIP pre-trained model with ViT-B/32 [9]
as the image encoder. For model training, we utilize cross-entropy loss and Adam optimizer. The learning rate is
tuned from 5× 10−5 to 5× 10−3. We set local update epochs as E = 1 where E means the number of training
epochs in one round while we set the total communication round number as R = 200. Since, at each time, we set
one sub-dataset as the target, i.e. upcoming client, there exist four tasks for each benchmark. We run three trials
to record the average results. To better illustrate the function and necessity of using larger pretrained models, we
also utilize a related small architecture, AlexNet [21], to perform some base federated learning methods.

We compare our method with two methods including a common federated learning method, FedAVG, and a
method designed for non-iid data, FedProx.

1. FedAVG [33]. The server aggregates all client models’ parameters. FedAVG will aggregate networks with
several layers for AlexNet while FedAVG will aggregate both image encoders and text encoders for CLIP.

2. FedProx [25]. It adds a proximal term to FedAVG and allows the existence of slight differences between
clients and the server.

59

Table 10: Generalization accuracy. Bold means the best.

Dataset PACS Office-Home
Backbone Method A C P S AVG Backbone Method A C P R AVG

AlexNet
FedAVG 31.54 43.69 44.55 36.29 39.02

AlexNet
FedAVG 15.70 17.00 31.56 28.99 23.31

FedProx 29.79 46.80 44.67 35.12 39.09 FedProx 16.48 17.66 29.83 27.98 22.99

CLIP
FedAVG 53.08 80.08 90.00 76.99 75.04

CLIP
FedAVG 65.60 57.64 71.64 75.42 67.57

FedProx 66.06 87.33 91.68 78.42 80.87 FedProx 65.60 57.64 71.64 75.42 67.57
Ours 96.34 97.91 99.76 85.59 94.90 Ours 78.00 63.69 87.52 87.79 79.25

Table 11: Personalization accuracy. Bold means the best.

Dataset PACS Office-Home

Target BackBone Method C P S AVG Target BackBone Method C P R AVG

A

AlexNet
FedAVG 72.86 61.08 78.22 70.72

A

AlexNet
FedAVG 50.74 63.47 38.81 51.01

FedProx 71.37 56.89 81.53 69.93 FedProx 51.78 66.74 40.07 52.86

CLIP
FedAVG 76.28 86.83 42.42 68.51

CLIP
FedAVG 64.38 79.14 78.76 74.09

FedProx 90.81 90.42 63.95 81.73 FedProx 64.38 79.14 78.76 74.09
Ours 97.65 99.40 86.75 94.60 Ours 68.61 87.37 88.06 81.35

C

A P S AVG

C

A P R AVG

AlexNet
FedAVG 46.45 66.17 75.67 62.76

AlexNet
FedAVG 23.51 61.78 41.56 42.28

FedProx 47.19 64.07 77.45 62.90 FedProx 24.54 64.04 40.18 42.92

CLIP
FedAVG 84.11 92.81 81.02 85.98

CLIP
FedAVG 73.81 80.38 80.48 78.23

FedProx 86.06 92.81 85.61 88.16 FedProx 73.81 80.38 80.48 78.23
Ours 96.33 99.10 86.88 94.10 Ours 78.97 87.60 87.60 84.72

P

A C S AVG

R

A C R AVG

AlexNet
FedAVG 37.65 75.00 81.53 64.73

AlexNet
FedAVG 23.30 49.94 40.87 38.04

FedProx 35.45 73.93 83.57 64.32 FedProx 21.03 48.91 39.84 36.59

CLIP
FedAVG 83.13 93.38 84.97 87.16

CLIP
FedAVG 70.93 68.73 77.73 72.46

FedProx 83.86 93.59 88.54 88.66 FedProx 70.93 68.73 77.73 72.46
Ours 97.56 97.65 86.75 93.99 Ours 78.35 68.38 87.94 78.23

S

A C P AVG

P

A C P AVG

AlexNet
FedAVG 53.30 68.80 66.17 62.76

AlexNet
FedAVG 22.27 49.14 58.51 43.31

FedProx 52.32 69.66 66.47 62.82 FedProx 20.21 50.06 58.29 42.85

CLIP
FedAVG 90.71 94.02 94.91 93.21

CLIP
FedAVG 69.07 66.21 77.79 71.02

FedProx 91.44 94.66 95.81 93.97 FedProx 69.07 66.21 77.79 71.02
Ours 97.31 97.65 99.40 98.12 Ours 78.56 68.50 87.37 78.14

4.3 Results

Generalization Ability We first evaluate the generalization ability of each method via accuracy on clients that
do not participate in training. Table 10 shows the generalization results for each task on PACS and Office-Home.
We have the following observations from these results. 1) Our method achieves the best generalization ability
on average with remarkable improvements (about 14% for PACS and about 12% for Office-Home). Moreover,
our method achieves the best generalization ability in each task, which demonstrates the excellent generalization
ability of our method. 2) Compared to methods with AlexNet as the backbone, methods with CLIP as the
backbone can obtain better performance. It demonstrates that large well-trained models can be able to bring better
generalization. 3) Compared to methods with CLIP as the backbone, our method has a further improvement,
which demonstrates that our method leverages prior knowledge better.

60

Table 12: Comprehensive average accuracy. Bold means the best

Datasets PACS Office-Home
Backbone AlexNet CLIP Backbone AlexNet CLIP
Methods FedAVG FedProx FedAVG FedProx Ours Methods FedAVG FedProx FedAVG FedProx Ours

A 60.93 59.89 64.65 77.81 95.04 A 42.18 43.77 71.97 71.97 80.51
C 57.99 58.88 84.50 87.95 95.06 C 35.96 36.60 73.08 73.08 79.46
P 59.68 59.41 87.87 89.42 95.43 P 36.42 34.90 72.26 72.26 80.55
S 56.14 55.89 89.16 90.08 94.99 R 39.73 39.13 72.12 72.12 80.55
AVG 58.69 58.52 81.55 86.32 95.13 AVG 38.57 38.60 72.36 72.36 80.27

Table 13: Comprehensive average accuracy on VLCS. Bold means the best

Backbone AlexNet CLIP
Methods FedAVG FedProx FedAVG FedProx Ours

C 62.13 61.37 72.48 68.57 83.68
L 63.01 63.77 75.04 76.50 82.62
S 63.15 63.59 68.13 75.50 82.82
V 62.32 62.04 69.55 70.09 83.30
AVG 62.65 62.69 71.30 72.67 83.11

Personalization Ability Then, we evaluate the personalization ability of each method via the accuracy on
test data of each participating client. Table 11 shows the personalization results for each task on PACS and
Office-Home. We also have some insightful observations. 1)Although all clients share the same adapter in
our method, our method still achieves the best average accuracy. Moreover, FedCLIP almost achieves the best
performance on each client for every task. 2) Compared to methods with AlexNet, corresponding methods
with CLIP perform better overall. For CLIP-based methods, results are quite sensitive to hyperparameters, e.g.
learning rate. And FedAVG has disappointing results on some specific clients. 3) Our method has the most use of
prior knowledge since it achieves the stablest results.

Comprehensive Ability Finally, taking into account the performance of both personalization and generalization,
we provide an overall performance in Table 12. Without a doubt, our method achieves the best overall performance
with significant improvements (about 9% for PACS and 8% for Office-Home). Compared to methods based on
AlexNet, corresponding methods based on CLIP perform better.

More results on VLCS Due to space limitations, we only report comprehensive ability on VLCS. As shown in
Table 13, our method still achieves the best performance with improvements of over 10%. Moreover, our method
achieves the best in each task. The results prove the superiority of our method again.

4.4 Analysis

Can more adapters bring better performance? In our method, we only add one adapter to the image encoder.
We can add another adapter to the text encoder. As shown in Figure 3(a), adding more adapters brings slight
improvements. However, the improvements are so small that we need to assess whether it is necessary to do so
since more adapters regularly mean more computational costs and more communication costs.

Can more trainable parameters bring better performance? If we train both adapters and the backbones,
the results could be worse. Since CLIP models have a wealth of good information, it is not suitable to change

61

PACS Office-Home95

96
Ours
Ours+T.A.

80

81

82

(a) Adapter influence.

PACS Office-Home75

100

70

75

80

85

90
Ours
Ours+Para.

(b) Training backbone.

PACS Office-Home95

97

80

82
Ours
Ours+Ft

(c) Finetune influence.

0

1E8

2E8

Pa
ra

m
 N

um
be

r

5.3E5

1.5E8Ours
FedAVG

(d) Parameter counts.

Figure 3: Analysis on PACS.

parameters with only a few data for a specific task. Changes in CLIP with few data can destroy the feature
extraction capabilities. As shown in Figure 3(b), we train more parameters but achieve worse performance.

Will finetuning bring better personalization? According to [54], finetuning can be a useful technique for
better personalization. We also add experiments with finetune. As shown in Figure 3(c), finetune has no advance
in personalization, which demonstrates that our method can be remarkable and robust when meeting non-iid.

Resource Cost Comparison The number of trainable parameters represents how many resources we need to
cost in federated learning. As shown in Figure 3(d), our method merely has 5.3E5 parameters while FedAVG
with CLIP requires 1.5E8 trainable parameters. Common methods via training whole networks have 283 times
as many parameters as ours, which illustrates that our method is fast and resource-efficient.

5 Conclusion and Future Work

In this article, we propose FedCLIP, a fast generalization and personalization learning method for CLIP in
federated learning. FedCLIP designs an attention based adapter to replace updating the whole model. Therefore,
FedCLIP makes the most use of prior knowledge and saves computational costs and communication costs.
Comprehensive experiments have demonstrated the superiority of FedCLIP. In the future, we plan to embed

62

FedCLIP into more architectures and design more flexible adapters for different tasks. We also plan to apply
FedCLIP for heterogeneous architectures and more realistic applications.

References

[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. Van Esesn, A. A. S. Awwal,
and V. K. Asari. The history began from alexnet: A comprehensive survey on deep learning approaches.
arXiv preprint arXiv:1803.01164, 2018.

[2] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. stat, 1050:27, 2020.

[3] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh. Federated learning review: Fundamentals,
enabling technologies, and future applications. Information processing & management, 59(6):103061, 2022.

[4] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[6] D. Caldarola, B. Caputo, and M. Ciccone. Improving generalization in federated learning by seeking flat
minima. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXIII, pages 654–672. Springer, 2022.

[7] H.-Y. Chen and W.-L. Chao. On bridging generic and personalized federated learning for image classification.
In International Conference on Learning Representations, 2022.

[8] Y. Chen, W. Lu, X. Qin, J. Wang, and X. Xie. Metafed: Federated learning among federations with cyclic
knowledge distillation for personalized healthcare. arXiv preprint arXiv:2206.08516, 2022.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

[10] C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple datasets and
web images for softening bias. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1657–1664, 2013.

[11] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning Representations, 2021.

[12] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu. Feddc: Federated learning with non-iid data via
local drift decoupling and correction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10112–10121, 2022.

[13] M. W. Gardner and S. Dorling. Artificial neural networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627–2636, 1998.

[14] T. Guo, S. Guo, J. Wang, and W. Xu. Promptfl: Let federated participants cooperatively learn prompts
instead of models–federated learning in age of foundation model. arXiv preprint arXiv:2208.11625, 2022.

63

[15] S. Gupta, K. Ahuja, M. Havaei, N. Chatterjee, and Y. Bengio. Fl games: A federated learning framework
for distribution shifts. In Workshop on Federated Learning: Recent Advances and New Challenges (in
Conjunction with NeurIPS 2022), 2022.

[16] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, et al. A survey on
vision transformer. IEEE transactions on pattern analysis and machine intelligence, 45(1):87–110, 2022.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[18] W. Hou, H. Zhu, Y. Wang, J. Wang, T. Qin, R. Xu, and T. Shinozaki. Exploiting adapters for cross-lingual
low-resource speech recognition. IEEE ACM Trans. Audio Speech Lang. Process., 30:317–329, 2022.

[19] Z. Huang, H. Wang, E. P. Xing, and D. Huang. Self-challenging improves cross-domain generaliza-
tion. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pages 124–140. Springer, 2020.

[20] N. Inkster. China’s cyber power. Routledge, 2018.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NeurIPS, volume 25, pages 1097–1105, 2012.

[22] S. Lee, H. Park, D. U. Kim, J. Kim, M. Boboev, and S. Baek. Image-free domain generalization via
clip for 3d hand pose estimation. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2934–2944, 2023.

[23] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper, broader and artier domain generalization. In
Proceedings of the IEEE international conference on computer vision, pages 5542–5550, 2017.

[24] L. Li, Y. Fan, M. Tse, and K.-Y. Lin. A review of applications in federated learning. Computers & Industrial
Engineering, 149:106854, 2020.

[25] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in heteroge-
neous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

[26] X. Li, M. JIANG, X. Zhang, M. Kamp, and Q. Dou. Fedbn: Federated learning on non-iid features via local
batch normalization. In International Conference on Learning Representations, 2021.

[27] J. Liu, J. Huang, Y. Zhou, X. Li, S. Ji, H. Xiong, and D. Dou. From distributed machine learning to federated
learning: A survey. Knowledge and Information Systems, 64(4):885–917, 2022.

[28] W. Liu, Y. Wen, B. Raj, R. Singh, and A. Weller. Sphereface revived: Unifying hyperspherical face
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):2458–2474, 2022.

[29] W. Lu, Y. Chen, J. Wang, and X. Qin. Cross-domain activity recognition via substructural optimal transport.
Neurocomputing, 454:65–75, 2021.

[30] W. Lu, J. Wang, and Y. Chen. Local and global alignments for generalizable sensor-based human activity
recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2022.

[31] W. Lu, J. Wang, Y. Chen, S. Pan, C. Hu, and X. Qin. Semantic-discriminative mixup for generalizable
sensor-based cross-domain activity recognition. IMWUT, 2022.

64

[32] W. Lu, J. Wang, Y. Chen, X. Qin, R. Xu, D. Dimitriadis, and T. Qin. Personalized federated learning with
adaptive batchnorm for healthcare. IEEE Transactions on Big Data, 2022.

[33] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282. PMLR,
2017.

[34] N. Paluru, A. Dayal, H. B. Jenssen, T. Sakinis, L. R. Cenkeramaddi, J. Prakash, and P. K. Yalavarthy.
Anam-net: Anamorphic depth embedding-based lightweight cnn for segmentation of anomalies in covid-19
chest ct images. IEEE Transactions on Neural Networks and Learning Systems, 32(3):932–946, 2021.

[35] Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu. Generalized federated learning via sharpness aware
minimization. In International Conference on Machine Learning, pages 18250–18280. PMLR, 2022.

[36] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[37] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by generative
pre-training. 2018.

[38] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever. Zero-shot
text-to-image generation. In International Conference on Machine Learning, pages 8821–8831. PMLR,
2021.

[39] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. A. Landman,
K. Maier-Hein, et al. The future of digital health with federated learning. NPJ digital medicine, 3(1):1–7,
2020.

[40] N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and E. Martínez-Cámara. Survey on
federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges.
Information Fusion, 90:148–173, 2023.

[41] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger. Braintorrent: A peer-to-peer environment
for decentralized federated learning. arXiv, 2019.

[42] I. H. Sarker. Machine learning: Algorithms, real-world applications and research directions. SN computer
science, 2(3):160, 2021.

[43] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. Robust and communication-efficient federated
learning from non-iid data. IEEE transactions on neural networks and learning systems, 31(9):3400–3413,
2019.

[44] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for text classification? In Chinese
Computational Linguistics: 18th China National Conference, CCL 2019, Kunming, China, October 18–20,
2019, Proceedings 18, pages 194–206. Springer, 2019.

[45] I. Tenison, S. A. Sreeramadas, V. Mugunthan, E. Oyallon, E. Belilovsky, and I. Rish. Gradient masked
averaging for federated learning. arXiv preprint arXiv:2201.11986, 2022.

[46] I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp pipeline. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 4593–4601, 2019.

65

[47] E. A. van Dis, J. Bollen, W. Zuidema, R. van Rooij, and C. L. Bockting. Chatgpt: five priorities for research.
Nature, 614(7947):224–226, 2023.

[48] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for unsupervised
domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5018–5027, 2017.

[49] P. Voigt and A. Von dem Bussche. The eu general data protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing, 10:3152676, 2017.

[50] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu. Deep learning for sensor-based activity recognition: A
survey. Pattern Recognition Letters, 119:3–11, 2019.

[51] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. Yu. Generalizing to unseen
domains: A survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering,
2022.

[52] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R. Sarveswara,
K. Händler, P. Pickkers, N. A. Aziz, et al. Swarm learning for decentralized and confidential clinical
machine learning. Nature, 594(7862):265–270, 2021.

[53] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

[54] T. Yu, E. Bagdasaryan, and V. Shmatikov. Salvaging federated learning by local adaptation. arXiv preprint
arXiv:2002.04758, 2020.

[55] H. Yuan, W. R. Morningstar, L. Ning, and K. Singhal. What do we mean by generalization in federated
learning? In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022.

[56] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng, and S. Yan. Tokens-to-token
vit: Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 558–567, 2021.

[57] Z. Zhang and M. Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy
labels. Advances in neural information processing systems, 31, 2018.

66

Reconciling Security and Communication Efficiency in Federated
Learning

Karthik Prasad* † Sayan Ghosh* † Graham Cormode†

Ilya Mironov† Ashkan Yousefpour† Pierre Stock†

†Meta AI

Abstract

Cross-device Federated Learning is an increasingly popular machine learning setting to train a model
by leveraging a large population of client devices with high privacy and security guarantees. However,
communication efficiency remains a major bottleneck when scaling federated learning to production
environments, particularly due to bandwidth constraints during uplink communication. In this paper,
we formalize and address the problem of compressing client-to-server model updates under the Secure
Aggregation primitive, a core component of Federated Learning pipelines that allows the server to
aggregate the client updates without accessing them individually. In particular, we adapt standard scalar
quantization and pruning methods to Secure Aggregation and propose Secure Indexing, a variant of
Secure Aggregation that supports quantization for extreme compression. We establish state-of-the-art
results on LEAF benchmarks in a secure Federated Learning setup with up to 40× compression in uplink
communication with no meaningful loss in utility compared to uncompressed baselines.

1 Introduction

Federated Learning (FL) is a distributed machine learning (ML) paradigm that trains a model across a number
of participating entities holding local data samples. In this work, we focus on cross-device FL that harnesses
a large number (up to hundreds of millions) of edge devices with disparate characteristics such as availability,
compute, memory, or connectivity resources [31]. Two challenges to the success of cross-device FL are privacy
and scalability. FL was originally motivated for improving privacy since data points remain on client devices.
However, as with other forms of ML, information about training data can be extracted via membership inference
or reconstruction attacks on a trained model [11, 12], or leaked through local updates [40, 19]. Consequently,
Secure Aggregation (SECAGG) protocols were introduced to prevent the server from directly observing individual
client updates, which is a major vector for information leakage [8, 27]. Additional mitigations such as Differential
Privacy (DP) may be required to offer further protection against attacks [17, 1], as discussed in Section 6.

Ensuring scalability to populations of heterogeneous clients is the second challenge for FL. Indeed, wall-clock
training times are highly correlated with increasing model and batch sizes [27], even with recent efforts such as
FedBuff [41], and communication overhead between the server and clients dominates model convergence time.

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Equal contribution. Correspondence to pstock@fb.com.

67

Consequently, compression techniques were used to reduce the communication bandwidth while maintaining
model accuracy. However, a fundamental problem has been largely overlooked in the literature: in their native
form, standard compression methods such as scalar quantization and pruning are not compatible with SECAGG.
This makes it challenging to ensure both security and communication efficiency.

We address this gap by adapting compression techniques to make them compatible with SECAGG. We
focus on compressing uplink updates from clients to the server for three reasons. First, uplink communication
is more sensitive and so is subject to a high security bar, whereas downlink updates broadcast by the server are
deemed public. Second, upload bandwidth is generally more restricted than download bandwidth. For instance,
according to a recent FCC report, the ratio of download to upload speeds for DSL and cable providers1 in the
US ranges between 3× to 20× [18]. Efficient uplink communication brings several benefits beyond speeding up
convergence: lowering communication cost reduces selection bias due to under-sampling clients with limited
connectivity, improving fairness and inclusiveness. It shrinks the carbon footprint of FL, the fraction of which
attributable to communication can reach 95% [45]. In summary, we present the following contributions:

• We highlight the fundamental mismatch between two critical components of the FL stack: SECAGG

protocols and uplink compression mechanisms.

• We formulate solutions by imposing a linearity constraint on the decompression operator, as illustrated in
Figure 1 in the case of TEE-based SECAGG.

• We adapt the popular scalar quantization and (random) pruning compression methods for compatibility
with the FL stack that require no changes to the SECAGG protocol.

• For extreme uplink compression without compromising security, we propose Secure Indexing (SECIND), a
variant of SECAGG that supports product quantization.

2 Related Work

Communication is identified as a primary efficiency bottleneck in FL, especially in the cross-device FL setting [31].
This has led to significant interest in reducing FL’s communication requirements. In what follows, we refer to a
local model update in distributed training as a gradient, including updates from multiple local training steps.
Efficient Distributed Optimization. There is a large body of literature on reducing the communication cost
for distributed training. [49] proposes quantizing gradients to one bit while carrying the quantization error
forward across mini-batches with error feedback. Similarly, [57] proposes layer-wise ternary gradients and [6]
suggests using only the sign of the gradients. Gradient sparsity is another related area that is extensively studied
[56, 2, 36, 46, 42]. For instance, [14] and [22] explore adapting the degree of sparsity to the distribution of local
client data. Another method, QSGD, tunes the quantization level to trade possibly higher variance gradients for
reduced communication bandwidth [3]. Researchers also studied structured and sketched model updates [32].
For example, [54] proposes expressing gradients as a linear combination of basis vectors common to all workers
and [55] propose to cluster the gradients and to implement error correction on the client side. Besides gradient
compression, other methods such as [52, 26] reduce the communication cost by partitioning the model such that
each client learns a portion of it, while [24] proposes training small models and periodically distilling them to a
larger central model. However, as detailed in Section 3 and below, most of the proposed methods are not readily
compatible with SECAGG and cannot be used in secure FL.
Bi-directional Compression. In addition to uplink gradient compression, a line of work also focuses on downlink
model compression. In a non-distributed setup, [61, 16] demonstrates that it is possible to meaningfully train
with low bit-width models and gradients. In FL, [30] proposes adapting the model size to the device to reduce

1FL is typically restricted to using unmetered connections, usually over Wi-Fi [27].

68

Figure 1: Summary of the proposed approach for one FL round, where we omit the round dependency and
Differential Privacy (DP) for clarity. Blue boxes denote standard steps and red boxes denote additional steps for
uplink compression. Client i computes local model update gi, compresses it with the compression operator q, and
encrypts it by adding a random mask mi in the compressed domain, hence reducing the uplink bandwidth (steps
2–4). The server recovers the aggregate in the compressed domain by leveraging any SECAGG protocol (steps
7–13, with a TEE-based SECAGG, see Section 3.1). Since the decompression operator d is linear, the server can
convert the aggregate back to the non-compressed domain, up to compression error (step 12). As with the model
weights θ, the compression operator q are also periodically updated and broadcast by the server (step 14). In
Section 4, we apply the proposed method to scalar quantization and pruning without impacting SECAGG and
propose Secure Indexing, a variant of SECAGG for extreme uplink compression with product quantization. See
Section 3.1 for details about SECAGG and Section 6 for a discussion on DP.

both communication and computation overhead. Since the local models are perturbed due to compression,
researchers propose adapting the optimization algorithm for better convergence [37, 48, 51, 60, 4, 43]. Finally,
pre-conditioning models during FL training can allow for quantized on-device inference, as demonstrated for
non-distributed training by [21, 33]. As stated in Section 1, we do not focus on downlink model compression since
uplink bandwidth is the main communication bottleneck and since SECAGG only involves uplink communication.
Aggregation in the Compressed Domain. In the distributed setting, [59] propose to leverage both gradient
compression and parallel aggregation by performing the ring all-reduce operation in the compressed domain and
decompressing the aggregate. To do so, the authors exploit temporal correlations of the gradients to design a
linear compression operator. Another method, PowerSGD [53], leverages a fast low-rank gradient compressor.
However, both aforementioned methods are not evaluated in the FL setup and do not mention SECAGG. Indeed,
the proposed methods focus on decentralized communication between the workers by leveraging the all-reduce
operation. Moreover, PowerSGD uses (stateful) error feedback on all distributed nodes, which is not readily
adaptable to cross-device FL when clients generally participate in a few (not necessarily consecutive) rounds.
Finally, [47] proposes FetchSGD, a compression method using sketching, which is compatible with SECAGG.

3 Background

In this section, we recall the SECAGG protocol first, then the compression methods that we wish to adapt to
SECAGG, namely, scalar quantization, pruning, and product quantization.

69

3.1 Secure Aggregation

SECAGG refers to a class of protocols that allow the server to aggregate client updates without accessing them
individually. While SECAGG alone does not entirely prevent client data leakage, it is a powerful and widely-used
component of current at-scale cross-device FL implementations [31]. Two main approaches exist in practice:
software-based protocols relying on Multiparty Computation (MPC) [8, 5, 58], and those that leverage hardware
implementations of Trusted Execution Environments (TEEs) [27].

SECAGG relies on additive masking, where clients protect their model updates gi by adding a uniform
random mask mi to it, guaranteeing that each client’s masked update is statistically indistinguishable from any
other value. At aggregation time, the protocol ensures that all the masks are canceled out. For instance, in an
MPC-based SECAGG, the pairwise masks cancel out within the aggregation itself, since for every pair of users i
and j, after they agree on a matched pair of input perturbations, the masks mi,j and mj,i are constructed so that
mi,j = −mj,i. Similarly and as illustrated in Fig. 1, in a TEE-based SECAGG, the server receives hi = gi +mi

from each client as well as the sum of the masks
∑

imi from the TEE and recovers the sum of the updates as∑
i gi =

∑
i hi −

∑
imi. We defer the discussion of DP noise addition by SECAGG protocols to Section 6.

Finite Group. SECAGG requires that the plaintexts—client model updates—be elements of a finite group, while
the inputs are real-valued vectors represented with floating-point types. This requirement is usually addressed by
converting client updates to fixed-point integers and operating in a finite domain (modulo 2p) where p is typically
set in prior literature to 32 bits. The choice of SECAGG bit-width p must balance communication costs with the
accuracy loss due to rounding and overflows.
Minimal Complexity. TEE-based protocols offer greater flexibility in how individual client updates can be
processed; however, the code executed inside TEE is part of the trusted computing base (TCB) for all clients.
In particular, it means that this code must be stable, auditable, defects- and side-channel-free, which severely
limits its complexity. Hence, in practice, we prefer compression techniques that are either oblivious to SECAGG’s
implementation or require minimal changes to the TCB.

3.2 Compression Methods

In this subsection, we consider a matrix W ∈ RCin×Cout representing the weights of a linear layer to discuss three
major compression methods with distinct compression/accuracy tradeoffs and identify the challenges SECAGG

faces to be readily amenable to these popular quantization algorithms.

3.2.1 Scalar Quantization

Uniform scalar quantization maps floating-point weight w to 2b evenly spaced bins, where b is the number of
bits. Given a floating-point scale s > 0 and an integer shift parameter z called the zero-point, we map any
floating-point parameter w to its nearest bin indexed by {0, . . . , 2b − 1}:

w 7→ clamp(round(w/s) + z, [0, 2b − 1]).
The tuple (s, z) is often referred to as the quantization parameters (qparams). With b = 8, we recover the

popular int8 quantization scheme [28], while setting b = 1 yields the extreme case of binarization [16]. The
quantization parameters s and z are usually calibrated after training a model with floating-point weights using
the minimum and maximum values of each layer. The compressed representation of weights W consists of the
qparams and the integer representation matrix Wq where each entry is stored in b bits. Decompressing any
integer entry wq of Wq back to floating point is performed by applying the (linear) operator wq 7→ s× (wq − z).
Challenge. The discrete domain of quantized values and the finite group required by SECAGG are not natively
compatible because of the overflows that may occur at aggregation time. For instance, consider the extreme case
of binary quantization, where each value is replaced by a bit. We can represent these bits in SECAGG with p = 1,
but the aggregation will inevitably result in overflows.

70

3.2.2 Pruning

Pruning is a class of methods that remove parts of a model such as connections or neurons according to some
pruning criterion, such as weight magnitude ([34, 23]; see [7] for a survey). [32] demonstrate client update
compression with random sparsity for federated learning. Motivated by previous work and the fact that random
masks do not leak information about the data on client devices, we will leverage random pruning of client
updates in the remainder of this paper. A standard method to store a sparse matrix is the coordinate list (COO)
format2, where only the non-zero entries are stored (in floating point or lower precision), along with their integer
coordinates in the matrix. This format is compact, but only for a large enough compression ratio, as we store
additional values for each non-zero entry. Decompression is performed by re-instantiating the uncompressed
matrix with both sparse and non-sparse entries.
Challenge. Pruning model updates on the client side is an effective compression approach as investigated in
previous work. However, the underlying assumption is that clients have different masks, either due to their
seeds or dependency on client update parameters (e.g., weight magnitudes). This is a challenge for SECAGG

as aggregation assumes a dense compressed tensor, which is not possible to construct when the coordinates of
non-zero entries are not the same for all clients.

3.2.3 Product Quantization

Product quantization (PQ) is a compression technique developed for nearest-neighbor search [29] that can be
applied for model compression [50]. Here, we show how we can re-formulate PQ to represent model updates. We
focus on linear layers and refer the reader to [50] for adaptation to convolutions. Let the block size be d (say,
8), the number of codewords be k (say, 256) and assume that the number of input channels, Cin, is a multiple
of d. To compress W with PQ, we evenly split its columns into subvectors or blocks of size d× 1 and learn a
codebook via k-means to select the k codewords used to represent the Cin × Cout/d blocks of W . PQ with block
size d = 1 amounts to non-uniform scalar quantization with log2 k bits per weight.

The PQ-compressed matrix W is represented with the tuple (C,A), where C is the codebook of size k × d
and A gives the assignments of size Cin × Cout/d. Assignments are integers in [0, k − 1] and denote which
codebook a subvector was assigned to. To decompress the matrix (up to reshaping), we index the codebook with
the assignments, written in PyTorch-like notation as Ŵ = C[A].
Challenge. There are several obstacles to making PQ compatible with SECAGG. First, each client may have a
different codebook, and direct access to these codebooks is needed to decode each client’s message. Even if all
clients share a (public) codebook, the operation to take assignments to produce an (aggregated) update is not
linear, and so cannot be directly wrapped inside SECAGG.

4 Method

In this section, we propose solutions to reconcile security (SECAGG) and communication efficiency. Our approach
is to modify compression techniques to share some hyperparameters globally across all clients so that aggregation
can be done by uniformly combining each client’s response, while still ensuring that there is scope to achieve
accurate compressed representations. As detailed below, each of the proposed methods offers the same level of
security as standard SECAGG without compression.

4.1 Secure Aggregation and Compression

We propose to compress the uplink model updates through a compression operator q, whose parameters are
round-dependent but the same for all clients participating in the same round. Then, we will add a random mask

2See the torch.sparse documentation, https://pytorch.org/docs/stable/sparse.html.

71

https://pytorch.org/docs/stable/sparse.html

mi to each quantized client update q(gi) in the compressed domain, thus effectively reducing uplink bandwidth
while ensuring that hi = q(gi) +mi is statistically indistinguishable from any other representable value in the
finite group (see Section 3.1). In this setting, SECAGG allows the server to recover the aggregate of the client
model updates in the compressed domain:

∑
i q(gi). If the decompression operator d is linear, the server is able

to recover the aggregate in the non-compressed domain, up to quantization error, as illustrated in Figure 1:

d (
∑

i hi −
∑

imi) = d (
∑

i q(gi)) =
∑

i d(q(gi)) ≈
∑

i gi.

The server periodically updates the quantization and decompression operator parameters, either from the aggre-
gated model update, which is deemed public, or by emulating a client update on some similarly distributed public
data. Once these parameters are updated, the server broadcasts them to the clients for the next round. This adds
overhead to the downlink communication payload, however, this is negligible compared to the downlink model
size to transmit. For instance, for scalar quantization, q is entirely characterized by one fp32 scale and one
int32 zero-point per layer, the latter of which is unnecessary in the case of a symmetric quantization scheme.
Finally, this approach is compatible with both synchronous FL methods such as FedAvg [39] and asynchronous
methods such as FedBuff [41] as long as SECAGG maintains the mapping between the successive versions of
quantization parameters and the corresponding client updates.

4.2 Application

Next, we show how we adapt scalar quantization and random pruning with no changes required to SECAGG. We
illustrate our point with TEE-based SECAGG while these adapted uplink compression mechanisms are agnostic
of the SECAGG mechanism. Finally, we show how to obtain extreme uplink compression by proposing a variant
of SECAGG, which we call SECIND. This variant supports product quantization and is provably secure.

4.2.1 Scalar Quantization and Secure Aggregation

As detailed in Section 3.2.1, a model update matrix gi compressed with scalar quantization is given by an integer
representation in the range [0, 2b− 1] and by the quantization parameters scale (s) and zero-point (z). A sufficient
condition for the decompression operator to be linear is to broadcast common quantization parameters per layer
for each client. Denote q(gi) as the integer representation of quantized client model update gi corresponding to a
particular layer for client 1 ≤ i ≤ N . Set the scale of the decompression operator to s and its zero-point to z/N .
Then, the server is able to decompress as follows (where the decompression operator is defined in Section 3.2.1):

d (
∑

i q(gi)) = s
∑

i q(gi)−
z
N =

∑
i (s(q(gi))− z) ≈

∑
i gi

Recall that all operations are performed in a finite group. Therefore, to avoid overflows at aggregation time, we
quantize with a bit-width b but take SECAGG bit-width p > b, thus creating a margin for potential overflows (see
Section 5.3). This approach is related to the fixed-point aggregation described in [8, 27], but we calibrate the
quantization parameters and perform the calibration per layer and periodically, unlike the related approaches.
Privacy, Security and Bandwidth. Scales and zero points are determined from public data on the server.
Downlink overhead is negligible: the server broadcasts the per-layer quantization parameters. The upload
bandwidth is p bits per weight, where p is the SECAGG finite group size (Section 3.1). Since the masks mi

are chosen in the integer range [0, 2p − 1], any masked integer representation taken modulo 2p is statistically
indistinguishable from any other vector.

4.2.2 Pruning and Secure Aggregation

To enable linear decompression with random pruning, all clients will share a common pruning mask for each
round. This can be communicated compactly before each round as a seed for a pseudo-random function. This

72

Algorithm 2 Secure Indexing (SECIND)

1: procedure SECUREINDEXING(C) ▷ This happens inside the TEE
2: Receive common codebook C from server ▷ C is periodically updated by the server
3: Initialize histograms Hm,n to 0 ▷ Each histogram for block (m,n) has size k
4: for each client i do
5: Receive and decrypt assignment matrix Ai

6: for each block index (m,n) do
7: r ← Ai

m,n ▷ Recover assignment of client i for block (m,m)
8: Hm,n[r]← Hm,n[r] + 1 ▷ Update global count for codeword index r

9: Send back histograms Hm,n to the server

pruning mask seed is different from the SECAGG mask seed introduced in Section 3.1 and has a distinct role.
Each client uses the pruning seed to reconstruct a pruning mask, prunes their model update gi, and only needs
to encrypt and transmit the unpruned parameters. The trade-off here is that some parameters are completely
unobserved in a given round, as opposed to traditional pruning. SECAGG operates as usual and the server receives
the sum of the tensor of unpruned parameters computed by participating clients in the round, which it can expand
using the mask seed. We denote the pruning operator as ϕ applied to the original model update gi, and the
decompression operator as d applied to a compressed tensor ϕ(gi). Decompression is an expansion operation
equivalent to multiplication with a sparse permutation matrix Pi whose entries are dependent on the i’th client’s
mask seed. Crucially, when all clients share the same mask seed within each round, we have Pi = P for all i and
linearity of decompression is maintained:

d (
∑

i ϕ(gi)) = P (
∑

i ϕ(gi)) =
∑

i Piϕ(gi) =
∑

i d(ϕ(gi)) ≈
∑

i gi.

Privacy, Security and Bandwidth. Since the mask is random, no information leaks from the pruning mask. The
downlink overhead (the server broadcasts one integer mask seed) is negligible. The upload bandwidth is simply
the size of the sparse client model updates. Finally, there is no loss in security since each client uses standard
SECAGG mechanism on the non-pruned entries.

4.2.3 Product Quantization and Secure Indexing

We next describe the Secure Indexing (SECIND) primitive, and discuss how to instantiate it. Recall that with
PQ, each layer has its own codebook C as explained in Section 4. Let us fix one particular layer compressed
with codebook C, containing k codewords. We assume that C is common to all clients participating in the
round. Consider the assignment matrix of a given layer (Ai)m,n for client i. From these, we seek to build the
assignment histograms Hm,n ∈ Rk that satisfy Hm,n[r] =

∑
i 1

(
Ai

m,n = r
)
, where the indicator function 1

satisfies 1
(
Ai

m,n = r
)
= 1 if Ai

m,n = r and 0 otherwise. A Secure Indexing primitive will produce Hm,n while
ensuring that no other information about client assignments or partial aggregations is revealed. The server receives
assignment histograms from SECIND and is able to recover the aggregated update for each block indexed by
(m,n) as

∑
rHm,n[r] · C[r]. We describe how SECIND can be implemented with a TEE in Algorithm 2. Each

client encrypts the assignment matrix, for instance with additive masking as described in Section 3.1, and sends it
to the TEE via the server. Hence, the server does not have access to the plaintexts client-specific assignments.
TEE decrypts each assignment matrix and for each block indexed by (m,n) produces the assignment histogram.
Compared to SECAGG, where the TEE receives an encrypted seed per client (a few bytes per client) and sends
back the sum of the masks mi (same size as the considered model), SECIND receives the (masked) assignment
matrices and sends back histograms for each round. SECIND can be implemented in other models, offering
different trust paradigms, such as the multi-party computation setting (using two or more servers to operate on

73

Figure 2: We adapt scalar quantization (SQ) and pruning to the SECAGG protocol to enable efficient and secure
uplink communications. We also present results for product quantization (PQ) under the proposed novel SECIND

protocol. The x axis is log-scale and represents the uplink message size. Baseline refers to SECAGG FL run
without any uplink compression, shown as a horizontal line for easier comparison. Model size is indicated in plot
titles. Uncompressed client updates are as large as the models when p = 32 (see Sec 3.1, shown as stars).

shares of the input). Encoding inputs as shares of one-hot vectors would lose the advantages of compression.
Instead, each client can send evaluations of distributed point functions to encode each assignment [9]. These are
represented compactly, but may require longer codewords to overcome the overheads.
Privacy, Security and Bandwidth. Codebooks are computed from public data while individual assignments are
never revealed to the server. The downlink overhead of sending the codebooks is negligible as demonstrated in
Section 5. The upload bandwidth in the TEE implementation is the assignment size, represented in k bits (the
number of codewords). For instance, with a block size d = 8 and k = 32 codewords, assignment storage costs
are 5 bits per 8 weights, which converts to 0.625 bits per weight. The tradeoff compared to non-secure PQ is the
restriction to a global codebook for all clients (instead of one tailored to each client), and the need to instantiate
SECIND instead of SECAGG. Since the assignments are encrypted before being sent to the TEE, there is no loss
in security. Here, any encryption mechanism (not necessarily relying on additive masking) would work.

5 Experiments

We evaluate the performance of the proposed approaches when adapted to SECAGG protocols. We study the
relationship between uplink compression and model accuracy for the LEAF benchmark tasks. For scalar and
product quantization we also analyze the impact of refresh rate for compression parameters on model performance.

5.1 Experimental Setup

We follow the setup of [41] and use the FLSim library for our experiments . All experiments are run on a single
V100 GPU 16 GB (except for Sent140 where we use one V100 32 GB) and typically take a few hours to run.
Tasks. We run experiments on three datasets from the LEAF benchmark [10]: CelebA [38], Sent140 [20] and
FEMNIST [35]. For CelebA, we train the same convolutional classifier as [41] with BatchNorm layers replaced
by GroupNorm layers and 9,343 clients. For Sent140, we train an LSTM classifier for binary sentiment analysis
with 59, 400 clients. For FEMNIST, we train a GroupNorm version of the ResNet18 [25] for digit classification
with 3,550 clients. We do not compress biases and norm layers due to their small overhead.
Baselines. We focus here on the (synchronous) FedAvg approach although, as explained in Section 4, the
proposed compression methods can be readily adapted to asynchronous FL aggregation protocols. As in prior
work, we keep the number of clients per round to at most 100, a small fraction of the total considered population

74

Figure 3: Impact of the refresh rate of the compression operator by the server on the CelebA dataset. Left: scalar
quantization (quantization parameters), fixing the quantization bit-width b = 8 (p denotes the SECAGG bit-width).
Right: for product quantization (codebooks), where k denotes the number of codewords and d the block size.

size [15, 13]. We report the average and standard deviation of accuracy over three independent runs for all tasks
at different uplink byte sizes corresponding to various configurations of the compression operator.
Implementation Details. We refer the reader to [44] for full experiment details. The downlink overhead of
sending the per-layer codebooks for product quantization is negligible. The convergence time in terms of rounds
is similar for PQ runs and the non-compressed baseline/ Note that outside a simulated environment, the wall-clock
time convergence for PQ runs would be lower than the baseline since uplink communication would be more
efficient, hence faster.

5.2 Results and Comparison with Prior Work

Results for efficient and secure uplink communications are displayed in Figure 2. We observe that PQ yields a
consistently better trade-off curve between model update size and accuracy. For instance, on CelebA, PQ achieves
×30 compression with respect to the non-compressed baseline at iso-accuracy. The iso-accuracy compression rate
is ×32 on Sent140 and ×40 on FEMNIST (see [44] for detailed tables). Scalar quantization accuracy degrades
significantly for larger compression rates due to the overflows at aggregation. Pruning gives intermediate tradeoffs
between scalar quantization and product quantization.

The line of work that develops FL compression techniques is exemplified by FetchSGD [47] as detailed in
Section 2, where the authors do not address SECAGG. Their results are not directly comparable to ours due to
incomparable experimental setups (e.g., datasets and architectures). However, Figure 6 [44] mentions upload
compression rates at iso-accuracy that are weaker than those obtained here with product quantization.

5.3 Ablation Studies

We investigate the influence of the frequency of updates of the compression operator q for scalar quantization and
pruning, and study the influence of the SECAGG bit-width p on the number of overflows for scalar quantization.
Update frequency of the compression operators. In Figure 3, we show that for scalar quantization, the update
periodicity only plays a role with low SECAGG bit-width values p compared to the quantization bit-width b.
For product quantization, the update periodicity plays an important role for aggressive compression setups
corresponding to large block sizes d or to a smaller number of codewords k. For pruning, we measure the impact
of masks that are refreshed periodically. We observed that if we refresh the compression operator more frequently,
staleness is reduced, leading to accuracy improvements.
Overflows for scalar quantization. As discussed in Section 4.2.1, we choose the SECAGG bit-width p to be
greater than quantization bit-width b in order to avoid aggregation overflows. While it suffices to set p to be
⌈log2 nc⌉ more than b, where nc is the number of clients participating in the round, reducing p is desirable to

75

reduce uplink size. We studied the impact of p on the percentage of parameters that suffer overflows, and observed
that there is a benefit to having some non-zero overflow margin size, but no clear correlation between margin size
and accuracy.

6 Concluding Remarks

In this paper, we reconcile efficiency and security for uplink communication in Federated Learning. We propose
to adapt existing compression mechanisms such as scalar quantization and pruning to the secure aggregation
protocol by imposing a linearity constraint on the decompression operator. Our experiments demonstrate that we
can adapt both quantization and pruning mechanisms to obtain a high degree of uplink compression with minimal
degradation in performance and higher security guarantees. For achieving the highest rates of compression,
we introduce SECIND, a variant of SECAGG well-suited for TEE-based implementation that supports product
quantization while maintaining a high security bar. As mentioned in Section 1, we may want both SECAGG and
Differential Privacy [1] to realize the full promise of FL as a privacy-enhancing technology. While our primary
focus is on enabling efficient and secure uplink communication, we emphasize that the proposed approaches are
compatible with user-level DP. For instance, at the cost of increasing the complexity of the trusted computing
base, DP noise can be added natively by the TEE with our modified random pruning or scalar quantization
approaches. For PQ and SECIND, we can have the TEE to add noise in the assignment space (i.e., outputting
a noisy histogram), or to map the histogram to the codeword space and add noise there. Each option offers a
different tradeoff between privacy, trust, and accuracy; we leave detailed evaluation to future work.

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with

differential privacy. In ACM CCS, 2016.
[2] A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. In EMNLP, 2017.
[3] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient SGD via gradient

quantization and encoding. In NeurIPS, 2017.
[4] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor. Federated learning with quantized global model updates.

CoRR, 2006.10672, 2020.
[5] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure single-server aggregation with (poly)

logarithmic overhead. In ACM CCS, 2020.
[6] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed optimisation for non-

convex problems. In ICML, PMLR, 2018.
[7] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural network pruning? In MLSys,

2020.
[8] K. A. Bonawitz, F. Salehi, J. Konečný, B. McMahan, and M. Gruteser. Federated learning with autotuned

communication-efficient secure aggregation. In ACSCC. IEEE, 2019.
[9] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions. In ACM CCS, 2016.

[10] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar. LEAF: A benchmark for federated
settings. CoRR, abs/1812.01097, 2018.

[11] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramèr. Membership inference attacks from first principles.
CoRR, abs/2112.03570, 2021.

[12] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown, D. Song,
Ú. Erlingsson, A. Oprea, and C. Raffel. Extracting training data from large language models. In USENIX Security
Symposium, 2021.

[13] Z. Charles, Z. Garrett, Z. Huo, S. Shmulyian, and V. Smith. On large-cohort training for federated learning. CoRR,
2106.07820, 2021.

76

[14] C. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan. AdaComp: Adaptive residual gradient
compression for data-parallel distributed training. In AAAI, 2018.

[15] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays. Federated learning of out-of-vocabulary words. CoRR, 1903.10635,
2019.

[16] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural networks with binary weights
during propagations. CoRR, 1511.00363, 2015.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In
Proceedings of the Third Conference on Theory of Cryptography, 2006.

[18] FCC. The eleventh Measuring Broadband America fixed broadband report, 2021.
[19] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients—How easy is it to break privacy in

federated learning? In NeurIPS, 2020.
[20] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. CS224N Project Report,

Stanford, 2009.
[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical precision. In

ICML, 2015.
[22] P. Han, S. Wang, and K. K. Leung. Adaptive gradient sparsification for efficient federated learning: An online learning

approach. In ICDCS, 2020.
[23] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal Brain Surgeon. In NeurIPS, 1992.
[24] C. He, M. Annavaram, and S. Avestimehr. Group knowledge transfer: Federated learning of large CNNs at the edge.

In NeurIPS, 2020.
[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE CVPR, 2016.
[26] C. Hu, W. Bao, D. Wang, and F. Liu. Dynamic adaptive DNN surgery for inference acceleration on the edge. IEEE

INFOCOM, 2019.
[27] D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J. Wu, H. Zhan, P. Ustinov, H. Srinivas, K. Wang,

A. Shoumikhin, J. Min, and M. Malek. Papaya: Practical, private, and scalable federated learning. In MLSys, 2022.
[28] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko. Quantization and training

of neural networks for efficient integer-arithmetic-only inference. In IEEE CVPR, June 2018.
[29] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal.

Mach. Intell., 33(1):117–128, 2011.
[30] Y. Jiang, S. Wang, B. J. Ko, W. Lee, and L. Tassiulas. Model pruning enables efficient federated learning on edge

devices. CoRR, abs/1909.12326, 2019.
[31] P. Kairouz et al. Advances and open problems in federated learning. Found. Trends Mach. Learn., 14(1–2), 2021.
[32] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon. Federated learning: Strategies for

improving communication efficiency. In NIPS Workshop on Private Multi-Party Machine Learning, 2016.
[33] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient inference. CoRR, 1806.08342, 2018.
[34] Y. Le Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. In NeurIPS, 1989.
[35] Y. LeCun and C. Cortes. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/, 2010.
[36] Y. Lin, S. Han, H. Mao, Y. Wang, and W. Dally. Deep gradient compression: Reducing the communication bandwidth

for distributed training. In ICLR, 2018.
[37] X. Liu, Y. Li, J. Tang, and M. Yan. A double residual compression algorithm for efficient distributed learning. In

AISTATS, 2020.
[38] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In IEEE ICCV, 2015.
[39] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep

networks from decentralized data. In AISTATS, 2017.
[40] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov. Exploiting unintended feature leakage in collaborative learning.

In IEEE S&P, 2019.
[41] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba. Federated learning with buffered

asynchronous aggregation. In AISTATS, 2022.
[42] T. Parcollet, J. Fernandez-Marques, P. PB Gusmao, Y. Gao, and N. D. Lane. ZeroFL: Efficient on-device training for

federated learning with local sparsity. In ICLR, 2022.
[43] C. Philippenko and A. Dieuleveut. Preserved central model for faster bidirectional compression in distributed settings.

77

In NeurIPS, 2021.
[44] K. Prasad, S. Ghosh, G. Cormode, I. Mironov, A. Yousefpour, and P. Stock. Reconciling security and communication

efficiency in federated learning. CoRR, 2207.12779, 2022.
[45] X. Qiu, T. Parcollet, J. Fernandez-Marques, P. P. B. de Gusmao, D. J. Beutel, T. Topal, A. Mathur, and N. D. Lane. A

first look into the carbon footprint of federated learning. arXiv, 2102.07627, 2021.
[46] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoefler. SparCML: High-performance sparse

communication for machine learning. In SC, 2019.
[47] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora. FetchSGD:

Communication-efficient federated learning with sketching. In ICML, 2020.
[48] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. Robust and communication-efficient federated learning from

non-i.i.d. data. IEEE Transactions on Neural Networks and Learning Systems, 31:3400–3413, 2020.
[49] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to data-parallel

distributed training of speech DNNs. In INTERSPEECH, 2014.
[50] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou. And the bit goes down: Revisiting the quantization of

neural networks. In ICLR, 2020.
[51] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu. DOUBLESQUEEZE: Parallel stochastic gradient descent with double-pass

error-compensated compression. In ICML, 2019.
[52] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar. Split learning for health: Distributed deep learning without

sharing raw patient data, 2018.
[53] T. Vogels, S. P. Karimireddy, and M. Jaggi. PowerSGD: Practical low-rank gradient compression for distributed

optimization. In NeurIPS, 2019.
[54] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright. ATOMO: Communication-efficient learning

via atomic sparsification. In NeurIPS, 2018.
[55] J. Wang, H. Qi, A. S. Rawat, S. Reddi, S. Waghmare, F. X. Yu, and G. Joshi. Fedlite: A scalable approach for federated

learning on resource-constrained clients. CoRR, 2201.11865, 2022.
[56] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient distributed optimization.

In NeurIPS, 2018.
[57] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. TernGrad: Ternary gradients to reduce communication

in distributed deep learning. In NeurIPS, 2017.
[58] C. Yang, J. So, C. He, S. Li, Q. Yu, and S. Avestimehr. LightSecAgg: Rethinking secure aggregation in federated

learning. In MLSys, 2022.
[59] M. Yu, Z. Lin, K. Narra, S. Li, Y. Li, N. S. Kim, A. Schwing, M. Annavaram, and S. Avestimehr. GradiVeQ: Vector

quantization for bandwidth-efficient gradient aggregation in distributed CNN training. In NeurIPS, 2018.
[60] S. Zheng, Z. Huang, and J. T. Kwok. Communication-efficient distributed blockwise momentum SGD with error-

feedback. In NeurIPS, 2019.
[61] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. DoReFa-Net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. CoRR, abs/1606.06160, 2016.

78

Accelerated Federated Optimization with Quantization

Yeojoon Youn† Bhuvesh Kumar† Jacob Abernethy†

† Georgia Institute of Technology {yjyoun92,bhuvesh,prof}@gatech.edu

Abstract

Federated optimization is a new form of distributed training on very large datasets that leverages many
devices each containing local data. While decentralized computation can lead to significant speed-ups due
to parallelization, some centralization is still required: devices must aggregate their parameter updates
through synchronization across the network. The potential for communication bottleneck is significant.
The two main methods to tackle this issue are (a) smarter optimization that decreases the frequency of
communication rounds and (b) using compression techniques such as quantization and sparsification
to reduce the number of bits machines need to transmit. In this paper, we provide a novel algorithm,
Federated optimization algorithm with Acceleration and Quantization (FedAQ), with improved theoretical
guarantees by combining an accelerated method of federated averaging, reducing the number of training
and synchronization steps, with an efficient quantization scheme that significantly reduces communication
complexity. We show that in a homogeneous strongly convex setting, FedAQ achieves a linear speedup in
the number of workers M with only Õ(M

1
3) communication rounds, significantly smaller than what is

required by other quantization-based federated optimization algorithms. Moreover, we empirically verify
that our algorithm performs better than current methods.

1 Introduction

Federated learning (FL) has attracted much attention from both academia and industry due to the increasing
demand for large-scale distributed machine learning systems and preserving privacy-sensitive data on local
devices such as smartphones and IoT devices. In federated learning, a number of clients collaboratively learn the
global objective function by communicating with a central server without sharing any locally stored data in each
local device. The research in Federated learning has identified four major challenges: communication efficiency,
systems heterogeneity, statistical heterogeneity, and privacy [19]. In this paper, we focus on communication
efficiency that is of primary interest in cross-device settings when there is a heavy communication burden with
many edge computing devices and limited network bandwidth. Two of the most widely used methods to reduce
the communication cost are federated averaging optimization and randomized compression techniques.

In federated averaging (FedAvg) [26], also called local SGD, each client locally updates its model with
multiple stochastic gradient descent (SGD) steps, and a server aggregates model updates of clients. The server
updates its own model parameters by averaging client models and then broadcasts the server parameters to all
clients. This enables FL systems to achieve high communication efficiency with infrequent synchronization while
showing better performance than distributed large mini-batch SGD [25]. Due to the significant empirical success

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

79

Table 14: Summary of Results on the Convergence Rate and Communication Required for Linear Speedup. M is
the number of devices, T is the number of total parallel iterations, and K is the number of communication rounds,
q is a quantization parameter (Assumption 1), dquant is the number of bits used to quantize, dfull is the number of
bits required when there is no quantization (dfull ≫ dquant). [43] and FedAQ send two iterates per communication
round as other algorithms to achieve acceleration (See line 11 in Algorithm 3), we multiply dfull and dquant by 2
for bits communicated for a linear speedup. The presented results of [9] are newly obtained (section 5.5).

Algorithm Convergence rate Communication rounds for Õ(1
T
)

convergence with linear speedup
Bits communicated for

linear speedup

FedPAQ [27] O(1+q
K

+ T
K2) Not possible Not possible

FedCOMGATE [9] Õ(1+q
MT

+ 1
TK

) Õ(M
1+q

) Õ(M
1+q

) · dquant

FedAC [43] Õ(1
MT

+ 1
TK3) Õ(M

1
3) Õ(M

1
3) · 2dfull

FedAQ (Corollary 23) Õ(1+q
MT

+ 1+q
TK3) Õ(M

1
3) Õ(M

1
3) · 2dquant

of FedAvg, researchers have proposed an interesting theoretical question: To what extent can we minimize the
number of synchronizations in order to both guarantee convergence and achieve linear speedup in the number of
workers M1? For the strongly-convex and homogeneous settings, [15] was able to achieve a linear speedup in M
with Õ(M) communication rounds, which is the state-of-the-art result for FedAvg convergence analysis. However,
even with this progress on theoretical guarantees of FedAvg, it remains unclear whether further improvements on
convergence time and communication efficiency can be achieved.

Applying acceleration methods to FL has led to improved convergence, with [43] providing a faster version
of FedAvg with provably stronger bounds. For the strongly-convex and homogeneous setting, their algorithm
achieves a linear speedup in M with only Õ(M

1
3) communication rounds. Hence, the accelerated version

of federated averaging requires a much smaller number of communication rounds than FedAvg to achieve
the same accuracy. At present, this remains the best result for strongly-convex and homogeneous local data
distribution settings. In addition to reducing the required number of communication rounds, another powerful
way to build communication-efficient FL systems is to reduce the number of bits that need to be transmitted at
each synchronization. [27, 9] have shown that such compression techniques, which include quantization, reduce
communication costs and guarantee convergence (See Table 14).

In this work, we provide a novel algorithm, Federated optimization algorithm with Acceleration and
Quantization (FedAQ), to solve the severe communication bottleneck problem in FL systems. FedAQ is the first
federated optimization algorithm that successfully incorporates multiple local update schemes, acceleration, and
quantization for master-worker topology. Although these three key desiderata of Federal Learning systems have
individually been shown to build communication-efficient FL systems, it is not obvious if or how acceleration
techniques can lead to faster convergence even for quantization-based methods. We answer this question by
showing that FedAQ converges for strongly-convex and homogeneous local data distribution settings without any
additional strong assumptions.

Let T be the number of total parallel iterations, K be the number of total communication rounds. We compare
our results to previous methods in Table 14, and highlight the following contributions:

1. FedAQ has a convergence rate of Õ(1+q
MT + 1+q

TK3) which is better than the Õ(1+q
MT + 1

TK) convergence of
[9], the state of the art in quantization based methods. Here q is a parameter that measures the effectiveness
of the quantization scheme (see Assumption 1). This allows FedAQ to obtain linear speedup with only
Õ(M

1
3) communication rounds whereas [9] requires Õ(M

1+q) rounds. The faster convergence in number of

1Linear speedup in the number of workers is a desirable property in parallel computing which implies that the task takes half as much
time if the number of workers are doubled.

80

communication rounds also implies that FedAQ can achieve better convergence than [9] by using many
fewer communication rounds. Thus, although FedAQ sends two iterates in each communication round, that
is the bits communicated in each round are twice many compared to [9] for the same level of quantization,
FedAQ requires much smaller total communication costs due to the large reduction in synchronization
rounds.

2. When comparing FedAQ to Accelerated Federated learning, we observe that FedAQ has similar convergence
and requires the same number of communication rounds as [43]. In each communication round of [43], every
client sends the complete iterates to the server without any quantization. To effectively obtain a convergence
rate of Õ(1

MT), it needs to send each value with a precision of Õ(1
MT), requiring dfull = O(log (MT))

bits. In comparison, if we use the low precision quantizer (See section 3 Example 1) given by [1], FedAQ
needs to send only dquant = O(log 1

q) bits 2 for each value. Since q is a constant, dquant ≪ dfull. The extra
1 + q term in the convergence for FedAQ can be offset by scaling the number of local updates by 1 + q,
which is cheaper than expensive data communication. Thus, FedAQ obtains the same convergence as [43]
using as many communication rounds but by sending many fewer bits per round.

Finally, we empirically verify that our algorithm exhibits better performance than baselines, FedPAQ [27],
FedCOMGATE [9], FedAC [43], and FedAvg [26] on classical vision datasets such as MNIST [18] and CIFAR-
10 [17].

2 Related Works

The first guarantee for FedAvg, showing that it converges at the same rate as mini-batch SGD in strongly
convex scenarios, was shown by [30] in the IID setting. The further convergence analysis of FedAvg for non-
convex functions was laid out in a number of published works [36, 8, 42]. Followup work has managed to
remove unnecessary assumptions, such as uniformly bounded gradients, to achieve better convergence rates
[36, 31, 7, 15, 40]. Moreover, [20, 10, 21, 15, 14] define scenarios that depart from the IID framework, analyzing
the convergence of FedAvg and its variants in settings with heterogeneous data distributions.

Reducing the transmitted bits between a server and clients through compression techniques is pivotal to saving
communication costs in federated learning. This motivates researchers to develop various compression techniques
such as sparsification and quantization without significantly sacrificing accuracy [16, 1, 32, 39, 4, 34, 33, 11, 3, 28].
[27] shows near-optimal theoretical guarantees of the first federated optimization algorithm that incorporates
federated averaging, partial node participation, and quantization in homogeneous local data distribution settings.
[9] further provide improved convergence rates for both homogeneous and heterogeneous settings.

We can achieve better communication efficiency by applying acceleration methods into client updates. [43] has
proposed the first provable acceleration of FedAvg that achieves a linear speedup with the fewest communication
rounds. Several other works aim to achieve communication efficiency by using momentum or adaptive optimizers
[41, 13, 37]. It is important to note that our work is not the first to combine acceleration and quantization. [23, 24],
for example, propose compressed and accelerated distributed optimization methods that are neither stochastic
nor FedAvg variants. [29] proposes communication efficient momentum SGD for decentralized optimization.
[22, 38] show that distributed and federated versions of adaptive optimizers along with gradient compression can
lead to similar convergence rates as their non-compressed counterparts. But these works do not achieve the core
result of the present paper, which is the reduced communication complexity via a faster convergence rate and a
linear speedup with the small number of communication rounds. To the best of our knowledge, FedAQ is the first
accelerated version of federated averaging for master-worker topology that successfully integrates a quantization
scheme and provides rigorous convergence guarantees.

2More details on this are discussed in section 5.5.3

81

3 Problem Setup

In this paper, we build our algorithm based on federated learning with captain-worker topology where M
local devices contain their own local data, and a server aggregates local parameter updates without sharing any
data during synchronization rounds. Since we focus on homogeneous local data distribution settings for the
convergence analysis of our algorithm, we define the distributed stochastic optimization problem as below.

min
w∈Rd

F (w) := Ez∼D[f(w; z)]

In our convergence analysis, we assume F is strongly-convex. Each client can access F at w via oracle∇f(w; z)
because all clients have the same loss function f . Also, every local device has the same local data distribution D.
Moreover, we use the full participation of nodes for local updates and synchronizations.

3.1 Assumptions

Let us clarify assumptions on the unbiased quantizer Q, the global objective function F , and the unbiased gradient
estimator∇f .

Assumption 1: The variance of the unbiased quantizer Q is bounded by the squared of l2-norm of its argument,
i.e., E[Q(x)|x] = x, E[∥Q(x)− x∥2|x] ≤ q∥x∥2.

For example, a well-known randomized quantizer which satisfies Assumption 1 is low-precision quantizer in [1].
Example 1. (Low-precision quantizer) Given x ∈ Rd, the quantizer Q : Rd → Rd is defined by

Qi(x) = sign(xi) · ∥x∥ · ξi(x, s), i ∈ [d]

ξi is defined as below.

ξi(x, s) =

{
l+1
s , with probability |xi|

∥x∥s− l
l
s , o/w

s is the number of quantization levels. l ∈ [0, s) is an integer which satisfies |xi|
∥x∥ ∈ [ls ,

l+1
s).

Assumption 2: F is µ-strongly convex, i.e., F (w1) ≥ F (w2) + ⟨∇F (w2), w1 − w2⟩+ 1
2µ∥w1 − w2∥2 for any

w1, w2 ∈ Rd.

Assumption 3: F is L-smooth, i.e., F (w1) ≤ F (w2)+ ⟨∇F (w2), w1−w2⟩+ 1
2L∥w1−w2∥2 for any w1, w2 ∈

Rd.

Assumption 4: ∇f(w; ξ) is unbiased and variance bounded, i.e., Eξ[∇f(w; ξ)] = ∇F (w), Eξ[∥∇f(w; ξ) −
∇F (w)∥2] ≤ σ2 for any w ∈ Rd.

3.2 Notation

We use τ,K to respectively denote the number of local updates and total communication rounds, which means
the total number of iterations T at each node satisfies T = Kτ . Since we consider a strongly-convex case, we
can find the optimal point w∗ and denote the optimal function value as F ∗ := F (w∗). The local parameter wm

k,t

indicates the parameter of the m-th local model after kth synchronization followed by t local SGD updates. There
are other types of parameters such as wag,m

k,t and wmd,m
k,t , and we obtain two types of parameters wk and wag

k in the
server side after kth synchronization. More details on these parameters will be discussed in the next section.

82

4 FedAQ Algorithm

We propose a novel communication efficient algorithm that combines an accelerated variant of federated averaging
and an efficient quantization scheme. Our FedAQ algorithm has two main parts: (1) multiple accelerated local
updates and (2) communication with quantization. Both components contribute to achieving better communication
efficiency than other previous federated algorithms. The entire process is summarized in Algorithm 3.

4.1 Multiple Accelerated Local Updates

The FedAvg algorithm, proposed by [26], is widely used for federated learning to improve communication
efficiency by reducing communication rounds with multiple local SGD updates. [43] provide FedAC that replaces
the stochastic gradient updates of FedAvg by accelerated version of SGD by [6] resulting in a linear speedup in
M with fewer communication rounds than FedAvg.

Thus, we apply the FedAC scheme to multiple updates of each local model. Since previous quantization-based
federated optimization algorithms are FedAvg variants with no acceleration, the accelerated method enables our
algorithm to gain better communication efficiency than others.

As you can see in Algorithm 3, we need two more local parameters wag,m
k,t and wmd,m

k,t for acceleration in
addition to the main local parameter wm

k,t. w
ag,m
k,t aggregates the past iterates, and the gradients are queried at

the auxiliary parameter wmd,m
k,t . While typical FL algorithms without acceleration only have a learning rate η as

their hyperparameter, the general acceleration scheme makes our algorithm flexible due to four hyperparameters
α, β, η, γ. α, β are hyperparameters related to coupling coefficients, and η, γ stand for learning rates respectively
for wag,m

k,t , wm
k,t. The flexibility of hyperparameters enables the fast convergence speed of FedAQ, but naively

chosen hyperparameters also cause unstable training of FedAQ. We discuss the exact choice of hyperparameters
in section 5. Unlike FedAC, that requires each client to communicate the exact iterates to the server with high
precision, we discuss in the following subsection how FedAQ incorporates quantization techniques to reduce
communication cost.

4.2 Communication with Quantization

In cross-device federated learning, a large amount of communicated messages from a number of devices
and the limited communication bandwidth can lead to severe communication bottlenecks. Therefore, in this
scenario, an efficient quantization scheme can significantly reduce the size of communicated messages and make
communication between local devices and a server faster. We apply the same unbiased quantizer used in [9] that
satisfies Assumption 1.

In contrast with other quantization-based federated optimization algorithms [27, 9], the algorithmic novelty
of FedAQ is based on applying quantization to two model parameter updates, which is required in order to
simultaneously reduce the frequency of communication and the volume of communicated bits. To the best of
our knowledge, this is the first quantization-based method that achieves the accelerated rate with the dramatic
reduction in communication cost. To be specific on the communication process, after each client m obtains
wm
k,τ , w

ag,m
k,τ through τ accelerated local iterations, each client quantizes the difference between wm

k,τ , w
ag,m
k,τ and

the most recent server models wk, w
ag
k . Then, a server aggregates Q(wm

k,τ −wk), Q(w
ag,m
k,τ −w

ag
k) from all clients.

After dequantizing those messages, the server obtains the following new models wk+1, w
ag
k+1 and broadcasts them

back to each client.

83

Algorithm 3 Federated Accelerated SGD with Quantization (FedAQ)

1: Input: α, β, η, γ, initial vector w0 = w
ag,m
0,0 = wm

0,0 for all devices m ∈ [M]
2: for k = 0, · · · ,K − 1 do
3: for each client m in parallel do
4: wm

k,0 ← wk, w
ag,m
k,0 ← w

ag
k

5: for t = 0, · · · , τ − 1 do
6: wmd,m

k,t ← β−1wm
k,t + (1− β−1)w

ag,m
k,t

7: gmk,t ← ∇f(w
md,m
k,t , ξmk,t)

8: w
ag,m
k,t+1 ← wmd,m

k,t − ηgmk,t
9: wm

k,t+1 ← (1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t
10: send Q(wm

k,τ − wk), Q(w
ag,m
k,τ − w

ag
k)

11: server finds wk+1 ← wk +
1
M

M∑
m=1

Q(wm
k,τ − wk), w

ag
k+1 ← w

ag
k + 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k)

5 Convergence Analysis

The rigorous theoretical guarantees of reducing communication complexity under strongly-convex and ho-
mogeneous assumptions should come first to ensure the significance of FedAQ as one of the standards of
communication-efficient federated optimization algorithms. Proving convergence guarantees of FedAQ even
under these assumptions requires careful consideration of the approximation error induced by the quantization
scheme combined with the convergence analysis of acceleration based methods. To recall, in FedAQ the server
aggregates two quantized local updates Q(wm

k,τ − wk), Q(w
ag,m
k,τ − w

ag
k) from all clients (See line 11 in Algo-

rithm 3) in each round. If we simply try to generalize the convergence guarantee of FedAC to incorporate the
quantization variance costs, the proof techniques from earlier quantization-based methods cannot be directly
applied, as we now have two additional quantization error terms that contribute to the overall cost. A significant
amount of additional effort is required in order to account for this new quantization error.

In this section, we first define two condition sets of hyperparameters used for the convergence analysis
of FedAQ. Then, we provide the proof sketch of FedAQ under one such condition set that leads to the better
convergence rate Õ(1+q

MT + 1+q
TK3). The full proofs of lemmas, theorems, and corollaries under both condition sets

are elaborated in section 5.3 and section 5.4. Finally, we discuss how we obtain the new convergence rate for [9]
and look into more theoretical details on contribution 2 in Introduction.

5.1 Two Parameter Condition Sets

We carefully determine two parameter condition sets that theoretically ensure the convergence guarantees. The
first one is

η, γ ∈
(
0,

1

L

]
, γ = max

(√ η

µτ
, η
)
, α =

1

γµ
, β = α+ 1 (34)

We add one more condition γ ∈ (0, 1
L] to the FedAC-I condition [43] and create our parameter condition set (34).

The second one is

η, γ ∈
(
0,

1

L

]
, γ = max

(√ η

µτ
, η
)
, α =

3

2γµ
− 1

2
, β =

2α2 − 1

α− 1
, γµ ≤ 3

4
(35)

We add two more conditions γ ∈ (0, 1
L] and γµ ≤ 3

4 to the FedAC-II condition to build our parameter condition
set (35). Even though quantization adds complexity to the algorithm, these weak assumptions are the only

84

additional requirements for showing the convergence of FedAQ. Moreover, although the better convergence rate
Õ(1+q

MT + 1+q
TK3) is obtained from the condition set (35), we also analyze the convergence of FedAQ under the

condition set (34) because this set empirically leads to more stable training and better performance in experiments
than the condition set (35) (See Strongly convex case in section 6.2.1). The intuition of the less stable training
of FedAQ under the condition set (35) comes from larger α, β than those of the condition set (34). If α, β
are too large, α−1, β−1 in Algorithm 3 cannot be used as proper coupling coefficients for local parameters
wm
k,t, w

ag,m
k,t , wmd,m

k,t . This results in aggressive updates and less stable training behavior.

5.2 Proof Sketch of FedAQ Under Condition Set (35)

The decentralized potential Φk,t [43] is used for our convergence analysis. People commonly use this potential
for acceleration analysis [2].

Φk,t = F (w̄
ag
k,t)− F

∗ +
1

6
µ∥w̄k,t − w∗∥2

w̄k,t and w̄ag
k,t is respectively the average of wm

k,t and wag, m
k,t for all m. Here, we additionally define Φk as below.

Φk := Φk,0 = F (w
ag
k)− F ∗ +

1

6
µ∥wk − w∗∥2

Since wk and wag
k are parameters obtained after kth synchronization in a server side, Φk can be considered as the

potential of server models. Φk is essential to show the convergence of FedAQ because there is the computation
of the quantizer between Φk−1,τ and Φk,0. Thus, we should not naively track Φk,t but track Φk for our analysis.
Obtaining Φk ≤ ϵ would imply that F (wag

k) − F ∗ ≤ ϵ and since F ∗ ≤ F (w
ag
k), it would also imply that

∥wk − w∗∥2 = O(ϵ), thus obtaining convergence in terms of both the objective value and the iterate.
Our goal is to show the convergence of FedAQ and derive the simplified convergence rate so that we can

get the number of communication rounds to achieve a linear speedup in M . As the first step to show this, we
prove Lemma 5 which represents the relationship between two consecutive server potential functions Φk and
Φk+1. The quantization scheme amplifies the instability to the convergence of FedAQ in addition to the effect of
acceleration. Despite this challenge, we derive Lemma 5 with the help of subtle Propositions (See section 5.4.1).

Lemma 5: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for α = 3
2γµ−

1
2 , β = 2α2−1

α−1 , γ ∈
[η,

√
η
µ], η, γ ∈ (0, 1

L], γµ ≤
3
4 , τ ≥ 2, FedAQ yields

E[Φk+1] ≤ D(γ, τ)E[Φk] + (
η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2︸ ︷︷ ︸

additional terms due to quantization

Where D(γ, τ) is defined as

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2︸ ︷︷ ︸

additional terms due to quantization

We get the inequality between Φk and Φk+1 by finding the upper bounds of error terms due to multiple(τ)
local steps and the quantization step. The upper bound of the error caused by multiple local steps is obtained

85

with the help of the analysis in [43] (See Proposition 19). Also, we get the tight upper bound of the error due
to quantization with our new proof techniques (See Proposition 20, 21, 22). The key challenge in bounding the
quantization error terms comes from representing the upper bound of variances of the quantizer Q on two local
updates wm

k,τ − wk, w
ag,m
k,τ − w

ag
k in the form of a server potential Φk. Some terms in Lemma 5 are similar to

those in Lemma C.2 of the FedAC paper [43], but our lemma contains additional terms that emerge from the
quantization scheme.

For the next step, by telescoping Lemma 5, we obtain the main theoretical result Theorem 6. Theorem 6
represents how ΦK decreases from the initial potential Φ0 as a communication round K increases. Since we
aim to telescope Lemma 5, D(γ, τ) should be smaller than 1. Specifically, we show D(γ, τ) ≤ 1− 1

6γµτ with
condition (36) (See section 5.4.2). That’s why Theorem 6 requires the learning rate γ to satisfy the certain
condition (36).

Theorem 6: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for the parameter condition set
(35), τ ≥ 2, if the learning rate γ satisfies(

1

9
µ2 +

q

M

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

))
γτ ≤ 1

6
µ (36)

FedAQ yields

E[ΦK] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ

+
3q
(
µ2(µ3 + L

4) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM

We get the convergence rate of FedAQ with respect to η under the condition set (35). The final step is to tune
η appropriately and obtain a more intuitive form of convergence rate that we can easily analyze a linear speedup
in M . The exact form of this can be found in Corollary 23. Here, we introduce the simplified form of Corollary
23.

Corollary 7: (Simplified form of Corollary 23) Note that T = Kτ . For η = min(1L , Θ̃(τ
µT 2)), FedAQ yields

E[ΦK] ≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0 + Õ(

(1 + q)σ2

µMT︸ ︷︷ ︸
I

+
(1 + q)L2τ3σ2

µ3T 4︸ ︷︷ ︸
II

+
qL3τ2σ2

µ4MT 3︸ ︷︷ ︸
III

)

The convergence rate of FedAQ under the condition set (34) is obtained in a similar way. The convergence
analysis under the condition set (34) is elaborated as Lemma 10, Theorem 16, and Corollary 17 in section 5.3.

Remark 8: The above convergence rate is worse than the convergence rate of FedAC-II according to Theorem
C.13 in [43] because there are additive terms related to the quantization noise q in our case. Let’s figure out the
dominant terms with Õ notation from the above convergence rate. Here, we replace τ with T

K . At first, we can
ignore the first term because it decreases exponentially. The second term I would be Õ(1+q

MT). Then, the third term

II becomes Õ((1+q)τ3

T 4) = Õ(1+q
TK3). Finally, the last term III turns into Õ(qτ2

MT 3) = Õ(q
MTK2). Thus, the overall

convergence rate of FedAQ under the condition set (35) would be Õ(1+q
MT + 1+q

TK3). Similarly, we obtain the
simplified convergence rate of FedAQ under the condition set (34) from three terms (14), (15), (16) of Corollary
17. In this case, the convergence rate of FedAQ is Õ(1+q

MT + 1
TK2), and the required number of communication

rounds to achieve a linear speedup in M is Õ((M
1+q)

1
2).

86

Remark 9: As we mention above, FedAQ converges at rate Õ(1+q
MT + 1+q

TK3), which is better than the convergence
rate of [9] Õ(1+q

MT + 1
TK). To our knowledge, [9] obtain the best convergence rate among previous quantization-

based federated optimization algorithms. Actually, in the strongly-convex and homogeneous case, [9] provide
different convergence rate O(1

γ2τ
+ (q+1)

(q
M

+1)τM
) = O(K

γ2T
+ (q+1)K

(q
M

+1)TM
), where γ is a learning rate for the server

updates. They achieve this convergence rate by tuning η = 1
2L(q

M
+1)τγ

. However, we cannot say this algorithm

achieves a linear speedup in this scenario. That’s why we provide a new convergence rate Õ(1+q
MT + 1

TK) for [9]
by tuning η in a different way. This new η makes this algorithm achieve a linear speedup. Why the original η
cannot achieve a linear speedup and how we get new η can be found in section 5.5.

5.3 Proof Details for FedAQ under Condition Set (34)

Before diving into proof details, we define w̄k,τ , w̄
ag
k,τ ,Ψ

m
k,t,Ψk,t,Ψk, A

m
k,t as below.

w̄k,τ =
1

M

M∑
m=1

wm
k,τ

w̄
ag
k,τ =

1

M

M∑
m=1

w
ag,m
k,τ

Ψm
k,t = F (w

ag,m
k,t)− F ∗ +

1

2
µ∥wm

k,t − w∗∥2

Ψk,t =
1

M

M∑
m=1

F (w
ag,m
k,t)− F ∗ +

1

2
µ∥w̄k,t − w∗∥2

Ψk : = Ψk,0 = F (w
ag
k)− F ∗ +

1

2
µ∥wk − w∗∥2

Am
k,t =

γ2µ2(µ+ L)

(1 + γµ)2
∥wm

k,t − w
ag,m
k,t ∥

2 + γ2(µ+ L)
2L

1 + γµ
Ψm

k,t

The above notations are essential to our convergence analysis. Intuitively, if the FedAQ algorithm converges to
the optimal point, w̄k,τ , w̄

ag
k,τ become w∗, and Ψm

k,t,Ψk,t,Ψk, A
m
k,t become 0. In order to denote the σ-algebra

generated by {wm
k′,t′ , w

ag,m
k′,t′ }(k′<k) or (k′=k,t′≤t),m∈[M], we use Fk,t.

5.3.1 Proof of Lemma 10

Lemma 10: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ], η, γ ∈ (0, 1

L], τ ≥ 2, FedAQ yields

E[Ψk+1] ≤ C(γ, τ)E[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2︸ ︷︷ ︸

Additional terms due to quantization

87

Where C(γ, τ) is defined as

C(γ, τ) = (1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2︸ ︷︷ ︸

Additional terms due to quantization

In this section, we first introduce five crucial Propositions for proving Lemma 10. Then, we prove Lemma 10
by using Propositions in the last part of this section.

Proposition 11: Let Assumption 1 hold and consider any k synchronization round. Then, we can decompose
the expectation as follows:

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]

E[F (wag
k+1)− F

∗] = E[F (wag
k+1)−

1

M

M∑
m=1

F (w
ag,m
k,τ)] + E[

1

M

M∑
m=1

F (w
ag,m
k,τ)− F ∗]

Proof of Proposition 11 The second equality is trivial. Let’s focus on the first equality. By Assumption 1,
the quantizer Q is unbiased and we get,

EQ[wk+1] = wk +
1

M

M∑
m=1

EQQ(wm
k,τ − wk) =

1

M

M∑
m=1

wm
k,τ = w̄k,τ

Thus, we finally obtain

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ + w̄k,τ − w∗∥2]
= E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]

Proposition 12: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ], η ∈ (0, 1

L], FedAQ yields

E[Ψk,τ] ≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

Proof of Proposition 12 We refer to the proof of Lemma B.2 in [43]. There is no quantization between Ψk,τ

and Ψk. Thus, we can directly apply useful inequalities in the proof of Lemma B.2 in [43] to our proof. Then, we
obtain

E[Ψk,t+1|Fk,t] ≤ (1− γµ)Ψk,t +
1

2
(η2L+

γ2µ

M
)σ2 + γµL

· 1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥

88

From the above relationship between Ψk,t+1 and Ψk,t, we get

E[Ψk,τ] ≤ (1− γµ)τE[Ψk] +
(τ−1∑

t=0

(1− γµ)t
)1
2
(η2L+

γ2µ

M
)σ2 + γµL ·

τ−1∑
t=0

{
(1− γµ)τ−t−1

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

}
≤ (1− γµ)τE[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

Proposition 13: Let Assumption 1 hold. Then, we have

E[∥wk+1 − w̄k,τ∥2] ≤
q

M2

M∑
m=1

E[∥wm
k,τ − wk∥2]

E[F (wag
k+1)−

1

M

M∑
m=1

F (w
ag,m
k,τ)] ≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proof of Proposition 13 First, let’s consider the first inequality. According to Assumption 1, we get

E[∥wk+1 − w̄k,τ∥2] = E[∥wk +
1

M

M∑
m=1

Q(wm
k,τ − wk)−

1

M

M∑
m=1

wm
k,τ∥2]

= E[∥ 1

M

M∑
m=1

Q(wm
k,τ − wk)− (wm

k,τ − wk)∥2]

=
1

M2

M∑
m=1

E[∥Q(wm
k,τ − wk)− (wm

k,τ − wk)∥2] ≤
q

M2

M∑
m=1

E∥wm
k,τ − wk∥2

The third equality comes from the unbiasedness of Q, and the last inequality stems from the variance assumption
of Q. Similarly, we obtain

89

E[F (wag
k+1)−

1

M

M∑
m=1

F (w
ag,m
k,τ)] = E[F (wag

k +
1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k))− 1

M

M∑
m=1

F (w
ag,m
k,τ)]

= E[
1

M

M∑
m=1

F (w
ag
k +

1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k))− F (wag,m

k,τ)]

≤ E
[1

M

M∑
m=1

⟨∇F (wag,m
k,τ),

1

M

M∑
m=1

(
Q(w

ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ

− wag
k)

)
⟩+ L

2
∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ − w

ag
k)∥2

]
=
L

2
E[∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ − w

ag
k)∥2]

=
L

2M2

M∑
m=1

E[∥Q(w
ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ − w

ag
k)∥2]

≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proposition 14: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ], η, γ ∈ (0, 1

L], we get

E[Am
k,t] ≤ E[Am

k,0] +
((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

Proof of Proposition 14 From the notation mentioned in the beginning of section 5.3,

E[Am
k,t+1|Fk,t] =

γ2µ2(µ+ L)

(1 + γµ)2
E[∥wm

k,t+1 − w
ag,m
k,t+1∥

2|Fk,t] + γ2(µ+ L)
2L

1 + γµ
E[Ψm

k,t+1|Fk,t] (37)

Thus, let’s sequentially compute E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] and E[Ψm
k,t+1|Fk,t].

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] = E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w
md,m
k,t + ηgmk,t∥2|Fk,t]

= E[∥(1− α−1)(wm
k,t − w

md,m
k,t)− (γ − η)gmk,t∥2|Fk,t] (← γ ≥ η)

= ∥(1− α−1)(wm
k,t − w

md,m
k,t)− (γ − η)∇F (wmd,m

k,t)∥2

+ (γ − η)2E[∥∇F (wmd,m
k,t)− gmk,t∥2|Fk,t]

≤ (1− α−1)2∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2∥∇F (wmd,m
k,t)∥2

+ (γ − η)2σ2 − 2(γ − η)⟨(1− α−1)(wm
k,t − w

md,m
k,t),∇F (wmd,m

k,t)⟩

≤ (1− α−1)2(1 + γµ)∥wm
k,t − w

md,m
k,t ∥

2

+ (γ − η)2(1 + 1

γµ
)∥∇F (wmd,m

k,t)∥2 + (γ − η)2σ2

=
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ
∥∇F (wmd,m

k,t)∥2 + (γ − η)2σ2

90

Here, we need to bound ∥∇F (wmd,m
k,t)∥2.

∥∇F (wmd,m
k,t)∥2 ≤ 2L(F (wmd,m

k,t)− F ∗) (∵ Assumption 3)

≤ 2L
(
β−1(F (wm

k,t)− F (w∗)) + (1− β−1)(F (w
ag,m
k,t)− F ∗)

)
≤ β−1L2∥wm

k,t − w∗∥2 + 2(1− β−1)L(F (w
ag,m
k,t)− F ∗)

=
γµL2

1 + γµ
∥wm

k,t − w∗∥2 + 2L

1 + γµ
(F (w

ag,m
k,t)− F ∗)

≤ µL

1 + γµ
∥wm

k,t − w∗∥2 + 2L

1 + γµ
(F (w

ag,m
k,t)− F ∗) =

2L

1 + γµ
Ψm

k,t (38)

The last inequality comes from the fact γ ∈ [0, 1
L). Therefore, we finally get

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] ≤
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ
∥∇F (wmd,m

k,t)∥2 + (γ − η)2σ2

≤ (1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ

(2L

1 + γµ
Ψm

k,t

)
+ (γ − η)2σ2

(39)

Now, let’s compute E[Ψm
k,t+1|Fk,t]. We need to compute E[∥wm

k,t+1 − w∗∥2|Fk,t] and E[F (wag,m
k,t+1)− F

∗|Fk,t]
first.

E[∥wm
k,t+1 − w∗∥2|Fk,t] = E[∥(1− α−1)wm

k,t + α−1wmd,m
k,t − γgmk,t − w∗∥2|Fk,t]

≤ ∥(1− α−1)wm
k,t + α−1wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t)∥2 + γ2σ2

− 2γ⟨(1− α−1)wm
k,t + α−1wmd,m

k,t − w∗,∇F (wmd,m
k,t)⟩

≤ (1− α−1)∥wm
k,t − w∗∥2 + α−1∥wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t)∥2 + γ2σ2

− 2γ⟨(1− α−1(1− β−1))wm
k,t + α−1(1− β−1)w

ag,m
k,t − w

∗,∇F (wmd,m
k,t)⟩

= (1− γµ)∥wm
k,t − w∗∥2 + γµ∥wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t)∥2 + γ2σ2

− 2γ⟨ 1

1 + γµ
wm
k,t +

γµ

1 + γµ
w

ag,m
k,t − w

∗,∇F (wmd,m
k,t)⟩

E[F (wag,m
k,t+1)−F

∗|Fk,t]

≤ E[F (wmd,m
k,t) + ⟨∇F (wmd,m

k,t), w
ag,m
k,t+1 − w

md,m
k,t ⟩+

L

2
∥wag,m

k,t+1 − w
md,m
k,t ∥

2 − F ∗|Fk,t]

≤ F (wmd,m
k,t)− F ∗ − η∥∇F (wmd,m

k,t)∥2 + η2L

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

≤ F (wmd,m
k,t)− F ∗ − η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2 (∵ 1− ηL

2
≥ 1

2
← η ∈ [0,

1

L
])

= (1− α−1)(F (w
ag,m
k,t)− F ∗) + α−1(F (wmd,m

k,t)− F ∗)

+ (1− α−1)(F (wmd,m
k,t)− F (wag,m

k,t))− η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

91

≤ (1− α−1)(F (w
ag,m
k,t)− F ∗)− µα−1

2
∥wmd,m

k,t − w∗∥2 + α−1⟨∇F (wmd,m
k,t), wmd,m

k,t − w∗⟩

+ (1− α−1)⟨∇F (wmd,m
k,t), wmd,m

k,t − wag,m
k,t ⟩ −

η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

= (1− α−1)(F (w
ag,m
k,t)− F ∗)− µα−1

2
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

+ α−1⟨∇F (wmd,m
k,t), αβ−1wm

k,t + (1− αβ−1)w
ag,m
k,t − w

∗⟩

= (1− γµ)(F (wag,m
k,t)− F ∗)− γµ2

2
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

+ γµ⟨ 1

1 + γµ
wm
k,t +

γµ

1 + γµ
w

ag,m
k,t − w

∗,∇F (wmd,m
k,t)⟩

Then, we bound E[Ψm
k,t+1|Fk,t] by using the above results.

E[Ψm
k,t+1|Fk,t] =

µ

2
E[∥wm

k,t+1 − w∗∥2|Fk,t] + E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ (1− γµ)Ψm
k,t −

η − γ2µ
2

∥∇F (wmd,m
k,t)∥2 + γ2µ+ η2L

2
σ2

≤ (1− γµ)Ψm
k,t +

γ2µ+ η2L

2
σ2 (∵ γ ≤

√
η

µ
)

≤ (1− γµ)Ψm
k,t +

γ2(µ+ L)

2
σ2 (40)

Plugging (39), (40) in (37) yields,

E[Am
k,t+1|Fk,t]

≤ γ2µ2(µ+ L)

(1 + γµ)2

(
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ

(2L

1 + γµ
Ψm

k,t

)
+ (γ − η)2σ2

)
+ γ2(µ+ L)

2L

1 + γµ

(
(1− γµ)Ψm

k,t +
γ2(µ+ L)

2
σ2

)
=

(1− γµ)2

1 + γµ
· γ

2µ2(µ+ L)

(1 + γµ)2
∥wm

k,t − w
ag,m
k,t ∥

2 +
(γµ(γ − η)2(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ)

) 2L

1 + γµ
Ψm

k,t

+
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2 (41)

Since η ≤ γ, we get (γ − η)2 ≤ γ2. By using this fact, we obtain

γµ(γ − η)2(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ) ≤ γ3µ(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ)

= γ2(µ+ L)(1− γµ+
γµ

1 + γµ
) (42)

It is easy to show that 1− γµ+ γµ
1+γµ < 1. Also, we get

(1− γµ)2

1 + γµ
< 1− γµ < 1− γµ+

γµ

1 + γµ
(43)

92

From (41), (42), and (43) we finally get

E[Am
k,t+1|Fk,t] ≤ (1− γµ+

γµ

1 + γµ
)Am

k,t +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2

From this relationship between Am
k,t+1 and Am

k,t, we obtain the result of Proposition 14.

E[Am
k,t]

≤ (1− γµ+
γµ

1 + γµ
)tE[Am

k,0] +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2 ·

1− (1− γµ+ γµ
1+γµ)

t

1− (1− γµ+ γµ
1+γµ)

= (1− γµ+
γµ

1 + γµ
)tE[Am

k,0] +
((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
σ2 ·

(
1− (1− γµ+

γµ

1 + γµ
)t
)

≤ E[Am
k,0] +

((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

Proposition 15: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ], η, γ ∈ (0, 1

L], τ ≥ 2, FedAQ yields

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk] + (γ2µ+ η2L)τσ2

+
((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2
2

Proof of Proposition 15 Let’s first bound E[∥wm
k,τ − wk∥2] and E[∥wag,m

k,τ − w
ag
k ∥

2] individually.

E[∥wm
k,τ − wk∥2] = E[∥(wm

k,τ − wm
k,τ−1) + · · ·+ (wm

k,1 − wm
k,0)∥2]

= E
[∥∥∥ τ−1∑

t=0

(
(1− α−1)wm

k,t + α−1wmd, m
k,t − wm

k,t − γgmk,t
)∥∥∥2]

= E
[∥∥∥α−1

τ−1∑
t=0

(wmd,m
k,t − wm

k,t)− γ
τ−1∑
t=0

gmk,t

∥∥∥2]
≤ 2α−2E[∥

τ−1∑
t=0

(wmd,m
k,t − wm

k,t)∥2] + 2γ2E[∥
τ−1∑
t=0

gmk,t∥2]

≤ 2α−2τ

τ−1∑
t=0

E[∥wmd,m
k,t − wm

k,t∥2] + 2γ2E[∥
τ−1∑
t=0

∇F (wmd,m
k,t)∥2]

+ 2γ2E[∥
τ−1∑
t=0

(gmk,t −∇F (w
md,m
k,t))∥2]

≤ 2α−2(1− β−1)2τ

τ−1∑
t=0

E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2τ
τ−1∑
t=0

E[∥∇F (wmd,m
k,t)∥2]

+ 2γ2
τ−1∑
t=0

E[∥gmk,t −∇F (w
md,m
k,t)∥2]

= τ
(τ−1∑

t=0

2α−2(1− β−1)2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2E[∥∇F (wmd,m
k,t)∥2]

)
+ 2τγ2σ2

93

E[∥wag,m
k,τ − w

ag
k ∥

2] = E[∥
τ−1∑
t=0

(w
ag,m
k,t+1 − w

ag,m
k,t)∥2]

= E[∥
τ−1∑
t=0

(wmd,m
k,t − wag,m

k,t − ηg
m
k,t)∥2]

≤ 2E[∥
τ−1∑
t=0

(wmd,m
k,t − wag,m

k,t)∥2] + 2η2E[∥
τ−1∑
t=0

gmk,t∥2]

= 2β−2E[∥
τ−1∑
t=0

(wm
k,t − w

ag,m
k,t)∥2] + 2η2E[∥

τ−1∑
t=0

∇F (wmd,m
k,t)∥2]

+ 2η2E[∥
τ−1∑
t=0

(gmk,t −∇F (w
md,m
k,t))∥2]

≤ 2β−2τ

τ−1∑
t=0

E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2τ

τ−1∑
t=0

E[∥∇F (wmd,m
k,t)∥2]

+ 2η2
τ−1∑
t=0

E[∥gmk,t −∇F (w
md,m
k,t)∥2]

= τ
(τ−1∑

t=0

2β−2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2E[∥∇F (wmd,m
k,t)∥2]

)
+ 2τη2σ2

Thus, by using the above results, we get

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
τ−1∑
t=0

{(
µα−2(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (γ2µ+ η2L)E[∥∇F (wmd,m
k,t)∥2]

}
+ (γ2µ+ η2L)τσ2

≤ τ
τ−1∑
t=0

{(
µα−2(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (γ2µ+ η2L)
2L

1 + γµ
E[Ψm

k,t]
}

+ (γ2µ+ η2L)τσ2 (∵ (38))

≤ τ
τ−1∑
t=0

{γ2µ2(µ+ L)

(1 + γµ)2
E[∥wm

k,t − w
ag,m
k,t ∥

2] + γ2(µ+ L)
2L

1 + γµ
E[Ψm

k,t]
}
+ (γ2µ+ η2L)τσ2

= τ
(τ−1∑

t=0

E[Am
k,t]

)
+ (γ2µ+ η2L)τσ2

94

By Proposition 14 and the fact Ψm
k,0 = Ψk, we obtain

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
{ τ−1∑

t=0

E[Am
k,0] +

((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

}
+ (γ2µ+ η2L)τσ2

= τ2
(γ2µ2(µ+ L)

(1 + γµ)2
E[∥wk − wag

k ∥
2] + γ2(µ+ L)

2L

1 + γµ
E[Ψk]

)
+ τ

((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)(τ−1∑
t=0

1− (1− γµ+
γµ

1 + γµ
)t
)
σ2 + (γ2µ+ η2L)τσ2

Before we get to the final result, let’s find the upper bound for ∥wk − wag
k ∥

2,
∑τ−1

t=0

(
1− (1− γµ+ γµ

1+γµ)
t
)

∥wk − wag
k ∥

2 = ∥wk − w∗ − (w
ag
k − w

∗)∥2

≤ 2∥wk − w∗∥2 + 2∥wag
k − w

∗∥2

≤ 2∥wk − w∗∥2 + 2 · 2
µ

(
F (w

ag
k)− F ∗ − ⟨∇F (w∗), w

ag
k − w

∗⟩
)

= 2∥wk − w∗∥2 + 4

µ
(F (w

ag
k)− F ∗) =

4

µ
Ψk

τ−1∑
t=0

(
1− (1− γµ+

γµ

1 + γµ
)t
)
= τ −

τ−1∑
t=0

(1− γµ+
γµ

1 + γµ
)t

= τ −
1− (1− γµ+ γµ

1+γµ)
τ

1− (1− γµ+ γµ
1+γµ)

≤ τ −
1− (1− γ2µ2

1+γµτ + (γ2µ2

1+γµ)
2 τ(τ−1)

2)

γ2µ2

1+γµ

=
γ2µ2

1 + γµ
· τ(τ − 1)

2
≤ γ2µ2

1 + γµ
· τ

2

2

Therefore, we conclude as below

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk] + (γ2µ+ η2L)τσ2

+
((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2
2

Proof of Lemma 10 By the definition of Ψk,Ψk,t and Proposition 11,

E[Ψk+1] = E[Ψk,τ] +
µ

2
E[∥wk+1 − w̄k,τ∥2] + E[F (wag

k+1)−
1

M

M∑
m=1

F (w
ag,m
k,τ)]

95

Applying Proposition 12 and Proposition 13, we have

E[Ψk+1]

≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

+
qµ

2M2

M∑
m=1

E[∥wm
k,τ − wk∥2] +

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

+
q

M

[(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk] + (γ2µ+ η2L)τσ2

+
((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2
2

]
=

{
(1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2
}
E[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

The second inequality comes from Proposition 15. Then, let’s define C(γ, τ) as

C(γ, τ) = (1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2

Finally, we obtain

E[Ψk+1] ≤ C(γ, τ)E[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2 +

q

M
(γ2µ+ η2L)τσ2

+
q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥]

5.3.2 Proof of Theorem 16

Theorem 16: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ =

max(η,
√

η
µτ), η, γ ∈ (0, 1

L], τ ≥ 2, if the learning rate γ satisfies(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γτ ≤ 1

2
µ (44)

96

FedAQ yields

E[ΨK] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 + (2q + 1)(

η
1
2σ2

µ
1
2Mτ

1
2

+
ησ2

M
) + 14η2Lτσ2

+
(780 + 2q

M)η
3
2Lτ

1
2σ2

µ
1
2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM

Proof of Theorem 16 At first, due to the condition (44) in Theorem 16, we get

C(γ, τ) = (1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2

≤ 1− γµτ + γ2µ2τ2 +
q

M
γ2(µ+ L)(4µ+ 2L)τ2

= 1− γµτ +
(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γ2τ2

≤ 1− 1

2
γµτ (∵ condition (44))

The first inequality comes from the fact that (1− γµ)τ ≤ e−γµτ ≤ 1− γµτ + γ2µ2τ2 when 0 ≤ γµ ≤ 1. Also,
it is trivial that γ = max(η,

√
η
µτ) ∈ [η,

√
η
µ]. Thus, we can use Lemma 10. By using Lemma 10 and the above

result, we obtain

E[Ψk+1] ≤ (1− 1

2
γµτ)E[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥] (45)

By the Lemma B.3 in [43], we know that the below quantity is bounded.

max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t)∥] ≤ B

B =

7ηγτσ2
(
1 + 2γ2µ

η

)2τ
, if γ ∈

(
η,
√

η
µ

]
7η2τσ2, if γ = η

Telescoping (45) yields

E[ΨK] ≤ (1− 1

2
γµτ)KΨ0 +

(K−1∑
k′=0

(1− 1

2
γµτ)k

′
)
·
[1
2
(η2L+

γ2µ

M
)τσ2 + γµLτB

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2

]
≤ exp

(
− γµτK

2

)
Ψ0 +

η2Lσ2

γµ
+
γσ2

M
+ 2LB + 2q

(γσ2
M

+
η2Lσ2

γµM

)
+

q

M

((γ − η)2γµ(µ+ L)

(1 + γµ)2
+
γ3(µ+ L)2L

(1 + γµ)µ

)
τ2σ2

97

The last inequality comes from the fact that
∑K−1

k′=0(1−
1
2γµτ)

k′ ≤ 2
γµτ . Since we plug in γ = max(η,

√
η
µτ),

we can use Lemma B.4 in [43]. Therefore, we obtain

E[ΨK] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 +

η
1
2σ2

µ
1
2Mτ

1
2

+
ησ2

M
+

780η
3
2Lτ

1
2σ2

µ
1
2

+ 14η2Lτσ2

+max
(2qη

1
2σ2

Mµ
1
2 τ

1
2

,
2qησ2

M

)
+min

(2qη 3
2 τ

1
2Lσ2

Mµ
1
2

,
2qηLσ2

Mµ

)
+
qτ2σ2

M
max

(η 3
2µ(µ+ L)

µ
3
2 τ

3
2

+
η

3
2 (µ+ L)2L

µ
5
2 τ

3
2

,
η3(µ+ L)2L

µ

)
The first term stems directly from Lemma B.4 in [43]. Also, the last term comes from the fact that

(γ − η)2γµ(µ+ L)

(1 + γµ)2
+
γ3(µ+ L)2L

(1 + γµ)µ
≤

{
γ3µ(µ+ L) + γ3(µ+L)2L

µ , if γ ̸= η
η3(µ+L)2L

µ , if γ = η

Therefore, by simple inequalities such as max(a, b) ≤ a+ b and min(a, b) ≤ a, we ultimately get

E[ΨK] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 +

(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
(2q + 1)ησ2

M
+ 14η2Lτσ2

+
(780 + 2q

M)η
3
2Lτ

1
2σ2

µ
1
2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM
(46)

5.3.3 Proof of Corollary 17

Corollary 17: Let C1, C2, and η0 as below. Note that T = Kτ .

C1 =
(µ+ L)(µ2 + µL+ L2)q

µ
5
2

, C2 =
q(µ+ L)2L

µ

η0 =
4τ

µT 2
log2

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)

Then for η = min(1L , η0), FedAQ yields

E[ΨK] ≤ min
(
exp(−µT

2L
), exp(− µ

1
2T

2L
1
2 τ

1
2

)
)
Ψ0

+
7(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
(47)

+
(6465 + 16q

M)Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
(48)

+
9(µ

3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
(49)

Proof of Corollary 17 Let’s decompose the final result (46) of the Theorem 16 into a decreasing term and an

98

increasing term. We denote the decreasing term ψ1 and the increasing term ψ2 as below.

ψ1(η) = exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)T

)
Ψ0

ψ2(η) =
(2q + 1)η

1
2σ2

µ
1
2Mτ

1
2

+
(2q + 1)ησ2

M
+

(780 + 2q
M)η

3
2Lτ

1
2σ2

µ
1
2

+ 14η2Lτσ2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM

Since ψ1 is the decreasing term, we have

ψ1(η) ≤ ψ1(
1

L
) + ψ1(η0) (50)

where

ψ1(
1

L
) = min

(
exp(−µT

2L
), exp(− µ

1
2T

2L
1
2 τ

1
2

)
)
Ψ0

ψ1(η0) ≤ exp
(
− 1

2

√
η0µ

τ
T
)

=
(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)−1

Ψ0

≤ (2q + 1)σ2

µMT
+
Lτ2σ2

µ2T 3
+

(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3

Since ψ2 is the increasing term, we have

ψ2(η)

≤ ψ2(η0)

≤ 2(2q + 1)σ2

µMT
log

(
e+

µMTΨ0

(2q + 1)σ2

)
+

4(2q + 1)τσ2

µMT 2
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

8(780 + 2q
M)Lτ2σ2

µ2T 3
log3

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

224Lτ3σ2

µ2T 4
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

8C1τ
2σ2

µ
3
2MT 3

log3
(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
+

64C2τ
5σ2

µ3MT 6
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
≤ 6(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

(6464 + 16q
M)Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

8(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
(51)

99

The last inequality comes from τ
T ≤ 1. Therefore, by combining (50) and (51), we finally get

E[ΨK] ≤ ψ1(η) + ψ2(η)

≤ ψ1(
1

L
) + ψ1(η0) + ψ2(η0)

≤ min
(
exp(−µT

2L
), exp(− µ

1
2T

2L
1
2 τ

1
2

)
)
Ψ0 +

7(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

(6465 + 16q
M)Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

9(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
5.3.4 Why the Condition (44) is Satisfied

The synchronization rounds K required for linear speedup in M for FedAQ is Õ((M
1+q)

1
2) (See Remark 8). Since

we derive this result from Theorem 16, we should show that K = Õ((M
1+q)

1
2) satisfies the condition (44) in

Theorem 16. (
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γτ ≤ 1

2
µ

We rewrite the above condition as below.

γτ ≤ µ

2µ2 + 2q
M (µ+ L)(4µ+ 2L)

(52)

We know γ = max(η,
√

η
µτ) and η = min(1L , η0). Since η0 becomes smaller and smaller as T increases, we

assume η = η0 here. Therefore, we get

γτ = max(η0τ,

√
η0τ

µ
)

= max
(4τ2

µT 2
log2

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)
,

2τ

µT
log

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
))

Note that K = T
τ = Õ((M

1+q)
1
2) = C(M

1+q)
1
2 log(T) because Õ contains hidden multiplicative polylog factors

with respect to T . We can assume T is sufficiently large here. Then, we have

γτ = max
(4(1 + q)

µC2M log2(T)
log2

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)
,

2(1 + q)
1
2

µCM
1
2 log(T)

log
(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
))

≤ max
(4(1 + q)

µC2M log2(T)
log2

(2µMTΨ0

(2q + 1)σ2

)
,

2(1 + q)
1
2

µCM
1
2 log(T)

log
(2µMTΨ0

(2q + 1)σ2

))

100

For an arbitrary constant k1 > 0, it is easy to show that limT→∞
log(k1T)
log(T) = 1. Thus, we obtain

γτ ≤ max
(4(1 + q)

µC2M log2(T)
log2

(2µMTΨ0

(2q + 1)σ2

)
,

2(1 + q)
1
2

µCM
1
2 log(T)

log
(2µMTΨ0

(2q + 1)σ2

))
≃ max

(4(1 + q)

µC2M
,
2(1 + q)

1
2

µCM
1
2

)
≤ µ

2µ2 + 2q
M (µ+ L)(4µ+ 2L)

Finally, we conclude that there exists a constant C that meets the last inequality. Therefore, K = Õ((M
1+q)

1
2)

satisfies the condition (44).

5.4 Proof Details for FedAQ under Condition Set (35)

We use notations defined in section 5.3 here as well. We newly define Φm
k,t,Φk,t,Φk, B

m
k,t as below.

Φm
k,t = F (w

ag,m
k,t)− F ∗ +

1

6
µ∥wm

k,t − w∗∥2

Φk,t = F (w̄
ag
k,t)− F

∗ +
1

6
µ∥w̄k,t − w∗∥2

Φk : = Φk,0 = F (w
ag
k)− F ∗ +

1

6
µ∥wk − w∗∥2

Bm
k,t =

(µα−2

3
(1− β−1)2 + Lβ−2

)
∥wm

k,t − w
ag,m
k,t ∥

2 + γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

· 2LΦm
k,t

The flow of proof is similar to section 5.3. We need one more condition γµ ≤ 3
4 to show the convergence of

FedAQ under the parameter condition set (35).

5.4.1 Proof of Lemma 5

In order to prove Lemma 5, we first introduce five crucial Propositions for proving Lemma 5. Then, we prove
Lemma 5 by using Propositions in the last part of this section.

Proposition 18: Let Assumption 1 hold and consider any k synchronization round. Then, we can decompose
the expectation as follows:

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]
E[F (wag

k+1)− F
∗] = E[F (wag

k+1)− F (w̄
ag
k,τ)] + E[F (w̄ag

k,τ)− F
∗]

Proof of Proposition 18 The second equality is trivial. The first equality is the same as one in Proposition 11.

Proposition 19: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 3
2γµ −

1
2 , β =

2α2−1
α−1 , γ ∈ [η,

√
η
µ], η ∈ (0, 1

L], FedAQ yields

E[Φk,τ] ≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M

+ γτ · max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

101

Proof of Proposition 19 We refer to the proof of Lemma C.2 in [43]. There is no quantization between Φk,τ

and Φk. Thus, we can directly apply useful inequalities in the proof of Lemma C.2 in [43] to our proof. Then, we
obtain

E[Φk,t+1|Fk,t] ≤ (1− 1

3
γµ)Φk,t + (

η2L

2
+
γ2µ

6
)
σ2

M
+ γ∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2

From the above relationship between Φk,t+1 and Φk,t, we get

E[Φk,τ] ≤ (1− 1

3
γµ)τE[Φk] +

(τ−1∑
t=0

(1− 1

3
γµ)t

)
· (η

2L

2
+
γ2µ

6
)
σ2

M

+ γ
τ−1∑
t=0

{
(1− 1

3
γµ)τ−t−1E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

}
≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M

+ γτ · max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

Proposition 20: Let Assumption 1 hold. Then, we have

E[∥wk+1 − w̄k,τ∥2] ≤
q

M2

M∑
m=1

E[∥wm
k,τ − wk∥2]

E[F (wag
k+1)− F (w̄

ag
k,τ)] ≤

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proof of Proposition 20 The first inequality is the same as one in Proposition 13. The proof of the second
inequality is similar to Proposition 13 as well.

E[F (wag
k+1)− F (w̄

ag
k,τ)] = E[F (wag

k +
1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k))− F (1

M

M∑
m=1

w
ag,m
k,τ)]

≤ E
[
⟨∇F (1

M

M∑
m=1

w
ag,m
k,τ),

1

M

M∑
m=1

(
Q(w

ag,m
k,τ − w

ag
k)

− (w
ag,m
k,τ − w

ag
k)

)
⟩+ L

2
∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ − w

ag
k)∥2

]
=
L

2
E[∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ − w

ag
k)∥2]

=
L

2M2

M∑
m=1

E[∥Q(w
ag,m
k,τ − w

ag
k)− (w

ag,m
k,τ − w

ag
k)∥2]

≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

102

Proposition 21: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 3
2γµ −

1
2 , β =

2α2−1
α−1 , γ ∈ [η,

√
η
µ], η, γ ∈ (0, 1

L], γµ ≤
3
4 , we get

E[Bm
k,t] ≤ E[Bm

k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
·
1 + 1

2α
−1

1
4α

−2
·
(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

Proof of Proposition 21 From the notation mentioned in the beginning of section 5.4,

E[Bm
k,t+1|Fk,t] =

(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t+1 − w
ag,m
k,t+1∥

2|Fk,t]

+ γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

· 2LE[Φm
k,t+1|Fk,t] (53)

Thus, let’s sequentially compute E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] and E[Φm
k,t+1|Fk,t].

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] = E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w
md,m
k,t + ηgmk,t∥2|Fk,t]

= E[∥(1− α−1)(wm
k,t − w

md,m
k,t)− (γ − η)gmk,t∥2|Fk,t] (← γ ≥ η)

= ∥(1− α−1)(wm
k,t − w

md,m
k,t)− (γ − η)∇F (wmd,m

k,t)∥2

+ (γ − η)2E[∥∇F (wmd,m
k,t)− gmk,t∥2|Fk,t]

≤ (1− α−1)2∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2∥∇F (wmd,m
k,t)∥2

+ (γ − η)2σ2 − 2(γ − η)⟨(1− α−1)(wm
k,t − w

md,m
k,t),∇F (wmd,m

k,t)⟩

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2

+ (γ − η)2(1 + α

2
)∥∇F (wmd,m

k,t)∥2 + (γ − η)2σ2

Here, we need to bound ∥∇F (wmd,m
k,t)∥2.

∥∇F (wmd,m
k,t)∥2 ≤ 2L(F (wmd,m

k,t)− F ∗) (∵ Assumption 3)

≤ 2L
(
β−1(F (wm

k,t)− F (w∗)) + (1− β−1)(F (w
ag,m
k,t)− F ∗)

)
≤ β−1L2∥wm

k,t − w∗∥2 + 2(1− β−1)L(F (w
ag,m
k,t)− F ∗)

=
α− 1

2α2 − 1
L2∥wm

k,t − w∗∥2 + 2L · 2α
2 − α

2α2 − 1
(F (w

ag,m
k,t)− F ∗)

≤
µ
3 (2α

2 − α)
2α2 − 1

L∥wm
k,t − w∗∥2 + 2L · 2α

2 − α
2α2 − 1

(F (w
ag,m
k,t)− F ∗)

=
2α2 − α
2α2 − 1

· 2LΦm
k,t (54)

It is easy to show (α− 1)L ≤ µ
3 (2α

2 − α) by using the fact γL ≤ 1. Therefore, we finally get

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t]

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2(1 + α

2
)∥∇F (wmd,m

k,t)∥2 + (γ − η)2σ2

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2(1 + α

2
)(
2α2 − α
2α2 − 1

· 2LΦm
k,t)

+ (γ − η)2σ2 (55)

103

Now, let’s compute E[Φm
k,t+1|Fk,t]. We need to compute E[∥wm

k,t+1 − w∗∥2|Fk,t] and E[F (wag,m
k,t+1)− F

∗|Fk,t]
first.

E[∥wm
k,t+1 − w∗∥2|Fk,t]

= E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w∗∥2|Fk,t]

≤ ∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γ∇F (wmd,m
k,t)− w∗∥2 + γ2σ2

≤ (1 +
1

2
α−1)∥(1− α−1)wm

k,t + α−1wmd,m
k,t − γ∇F (wmd,m

k,t)− w∗∥2 + γ2σ2

= (1 +
1

2
α−1)∥(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗∥2 + γ2(1 +

1

2
α−1)∥∇F (wmd,m

k,t)∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t)⟩+ γ2σ2

≤ (1 +
1

2
α−1)

(
(1− α−1)∥wm

k,t − w∗∥2 + α−1∥wmd,m
k,t − w∗∥2

)
+ γ2(1 +

1

2
α−1)

· ∥∇F (wmd,m
k,t)∥2 − 2γ(1 +

1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t)⟩+ γ2σ2

It is easy to show (1 + 1
2α

−1)(1− α−1) < 1− 1
2α

−1, 1 + 1
2α

−1 ≤ 3
2 . Due to these facts, we obtain

E[∥wm
k,t+1 − w∗∥2|Fk,t]

≤ (1− 1

2
α−1)∥wm

k,t − w∗∥2 + 3

2
α−1∥wmd,m

k,t − w∗∥2 + 3

2
γ2∥∇F (wmd,m

k,t)∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t)⟩+ γ2σ2

≤ (1− 1

2
α−1)∥wm

k,t − w∗∥2 + 3

2
α−1∥wmd,m

k,t − w∗∥2 + 3

2
γ2∥∇F (wmd,m

k,t)∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1(1− β−1))wm

k,t + α−1(1− β−1)w
ag,m
k,t − w

∗,∇F (wmd,m
k,t)⟩+ γ2σ2

Next, we compute the upper bound of E[F (wag,m
k,t+1)− F

∗|Fk,t].

E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ E[F (wmd,m
k,t) + ⟨∇F (wmd,m

k,t), w
ag,m
k,t+1 − w

md,m
k,t ⟩+

L

2
∥wag,m

k,t+1 − w
md,m
k,t ∥

2 − F ∗|Fk,t]

≤ F (wmd,m
k,t)− F ∗ − η∥∇F (wmd,m

k,t)∥2 + η2L

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

≤ F (wmd,m
k,t)− F ∗ − η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2 (∵ 1− ηL

2
≥ 1

2
← η ∈ [0,

1

L
])

= (1− 1

2
α−1)(F (w

ag,m
k,t)− F ∗) +

1

2
α−1(F (wmd,m

k,t)− F ∗)

+ (1− 1

2
α−1)(F (wmd,m

k,t)− F (wag,m
k,t))− η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

≤ (1− 1

2
α−1)(F (w

ag,m
k,t)− F ∗)− µα−1

4
∥wmd,m

k,t − w∗∥2 + 1

2
α−1⟨∇F (wmd,m

k,t), wmd,m
k,t − w∗⟩

+ (1− 1

2
α−1)⟨∇F (wmd,m

k,t), wmd,m
k,t − wag,m

k,t ⟩ −
η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

= (1− 1

2
α−1)(F (w

ag,m
k,t)− F ∗)− µα−1

4
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t)∥2 + η2L

2
σ2

+
1

2
α−1⟨∇F (wmd,m

k,t), 2αβ−1wm
k,t + (1− 2αβ−1)w

ag,m
k,t − w

∗⟩

104

It is easy to show 1
2α

−1 = γµ
3 (1 + 1

2α
−1). Then, we bound E[Φm

k,t+1|Fk,t] by using the above results.

E[Φm
k,t+1|Fk,t] =

µ

6
E[∥wm

k,t+1 − w∗∥2|Fk,t] + E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ (1− 1

2
α−1)Φm

k,t −
2η − γ2µ

4
∥∇F (wmd,m

k,t)∥2 + 1

2
(
γ2µ

3
+ η2L)σ2

≤ (1− 1

2
α−1)Φm

k,t +
1

2
(
γ2µ

3
+ η2L)σ2 (∵ γ ≤

√
η

µ
)

≤ (1− 1

2
α−1)Φm

k,t +
γ2

2
(
µ

3
+ L)σ2 (56)

Plugging (55), (56) in (53) yields,

E[Bm
k,t+1|Fk,t]

≤
(µα−2

3
(1− β−1)2 + Lβ−2

)(
(1− α−1)2(1 + 2α−1)∥wm

k,t − w
md,m
k,t ∥

2

+ (γ − η)2(1 + α

2
) · (2α

2 − α
2α2 − 1

· 2LΦm
k,t) + (γ − η)2σ2

)
+ γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L
(
(1− 1

2
α−1)Φm

k,t +
γ2

2
(
µ

3
+ L)σ2

)
= (1− α−1)2(1 + 2α−1)

(µα−2

3
(1− β−1)2 + Lβ−2

)
∥wm

k,t − w
md,m
k,t ∥

2

+

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2(1 + α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

)
· (2α

2 − α
2α2 − 1

· 2LΦm
k,t) +

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2 (57)

We can show that both coefficients of ∥wm
k,t − w

md,m
k,t ∥

2 and 2α2−α
2α2−1

· 2LΦm
k,t are upper bounded by 1− 1

2α
−1 +

1
2
α−1

1+ 1
2
α−1 .

(1− α−1)2(1 + 2α−1) ≤ 1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
(< 1) (58)

⇔ 1− 1

4
α−2 +

1

2
α−1 − (1− α−1)2(1 + 2α−1)(1 +

1

2
α−1) ≥ 0

Let’s define g1(α−1) = 1− 1
4α

−2 + 1
2α

−1 − (1− α−1)2(1 + 2α−1)(1 + 1
2α

−1). Then, it is easy to check that
g1(α

−1) ≥ 0 for 0 < α−1 ≤ 1. Moreover, we would like to show the below inequality.(µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2(1 + α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

≤
(µα−2

3
(1− β−1)2 + Lβ−2

)
γ2(1 +

α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)γ2(

µ

3
+ L) (59)

Since µα−2

3 (1− β−1)2 + Lβ−2 = µ
3 (

2α−1
2α2−1

)2 + L(α−1
2α2−1

)2 ≤ (µ3 + L
4)(

2α−1
2α2−1

)2, it is enough to show

(
µ

3
+
L

4
)(

2α− 1

2α2 − 1
)2γ2(1 +

α

2
) ≤

1
2α

−1

1 + 1
2α

−1
γ2(

µ

3
+ L)

105

We also know that
µ
3
+L

µ
3
+L

4

= 4− 1
1
3
+L

µ
· 1
4

> 16
7 (∵ L

µ > 1). Then, we only need to show

(
2α− 1

2α2 − 1
)2(1 +

α

2
) ≤ 16

7
·

1
2

α+ 1
2

⇔ 8

7
(2α2 − 1)2 − (2α− 1)2(1 +

α

2
)(α+

1

2
) ≥ 0

Let’s define g2(α) = 8
7(2α

2 − 1)2 − (2α− 1)2(1 + α
2)(α+ 1

2). Then, it is easy to check g2(α) ≥ 0 for α ≥ 3
2 .

As we assume γµ ≤ 3
4 , we can say α = 3

2γµ −
1
2 ≥

3
2 . This indicates that the inequality (59) is satisfied. Thus,

from (57), (58), and (59) we finally get

E[Bm
k,t+1|Fk,t] ≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)Bm

k,t

+

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2

From this relationship between Bm
k,t+1 and Bm

k,t, we obtain the result of Proposition 21.

E[Bm
k,t] ≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)tE[Bm

k,0] +

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2

+ γ4(
µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2 ·

1− (1− 1
2α

−1 +
1
2
α−1

1+ 1
2
α−1)

t

1− (1− 1
2α

−1 +
1
2
α−1

1+ 1
2
α−1)

≤ E[Bm
k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
·
1 + 1

2α
−1

1
4α

−2
·
(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

Proposition 22: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 3
2γµ −

1
2 , β =

2α2−1
α−1 , γ ∈ [η,

√
η
µ], η, γ ∈ (0, 1

L], γµ ≤
3
4 , τ ≥ 2, FedAQ yields

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk]

+ (
γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2
2

Proof of Proposition 22 We use the same upper bounds for E[∥wm
k,τ − wk∥2] and E[∥wag,m

k,τ − w
ag
k ∥

2] as in
Proposition 15.

E[∥wm
k,τ − wk∥2] ≤ τ

(τ−1∑
t=0

2α−2(1− β−1)2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2E[∥∇F (wmd,m
k,t)∥2]

)
+ 2τγ2σ2

E[∥wag,m
k,τ − w

ag
k ∥

2] ≤ τ
(τ−1∑

t=0

2β−2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2E[∥∇F (wmd,m
k,t)∥2]

)
+ 2τη2σ2

106

Thus, by using the above results, we get

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
τ−1∑
t=0

{(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (
γ2µ

3
+ η2L)E[∥∇F (wmd,m

k,t)∥2]
}

+ (
γ2µ

3
+ η2L)τσ2

≤ τ
τ−1∑
t=0

{(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

2LE[Φm
k,t]

}
+ (

γ2µ

3
+ η2L)τσ2 (∵ (54))

= τ
(τ−1∑

t=0

E[Bm
k,t]

)
+ (

γ2µ

3
+ η2L)τσ2

By Proposition 21 and the fact Φm
k,0 = Φk, we obtain

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
{ τ−1∑

t=0

E[Bm
k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
1 + 1

2α
−1

1
4α

−2

(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

}
+ (

γ2µ

3
+ η2L)τσ2

= τ2
((µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wk − wag

k ∥
2] + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2LE[Φk]

)
+ τ

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
1 + 1

2α
−1

1
4α

−2

·
(τ−1∑

t=0

1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2 + (

γ2µ

3
+ η2L)τσ2

Before we get to the final result, let’s find the upper bound for ∥wk−wag
k ∥

2,
∑τ−1

t=0

(
1− (1− 1

2α
−1+

1
2
α−1

1+ 1
2
α−1)

t
)

∥wk − wag
k ∥

2 = ∥wk − w∗ − (w
ag
k − w

∗)∥2

≤ (1 +
1

3
)∥wk − w∗∥2 + (1 + 3)∥wag

k − w
∗∥2

≤ 4

3
∥wk − w∗∥2 + 4 · 2

µ

(
F (w

ag
k)− F ∗ − ⟨∇F (w∗), w

ag
k − w

∗⟩
)

=
4

3
∥wk − w∗∥2 + 8

µ
(F (w

ag
k)− F ∗) =

8

µ
Φk

107

τ−1∑
t=0

(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
= τ −

τ−1∑
t=0

(1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t

= τ −
1− (1− 1

2α
−1 +

1
2
α−1

1+ 1
2
α−1)

τ

1− (1− 1
2α

−1 +
1
2
α−1

1+ 1
2
α−1)

≤ τ −
1− (1−

1
4
α−2

1+ 1
2
α−1 τ + (

1
4
α−2

1+ 1
2
α−1)

2 τ(τ−1)
2)

1
4
α−2

1+ 1
2
α−1

=
1
4α

−2

1 + 1
2α

−1
· τ(τ − 1)

2
≤

1
4α

−2

1 + 1
2α

−1
· τ

2

2

Therefore, we obtain

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤
(8
3
α−2(1− β−1)2 +

8L

µ
β−2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L
)
τ2E[Φk] + (

γ2µ

3
+ η2L)τσ2

+

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
· τ

3σ2

2
(60)

Moreover, we can simplify the above inequality by replacing α, β with γ, µ. It is easy to show 2α2−α
2α2−1

≤
1, 2α−1

2α2−1
≤ 1

α = 2γµ
3−γµ ≤ γµ. Then, we can further show

8

3
α−2(1− β−1)2 +

8L

µ
β−2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L

=
8

3
(
2α− 1

2α2 − 1
)2 +

8L

µ
(
α− 1

2α2 − 1
)2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L

≤(8
3
+

2L

µ
)(

2α− 1

2α2 − 1
)2 + γ2(

µ

3
+ L)2L

≤(8
3
+

2L

µ
)α−2 + γ2(

µ

3
+ L)2L

≤γ2µ(8
3
µ+ 2L) + 2γ2L(

µ

3
+ L) (61)

We also get (µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

≤(µ
3
+
L

4
)(

2α− 1

2α2 − 1
)2(γ − η)2 + γ4(

µ

3
+ L)2L

≤(γ − η)2γ2µ2(µ
3
+
L

4
) + γ4(

µ

3
+ L)2L (62)

108

Finally, from (60), (61), and (62), we conclude as below

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk]

+ (
γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2
2

Proof of Lemma 5 By the definition of Φk,Φk,t and Proposition 18,

E[Φk+1] = E[Φk,τ] +
µ

6
E[∥wk+1 − w̄k,τ∥2] + E[F (wag

k+1)− F (w̄
ag
k,τ)]

Applying Proposition 19 and Proposition 20, we have

E[Φk+1]

≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

+
qµ

6M2

M∑
m=1

E[∥wm
k,τ − wk∥2] +

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

+
q

M

[(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk] + (

γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2
2

]
= D(γ, τ)E[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2

The second inequality comes from Proposition 22. D(γ, τ) is defined as below.

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2

5.4.2 Proof of Theorem 6

Proof of Theorem 6 At first, due to the condition (36) in Theorem 6, we get

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2

≤ 1− 1

3
γµτ +

1

9
γ2µ2τ2 +

q

M
γ2

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

)
τ2

= 1− 1

3
γµτ +

(
1

9
µ2 +

q

M

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

))
γ2τ2

≤ 1− 1

6
γµτ (∵ condition (36))

109

It is trivial that γ = max(η,
√

η
µτ) ∈ [η,

√
η
µ]. Thus, we can use Lemma 5. By using Lemma 5 and the above

result, we obtain

E[Φk+1]

≤ (1− 1

6
γµτ)E[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t)∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2 (63)

By the Lemma C.14 in [43], we know that the below quantity is bounded.

max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t)∥2] ≤ B′

B′ =

4η2L2τσ2
(
1 + γ2µ

η

)2τ
, if γ ∈

(
η,
√

η
µ

]
4η2L2τσ2, if γ = η

Telescoping (63) yields

E[ΦK] ≤ (1− 1

6
γµτ)KΦ0 +

(K−1∑
k′=0

(1− 1

6
γµτ)k

′
)
·
[
(
η2L

2
+
γ2µ

6
)
τσ2

M
+

q

M
(
γ2µ

3
+ η2L)τσ2

+
q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2 + γτB′

]
≤ exp

(
− γµτK

6

)
Φ0 +

3η2Lσ2

γµM
+
γσ2

M
+

6B′

µ
+ 2q

(γσ2
M

+
3η2Lσ2

γµM

)
+

3q

M

(
(γ − η)2γµ(µ

3
+
L

4
) +

γ3(µ3 + L)2L

µ

)
τ2σ2

The last inequality comes from the fact that
∑K−1

k′=0(1−
1
6γµτ)

k′ ≤ 6
γµτ . Since we plug in γ = max(η,

√
η
µτ),

we can use Lemma C.15 in [43]. Therefore, we obtain

E[ΦK] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
4(2q + 1)η2L2τσ2

µ

+
24e2η2L2τσ2

µ
+

3qτ2σ2

M
max

(η 3
2µ(µ3 + L

4)

µ
3
2 τ

3
2

+
η

3
2 (µ3 + L)2L

µ
5
2 τ

3
2

,
η3(µ3 + L)2L

µ

)
The first term stems directly from Lemma C.15 in [43]. Also, the last term comes from the fact that

(γ − η)2γµ(µ
3
+
L

4
) +

γ3(µ3 + L)2L

µ
≤

γ3µ(µ3 + L
4) +

γ3(µ
3
+L)2L

µ , if γ ̸= η
η3(µ

3
+L)2L

µ , if γ = η

Therefore, by simple inequalities such as max(a, b) ≤ a+ b and min(a, b) ≤ a, we ultimately get

E[ΦK] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ

+
3q
(
µ2(µ3 + L

4) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM
(64)

110

5.4.3 Proof of Corollary 23

Corollary 23: Let D1, D2, and η0 as below. Note that T = Kτ .

D1 =

(
µ2(µ3 + L

4) + L(µ3 + L)2)
)
q

µ
5
2

, D2 =
q(µ3 + L)2L

µ

η0 =
36τ

µT 2
log2

(
e+min(

µMTΦ0

(2q + 1)σ2
,

µ3T 4Φ0

(q + 25)L2τ3σ2
,

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
)

Then for η = min(1L , η0), FedAQ yields

E[ΦK] ≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0

+
13(2q + 1)σ2

µMT
log2

(
e+

µMTΦ0

(2q + 1)σ2

)
(65)

+
10369(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
(66)

+
649(µ

3
2D1 + 216D2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 216D2)τ2σ2

)
(67)

Proof of Corollary 23 Let’s decompose the final result (64) of the Theorem 6 into a decreasing term and an
increasing term. We denote the decreasing term ϕ1 and the increasing term ϕ2 as below.

ϕ1(η) = exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)T

)
Φ0

ϕ2(η) =
2(2q + 1)η

1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ
+

3q
(
µ2(µ3 + L

4) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM

Since ϕ1 is the decreasing term, we have

ϕ1(η) ≤ ϕ1(
1

L
) + ϕ1(η0) (68)

where

ϕ1(
1

L
) = min

(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0

ϕ1(η0) ≤ exp
(
− 1

6

√
η0µ

τ
T
)

=
(
e+min(

µMTΦ0

(2q + 1)σ2
,

µ3T 4Φ0

(q + 25)L2τ3σ2
,

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
)−1

Φ0

≤ (2q + 1)σ2

µMT
+

(q + 25)L2τ3σ2

µ3T 4
+

(µ
3
2D1 + 63D2)τ

2σ2

µ3MT 3

111

Since ϕ2 is the increasing term, we have

ϕ2(η)

≤ ϕ2(η0)

≤ 12(2q + 1)σ2

µMT
log

(
e+

µMTΦ0

(2q + 1)σ2

)
+

8 · 362(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
+

3 · 63D1τ
2σ2

µ
3
2MT 3

log3
(
e+

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
+

3 · 363D2τ
5σ2

µ3MT 6
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
≤ 12(2q + 1)σ2

µMT
log

(
e+

µMTΦ0

(2q + 1)σ2

)
+

8 · 362(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
+

3 · 63(µ
3
2D1 + 63D2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
(69)

The last inequality comes from τ
T ≤ 1. Therefore, by combining (68) and (69), we finally get

E[ΦK] ≤ ϕ1(η) + ϕ2(η)

≤ ϕ1(
1

L
) + ϕ1(η0) + ϕ2(η0)

≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0 +

13(2q + 1)σ2

µMT
log2

(
e+

µMTΦ0

(2q + 1)σ2

)
+

10369(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
+

649(µ
3
2D1 + 216D2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 216D2)τ2σ2

)
5.5 More Theoretical Details about Remark 9 and Contribution 2 in Introduction

5.5.1 Why Haddadpour et al. (2021) Cannot Achieve a Linear Speedup

It is hard to say that [9] achieves a linear speedup in M in strongly-convex and homogeneous settings. Let’s first
recap Corollary D.8 in [9]. They let ηγµτ ≤ 1

2 , κ = L
µ , γ ≥ M and tune η as η = 1

2L(q
M

+1)τγ
. Here, η is the

client learning rate, and γ is the server learning rate. Other parameters are the same as we defined. Then, they
obtain the below result.

E[F (wK)− F ∗] ≤ exp(−ηγµτK)(F (w0)− F ∗) +
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
(70)

≤ O
(
exp(− K

2(q
M + 1)κ

)(F (w0)− F ∗) +
σ2

γ2µτ
+

(q + 1)σ2

µ(q
M + 1)τM

)
= O

(
exp(− K

2(q
M + 1)κ

)(F (w0)− F ∗) +
σ2K

γ2µT
+

(q + 1)Kσ2

µ(q
M + 1)TM

)
Let’s focus on the second and third term. We assume M is large enough and represent them only with γ,K, T,M
to easily check the linear speedup of this convergence rate. Then, we obtain

O
(K

γ2T
+

K

MT

)
≤ O

(K

M2T
+

K

MT

)
(∵ γ ≥M) (71)

112

Thus, it seemingly achieves a linear speedup in M when K is just a constant. However, we are missing the
critical point in this analysis. To be specific, let’s consider the case when γ = 1. Then, the convergence rate
(71) changes into O

(
K
T + K

MT

)
that cannot achieve a linear speedup in M . This is implausible because the

convergence rate (70) becomes tighter when γ = 1 than γ ≥ M (See the last term of (70)). Actually, we can
achieve a linear speedup in M when γ = 1 if we tune η = 1

2L(q
M

+1)τM
. However, this is not an appropriate

tuning because there is M in the denominator. Similarly, [9] tunes η = 1
2L(q

M
+1)τγ

where γ ≥M . Even though
there is no M in the denominator, the condition γ ≥ M forcibly makes the convergence rate achieve a linear
speedup without any theoretical benefits of the algorithm. Therefore, we cannot say their η makes their algorithm
achieve a linear speedup in M . We should tune in a different way that does not contain M in a denominator. For
reference, our tuning parameter η for the FedAQ algorithm does not contain M in the denominator (See Corollary
17 and Corollary 23).

5.5.2 New Convergence Rate for Haddadpour et al. (2021)

We propose new η and convergence rate for [9]. This new η makes the algorithm achieve a linear speedup in M .
Let’s denote Φ0 = F (w0)− F ∗. We also know that T = Kτ . Then, we choose η as

η =
1

γµT
log

(
e+min(

γ2µ3T 2Φ0

τL2σ2
,
µ2MTΦ0

(1 + q)Lσ2
)
)

We plug in this η to (70). We bound the first term as below.

exp(−ηγµτK)(F (w0)− F ∗) =
(
e+min(

γ2µ3T 2Φ0

τL2σ2
,
µ2MTΦ0

(1 + q)Lσ2
)
)−1

Φ0

≤ τL2σ2

γ2µ3T 2
+

(1 + q)Lσ2

µ2MT

The another terms are bounded as below.

1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
≤ τL2σ2

2γ2µ3T 2
log2

(
e+

γ2µ3T 2Φ0

τL2σ2

)
+

(1 + q)Lσ2

2µ2MT
log

(
e+

µ2MTΦ0

(1 + q)Lσ2

)
Thus, we obtain a new convergence rate by combining the above two bounds.

E[F (wK)− F ∗] ≤ exp(−ηγµτK)(F (w0)− F ∗) +
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
≤ 3τL2σ2

2γ2µ3T 2
log2

(
e+

γ2µ3T 2Φ0

τL2σ2

)
+

3(1 + q)Lσ2

2µ2MT
log

(
e+

µ2MTΦ0

(1 + q)Lσ2

)
Here, we replace τ with T

K . Then, we represent the above convergence rate with only T,K,M, q.

Õ(1

TK
+

1 + q

MT
)

This is the new convergence rate we propose in Remark 9. We also get K = Õ(M
1+q) communication rounds

make this algorithm achieve a linear speedup in M .

113

5.5.3 More Details on Contribution 2 in Introduction

More Details on dquant This paragraph explains why FedAQ needs to send only dquant = O(log 1
q) bits for

each value. We use the result of Lemma 3.1 in [1]. They show the below result with a low-precision quantizer
(Example 1 in section 3)

E[∥Q(x, s)− x∥22] ≤ min(
n

s2
,

√
n

s
)∥x∥22

where n is the dimension of x, and s is the number of quantization levels. Then, we regard q as

q =

√
n

s
=

√
n

2dquant
(72)

Thus, we obtain the following conclusion.

dquant =

1
2 log n+ log 1

q

log 2
= O(log

1

q
)

Comparing FedAQ to FedAC We compare computation and communication efficiency of FedAC-II and
FedAQ under the condition set (35) to achieve the same error. Let’s recall the convergence rate of FedAC and
FedAQ. The convergence rate of FedAC and FedAQ is respectively Õ(1

MT + 1
TK3) and Õ(1+q

MT + 1+q
TK3). Let’s

say FedAC requires T iterations and K =M
1
3 communication rounds to achieve the error 1

MT . Then, FedAQ
requires

T ′ = (1 + q)T, K ′ =M
1
3

to achieve the same error 1
MT . This means FedAQ needs 1 + q times more local steps and the same number of

communication rounds to achieve the same error of FedAC. These local steps do no require any communication
with the server hence can be performed without any additional communication overhead.

From discussion in the previous section, if we use the simple low-precision quantizer, we need only dquant =
O(log 1

q) bits for communicating values with enough precision that can lead to an error rate of O(1
MT). In

comparison, FedAC would require O(log(MT)) bits to maintain enough precision to achieve the same error rate.
In a majority of tasks in the real world, 32 bits are usually enough for dfull to achieve enough precision as we
usually don’t need converge to a very small error rate. Nonetheless, even if we compare FedAQ(8bits) with to
FedAC(32bits), we argue that the overall benefit from less communication by quantization is more influential
than the slowdown effect from quantization.

For example, if we consider a l2-regularized logistic regression model for MNIST (strongly convex experi-
ment) and quantize from 32 bits to dquant = 8 bits. Here, n = 784× 10. We get the following results by using
(72).

1 + q = 1 +

√
n

2dquant
= 1 +

√
7840

28
≃ 1.346,

On the other hand, the ratio of data communicated by FedAC and FedAQ is

32

dquant
= 4

In contribution 2, we claim 1 + q ≪ dfull
dquant

because dfull is unbounded as T goes to infinity. In the real world

example, dfull
dquant

= 4 is still much greater than 1 + q. Furthermore, since the local computation is much cheaper
than data communication, we conclude that the benefit from less communication by quantization (4 times less
bits) overwhelm the slowdown effect from quantization ((1 + q) times more local computation).

114

6 Experiments

In this section, we provide experimental results of FedAQ in homogeneous local data distribution settings. We
compare FedAQ with other quantization-based federated optimization algorithms, FedPAQ [27] and FedCOM-
GATE [9]. FedAvg [26] and FedAC [43], federated optimization algorithms without quantization, are also our
baselines. We empirically validate the performance of 5 algorithms on classical classification tasks on MNIST[18]
and CIFAR-10[17] datasets in the distributed learning environment. We consider three objective functions i) A
strongly convex objective of l2-regularized logistic regression model on the MNIST dataset, ii) A non convex
objective of training a multilayer perceptron on the MNIST data, and iii) A non convex objective of training a
convolution neural network (CNN) on the CIFAR-10 dataset.

6.1 Experimental Setup

Implementation Environment. We follow the implementation setup in [9]. We use the Distributed library
of PyTorch to implement our algorithm because this library allows us to simulate real-world communication
and distributed training. The 18 cores of Intel Xeon E5-2676 CPU are used as computing sources. Each core is
considered as one local client. We use 16 cores for strongly convex MNIST, 18 cores for the non-convex MNIST,
and 8 cores for the CIFAR-10. For MNIST, the strongly convex experiment and the non-convex one respectively
run for 300 rounds of communication with 20 local updates and 50 rounds of communication with 100 local
updates. The CIFAR-10 experiment runs for 100 rounds of communication with 100 local updates.

Datasets. For image classification tasks, we choose two main classical image datasets: MNIST and CIFAR-10.
Since we assume homogeneous settings, data is distributed homogeneously among clients, which also means
each device has access to all 10 classes.

Hyperparameter Choice. The important hyperparmeters in our experiments are learning rates for each
algorithm. For the client learning rate η, we respectively use 0.002, 0.1, and 0.01 for strongly convex MNIST,
non-convex MNIST, and CIFAR-10 for all algorithms. For FedAQ and FedAC, once we set the value of µ, other
hyperparameters (γ, α, β) are automatically determined (See condition set (34) and (35)). Thus, we choose 0.1,
0.01, and 0.2 for µ value for strongly convex MNIST, non-convex MNIST, and CIFAR-10. Since too large µ leads
to slow convergence and too small µ leads to unstable training, we get these µ values by tuning µ appropriately.
FedCOMGATE has a server learning rate, and we set this value as 1 for all experiments.

Quantization Bits. We have three quantization-based federated algorithms: FedAQ, FedPAQ, FedCOMGATE.
We quantize the updates from 32 bits to 8 bits for all quantization-based algorithms in both MNIST and CIFAR-10.
Additionally, particularly for FedAQ in non-convex experiments, we consider 4 bits quantization as well. Since
FedAQ sends twice as many messages as FedPAQ or FedCOMGATE at every synchronization when we use 8
bits quantization for all cases, we apply 4 bits quantization to FedAQ to let FedAQ send the same amount of
information in each communication round as other quantization-based algorithms for a fair comparison.

New Time Metric. In our experiments, communication between CPU cores is very fast, so it is hard to say
that the environment of our experiments fully reflects the real-world federated learning when there is a heavy
communication burden. Thus, we use a linear model to estimate the execution time Tround(A) between two

115

consecutive communication rounds for real federated learning scenarios [35].

Tround(A) = Tcomm(A) + Tcomp(A), Tcomm(A) =
Sdown(A)

Bdown
+
Sup(A)

Bup

Tcomp(A) = max
j
T j

client(A) + Tserver(A), T j
client(A) = RcompT

j
sim(A) + Ccomp

Since Tserver(A) is relatively smaller than T j
client(A), we ignore Tserver(A) in our experiments. We get client

download size Sdown(A) and upload size Sup(A) from the number of neural network parameters. maxj T
j
sim(A) is

the computation time in our simulation.

Bdown ∼ 0.75MB/secs, Bup ∼ 0.25B/secs, Rcomp ∼ 7, Ccomp ∼ 10secs

[35] estimate each value of the above parameters from a real world cross-device FL system. The upload bandwidth
Bup is generally smaller than download bandwidth Bdown. We define human time as the parallel time estimated
by this new time metric.

6.1.1 Training Models

For MNIST, we use a l2-regularized logistic regression model for the strongly convex case and a multilayer
perceptron (MLP) with two hidden layers for the non-convex case. For CIFAR-10, we use a Convolutional Neural
Network (CNN). Here, we note that the number of parameters in a neural network model is directly related to the
number of communicated bits. We discuss more details as follows.

MLP Model for MNIST. We use a multilayer perceptron (MLP) with two hidden layers. Each hidden layer
consists of 200 neurons with ReLU activations. Thus, we compute the total number of parameters in this MLP
model as below.

(# of MLP parameters) = (# of input features) × (# of neurons in the 1st layer)

+ (# of neurons in the 1st layer) × (# of neurons in the 2nd layer)

+ (# of neurons in the 2nd layer) × (# of MNIST classes)

+ (# of neurons in the 1st layer) + (# of neurons in the 2nd layer)

+ (# of MNIST classes)

= 28× 28× 200 + 200× 200 + 200× 10 + 200 + 200 + 10 = 199210

Finally, we derive Sup(A)(= Sdown(A)), defined in section 6.1 (New time metric), by using the above fact. We
use 32 bits floating-point if there is no quantization.

Sup(A) = (# of device) × (# of MLP parameters) × (# of bits)

= 18× 199210× 32 = 114744960

The FedAvg algorithm follows the above calculation. If we use 8 bits quantization for FedPAQ, FedCOMGATE,
and FedAQ, (# of bits) in the above equation will respectively be 8, 8, and 16. Since FedAQ sends twice as many
messages as others at every communication round, (# of bits) for FedAQ is 16. Similarly, (# of bits) for FedAC,
which has no quantization, is 64.

116

CNN Model for CIFAR-10. We use a CNN model, which consists of two 2-dimensional convolutional layers,
two max pooling layers, and two fully connected layers. The ReLU activations are used in this CNN model. Let’s
clarify (# of input channel, # of output channel, kernel size, stride) for convolutional layers. We respectively use
(3, 20, 5, 1), (20, 50, 5, 1) for the 1st and 2nd convolutional layer. Let’s denote each convolutional layer and fully
connected layer as CONV1, CONV2, FC3, FC4. At first, the activation shape of input layer for CIFAR-10 is (32,
32, 3). Then, we get the activation shape after CONV1 and the number of parameters for CONV1.

(width of activation shape) =
(width of previous activation shape) − kernel size + 1

stride

=
32− 5 + 1

1
= 28 ⇒ activation shape = (28, 28, 20)

(# of CONV1 parameters) =
(

kernel size × kernel size

× (# of filters in the previous layer) + 1
)

× (# of filters in the current layer)

= (5× 5× 3 + 1)× 20 = 1520

The activation shape becomes (14, 14, 20) after max pooling. There are no learnable parameters in pooling layers.
We do similar calculation for CONV2.

(width of activation shape) =
(width of previous activation shape) − kernel size + 1

stride

=
14− 5 + 1

1
= 10 ⇒ activation shape = (10, 10, 50)

(# of CONV2 parameters) =
(

kernel size × kernel size × (# of filters in the previous layer)

+ 1
)
× (# of filters in the current layer)

= (5× 5× 20 + 1)× 50 = 25050

The activation shape becomes (5, 5, 50) after second max pooling. Then, we calculate the number of parameters
in FC3 and FC4 similar to the MLP case.

(# of FC3 parameters) = (5× 5× 50)× 512 + 512 = 640512

(# of FC4 parameters) = 512× 10 + 10 = 5130

Thus, the total number of parameters in this CNN model is

(# of CNN parameters) = (# of CONV1 parameters) + (# of CONV2 parameters)

+ (# of FC3 parameters) + (# of FC4 parameters)

= 1520 + 25050 + 640512 + 5130 = 672212

Finally, we derive Sup(A)(= Sdown(A)) in this case.

Sup(A) = (# of device) × (# of CNN parameters) × (# of bits)

= 8× 672212× 32 = 172086272

We can do the similar discussion in the MLP case when it comes to applying this to quantization-based federated
optimization algorithms.

117

6.2 Experimental Results

In our experiments on both MNIST and CIFAR-10, we verify how the global training loss and test accuracy of
five algorithms change with respect to communication rounds, the number of bits communicated between one
client and the server during the uplink, and human time. We provide both qualitative analysis and quantitative
results for plots.

6.2.1 Qualitative Analysis

Strongly Convex Case. In this experiment, we compare FedAQ under the condition set (34) and set (35)
with FedAvg, FedPAQ, FedCOMGATE, and FedAC-I. We denote each FedAQ as FedAQ-I and FedAQ-II. As
we observe the theoretical benefits of FedAQ over other methods in section 5, FedAQ-I outperforms all other
quantization-based federated optimization algorithms and FedAC-I in all plots (See each first row of Figure 1,
2). However, although FedAQ-II shows the fast convergence speed, the training process is unstable. Thus, we
only use FedAQ-I for further non-convex experiments. FedAC and FedAQ in non-convex experiments indicate
FedAC-I and FedAQ-I.

Non-Convex Case. Each second row of Figure 1, 2, and Figure 3 clearly demonstrates that FedAQ with 4 bits
quantization outperforms other algorithms in all plots. In terms of communication rounds, accelerated algorithms,
FedAQ and FedAC, converge faster than other algorithms. We also observe that quantization does not lead to
slower convergence, which means we can apply an efficient quantization scheme to make communication efficient
FL systems without sacrificing convergence speed. The plots related to communicated bits are helpful to interpret
how algorithms work well in situations with heavy communication. FedAQ with 8 bits quantization shows
comparable performance relative to FedPAQ and FedCOMGATE with the help of acceleration, even though
FedAQ sends more updates during every synchronization. When we use 4 bits quantization for FedAQ to make
the number of communicated bits the same for all quantization-based algorithms during synchronization, FedAQ
shows a much faster convergence speed with regard to the number of communicated bits. However, plots of
communicated bits fail to reflect how algorithms converge in real estimated time for FL scenarios, which consists
of both communication and computation. Thus, we further analyze algorithms with human time. We observe that
FedAQ with 8 quantization bits performs slightly better than FedPAQ and FedCOMGATE for both MNIST and
CIFAR-10. This occurs because while all quantization-based algorithms send the same number of communicated
bits, the number of communication rounds for FedAQ is much smaller than others. Then, this also indicates that
FedAQ takes less computation time than other methods while reaching the same accuracy.

6.2.2 Quantitative Results

We provide quantitative results to help readers understand plots better. To be specific, for all plots, we observe the
number of communication rounds, the number of communicated bits, and the human time required to achieve a
particular test accuracy by each federated optimization algorithm.

For the strongly convex experiment on MNIST (See the first row of Figure 2), the number of communication
rounds required to achieve 90.28% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC-I,
FedAQ-I(8bits), FedAQ-II(8bits) are respectively 217, 216, 260, 28, 26, 99. The number of communicated
bits required to achieve the same accuracy are respectively 5.4e7, 1.4e7, 1.6e7, 1.4e7, 3.3e6, 1.2e7. Lastly, the
required human time are respectively 3220s, 2760s, 3336s, 484s, 344s, 1323s. In this experiment, FedAQ-I(8bits)
requires the smallest number of communication rounds, the smallest number of communicated bits, and the
shortest human time to achieve the same test accuracy. These experimental results support the validity of our
theoretical analysis on strongly convex cases.

For the non-convex experiment on MNIST (See the second row of Figure 2), the number of communication
rounds required to achieve 97.6% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC,

118

FedAQ(8bits), FedAQ(4bits) are respectively 23, 48, 38, 18, 18, 16. The number of communicated bits required
to achieve the same accuracy are respectively 1.5e8, 7.6e7, 6.1e7, 2.3e8, 5.7e7, 2.5e7. Finally, the required human
time are respectively 2424s, 2311s, 1834s, 3327s, 1248s, 805s. Thus, we conclude that FedAQ(4bits) outperforms
other algorithms, and even FedAQ(8bits) needs smaller number of communicated bits/less human time to achieve
the goal accuracy than FedPAQ(8bits)/FedCOMGATE(8bits).

For the non-convex experiment on CIFAR-10 (See Figure 3), the number of communication rounds required
to achieve 65.4% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC, FedAQ(8bits),
FedAQ(4bits) are respectively 98, 89, 95, 49, 50, 48. The number of communicated bits required to achieve the
same accuracy are respectively 2.1e9, 4.8e8, 5.1e8, 2.1e9, 5.4e8, 2.6e8. Finally, the required human time are
respectively 31798s, 11526s, 12240s, 28720s, 9902s, 6464s. As with the non-convex experiment on MNIST,
FedAQ(4bits) outperforms other algorithms, and even FedAQ(8bits) requires less human time to achieve the same
accuracy than FedPAQ(8bits)/FedCOMGATE(8bits).

Remark 24: Our current experimental setup only allows us to scale the number of clients up to the number of
CPU cores in our machine. Since FedAQ achieves linear speed up in the number of workers with much fewer
communication rounds than other quantization based methods, we expect FedAQ to outperform other methods by
an even larger margin as we scale the number of workers.

(a) (b) (c)

(a) (b) (c)

Figure 1: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on MNIST with Strongly
Convex Settings (first row) and Non-Convex Settings (second row). We observe how the global training loss
changes across communication rounds (first column), communicated bits (second column), and human time (third
column). FedAQ-I(8bits) and FedAQ(4bits) respectively outperform other algorithms for strongly convex settings
and non-convex settings. FedAQ(4bits) sends the same number of communicated bits as FedPAQ(8bits) and
FedCOMGATE(8bits) in each communication round, which indicates a fair comparison (See Quantization bits in
section 6.1).

119

(a) (b) (c)

(a) (b) (c)

Figure 2: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on MNIST with Strongly
Convex Settings (first row) and Non-Convex Settings (second row). We observe how the test accuracy changes
across communication rounds (first column), communicated bits (second column), and human time (third
column). FedAQ-I outperforms other algorithms in all plots for strongly convex settings. Moreover, FedAQ(4bits)
outperforms other algorithms in all plots for non-convex settings.

7 Conclusion

To sum up, we propose a novel communication-efficient federated optimization algorithm, FedAQ, that suc-
cessfully incorporates accelerated multiple local updates and quantization with solid theoretical guarantees in
strongly-convex and homogeneous settings. In the future, further theoretical guarantees of FedAQ on convex
and non-convex functions should be discussed. Also, the convergence analysis of FedAQ on heterogeneous
settings can be an interesting topic. Even though Federated Learning systems provide some level of privacy to the
clients as their explicit data is not shared with the servers, careful examination of FL systems including FedAQ is
necessary to examine how much privacy do they actually provide as information is shared in form of the iterates.

References

[1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient
quantization and encoding. Advances in Neural Information Processing Systems, 30:1709–1720, 2017.

[2] N. Bansal and A. Gupta. Potential-function proofs for gradient methods. Theory of Computing, 15(1):1–32,
2019.

[3] D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with quantization,
sparsification, and local computations. arXiv preprint arXiv:1906.02367, 2019.

120

(a) (b) (c)

(a) (b) (c)

Figure 3: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on CIFAR-10. We observe how
the global training loss and test accuracy change across communication rounds (first column), communicated bits
(second column), and human time (third column). We use a CNN model for CIFAR-10. Similar to the MNIST
experiment, FedAQ (4 bits) outperforms all other algorithms in every case.

[4] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for
non-convex problems. In International Conference on Machine Learning, pages 560–569. PMLR, 2018.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[6] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic
composite optimization i: A generic algorithmic framework. SIAM Journal on Optimization, 22(4):1469–
1492, 2012.

[7] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Local sgd with periodic averaging: Tighter
analysis and adaptive synchronization. In Advances in Neural Information Processing Systems, pages
11082–11094, 2019.

[8] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Trading redundancy for communication:
Speeding up distributed sgd for non-convex optimization. In International Conference on Machine Learning,
pages 2545–2554. PMLR, 2019.

[9] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi. Federated learning with compression:
Unified analysis and sharp guarantees. In International Conference on Artificial Intelligence and Statistics,
pages 2350–2358. PMLR, 2021.

121

[10] F. Haddadpour and M. Mahdavi. On the convergence of local descent methods in federated learning. arXiv
preprint arXiv:1910.14425, 2019.

[11] S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini, and P. Richtárik. Natural compression for
distributed deep learning. arXiv preprint arXiv:1905.10988, 2019.

[12] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[13] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Mime: Mimicking
centralized stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[14] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine Learning, pages 5132–5143.
PMLR, 2020.

[15] A. Khaled, K. Mishchenko, and P. Richtárik. Tighter theory for local sgd on identical and heterogeneous
data. In International Conference on Artificial Intelligence and Statistics, pages 4519–4529. PMLR, 2020.

[16] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[17] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Manuscript, 2009.

[18] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[19] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in heteroge-
neous networks. arXiv preprint arXiv:1812.06127, 2018.

[21] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid data. arXiv
preprint arXiv:1907.02189, 2019.

[22] X. Li, B. Karimi, and P. Li. On distributed adaptive optimization with gradient compression. arXiv preprint
arXiv:2205.05632, 2022.

[23] Z. Li, D. Kovalev, X. Qian, and P. Richtárik. Acceleration for compressed gradient descent in distributed
and federated optimization. arXiv preprint arXiv:2002.11364, 2020.

[24] Z. Li and P. Richtárik. Canita: Faster rates for distributed convex optimization with communication
compression. arXiv preprint arXiv:2107.09461, 2021.

[25] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[27] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. Fedpaq: A communication-
efficient federated learning method with periodic averaging and quantization. In International Conference
on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.

122

[28] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora. Fetchsgd:
Communication-efficient federated learning with sketching. In International Conference on Machine
Learning, pages 8253–8265. PMLR, 2020.

[29] N. Singh, D. Data, J. George, and S. Diggavi. Squarm-sgd: Communication-efficient momentum sgd for
decentralized optimization. IEEE Journal on Selected Areas in Information Theory, 2021.

[30] S. U. Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767, 2018.

[31] S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for sgd with delayed gradients
and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

[32] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan. Distributed mean estimation with limited
communication. In International Conference on Machine Learning, pages 3329–3337. PMLR, 2017.

[33] T. Vogels, S. P. Karinireddy, and M. Jaggi. Powersgd: Practical low-rank gradient compression for distributed
optimization. Advances In Neural Information Processing Systems 32 (Nips 2019), 32(CONF), 2019.

[34] H. Wang, S. Sievert, Z. Charles, S. Liu, S. Wright, and D. Papailiopoulos. Atomo: Communication-efficient
learning via atomic sparsification. arXiv preprint arXiv:1806.04090, 2018.

[35] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly,
D. Data, et al. A field guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[36] J. Wang and G. Joshi. Cooperative sgd: A unified framework for the design and analysis of communication-
efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.

[37] J. Wang, Z. Xu, Z. Garrett, Z. Charles, L. Liu, and G. Joshi. Local adaptivity in federated learning:
Convergence and consistency. arXiv preprint arXiv:2106.02305, 2021.

[38] Y. Wang, L. Lin, and J. Chen. Communication-efficient adaptive federated learning. arXiv preprint
arXiv:2205.02719, 2022.

[39] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient distributed
optimization. arXiv preprint arXiv:1710.09854, 2017.

[40] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan, O. Shamir, and N. Srebro. Is local sgd
better than minibatch sgd? In International Conference on Machine Learning, pages 10334–10343. PMLR,
2020.

[41] H. Yu, R. Jin, and S. Yang. On the linear speedup analysis of communication efficient momentum sgd for
distributed non-convex optimization. In International Conference on Machine Learning, pages 7184–7193.
PMLR, 2019.

[42] H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communication:
Demystifying why model averaging works for deep learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5693–5700, 2019.

[43] H. Yuan and T. Ma. Federated accelerated stochastic gradient descent. Advances in Neural Information
Processing Systems, 33, 2020.

123

Federated Truth Discovery for Mobile Crowdsensing with
Privacy-Preserving Trustworthiness Assessment

Leye Wang1,2, Guanghong Fan1,2, Xiao Han3,*

1Key Lab of High Confidence Software Technologies (Peking University), Ministry of Education, China
2School of Computer Science, Peking University, China

3School of Information Management and Engineering, Shanghai University of Finance and Economics, China
leyewang@pku.edu.cn, fgh@stu.pku.edu.cn, xiaohan@mail.shufe.edu.cn

Abstract

With the prevalence of smart mobile devices empowered by considerable sensing capabilities, crowd-
sensing has become one promising way to sense urban phenomena (e.g., traffic and environment) at
a large scale. In crowdsensing, a fundamental issue is discovering the truth from participants’ noisy
sensed data. Traditionally, participants need to upload their raw sensed data with locations for truth
discovery, but this may leak participants’ private information such as home and work locations. In
this paper, we propose a federated truth discovery method that can learn the truth without collecting
participants’ sensed data and locations. Our method ensures that the obtained truth quality has no
performance loss compared to the original truth discovery method if all the participants keep online; even
if some participants lose connections unpredictably, our method can still learn the truth based on rest
participants’ data. Meanwhile, as participants’ sensed data are unknown to the server, it is hard for the
crowdsensing organizer to justify each participant’s sensing trustworthiness. This brings difficulties to
crowdsensing management such as participant recruitment and incentive allocation. We further propose
a federated ranking mechanism to generate a leader-board for participants’ trustworthiness, which can
also tolerate participants’ connection loss. Both theoretical analysis and real-data empirical evaluations
have been done to verify the effectiveness of FedTruthFinder.

1 Introduction

With the popularity of smart mobile devices, such as smartphones, pads, and vehicles, crowdsensing has become
one promising paradigm for sensing urban dynamics [3]. A typical crowdsensing process first recruits participants
and then asks them to upload the data of interest to the central server. Afterward, the server aggregates the data
from participants toward a synthetic sensed result [39, 11]. While each participant’s sensed data may include
noise, an important issue is how to ensure the accuracy of the aggregated sensed result, often called truth discovery
[26, 12, 24].

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Corresponding author

124

Many research studies have been devoted to the truth discovery for crowdsensing applications. Generally,
most relevant studies model participant trustworthiness and sensed data confidence iteratively to obtain the final
aggregated sensed result [36]. The basic idea is that a high-credit participant’s sensed data should be assigned
with high confidence; a user whose sensed data are more confident should be more trustworthy. While this has
been verified to be effective, the iterative computation process needs a central server to collect every participant’s
raw sensed data, which may bring privacy threats to crowdsensing participants. For example, crowdsensing
usually asks participants to do sensing tasks at specific locations, and thus most sensed data are associated with
detailed location information [39]. The traditional truth discovery process would inevitably leak crowdsensing
participants’ visited locations during sensing periods, which may be exploited by malicious third parties to
conduct serious location privacy breaches such as physical stalking [19]. With the user privacy and personal data
regularization (e.g., General Data Protection Regulation1) becoming more and more important nowadays, we
believe that a privacy-preserving truth discovery algorithm is urgently required for facilitating more extensive
crowdsensing campaigns in practice.

Privacy-preserving truth discovery has been recently studied in crowdsensing. Existing studies are usually
based on some hardly realized assumptions such as every participant being always online and/or non-colluding
[13, 15, 14]2, or two non-colluding servers (or fog nodes) are required [23, 40, 38, 37]. These assumptions hinder
the practical applications of the prior mechanisms. More importantly, almost all the prior studies do not discuss
two fundamental issues in privacy-preserving truth discovery.

i) Participants’ Completed Tasks Protection. Existing mechanisms focus on protecting participants’ sensed
data, but most assume that participants’ completed tasks are known to the crowdsensing server [34, 13, 14, 40].
However, sometimes task information is more sensitive than sensed data. Suppose the tasks are air quality sensing
at certain points of interest. If a participant’s task completion information is disclosed (e.g., finish a sensing task
at the Times Square NYC), then her location is revealed without the need to know her sensed air quality value.

ii) Participants’ Trustworthiness Assessment. Trustworthiness assessment is a key part of crowdsensing for
participant recruitment and incentive design [17], while privacy-preserving truth discovery needs to hide partici-
pants’ trustworthiness scores for privacy protection. To address the dilemma, a privacy-preserving trustworthiness
assessment method needs to be proposed.

In this paper, we aim to design a novel and practical privacy-preserving truth discovery mechanism for
crowdsensing to overcome the pitfalls of prior studies. In particular, our design follows the federated learning
(FL) paradigm [5, 35]. We thus call our method as FedTruthFinder. In general, FL requires user clients to do
some local computation (e.g., learning the gradients for updating the parameters of the model) on their devices
and then only upload the computation results instead of raw data. For a specific algorithm, the local computation
and uploading process usually incorporates certain secure mechanisms (e.g., homomorphic encryption and secure
multi-party computation) to ensure that no user privacy is leaked theoretically [2, 10]. Based on FL, we aim to
consider the following specific issues in the design of FedTruthFinder.

No Accuracy Loss: We expect that FedTruthFinder will not hurt the accuracy of the aggregated sensed results
compared to the centralized truth discovery. Without the loss of accuracy, crowdsensing organizers would be
likely to adopt the method in practice.

No Third Party: Crowdsensing involves a central server and a set of participants’ clients. To make
FedTruthFinder easy to deploy, we do not want to introduce any more third parties which are usually hard to find
in reality [1, 27].

Robustness against Unpredictable Connection Loss: While crowdsensing participants travel around the
whole city, their device connection with the central server is not always stable. Hence, it is necessary to make
FedTruthFinder effective when some participants lose connections suddenly.

1https://gdpr.eu/eu-gdpr-personal-data
2Some participants’ relations can be very close such as family members, and thus it is non-reasonable to assume that they will not

collude with each other.

125

https://gdpr.eu/eu-gdpr-personal-data

Server

Client

Truth Finder

𝓔𝟏

Event

Confidence

Participants

𝓔𝟐 𝓔𝒏…

𝝆𝟏, 𝝆𝟐, 𝝆𝟑, … , 𝝆𝒎

𝝉𝟏, 𝝉𝟐, 𝝉𝟑, … , 𝝉𝒏

update 𝜌 update 𝜏

Participant

Trustworthiness

Sensed Data

& Locations

Figure 1: Overview of Iterative Truth Discovery

With the above issues in consideration, this paper makes the following contributions:
(1) To the best of our knowledge, this paper is the first study that addresses the problem of privacy-preserving

crowdsensing truth discovery with (i) participants’ completed task protection, and (ii) participants’ trustworthi-
ness assessment.

(2) We propose FedTruthFinder, a novel privacy-preserving truth discovery mechanism following the federated
learning paradigm [35]. FedTruthFinder does not need any third party and can tolerate participants’ unpredictable
connection loss. The two key components of FedTruthFinder are (i) federated confidence computation to learn
the probability of a sensed event, and (ii) federated trustworthiness ranking to assess participants’ sensed data
quality.

(3) We have conducted both theoretical analysis and empirical evaluations for FedTruthFinder. In particular,
FedTruthFinder can reduce the system failure probability significantly compared to state-of-the-art privacy-
preserving truth discovery approaches [1, 34], and achieve good detection accuracy.

2 Preliminary: Truth Discovery

Truth discovery algorithms usually follow an iterative method to calibrate user trustworthiness and data confidence
alternatively until convergence [36]. Figure 1 shows the framework of iterative truth discovery methods. In this
paper, for clarity, we assume that sensed data is a binary spatial event. That is, for a specific location, the sensed
data can be 1 or 0. Our method can be easily extended to multi-class and continuous-value events (see Appendix).

As shown in Figure 1, first, participants upload all of their sensed data and locations Ei to the central server.
The central server would assign an initial trustworthiness score τi to each participant ui (e.g., 0.9 by assuming
that 90% of the sensed data are accurate). Then, for each sensed event ej , the truth discovery algorithm will
calculate its confidence ρj (i.e., the probability of ej = 1) by considering the users who have sensed ej as:

ρj = Fρ(Uj,1,Uj,0) (73)

where Uj,k is the users who have sensed the event ej with the reported data k; Fρ is an event confidence calculation
function which we will elaborate on later.

With ρj for each event ej , we can then update the trustworthiness score τi of each participant ui by:

τi = Fτ (Ei,1, Ei,0) (74)

126

where Ei,k is the users’ sensed event set with the reported data k; Fτ is a user trustworthiness calculation function
which we will elaborate on later.

Once τi is updated for each user ui, we can continue updating ρj for each event ej according to Eq. 73, and
so on, leading to an alternative updating process for both τi and ρj . This process can be terminated after a fixed
number of iterations or until convergence. Next, we elaborate on the common choices of Fρ and Fτ in literature.

Sum Function
An intuitive selection of the updating functions of Fρ and Fτ is the weighted sum:

ρj = Fρ(Uj,1,Uj,0) =
∑

ui∈Uj,1
τi∑

ui∈Uj,1
τi +

∑
uk∈Uj,0

τk
(75)

τi = Fτ (Ei,1, Ei,0) =
∑

ej∈Ei,1 ρj +
∑

ek∈Ei,0 1− ρk
|Ei,1|+ |Ei,0|

(76)

Logistic Function
Another widely used updating function is the Logistic function [36]. Its basic idea is seeing every user

independently, so that the probability of event happening, i.e., ej = 1, can be formulated as:

ρj = 1−
∏

ui∈Uj,1

(1− τi) (77)

As 1− τi may often be small and multiplying many of them may lead to underflow, prior studies proposed to use
the logarithm to define a log-trustworthiness score of ui as [36]:

τ∗i = − ln(1− τi) (78)

Similarly, a log-confidence score of event ej is defined as:

ρ∗j = − ln(1− ρi) (79)

Then, we can infer
ρ∗j =

∑
ui∈Uj,1

τ∗i (80)

The above equation does not consider the users’ trustworthiness who report ej = 0, and thus we refine it:

ρ∗j =
∑

ui∈Uj,1

τ∗i −
∑

uk∈Uj,0

τ∗k (81)

Finally, a logistic function is used to calculate the final confidence ρj of event ej [36]:

ρj = Fρ(Uj,1,Uj,0) = (1 + e−ρ∗j)−1 (82)

τi is updated same as Eq. 76.

3 Federated Truth Discovery: Overview and Key Issues

3.1 Overall Design

Figure 2 overviews the workflow of our method FedTruthFinder. The general design principle follows the
federated learning paradigm [35], which requires the user clients to conduct local computations of their raw

127

Server

Client

Federated Confidence Computation Federated Trustworthiness Ranking

𝝆𝟏, 𝝆𝟐, 𝝆𝟑, …𝝆𝒎

𝝉𝟏

Event Confidence

Participant Trustworthiness

𝝉𝟐 𝝉𝒏… 𝝉𝟏 𝝉𝟐 𝝉𝒏…

𝒖′𝟏 ≥ 𝒖′𝟐 ≥ ⋯ ≥ 𝒖′𝒏

Participant Trustworthiness

Ranked List for Trustworthiness

𝑓(𝜏1) 𝑓(𝜏2) 𝑓(𝜏𝑛)

𝑓 𝑥 = 𝑟1𝑥 + 𝑟2𝑥
2 +⋯+ 𝑟𝑘𝑥

𝑘

Figure 2: Overview of FedTruthFinder

data and then upload processed data that do not reveal the user’s privacy to the server. With these uploaded
privacy-preserving data, the server can still find the aggregate truth of the sensed events, the same as the server
receiving the raw sensed data and locations from participants.

By analyzing the original truth discovery algorithm in the previous section, we note that there exist two
alternative computation processes: (i) ρ-computation: updating the confidence ρj for each event ej , and (ii)
τ -computation: updating the trustworthiness τi for each participant ui. In the two computation processes, τ -
computation (e.g., Eq. 76) can be naturally offloaded to each participant ui’s device, as long as the server sends
all the current ρj , ∀ej to the participants. However, ρ-computation needs to know each user’s sensed data (and
locations) and then do aggregation (e.g., sum). This needs a dedicated design to enable the privacy-preserving
truth discovery, which will be illustrated in Sec. 4.

Besides, the trustworthiness of each participant’s sensed data (i.e., τi) is a key metric in crowdsensing
organization for participant recruitment and incentive allocation. Hence, we also design a federated privacy-
preserving mechanism to rank participants’ trustworthiness. Particularly, instead of transferring raw τi to the
server, we leverage certain security mechanisms to upload f(τi) to the server, while f(τi) keeps the same ranking
orders as τi. Particularly, in FedTruthFinder, f(τi) = r1τi + r2τ

2
i + ...+ rkτ

k
i , where ri > 0. In this regard, even

though the server cannot know the specific τi of each participant ui, the ranked list of participants according to
the trustworthiness can still be learned with f(τi). Specifically, during the whole computation process, the server
cannot know ri, and each participant will also not know all the ri, so that none of the server or participant can
infer other participants’ private τi. How to compute f(τi) securely will be introduced in Sec. 5.

3.2 Key Issues

Issue 1. Privacy-Preserving ρ-computation: Suppose there are a set of crowdsensing participants U and a set
of spatial events to sense E , each participant ui(∈ U) with sensed events Ei,1(⊆ E) and Ei,0(⊆ E) corresponding
to the sensed value being 1 and 0, respectively. How to calculate confidence ρj for each event ej(∈ E) while
every participant ui will not leak Ei,1, Ei,0, and Ei,1 ∪ Ei,0 to the server and other participants?

Some factors need to be carefully considered:
(1) Computation: In ρ-computation, the value to share is a complicated equation instead of a single value,

and the equation may even be varied depending on the truth discovery algorithm implementation (e.g., Eq. 75 or

128

Eq. 82).
(2) Network Connection: In crowdsensing, the network connections of mobile participants may not be

always stable. Hence, our mechanism should tolerate the scenario when a few participants lose connections.
(3) No Leakage of Task Completion: For protecting participants’ privacy, not only the sensed data but also

the completed tasks (i.e., Ei,1 ∪ Ei,0) should not be disclosed.

Issue 2. Secure Trustworthiness Ranking: Suppose there are a set of crowdsensing participants U and each
participant ui(∈ U) has a private trustworthiness score τi. How to rank participants according to τi while every
participant ui will not leak τi to the server and other participants?

Addressing this issue also needs to consider the unstable network connections of participant clients as
aforementioned.

Remark on security definition: In this work, we assume that the crowdsensing server and participants are
semi-honest (honest-but-curious): they will follow our designed protocol and not maliciously modify the inputs
or outputs; however, the server and the participants will try their best to infer others’ data from the data that
they have received. Besides, our mechanism can defend against collusion attacks to a certain extent (i.e., some
participants may collude with each other), which we will elaborate on later.

4 Federated Truth Computation

We first introduce a basic scheme for ρ-computation in a federated manner assuming no connection loss. Then,
we improve the scheme to be against the participants’ unpredictable connection loss.

4.1 Basic Scheme of ρ-Computation with SSS

In this section, we propose our basic scheme for the ρ-computation problem with the federated learning paradigm
leveraging secret sharing. Given a spatial crowdsensing event ej , we first consider ρ-computation with the sum
function, i.e., Eq. 75.

4.1.1 ρ-computation with the sum function.

Our process includes three steps as follows:
Step 1 (Share Dispatching). Each participant ui dispatches dij and sij with secret sharing to all the n

participants (U = {u1 · · ·un}), where

dij =

{
τi ej ∈ Ei,1
0 ej ∈ E \ Ei,1

(83)

sij =

{
τi ej ∈ Ei,1 ∪ Ei,0
0 ej ∈ E \ (Ei,1 ∪ Ei,0)

(84)

Specifically, dij is divided into n shares
{d1ij , · · · , dnij}

where d1ij , · · · , d
n−1
ij are random numbers and

dnij = dij −
n−1∑
k=1

dkij

129

Hence,
∑n

k=1 d
k
ij = dij . Then, ui sends dkij to uk. Similarly, sij is split to n shares

{s1ij , · · · , snij = sij −
n−1∑
k=1

skij}

and uk receives skij from ui.
Step 2 (Client Summation). For each event ej , an participant uk uploads d̂kj =

∑n
i=1 d

k
ij and ŝkj =

∑n
i=1 s

k
ij

to the server.
Step 3 (Server Aggregation). After receiving d̂kj and ŝkj from ∀uk ∈ U , the server can add them together:

dj =
n∑

k=1

d̂kj =
n∑

k=1

n∑
i=1

dkij =
n∑

i=1

n∑
k=1

dkij =
n∑

i=1

dij (85)

sj =
n∑

k=1

ŝkj =
n∑

k=1

n∑
i=1

skij =
n∑

i=1

n∑
k=1

skij =
n∑

i=1

sij (86)

Then, ρj is computed as:

ρj =
dj
sj

(87)

4.1.2 ρ-computation with the logistic function.

The computation process with the logistic function is not much different from the one with the summation
function. Actually, for the event ej , we only need to modify dij to:

dij =

− ln(1− τi) ej ∈ Ei,1
ln(1− τi) ej ∈ Ei,0
0 ej ∈ E \ (Ei,1 ∪ Ei,0)

(88)

Besides, we do not need sij , so every participant uk only receives dkij from other ui ∈ U . Finally, in Step 3, we
can compute ρj as:

ρj = (1 + e−dj)−1 (89)

Remark on our novelty. In our ρ-computation for an event ej , the participant ui who has not sensed ej also
needs to upload data to the server, e.g., dij = sij = 0 for the sum function. As dij and sij are sent by secret
shares, the other participants and the server would not know whether ui senses ej or not. In comparison, prior
studies usually assume that participants send only the data of their sensed events, which may disclose user privacy
from event information (e.g., event locations) [13, 15, 14, 40, 41, 38].

4.2 Connection Robustness Improvement

The basic scheme can learn ρj in an ideal environment when all the participants are always online. In practice,
participants move around and their network connections are often sporadic. This inspires us to make three
improvements to the basic scheme design.

130

4.2.1 Bias-avoidance adaptive truth updating.

While participants may drop during the iterative truth discovery process due to bad connections, the original event
confidence updating function would be ineffective. Specifically, if ui loses the connection at the kth iteration, ui’s
data would not be considered in the ρ-computation (e.g., Eq. 75) from then on. This leads to unreliable ρj as the
finally alive participants dominate the results. To address this pitfall, we propose an adaptive updating function
for kth iteration’s ρj,k as,

ρj,k = wkFρ + (1− wk)ρj,k−1 (90)

where Fρ is an original event confidence updating function (e.g., sum and logistic). With Eq. 90, the data
contribution of the participants who drop at the kth iteration can still be kept (by ρj,k−1) to avoid the truth bias
toward alive participants. wk can be set as,

wk = (
|Ualive,k|
|U|

)α (91)

where Ualive,k is the alive participants at the kth iteration. When alive participants decrease with more iterations,
wk becomes smaller, reflecting that fewer participants should occupy lower weights. From our experiments, we
find that α = 3 is a proper setting.

4.2.2 Server-coordinated communication structure.

In Sec. 4.1, we assume that one participant ui can establish a secure communication channel with every other
participant uk so as to transfer the secret share dkij and skij . Hence, each participant needs to establish n − 1
channels with others. Considering the sporadic property of the mobile connections, this may not be easy for
a participant to keep so many channels stable in practice. To alleviate this issue, we convert the peer-to-peer
communication structure to a server-coordinated one. In the server-coordinated structure, every participant first
transmits all the data to the server, and then the server dispatches the desired data to the corresponding participant.
In this way, each participant needs to establish only one secure channel to the server.

To ensure that the transmitted data will not be directly observed by the server, we leverage a public-key
encryption system to encrypt the data before the transmission. In particular, each participant ui first generates a
pair of keys, the public key pki and the private key ski. The public key pki is sent to all the other participants
(e.g., through the server) at the beginning of the crowdsensing campaign. For details, readers can refer to [1].

Then, for computing ρj , each participant ui first transmits Ei = {Encrypt(dkij , pkk)|k = 1 · · ·n} to
the server.3 After receiving n participants’ Ei, the server re-organizes the received data and sends Êk =
{Encrypt(dkij , pkk)|i = 1 · · ·n} to each participant uk. Afterward, uk decrypts the received data with her pri-
vate key, obtains {dkij |i = 1 · · ·n}, and then uploads d̂kj =

∑
i d

k
ij to the server. The server can then recover

dj =
∑

i dij from participants’ uploaded d̂kj and computes ρj accordingly.

4.2.3 (t, n)-Shamir secret sharing (SSS)

While the server-coordinated communication structure reduces the burden of secure channel establishing for
mobile participants. It may still fail if a user loses the connection during the campaign and cannot link back. For
example, suppose a participant ui has sent Ei to the server and then quit the crowdsensing campaign (e.g., ui’s
mobile device runs out of battery). Then, in Step 3, the server will not be able to receive d̂ij from ui, and thus
cannot recover dj .

To address this pitfall, in practical deployment, we can leverage the threshold secret sharing method proposed
by Shamir [21], namely (t, n)-Shamir secret sharing (SSS). With (t, n)-SSS, the server only needs to receive

3If sij is needed (e.g., for the sum function), it can be encoded in Ei same as dij .

131

t (t ≤ n) participants’ d̂ij for recovering dj . In particular, to leverage (t, n)-SSS to dispatch dij , we first create a
(t− 1)-polynomial:

Dij(x) = dij + aij1x+ aij2x
2 + · · ·+ aijt−1x

t−1 (92)

where aij1, · · · , aijt−1 are random numbers selected by ui. Then, ui dispatches Dij(k) to uk. If we obtain more
than t participants’ Dij(k), according to linear algebra, we can infer dij .

Similar to Step 2 of our basic scheme, d̂kj =
∑

iDij(k) is uploaded to the server by each uk. Then, in Step 3,
after receiving more than t participants’ d̂kj , the server will be able to infer dj =

∑
i dij according to the additive

homomorphism property of SSS [21].
Remark on our novelty. In the truth discovery part, the key advantage of our mechanism beyond literature

is its robustness against connection loss. Preliminary privacy-preserving truth discovery papers rarely consider
the connection loss issue [15]. Some work tries to deal with drop-out users by letting alive participants send
extra information [38, 31]; however, when the connection condition is so bad that certain alive participants
again lose connections during the extra information communication, this process would be uncontrolled and
time-consuming. Recent work also adopts SSS to enhance connection robustness [34]. The basic idea is using the
double-masking secure aggregation algorithms proposed by [1], and every participant needs two connections to
do event confidence computation for one iteration. In comparison, our mechanism only needs every participant
to connect once for one iteration of computation. Our numerical experiments (Sec. 6.1) will show that this
connection reduction can lead to a significantly difference in the algorithm success probability (e.g., increasing
the success probability from 1% to 99% under certain conditions).

4.3 Theoretical Analysis

4.3.1 Correctness

The process to calculate ρi in FedTruthFinder follows the original algorithm shown in Sec. 2. Hence, we can
obtain the same aggregate truth results as the original algorithm, as long as the SSS scheme is valid. In this regard,
the correctness of our algorithm is theoretically guaranteed.

4.3.2 Robustness to Connection Loss & Security

Setting t to a small value allows our mechanism to tolerate more users dropping the campaign due to connection
losses. Meanwhile, a small t reduces the security level of our mechanism — if t participants collude with each
other, they can recover the other participants’ sensed data and locations, leading to privacy leakage.

Theorem 4.1. If there are ≤ n− t participants losing the connection in one iteration of ρ-computation, the
server can learn the event confidence ρj .

Theorem 4.2. If t′(< t) semi-honest users collude with each other, they cannot infer any other users’ secret
information.

The two theorems hold based on the property of (t, n)-SSS.

4.3.3 Complexity

We analyze the algorithm from both communication and computation complexity perspectives. Particularly, since
the participant clients are more sensitive to the communication and computation overhead, our current analysis
focuses on the client side, while the server part analysis is similar.

Communication Complexity - O(nne). For each participant client, she needs to transfer n share pieces
of the secret to the other participants and receive the corresponding shares from every other participant, so the
complexity is O(n) for one event. Suppose there are ne events, the total communication complexity is O(nne).

132

Computation Complexity - O(nne). Each client needs to do two local computation processes. The first
process is to generate the random coefficients for (t, n)-SSS and calculate the secret shares sent to all the other
participants (Step 1), which is O(nne). The second process is to do local summation (Step 2), which is also
O(nne). Hence, the total computation complexity is O(nne).

5 Federated Trustworthiness Rank

While FedTruthFinder learns the integrated event truth in a privacy-preserving manner, it brings a challenge
in justifying participants’ trustworthiness. For example, to incentivize the crowdsensing participants, it is a
common strategy to pay the high-trustworthy participants (i.e., high-quality sensing results) with higher incentives.
However, in FedTruthFinder, the sensing quality of each participant, i.e., the trustworthiness score τi is kept at
each participant side and unknown to the server. Hence, how to assess participants’ trustworthiness is required
and challenging for FedTruthFinder.

In this section, we first illustrate a concrete case to describe that τi cannot be directly known to the server,
otherwise the server may infer which event ui has sensed. As τi cannot be known to the server, we then design
a secure ranking algorithm to let the server know every participant ui’s ranking position of τi among all the
participants without leaking τi. Based on the ranked positions, the crowdsensing organizer can enable certain
trustworthiness-aware incentive mechanisms, e.g., rewarding high-position participants with bonus, which can
incentivize participants to compete with each other to get more high-quality sensed data [20].

5.1 Privacy Leakage by Trustworthiness τi
Here, we illustrate an example to show the risk of revealing τi to the server for leaking participant ui’s privacy.

Without the loss of generality, we assume that u1’s τ1 = 0.9, and other ui’s τi < 0.9 (i ̸= 1). Suppose that
one event ej’s ρj = 0.9 after truth discovery, then we can easily infer that u1 has sensed the event ej and the
sensed result is 1. This reveals the fact that u1 has visited the location of ej , leaking u1’s location privacy.

Hence, participants cannot directly upload their τi to the server for incentive allocation. Next, we design a
privacy-preserving method to enable trustworthiness-aware incentive allocation.

5.2 Secure Trustworthiness Leader-board

While revealing τi may leak participants’ private information, we propose a secure ranking algorithm to learn a
leader-board regarding participants’ trustworthiness for facilitating trustworthiness-aware incentive allocation.

Secure ranking algorithms have been studied for decades; however, prior studies cannot be directly applied in
our scenario for two reasons. First, the communication overheads are usually high. Second, prior studies mostly
assume that all the network connections are stable for all the parties, but this is unrealistic for crowdsensing.

Our secure ranking algorithm generally follows the design of [22]. However, the original design [22] cannot
tolerate any participants to lose the network connections. We thus enhance it to ensure that the ranking algorithm
can still work when certain participants lose connections. The major steps of our federated trustworthiness
leader-board generation mechanism are:

Step 1. First, we categorize all the participants into (2t+ 1) groups, and thus each group includes n/(2t+ 1)
participants. We denote gid(u) to refer to the group ID of participant u.

Step 2. For each user ui, she shares τi, τ2i , ... , τ2t+1
i with (t + 1, 2t + 1)-SSS to all the user groups.

Specifically, a user uj will receive the share piece regarding gid(uj), denoted as τi1(gid(uj)), τi2(gid(uj)), ...
τi2t+1(gid(uj)) for τi, τ2i , ... , τ2t+1

i , respectively.
Step 3. For each user group gk, it generates a random number rk(> 0) and shares rk with (t+1, 2t+1)-SSS

to all the user groups. That is, uj will receive rk’s share regarding gid(uj), denoted as rk(gid(uj)).

133

Step 4. For each participant uj , she calculates the following number with the τik(gid(uj)) received from ui:

hi(gid(uj)) = λ(gid(uj))

2t+1∑
k=1

rk(gid(uj))τik(gid(uj)) (93)

= λ(gid(uj))γ(gid(uj)) (94)

where
1 1 12 ... 12t

1 2 22 ... 22t

...
1 2t+ 1 (2t+ 1)2 ... (2t+ 1)2t

−1

=

λ(1) λ(2) λ(3) ... λ(2t+ 1)
...
...
...

Step 5. For each user group, we randomly select one participant uj to share {hi(gid(uj))|i ∈ [1, n]} with

(t + 1, n)-SSS to all the n participants. Each user uk’s received shares from all the groups are denoted as
{hi(g, k)|i ∈ [1, n], g ∈ [1, 2t+ 1]}.

Step 6. For each participant uk, she computes:

h′i(k) =
2t+1∑
g=1

hi(g, k), ∀i ∈ [1, n] (95)

Each uk sends {h′i(k)|i ∈ [1, n]} to the server.
Step 7. After receiving at least t+ 1 participants’ {h′i(k)|i ∈ [1, n]}, the server can recover:

hi =
2t+1∑
k=1

rkτ
k
i , ∀i ∈ [1, n] (96)

Step 8. The server ranks ui according to hi and the ranked list is the leader-board regarding trustworthiness
τi.

Note that same as ρ-computation, we do not need to establish the peer-to-peer communication channels
between every two participant clients and can use the crowdsensing server for coordination. To avoid redundancy,
readers can refer to Sec. 4.2.2 for details.

Remark on our novelty. The key improvement of our secure ranking algorithm compared to [22] is the
enhanced robustness against participants’ connection loss. In [22], every participant holds a ri and we will
randomly select 2t+ 1 participants to share their ri (Step 3) and hi (Step 5). This process is easy to break if a
selected online user (Step 3) loses the connection in Step 5. Our proposed algorithm first constructs user groups
so that we only need at least one participant online in each group for both Step 3 and 5, reducing the failure
possibility incurred by connection loss. It is worth noting that this algorithm can not only rank crowdsensing
participants’ trustworthiness, but also be applied to many other applications when privacy-preserving data ranking
is needed under unstable network connections.

Remark on the ranked measurements. In the previous algorithm description, we suppose that τi needs
to be ranked. In practice, crowdsensing organizers can use the same secure ranking mechanism to rank other
key measurements of participants (e.g., the number of sensed events) to design better incentive mechanisms or
participant recruitment strategies.

134

(a) pl = 0.01 (b) pl = 0.05 (c) pl = 0.1

Figure 3: Number of data for each event’s truth discovery by iterations.

(a) pl = 0.05 (b) pl = 0.1

Figure 4: Failure probability of truth discovery.

5.3 Theoretical Analysis

All the proofs are illustrated in Appendix.

5.3.1 Correctness

We first prove the correctness of our algorithm.

Lemma 5.1.
∑2t+1

k=1 rk(x)τik(x) can be represented as:

hi + ai1x+ ai2x
2 + ...+ ai2tx

2t

where hi =
∑2t+1

k=1 rkτ
k
i . [22]

Theorem 5.1. With t+ 1 participants’ h′i(k), we can recover hi.

Theorem 5.2. Ranking hi is equivalent to ranking τi.

5.3.2 Robustness to Connection Loss

We analyze how our secure ranking algorithm can tolerate connection losses. We assume that before Step 2, there
is no user connection loss.4

4If ui loses the connection in Step 2 and cannot share τk
i with SSS, then there is no way to rank ui’s position because the server has

no ui’s information.

135

Theorem 5.3. To finish Step 3-5, there needs at least one user online for each group. Suppose that every user
has pl probability to lose connection and there are n users, the success probability ≥ (1− p⌊n/(2t+1)⌋

l)2t+1.

Theorem 5.4. To finish Step 6-8, ≥ t+ 1 users need to be online.

5.3.3 Security

Here, we analyze the security of our mechanism.

Theorem 5.5 If there are no more than t collusive participants, then these participants cannot recover all the
other users’ τi.

5.3.4 Complexity

We analyze the algorithm from communication and computation complexity perspectives for participant clients.
Communication Complexity - O(tn). In Step 2, the communication overhead of one participant to send

τi, τ
2
i , ..., τ

2t+1
i is O(t2), while each user received data is O(tn). In Step 3, the complexity is O(t). In Step 5, for

sending data, the complexity is O(n); for receiving data, the complexity is O(tn). In Step 7, the complexity is
O(n). Combing them together, the communication complexity of the whole process is O(tn) as t < n.

Computation Complexity - O(tn). The main computation processes of each client include (1) calculating
secret shares for τi, τ2i , ..., τ

2t+1
i with (t+ 1, 2t+ 1)-SSS in Step 2, which is O(t2), (2) calculating secret shares

of rk in Step 3, which is O(t), (3) computing hi in Step 4, which is O(tn), and (4) calculating h′i in Step 6, which
is O(tn). Hence, the final computation complexity is O(tn).

6 Evaluation

6.1 Numerical Analysis for Connection Loss

We have theoretically proven that our algorithm can learn the event confidence and trustworthiness ranking like
the original centralized algorithms. This experiment then focuses on how the connection loss would impact
FedTruthFinder quantitatively, since the unstable mobile network connection is a key characteristic for mobile
crowdsensing. A practical mechanism should be able to fight against the unpredictable connection loss. In general,
participants’ connection loss may bring two types of negative impacts to the iterative truth discovery algorithm.

• A small number of sensed data for truth discovery. While FedTruthFinder can learn an aggregate truth
as long as more than t participants are online, the data sources for the truth would be decreased. This would
also affect the performance of the learned truth.

• Possible failure of the whole algorithm. If a large number of participants lose the connection and only
fewer than t participants remain online, then the whole running process of FedTruthFinder would fail and
no result can be learned.

Specifically, we conduct the numerical analysis for two parts of FedTruthFinder respectively, i.e., event
confidence computation and participant trustworthiness ranking. We vary the probability of one participant losing
the connection (denoted as pl). If pl = 0.01, a participant has 1% probability of dropping out of the crowdsensing
campaign due to one-time connection loss. Then, if a participant needs to connect to the server for n times, it
has 1− (1− pl)n probability to lose the connection. In the experiment, we test pl = 0.01/0.05/0.1 to represent
good/moderate/bad connection scenarios.

136

(a) pl = 0.01 (b) pl = 0.05 (c) pl = 0.1

Figure 5: Failure probability of trustworthiness ranking.

(a) Participants number (b) Connection loss

Figure 6: Detection accuracy of FedTruthFinder.

6.1.1 Event Confidence Computation

To compare with FedTruthFinder, we consider the state-of-the-art way to do iterative truth discovery with an SSS-
based secure aggregation (SA) protocol [1, 34], denoted as SA, which can also tolerate a certain level of participant
connection loss. In brief, SA leverages a double-masking method to ensure that the truth discovery can run when
some users lose the connection. However, not like FedTruthFinder which only needs a one-time connection for
each participant to finish one iteration of ρ-computation, SA needs a two-time connection (double-masking).

Figure 3 shows the number of sensed data for truth discovery in each iteration for FedTruthFinder and SA
(the total number of data is set to 100). Literature has shown that the number of iterations for truth discovery is
often smaller than 10 [36] and thus we set the number of iterations up to 10. FedTruthFinder can always obtain
more sensed data than SA as FedTruthFinder needs fewer connections. Especially, when the network connection
condition is bad (pl = 0.1), the performance improvement of FedTruthFinder over SA is more significant.

Figure 4 shows the algorithm failure probability (i.e., fewer than t users are online) for FedTruthFinder and
SA (we set the number of participants to 100 and t to 50; we do not plot pl = 0.01 as both methods are successful
almost all the time). FedTruthFinder can significantly reduce the failure probability compared to SA. For example,
when the network connection quality is moderate (pl = 0.05), FedTruthFinder has around 99% probability to
finish successfully for 10 iterations; however, SA has only around 1% probability. For the bad connection scenario
(pl = 0.1), SA will fail with more than 20% probability from iteration 3, while FedTruthFinder can keep working
well until iteration 6. This reveals that, even if both FedTruthFinder and SA cannot finish all the ten iterations due
to a bad network connection condition, FedTruthFinder can run a larger number of iterations, making the truth
more reliable.

137

6.1.2 Participant Trustworthiness Rank

As none of the prior studies have addressed the privacy-preserving trustworthiness ranking problem, we cannot
directly find a baseline method to compare. Meanwhile, our proposed trustworthiness ranking algorithm is inspired
by the basic idea from [22] while significantly enhancing the capability to tolerate participants’ connection loss.
To this end, we compare FedTruthFinder and [22] when certain participants lose connections.

In federated trustworthiness ranking, t is the key parameter related to how many user groups are created,
which significantly impacts the algorithm success probability (Theorem 5.3). Suppose the total number of users is
100, we set t = 10/15/20/25. The algorithm failure probability is shown in Figure 5. With the increase of t, the
failure probability of FedTruthFinder rises. This fits our expectation as a larger t means that more user groups are
generated and the user number per group is reduced. As FedTruthFinder needs at least one user online for each
group, smaller user number per group means that the robustness against connection loss is weakened, leading to
higher failure probability. Compared to [22], our algorithm significantly increases the success probability when
connection is unstable. When pl = 0.1 and t = 10, the failure probability of our ranking algorithm is 0.04%,
but [22] is 96.18%. Hence, our algorithm could be an appropriate choice for ranking crowdsensing participants’
trustworthiness scores considering the unstable mobile network connection environment.

6.2 Evaluation of Traffic Light Detection

We also test FedTruthFinder for traffic light detection, a representative crowdsensing task [16, 25]. We focus on
the truth discovery accuracy and the runtime efficiency of FedTruthFinder, which has not been evaluated in the
previous numerical analysis.

6.2.1 Data and Tasks

To evaluate FedTruthFinder on the traffic light detection task, we leverage a real-life open dataset including taxis’
trajectories. Specifically, the dataset contains time-stamped GPS trajectories from 536 taxis in San Francisco, U.S.
in one month of 2008 [18]. Following [16], we manually label 96 traffic light detection event positions using the
Street View of Google Maps (Figure 7). Then, we randomly select some taxis as participants; their trajectories in
the dataset are used to simulate their activities — if a taxi stops around an event’s location, it may report the data.
The report error rate (indicating trustworthiness) of each taxi is randomized in [0, 0.5]. The default participant
number is 60 and the connection loss probability is 0.05. The event confidence function is set to ‘logistic’ as it
performs better than ‘sum’. t in SSS is set to half of the total participant number. To increase the randomness,
each taxi randomly reports 20% of the events, and then each setting of the experiment is repeated by 50 times.

6.2.2 Experiment Platform

Our platform is an Alibaba cloud server with CPU of Intel Xeon Platinum 8163 (12 cores, 2.5GHz) and 24GB
memory. The operating system is Ubuntu 20.04. FedTruthFinder is implemented by Rust 1.56. Docker5 is
adopted to simulate the crowdsensing server and participants.

6.2.3 Truth Discovery Accuracy

Figure 6(a) and 6(b) plot the accuracy regarding the number of participants and connection loss probability,
respectively. Specifically, we compare FedTruthFinder with and without the adaptive truth updating technique
(Sec. 4.2.1). For the adaptive updating, we try α = 1/2/3 (Eq. 91), and find α = 3 performs the best. The adaptive
updating (α = 3) can consistently improve the accuracy with different participant numbers and connection losses.
Specifically, with more participants and higher connection losses, the improvement is more significant. When the

5https://www.docker.com/

138

Figure 7: Traffic light event locations (red: true; blue: false). The red points represent the true event locations (i.e,
with traffic lights) and the blue points mean the false event locations.

connection loss probability increases, the accuracy decreases gradually. This again verifies the effectiveness of
FedTruthFinder over SA [34] — FedTruthFinder reduces the communication times per truth discover iteration
compared to SA, which is conceptually equivalent to the reduction of connection losses in practice.

6.2.4 Runtime Efficiency

Figure 8(a) and 8(b) record each participant’s data transmission amount and computation time, respectively. Note
that the computation time is mostly spent in the truth finding step, while the trustworthiness ranking takes only
∼0.01s. The results show that the data transmission amount and computation time are both small, verifying the
practicality of FedTruthFinder.

7 Related Work

Truth discovery is a traditional research direction as we may often receive diverse and even conflicting information
about one event [7]. In the pioneering research [36], authors discuss the truth discovery problem when there

139

(a) Data transmission (b) Domputation time

Figure 8: Runtime efficiency of FedTruthFinder.

Table 15: Comparison of our work and representative related work. (NTP: No Third Party, AT: Assess Trustwor-
thiness, CA: Collusion Attacks)

Privacy Protection NTP AT Connection Loss CA
Sensed Data Completed Tasks Fault Tolerance Bias Avoidance

[15]
√

× × × × × ×
[40]

√
× × ×

√
× ×

[14]
√

×
√

×
√

× ×
[34]

√
×

√
×

√
×

√

[41]
√

×
√

×
√

×
√

[38]
√

× × ×
√

× ×
Our Work

√ √ √ √ √ √ √

are many conflicting facts about one subject on different websites. Besides information from websites, truth
discovery is also important in many other areas such as social sensing [26] and crowdsourcing [6, 33].

Mobile crowdsensing [39], as a particular type of crowdsourcing that needs workers to do location-based
sensing tasks, would also face the truth discovery problem [24]. Meanwhile, privacy protection is also an
important issue to consider in crowdsensing, especially for location privacy [4, 30, 27, 32, 29, 28]. Most prior
research focuses on protecting crowdsensing participants’ location privacy in task allocation [27, 32, 28] or for
particular crowdsensing tasks such as missing data inference [30, 29].

Recently, some studies investigate the privacy-preserving truth discovery in crowdsensing [13, 15, 14, 38, 37,
34]. One research direction is applying data perturbation methods such as differential privacy to participants’
sensed data [8, 9], but these methods degrade the truth finding accuracy. Another research direction follows the
federated learning [35] paradigm that participants’ raw data will not be directly sent to the server with certain
encryption techniques, while the aggregation results (i.e., detected truths) can be accurately learned. However, the
existing privacy-preserving truth discovery methods usually suffer from certain assumptions which may not stand
in reality, e.g., online/non-concluding participants [13, 15, 14], or third-party non-concluding servers [38, 37].
Moreover, no prior work considers hiding participants’ completed tasks or tracking participants’ trustworthiness
in a privacy-preserving manner, which has been addressed by our work.

Table 15 summarizes the characteristics of our work and representative related work published in top venues
recently. In particular, our work is the first privacy-preserving crowdsensing truth discovery research that
considers (i) providing a feasible solution to participant trustworthiness assessment when the trustworthiness
scores are not revealed, and (ii) hiding participants’ completed tasks to provide stronger privacy protection.
Moreover, when dealing with the connection loss during the iterative crowdsensing truth discovery process, our
work (i) proposes an adaptive event confidence updating function to reserve the data contributions of drop-out
participants to avoid the truth bias toward alive participants, and (ii) designs an SSS-based scheme to defend

140

against participants’ collusion attacks while ensuring the high communication efficiency.

8 Conclusion

In this paper, we propose FedTruthFinder, a crowdsensing federated truth discovery mechanism that can not
only find aggregate truth from multiple participants’ sensed data, but also rank participants’ trustworthiness in a
privacy-preserving manner. The primary characteristic of FedTruthFinder is its capability to tolerate network
connection loss of participants in both event confidence calculation and participant trustworthiness ranking.
As a byproduct, our proposed federated ranking algorithm can also serve other applications when the privacy-
preserving data ranking is needed and the network connections are unstable. Following most related papers, this
work assumes participants to be semi-honest; in the future, we would explore the more challenging scenario that
participants may behave maliciously.

9 Appendix

9.1 Theoretical Proof

Proof of Lemma 5.1. It is clear that,

2t+1∑
k=1

rk(0)τik(0) =
2t+1∑
k=1

rkτ
k
i (97)

Besides, both rk(x) and τik(x) are t-degree polynomials, and thus the degree of
∑

k rk(x)τik(x) is 2t.

Proof of Theorem 5.1. With Lemma 5.1, forN (= 2t+1) groups, γ(gid(uj)) =
∑2t+1

k=1 rk(gid(uj))τik(gid(uj))
(Step 4) is: 1 1 12 ... 12t

1 2 22 ... 22t

...
1 N N2 ... N2t

 hi

ai1
...
ai2t

 =

 γ(1)
γ(2)
...

γ(N)

then, hi

ai1
...
ai2t

 =

 1 1 12 ... 12t

1 2 22 ... 22t

...
1 N N2 ... N2t

−1 γ(1)

γ(2)
...

γ(N)

so,

hi =

N∑
g=1

λ(g)γ(g)

In Step 5, hi(g) = λ(g)γ(g) is shared with (t + 1, n)-SSS to all the participants from every group g ∈
[1, 2t+ 1]. Hence, according to the additive homomorphism property of SSS [21], we can easily recover hi by
receiving t+ 1 participants’ h′i(k) =

∑2t+1
g=1 hi(g, k).

Proof of Theorem 5.2. As τi > 0 and rk > 0, hi =
∑

k rkτ
k
i will keep the same ranking as τi.

Proof of Theorem 5.3. For Step 3 to 5, if there is at least one user in every group, then the process can
continue. So the probability of failure incurred by one specific group g is all the users in g losing the connections,

141

i.e., png ≤ p
⌊n/(2t+1)⌋
l (ng is the user number in g). So for g, the probability of at least one user online

≥ 1− p⌊n/(2t+1)⌋
l . With 2t+ 1 groups, the success probability ≥ (1− p⌊n/(2t+1)⌋

l)2t+1.

Proof of Theorem 5.4. This is based on the property of (t+ 1, n)-SSS in Step 5.

Proof of Theorem 5.5. In Step 2, τki (k = 1...2t + 1) is shared with (t + 1, 2t + 1)-SSS. So, if t participants
collude, they can get at most t · (2t+ 1) equations when t participants are from t groups. However, the number
of unknown parameters (including τi and t random coefficients for sharing each τki) is t · (2t+ 1) + 1. Hence,
these t collusive participants cannot recover other participants’ τi.

9.2 Mechanism Extension to Multi-class and Continuous-value Events

Multi-class Events. For a multi-class event (m classes), we can see it as m binary events, so that our method can
be directly applied.
Continuous-value Events. For continuous-value events, following the literature, we may adopt other proper
event confidence and participant trustworthiness updating functions such as CRH [34, 41]. Specifically, suppose
that the discovered truth sensed value of a continuous event ej is ρj , and ui’s sensed data of ej is ρ̂ij , then the
event truth (confidence) and participant trustworthiness updating functions can be:

ρj =

∑
ui∈Uej

τi · ρ̂ij∑
ui∈Uej

τi
(98)

τi = log(
∑
ui∈U

∑
ej∈Eui

(ρj − ρ̂ij)2

|Eui |
)− log(

∑
ej∈Eui

(ρj − ρ̂ij)2

|Eui |
) (99)

where Uej is the set of users who sense ej , and Eui is the set of events that ui has sensed. For ρ-computation,
following Sec. 4.1, we can just adapt dij and sij according to Eq. 98 (the participant ui ̸∈ Uej can still send dij =

sij = 0 to protect her task completion information). For τ -computation, Eq. 99 requires
∑

ui∈U
∑

ej∈Eui
(ρj−ρ̂ij)

2

|Eui |
,

which can be done with the same SSS-based method as ρ-computation. In particular, each participant ui can send∑
ej∈Eui

(ρj−ρ̂ij)
2

|Eui |
by secret shares, and then the server can compute the sum in a privacy-preserving manner. In a

word, for continuous-value events, our mechanism can still work without revealing each participant’s raw sensed
data and completed tasks.

References

[1] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. McMahan, S. Patel, D. Ramage, A. Segal, and
K. Seth. Practical secure aggregation for privacy-preserving machine learning. CCS, 2017.

[2] D. Chai, L. Wang, K. Chen, and Q. Yang. Secure federated matrix factorization. IEEE Intelligent Systems,
2020.

[3] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state and future challenges. IEEE
Communications Magazine, 49(11):32–39, 2011.

[4] X. Han, L. Wang, and W. Fan. Is hidden safe? location protection against machine-learning prediction
attacks in social networks. MIS Quarterly, 45(2):821–858, 2021.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv:1610.05492, 2016.

142

[6] H. Li, B. Zhao, and A. Fuxman. The wisdom of minority: discovering and targeting the right group of
workers for crowdsourcing. In WWW, pages 165–176, 2014.

[7] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han. A survey on truth discovery. SIGKDD
Explor. Newsl., 17(2):1–16, Feb. 2016.

[8] Y. Li, C. Miao, L. Su, J. Gao, Q. Li, B. Ding, Z. Qin, and K. Ren. An efficient two-layer mechanism for
privacy-preserving truth discovery. KDD, 2018.

[9] Y. Li, H. Xiao, Z. Qin, C. Miao, L. Su, J. Gao, K. Ren, and B. Ding. Towards differentially private truth
discovery for crowd sensing systems. ICDCS, pages 1156–1166, 2020.

[10] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang. A secure federated transfer learning framework. IEEE
Intelligent Systems, 35(4):70–82, 2020.

[11] H. Ma, D. Zhao, and P. Yuan. Opportunities in mobile crowd sensing. IEEE Communications Magazine,
52(8):29–35, 2014.

[12] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and Y. Cheng. Truth discovery on crowd sensing of
correlated entities. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems,
pages 169–182, 2015.

[13] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, and K. Ren. Cloud-enabled privacy-
preserving truth discovery in crowd sensing systems. In SenSys, 2015.

[14] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, and K. Ren. Privacy-preserving truth
discovery in crowd sensing systems. ACM Transactions on Sensor Networks, 15:1 – 32, 2019.

[15] C. Miao, L. Su, W. Jiang, Y. Li, and M. Tian. A lightweight privacy-preserving truth discovery framework
for mobile crowd sensing systems. INFOCOM, pages 1–9, 2017.

[16] R. W. Ouyang, M. Srivastava, A. Toniolo, and T. J. Norman. Truth discovery in crowdsourced detection of
spatial events. IEEE transactions on knowledge and data engineering, 28(4):1047–1060, 2015.

[17] D. Peng, F. Wu, and G. Chen. Data quality guided incentive mechanism design for crowdsensing. IEEE
Transactions on Mobile Computing, 17:307–319, 2018.

[18] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser. CRAWDAD dataset epfl/mobility (v. 2009-
02-24). Downloaded from https://crawdad.org/epfl/mobility/20090224, Feb. 2009.

[19] V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie. The long road to computational location privacy: A
survey. IEEE Communications Surveys & Tutorials, 21:2772–2793, 2019.

[20] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava. Examining micro-payments for participatory sensing
data collections. UbiComp, 2010.

[21] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[22] C. Tang, G. Shi, and Z. Yao. Secure multi-party computation protocol for sequencing problem. SCIENTIA
SINICA Informationis, 41(7):789–797, 2011.

[23] X. Tang, C. Wang, X. Yuan, and Q. Wang. Non-interactive privacy-preserving truth discovery in crowd
sensing applications. INFOCOM, pages 1988–1996, 2018.

143

https://crawdad.org/epfl/mobility/20090224

[24] D. Wang, T. Abdelzaher, and L. M. Kaplan. Surrogate mobile sensing. IEEE Communications Magazine,
52:36–41, 2014.

[25] D. Wang, L. Kaplan, T. Abdelzaher, and C. C. Aggarwal. On credibility estimation tradeoffs in assured
social sensing. IEEE Journal on Selected Areas in Communications, 31(6):1026–1037, 2013.

[26] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher. On truth discovery in social sensing: A maximum likelihood
estimation approach. In IPSN, pages 233–244, 2012.

[27] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma. Location privacy-preserving task allocation for
mobile crowdsensing with differential geo-obfuscation. WWW, 2017.

[28] L. Wang, D. Yang, X. Han, D. Zhang, and X. Ma. Mobile crowdsourcing task allocation with differential-
and-distortion geo-obfuscation. IEEE Transactions on Dependable and Secure Computing, 18:967–981,
2021.

[29] L. Wang, D. Zhang, D. Yang, B. Y. Lim, X. Han, and X. Ma. Sparse mobile crowdsensing with differential
and distortion location privacy. IEEE Transactions on Information Forensics and Security, 15:2735–2749,
2020.

[30] L. Wang, D. Zhang, D. Yang, B. Y. Lim, and X. Ma. Differential location privacy for sparse mobile
crowdsensing. In ICDM, pages 1257–1262. IEEE, 2016.

[31] T. Wang, C. Lv, C. Wang, F. Chen, and Y. Luo. A secure truth discovery for data aggregation in mobile
crowd sensing. Secur. Commun. Networks, 2021:2296386:1–2296386:15, 2021.

[32] Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, and H. Qi. Personalized privacy-preserving task allocation
for mobile crowdsensing. IEEE Transactions on Mobile Computing, 18:1330–1341, 2019.

[33] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise. In NeurIPS, 2009.

[34] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu. Efficient and privacy-preserving truth discovery in mobile crowd
sensing systems. IEEE Transactions on Vehicular Technology, 68:3854–3865, 2019.

[35] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology, 10(2):12, 2019.

[36] X. Yin, J. Han, and S. Y. Philip. Truth discovery with multiple conflicting information providers on the web.
IEEE Transactions on Knowledge and Data Engineering, 20(6):796–808, 2008.

[37] C. Zhang, C. Xu, L. Zhu, Y. Li, C. Zhang, and H. Wu. An efficient and privacy-preserving truth discovery
scheme in crowdsensing applications. Computers & Security, 97:101848, 2020.

[38] C. Zhang, L. Zhu, C. Xu, X. Liu, and K. Sharif. Reliable and privacy-preserving truth discovery for mobile
crowdsensing systems. IEEE Transactions on Dependable and Secure Computing, 18:1245–1260, 2021.

[39] D. Zhang, L. Wang, H. Xiong, and B. Guo. 4w1h in mobile crowd sensing. IEEE Communications
Magazine, 52(8):42–48, 2014.

[40] Y. Zheng, H. Duan, and C. Wang. Learning the truth privately and confidently: Encrypted confidence-
aware truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security,
13:2475–2489, 2018.

[41] Y. Zheng, H. Duan, X. Yuan, and C. Wang. Privacy-aware and efficient mobile crowdsensing with truth
discovery. IEEE Transactions on Dependable and Secure Computing, 17:121–133, 2020.

144

Federated Ensemble Learning: Increasing the Capacity of Label
Private Recommendation Systems

Meisam Hejazinia, Dzmitry Huba, Ilias Leontiadis, Kiwan Maeng, Mani Malek,
Luca Melis, Ilya Mironov, Milad Nasr, Kaikai Wang, Carole-Jean Wu

Meta Platforms, Inc.*

Abstract

Despite proven effectiveness of federated learning (FL) as a solution to private model training, FL has
had limited success in the domains of ranking and recommendation systems. This is primarily due to
the fact that modern recommendation systems, particularly in the context of on-line advertising, rely on
large neural networks that cannot be feasibly trained on user devices. However, given increasing privacy
regulations and evolving users’ preferences, it is imperative for advertising platforms to invest in private
learning solutions like FL that support training highly accurate models with strong privacy guarantees.

In this paper, we propose Federated Ensemble Learning (FEL) as a solution to address the large
memory requirement for recommendation systems subject to label privacy. FEL enables scalable label-
private recommendation model training by simultaneously training multiple smaller FL models on disjoint
carefully selected clusters of client devices. The output of these models is aggregated with a neural network
trained either on server-side data or via a second stage of private on-device training. Our experimental
results demonstrate that FEL leads to 0.43–2.31% model quality improvement over traditional on-device
federated learning — a significant improvement for ranking and recommendation system use cases.

1 Introduction
Federated learning (FL) has emerged as an effective approach to address consumer privacy needs by allowing
edge devices to collaboratively train a machine learning (ML) model, while the raw data samples remain on-
device [5, 20]. While FL has been deployed for a variety of machine learning tasks, such as smart keyboard
[1], personalized assistant services [17], computer vision [27], healthcare [45], it has seen limited adoption for
ranking and recommendation tasks [32, 42]. This is due to the fact that constrained client resources in FL prevent
training a large, high-accuracy recommendation model (often in the order of GBs or TBs [30, 53]), while meeting
the privacy requirement. However, recommendation models need to achieve a strong user privacy and a high
accuracy at the same time 1,

Furthermore, in contrast to conventional privacy settings of FL, a unique characteristic of modern recommen-
dation systems is that models are usually trained on public features but with private labels. For instance, features

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Authors are listed alphabetically.
1A recent study from Baidu [53] indicates that even a 0.1% accuracy drop is considered unacceptable for its ranking and recommenda-

tion tasks.

145

such as user profiles and product catalogs are known to advertising platforms, but the labels, i.e., transaction
details, are considered third-party (private) data. Matching cross-site or cross-app data is privacy-sensitive and
can be subject to regulation and user-device policies. This new label-only privacy setting has gained significant
interest from both academia and industry recently [13, 33].

Focusing on the new label-only privacy requirement, we propose a new FL framework called Federated
Ensemble Learning (FEL). FEL addresses the key limitations of FL for ranking systems in the novel setting of
label privacy.

FEL proceeds in three stages: first, users are clustered into groups of similar behaviors using public features;
second, a leaf model is learned for every cluster of users, simultaneously with other clusters using FL with global
differential privacy (DP); and third, the leaf models (or parts of them) are concatenated to form a back-bone for a
larger server model that can be trained on public data on the server or on private data on user devices. The insight
behind FEL is that if client device clusters are appropriately formed, leaf models can learn distinct, potentially
complementary, representations from each cluster, which are later combined to enhance the overall prediction
capability. At each stage, the FEL framework ensures that the resulting ensemble satisfies the privacy goals by
adapting the noise characteristics of DP for each leaf. We use composition theory to estimate the privacy cost of
the ensemble aggregation layer and to automatically tune the noise added.

FEL excels when the number of observations per user is small, but the number of users is high (e.g., in the
order of billions) — a setting that is common for recommendation and ranking tasks. We have deployed FEL
in the production environment of a large-scale ranking system. We show that the deployed recommendation
task achieves 0.43% precision gain compared to the vanilla FL baseline in the production environment, which is
significant in the context of production ranking and recommendation systems. We observe significant gains of
1.55–2.31% using the open-source datasets, Ads click prediction [46] and image classification [29]. In addition,
we show that FEL outperforms standard FL in the presence of differential privacy (DP) noise by 0.66–1.93%.

2 Background: Federated Learning and Privacy Assumptions
FL trains a model collaboratively using client devices without requiring the raw data to be shared with service
providers. However, the key constraint in using vanilla FL training for recommendation and ranking tasks is the
limited model size it can support. In many federated recommendation and ranking tasks, the input space is large,
e.g., over 1,000 features, and the data distribution is multi-modal. To achieve high accuracy in this setting, we
have to increase the overall model capacity. However, FL can be applied only to sufficiently small models that
can be transmitted and trained on end-user devices.

Prior work studied increasing model capacity by leveraging client heterogeneity: training larger models on
devices that are more powerful, while sending smaller models to less capable devices. The smaller model can be
a subsampled model that is later aggregated to the supernet [6, 19, 9], or a different model that later transfers
its learned knowledge to the larger model with knowledge distillation [26, 23]. These approaches still limit the
model capacity as the model size is capped by the most powerful client devices that still cannot train GB-size
models.

Privacy Assumptions of FEL: FEL targets the label-only privacy setting, where the input is public (i.e., acces-
sible to the service provider) while the label is private. Several advertising, recommendation, and survey/analytics
applications fall into this category [13, 33, 37, 43].

Many recommendation tasks use features that are public from the perspective of the recommender system.
Public features include user attributes that are explicitly shared at sign-up time (e.g., age or gender) [46], externally
observable user behavior (e.g., public movie reviews) [15], or item information that is provided by the item
vendors [38]. On the other hand, the labels of recommendation tasks may be considered private, e.g., user
conversion behavior [40, 13]. It is also possible to use a mixture of public and private features. FEL can be
further extended to incorporate private features (Section 3).

146

While user labels must be kept private, i.e., unknown to the service provider, there can be opt-in users who
consent to sharing their private label information with the service provider to improve the service quality. FEL
does not require the presence of opt-in users; however, having some opt-in user population can simplify the
training algorithm (Section 3) and lower the privacy cost (Section 3.2).

To avoid statistical inference attacks targeting FL, differentially private (DP) noise is added either on device
or during the aggregation step [12, 48, 51]. We target the user-level differential privacy, in which the trained
model weights are similarly distributed with or without a particular user [34]. We assume an honest-but-curious
provider for training FL, which uses either hardware-based encryption in a trusted enclave, or software-based
encryption via multiparty computation for FL aggregation [36, 25].

3 Proposed Design: Federated Ensemble Learning (FEL)
Rather than training one model across all users, FEL proposes to train a distinct leaf model per user cluster and
later aggregate the leaf models on the server to obtain a larger-capacity model. Ensemble methods similar in
spirit have shown promising potential with classical machine learning algorithms, e.g., in the form of AdaBoost,
random forest, and XGBoost [22]. We explored different variations in how the clients are clustered and how the
leaf models are aggregated.

3.1 Federated Ensemble Learning
Figure 1 illustrates the proposed design of Federated Ensemble Learning (FEL). First, we cluster the clients into
a desired number of clusters (Figure 1, Step 1). Then, we train a leaf model for each cluster using traditional
FL (Figure 1, Step 2). After training, the server uses the ensemble of the leaf models for inference requests
(Figure 1, Step 3). On each inference request, the server passes the public input features through all the leaf
models. Then, the output of each leaf model and/or the output of the last hidden layer of each leaf model is passed
to the ensemble aggregation layer, which outputs the final prediction. Below, we lay out how FEL forms clusters
and implements ensemble aggregation, and how FEL can be extended to incorporate private features.

Forming Clusters Client clusters can be formed based on distinctive characteristics of the users, e.g., a user’s
age, location, or past preferences. Clusters can also be obtained by simple hashing, or through popular clustering
approaches such as k-means or Gaussian mixture methods. Marketers have been forming clusters of clients to
target each cluster more effectively, and those well-studied clustering methods can be adopted [4].

Rudimentary Ensemble Aggregation: A simplest way to implement ensemble aggregation is to collect the
prediction output of each leaf model and perform typical aggregation methods, such as mean, median, or max, to
generate the final prediction. This approach is similar to bagging technique leveraged in random forest [44].

Neural Network (NN)-based Ensemble Aggregation: NN-based ensemble aggregation uses a separate
neural network that takes in the prediction and the output of the last hidden layer of all leaf models as input to
generate the final prediction. We call this additional neural network model the over-arch model. The over-arch
model is trained after all the leaf models are trained. The over-arch model can be trained in several different ways.
In the presence of opt-in users, the server can simply use them to train the over-arch model. Otherwise, the server
can again use FL to train the over-arch model on each client, where the server sends the output of the leaf models
to the client, and the client uses it as an input to train the over-arch model locally.

Extending to Private Features FEL can be extended to support private features only known to the clients.
This can be done by (privately) training a separate leaf model (private leaf model) that only takes in private
client-side features. The output of the private leaf model is used as an input to the ensemble aggregation layer
along with other leaf models. When the private leaf model is used, part of the inference must happen on-device
instead of entirely on the server. Specifically, the server sends outputs of the leaf models to each client, which
ensembles them with its private leaf model output on-device for prediction. By performing the ensemble on-
device, the input/output of the private leaf model is never exposed to the server. The private leaf model is trained
with conventional FL as well.

147

Step 2. Train leaf models using FL with clusters Step 3. Use the ensemble of leaf
models for inference

Step 1. Cluster client devices

…

Aggregation
Mean/Max/Median/Over-arch NN

Client Inference
Request Label Prediction

…

Leaf Model 1

…

…

Leaf Model 2

Leaf Model N
…

Cluster 2

…

Cluster 1

…

Cluster N

Figure 1: Federated Ensemble Learning architectures

3.2 Privacy Analysis for Federated Ensemble Learning
Ensuring data privacy is the utmost requirement and this work is the first to conduct privacy analysis for
federated ensemble learning. Differential privacy for federated learning bounds how much the distribution of
model parameters change between two datasets that differ in labels contributed by a single user [34]. We use a
generalization of differential privacy [11] based on the Rényi divergence:

Definition 1 (Renyi Differential Privacy (RDP) [35]). A randomized mechanism M with domain D is
(α, ϵ)-RDP with order α ∈ (1,∞) iff for any two neighboring datasets D,D′ ∈ D:

Dα(M(D)||M(D′)) :=
1

α− 1
logEx∼M(D′)

[(
Pr[M(D) = x]

Pr[M(D′) = x]

)α]
≤ ϵ.

FEL is a multi-step process. To analyze the privacy bounds of a multi-step process, a common approach
in differential privacy is to evaluate each process individually, then calculate the overall privacy bounds by
composing all of the steps. In particular, we focus on two main composition theorems in differential privacy,
sequential and parallel composition [10]. Formally we define:

Theorem 1 (Sequential Composition). Let there be n RDP-mechanisms Mi with (α, ϵi)-RDP when being
computed on a datasetD of the input domain D. Then, the composition of n mechanisms M(M1(D), . . . ,Mn(D))
is (α,

∑n
i=1 ϵi)-RDP

Theorem 2 (Parallel Composition). Let there be n RDP-mechanisms Mi with (α, ϵi)-RDP when being com-
puted on disjoint subset Di of the input domain D. Then, the composition of n mechanisms M(M1(D), . . . ,Mn(D))
is (α,maxni=1 ϵi)-RDP

Sequential composition considers the case where a task uses the same users (even if different steps use
different parts of the user’s data) in different steps of an algorithm. For example, if the algorithm has four
steps each with a privacy cost ε and uses the same users in all the steps, the total privacy cost of the algorithm
would become 4ε. Parallel composition considers a case where each step is applied to different users. From
the earlier example, if four disjoint sets of users were used for the four steps, the overall privacy cost would be
max(ε1, ε2, ε3, ε4), where εk is the privacy cost of the k-th step. The compositions are tracked using RDP, which
leads to tighter bounds than (ϵ, δ)-DP.

When analyzing the privacy cost of training the leaf models, the parallel composition theorem applies as each
leaf model is trained with a disjoint set of users. If training a leaf model with cluster i ∈ {1, . . . , N} has a privacy
cost ei, the privacy cost of the entire leaf model is eleafs = max(e1, . . . , eN).

The privacy cost of the ensemble aggregation layer eagg depends on the aggregation method that is used
(mean, max, median, or NN-based). When using the mean, max, and median ensemble aggregation, eagg = 0 as
both theorems show that privacy cost increases only when the additional step (ensemble aggregation) uses user
data. In this case, the total privacy cost etot is simply eleafs.

148

When the NN-based approach is used, however, user data is used to train the over-arch NN layer and eagg > 0.
Depending on exactly how the over-arch NN layer is trained, etot can be calculated in the following way. First, if
the over-arch NN layer is trained with the users that trained the leaf models, sequential composition theorem
applies (etot = eagg + eleafs). Second, if the over-arch NN layer is trained with a completely different set of users,
the parallel composition theorem applies (etot = max(eagg, eleafs)). Finally, if the over-arch NN layer is trained
with opt-in users, eagg = 0 because no private data is used, and etot = eleafs. In all cases, the privacy cost of FEL
does not significantly deteriorate over the vanilla FL (which is similar to eleafs).

4 Evaluation

In this section we would like to provide more details about our experiments. We first provide details about each
dataset that was used. We then provide details about the model architectures that we used for each dataset.

4.1 Datasets for FEL

We explored three datasets for FEL: An internal production dataset that represents a real-world ads-ranking
system, an external dataset that addresses a similar ads-ranking task, and an image classification dataset.

4.1.1 Production Dataset

Production dataset is an internal dataset that captures whether a user installs a mobile application after being
shown a relevant advertisement item. A few hundred features are used as an input (the exact number cannot be
disclosed) to predict a binary label (install/not-install). All the input features are public. For training, we use
advertisement data from a random sample of 35 million users over a period of one month. Randomly selected 15
million users from the following week were used for testing.

4.1.2 Taobao CTR Dataset

The Taobao dataset contains 26 million interactions (click/non-click when an Ad was shown) between 1.14
million users and 847 thousand items across an 8-day period. The dataset uses 9 user features (e.g., gender or
occupation), 6 item features (e.g., price or brand), and two contextual features (e.g., the day of week), which we
assume to be all public to the service provider.

In the Taobao CTR dataset, 16 out of the 17 features are sparse, with a categorical value encoding instead of
a continuous, floating point value. While server-based recommendation models use large embedding tables to
convert these sparse features into a floating point embedding [54, 38, 8], training such embedding tables on device
is complicated because of the large memory capacity requirement (e.g., in the order of GB to TB [53, 2, 52, 30])
and can leak private information more easily through gradients [40]. Thus, we assume an architecture where
embedding tables are pre-trained with opt-in users and are hosted on the server, while the rest of the model is
trained with FEL using sparse features translated through the pre-trained tables. We randomly selected 10% of
the users as opt-in.

Our setup cannot achieve the accuracy that can be reached when we fully train the embedding tables, as we
pre-train the embeddings and fix their weight during FL. However, our setup represents a practical FL setup
where training embedding tables on-device is prohibitive, due to client resource limitations [39] and privacy
concerns [40].

4.1.3 CelebA Smile Prediction Dataset

While FEL is originally designed for recommendation and ranking tasks, we study its generality to non-
recommendation models with CelebFaces Attributes Dataset (CelebA) [29]. CelebA consists of 200, 288 images

149

belonging to 9, 343 unique celebrities. Each image has 40 binary facial attribute annotations (e.g., bald, long
hair, attractive, etc) and covers large pose variations and backgrounds. We defined distinguishing between
smiling/non-smiling images as our target task.

The Taobao dataset contains 26 million interactions (click/non-click when an Ad was shown) between 1.14
million users and 847 thousand items across an 8-day period. The dataset uses 9 user features (e.g., gender or
occupation), 6 item features (e.g., price or brand), and two contextual features (e.g., the day of week), which we
assume to be all public to the service provider. The details on how we preprocess the dataset can be found in the
appendix.

4.2 Model Architectures

Production/Taobao Dataset: For recommendation datasets (production/Taobao CTR), we use a model that
consists of 3 fully-connected hidden layers. The number of units at each hidden layer is decreasing exponentially
with a parameter K. For instance, if K = 4 and the input layer has 512 features, our neural network would have
[512, 128, 32, 8, 1] neurons. For each dataset, we tune K to obtain a resulting model of approximately 10MB.
By doing so, it allows us to train a neural network even on older, low-tier devices with more limited memory
capacity. ReLu is used as an activation function after each layer apart from the last one, where Sigmoid and
binary cross-entropy was used.

For both datasets, we use synchronous FL with FedAvg [34]. We used the following hyperparameters for the
Taobao dataset from an extensive hyperparameter search: client batch size of 32, 5 local epochs, 4096 clients per
round, and a learning rate of 0.579 with SGD. Clients are selected at random and each only participates once (1
global epoch). The production dataset used similar hyperparameters.

For Taobao dataset’s server-side pre-trained embedding table, we use an embedding dimension of 32, and
train it with the 10% opt-in users for 1 epoch using AdaGrad optimizer with learning rate of 0.01.

CelebA Dataset: For CelebA, we follow the setup of prior work [39] and use a four layer CNN with dropout
rate of 0.1, stride of 1, and padding of 2. We preprocess all images in train/validation/test sets; each image
is resized and cropped to 32×32 pixels, then normalized by 0.5 mean and 0.5 standard deviation. We use
asynchronous FL with a client batch size of 32 samples, 1 local epoch, 30 global epochs, and a learning rate of
0.899 with SGD.

4.3 Evaluation Methodology

Our evaluation aims to answer the following questions:

• Can FEL improve the model prediction quality over vanilla FL? [Section 4.4]

• How do different ensemble aggregation methods affect the model accuracy? [Section 4.4]

• How do different clustering methods affect the model accuracy? [Section 4.5]

• How does FEL affect privacy compared to vanilla FL? [Section 4.6]

To answer these questions we used the three datasets presented in Section 4.1. To study recommendation and
ranking tasks, we used a production dataset and an open-source, Taobao’s Click-Through-Rate (CTR) prediction
dataset [24]. To study the effect of FEL on non-recommendation use-cases, we additionally studied the LEAF
CelebA Smile Prediction dataset [29]. More details about these datasets and their associated model architecture
can be found in Section 4.1.

Both the FL baseline and the FEL leaf models used the same set of hyperparameters. The FL baseline is
trained using all the available client data. In FEL, the client data is clustered, and one leaf model is trained for
each cluster. We vary the number of clusters from 3–10 and evaluate different clustering methods. When training
the over-arch NN layer, a small subset of opt-in users is used.

150

Table 16: Explanation of different cluster methods in Figure 2 (right).

Dataset Config Feature # clusters

Production

Clustering 1 Age 5
Clustering 2 App 5
Clustering 3 Location 4
Clustering 4 Click ratio 10

Taobao [46]
Clustering 1 Age 7
Clustering 2 Consumption 4
Clustering 3 City level 5

CelebA [29]
Clustering 1 # Attributes 3
Clustering 2 K-means 3
Clustering 3 K-means 5

Table 17: FEL’s prediction accuracy improvement over the baseline FL for different datasets. Following common
practice of each dataset, Taobao uses AUC and CelebA uses accuracy as their metric. Production data’s baseline
accuracy is not disclosed.

Production Taobao [46] AUC CelebA [29] accuracy
Baseline FL - 0.5418 3 90.75
FEL (Mean Best) (+0.27%) 0.5522 (+1.92%) 91.68 (+1.02%)
FEL (Median Best) (+0.29%) 0.5459 (+0.74%) 91.35 (+0.66%)
FEL (Max Best) (-0.06%) 0.5418 (-0.1%) 91.46 (+0.78%)
FEL (NN-based Best) (+0.43%) 0.5544 (+2.31%) 92.16 (+1.55%)

4.4 Prediction Quality Improvement of FEL
Overall, FEL achieves 0.43% and 2.31% prediction quality improvement over vanilla FL for production and
Taobao datasets, respectively – a significant improvement for ranking and recommendation system use cases2.
For non-recommendation tasks (CelebA), FEL shows similar improvement of 1.55%, indicating that FEL can
be generalized to non-recommendation use-cases as well. Table 17 summarizes the resulting prediction quality
improvement of FEL compared to the baseline FL. We used accuracy for CelebA [39] and ROC-AUC (AUC) for
Taobao [46]. We used normalized entropy for the production dataset, which we cannot disclose and only show
the relative improvement. For different ensemble aggregation methods, we vary the clustering methods and report
the best-accuracy results. Among the different ensemble aggregation methods, adding an over-arch NN layer
provided the best prediction quality improvement, followed by mean and median.

4.5 Prediction Quality Improvement of Different Clustering Methods
Effects of the Number of Clusters: To understand the effect of the number of client clusters in the final model
quality improvement, we varied the number of clusters in the Taobao dataset while using random clustering.
Figure 2 (left) summarizes the result. There is an optimal setting for the number of clusters used in FEL. Going
beyond the optimal setting for the number of clusters results in worse model accuracy. When the number of
clusters is too small, the final model capacity is limited as there are not enough leaf models to ensemble. If the
number of clusters is too large, each leaf model cannot learn enough information as the clients in each cluster are
too few. The optimal number of clusters depends on the number of available devices that participate within each

2[53] mentioned 0.1% model quality improvement as significant and [50] considered 0.23% as impactful in similar recommendation
and ranking use-cases.

3Taobao’s baseline AUC is 0.26% less than the baseline FL result presented at [40], potentially due to simpler model architecture and
freezed pre-trained embedding tables.

151

1 5 10 15 20
Number of random segments

0.5

0.0

0.5

1.0

Lif
t o

ve
r F

L
ba

se
lin

e
(%

) Max
Mean
Median
NN

(a)

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

Cl
us

te
rin

g
1

Cl
us

te
rin

g
2

Cl
us

te
rin

g
3

Cl
us

te
rin

g
4

Cl
us

te
rin

g
1

Cl
us

te
rin

g
2

Cl
us

te
rin

g
3

Cl
us

te
rin

g
1

Cl
us

te
rin

g
2

Cl
us

te
rin

g
3

Production Ads Ranking TaoBao CTR
Prediction

CelebA Image
Classification

M
od

el
 Q

ua
lit

y
Im

pr
ov

em
en

t (
%

)
O

ve
r F

L
Ba

se
lin

e

(b)

Figure 2: Accuracy improvement for different number of clusters (segments) for each ensemble aggregation
method (left), and different clustering methods when using over-arch NN layer (right). Different clustering
methods are explain in Table 16

Table 18: Taobao dataset with DP. Percentage of FEL’s accuracy improvement over the FL baseline with the
same level of DP noise is shown. Table 16 explains the clustering configurations.

Config ϵ Mean Median Max Over-Arch NN

Clustering 1
∞ +1.27% -0.23% -0.10% +1.86%

3.78 +0.63% -0.14% +0.11% +0.66%
1.56 +0.32% -0.23% +0.34% +0.68%

Clustering 2
∞ +1.92% -0.46% -1.64% +2.29%

3.78 +0.75% -0.21% +0.03% +1.38%
1.56 +0.69% -0.11% +0.74% +0.76%

Clustering 3
∞ +1.86% +0.74% -2.07% +2.31%

3.78 +1.49% -0.09% +1.03% +1.93%
1.56 +0.71% -0.37% +1.26% +1.02%

cluster and, here, the number of partitions can be treated as a hyperparameter [21].
Effects of Features Used in Clustering: We also varied the clustering methods for each dataset and observed

the effect on the final accuracy. We explored different clustering methods for different datasets and presented the
best performing methods. Table 16 (Section 4.3) summarizes the clustering methods. Here, we show the result
for the best performing over-arch NN-based ensemble aggregation for brevity. For the production dataset, we
used user age, the app category where the ad was displayed, location (larger geographic regions), and previous
click ratio of the users to cluster the users. For Taobao, we used user age, city level, and consumption level. For
CelebA, we clustered the 40 binary attributes of each user using K-means clustering or simply used the number
of present attributes.

Figure 2 (right) shows that clustering can affect the final model accuracy significantly. For the production
dataset, clustering using the click ratio (Clustering 4) showed the best accuracy. For Taobao, clustering with city
level showed the best accuracy (Clustering 3). For CelebA, using K-means clustering was the best (Clustering 3).
The results show that clustering methods as well as the number of clusters are two important hyperparameters of
FEL.

152

4.6 Evaluation Results with Differential Privacy
Table 18 shows the accuracy improvement of FEL compared to vanilla FL for two different levels of DP noise,
along with the case of no DP noise (ϵ = ∞). We assume the over-arch NN layer was trained with opt-in data
and no DP noise added when training the over-arch NN layer. Table 18 shows that even when DP noise is
added, FEL shows meaningful accuracy improvement over vanilla FL. Again, we observe that the over-arch
NN layer and mean aggregations still provide the most significant gains. However, smaller ϵ leads to reduced
accuracy gain, possibly due to larger injected noise. Another interesting observation is that the max ensemble
aggregation improves the accuracy when DP noise is added, unlike the no-DP-noise case where it did not show
any improvement. One possible reason is that DP noise mitigates the effects of outliers in training.

5 Related Work
Ensemble Distillation. Lin et al. [26] relied on unlabeled data generated by a generative model to aggregate
knowledge from all heterogeneous client models, Gong et al. [14] focused on communication efficiency and
privacy guarantee with one-shot offline knowledge distillation.

Boosted Federated Learning. Boosting and bagging are two prominent approaches for model ensemble
learning. In Hamer et al. [16], an ensemble of pre-trained based predictors is fine tuned via federated learning,
thus saving on communication costs. Luo et al. [31] suggest gradient boosting decision tree (GBDT) method,
which takes the average gradient of similar samples and its own gradient as a new gradient to improve the accuracy
of the local model.

Local Ensemble Learning. FedEnsemble uses random permutations to update a group of K models, and
then obtains predictions through model averaging, instead of aggregating local models to update a single global
model [47]. Attota et al. [3] propose a multi-view ensemble learning approach aimed at maximizing the learning
efficiency of different classes of attacks for intrusion detection tasks.

Ensemble Aggregation. FedBE takes a Bayesian inference perspective by sampling and combining higher-
quality global models via Bayesian ensemble for robust aggregation [7]. FedGRU uses both secure parameter
aggregation and cluster ensembles to scale [28]. Orhobor et al. [41] assigned users into pre-specified bins and
trained different regressors on each bin, which were later ensembled.

Although these methods have their own merits, they do not address the problem of the recommender and
ranking systems use cases, in which each user has only a small number of examples, and require user-level privacy
guarantee. As a result, none of these studies leverages the variation across users and diversity of behavior in their
proposals. Our approach trains models on separate user clusters, leveraging a large user base in recommender and
ranking systems. Furthermore, our over-arch model approach provides extra gains both in terms of precision and
privacy budget.

6 Conclusion
While Federated learning (FL) has achieved considerable success as a privacy-preserving solution for model
training, its impact on ranking and recommendation systems, particularly in the context of digital advertising,
remains limited. We introduce Federated Ensemble Learning (FEL) to increases the learning capacity of FL.
FEL can be trained efficiently without introducing significant privacy concerns and can improve the prediction
accuracy meaningfully compared to vanilla FL. This work demonstrates that FEL enables FL for demanding
ranking and recommendation tasks. As future work, we plan to integrate unsupervised clustering approaches, so
that the segmentation can happen automatically to optimize FEL’s learning performance. Finally, to minimize the
cost of managing a number of leaf models, we plan to explore ways to automatically assess the quality of leaf
models to pinpoint under-represented clusters and seek possible mitigation such as dynamic clustering and leaf
retraining.

153

References

[1] S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani. A survey on federated
learning: The journey from centralized to distributed on-site learning and beyond. IEEE Internet of Things
Journal, 8(7):5476–5497, 2020.

[2] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood. Understanding training efficiency
of deep learning recommendation models at scale. In 2021 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2021.

[3] D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh. An ensemble multi-view federated learning
intrusion detection for IoT. IEEE Access, 9:117734–117745, 2021.

[4] T. Beane and D. Ennis. Market segmentation: a review. European journal of marketing, 1987.

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and
K. Seth. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, page 1175–1191, 2017.

[6] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar. Expanding the reach of federated learning by
reducing client resource requirements. arXiv preprint arXiv:1812.07210, 2018.

[7] H.-Y. Chen and W.-L. Chao. FedBE: Making Bayesian model ensemble applicable to federated learning.
arXiv preprint arXiv:2009.01974, 2020.

[8] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai,
M. Ispir, et al. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on
deep learning for recommender systems, pages 7–10, 2016.

[9] E. Diao, J. Ding, and V. Tarokh. HeteroFL: Computation and communication efficient federated learning for
heterogeneous clients. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[10] C. Dwork and J. Lei. Differential privacy and robust statistics. In Proceedings of the forty-first annual ACM
symposium on Theory of computing, pages 371–380, 2009.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

[12] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A client level perspective.
CoRR, abs/1712.07557, 2017.

[13] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang. Deep learning with label differential
privacy. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[14] X. Gong, A. Sharma, S. Karanam, Z. Wu, T. Chen, D. Doermann, and A. Innanje. Preserving privacy in
federated learning with ensemble cross-domain knowledge distillation. 2022.

[15] Grouplens. MovieLens 20M dataset, 2016.

[16] J. Hamer, M. Mohri, and A. T. Suresh. FedBoost: A communication-efficient algorithm for federated
learning. In International Conference on Machine Learning, pages 3973–3983. PMLR, 2020.

154

[17] K. Hao. How Apple personalizes Siri without hoovering up your data. Technology Review, 2020.

[18] C. He, M. Annavaram, and S. Avestimehr. Group knowledge transfer: Federated learning of large CNNs at
the edge. Advances in Neural Information Processing Systems, 33:14068–14080, 2020.

[19] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and N. Lane. FjORD: Fair and accurate
federated learning under heterogeneous targets with ordered dropout. Advances in Neural Information
Processing Systems, 34, 2021.

[20] D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J. Wu, H. Zhan, P. Ustinov, H. Srinivas,
et al. Papaya: Practical, private, and scalable federated learning. Proceedings of Machine Learning and
Systems, 4, 2022.

[21] Y. G. Kim and C.-J. Wu. AutoFL: Enabling heterogeneity-aware energy efficient federated learning. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, 2021.

[22] N. K. Le, Y. Liu, Q. M. Nguyen, Q. Liu, F. Liu, Q. Cai, and S. Hirche. FedXGBoost: Privacy-preserving
XGBoost for federated learning. arXiv preprint arXiv:2106.10662, 2021. Presented at International
Workshop on Federated and Transfer Learning for Data Sparsity and Confidentiality (FTL-IJCAI’21).

[23] D. Li and J. Wang. FedMD: Heterogenous federated learning via model distillation. arXiv preprint
arXiv:1910.03581, 2019.

[24] L. Li, J. Hong, S. Min, and Y. Xue. A novel CTR prediction model based on DeepFM for Taobao
data. In 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID), pages
184–187. IEEE, 2021.

[25] Y. Li, Y. Zhou, A. Jolfaei, D. Yu, G. Xu, and X. Zheng. Privacy-preserving federated learning framework
based on chained secure multiparty computing. IEEE Internet of Things Journal, 8(8):6178–6186, 2020.

[26] T. Lin, L. Kong, S. U. Stich, and M. Jaggi. Ensemble distillation for robust model fusion in federated
learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020.

[27] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu, and Q. Yang. FedVision:
An online visual object detection platform powered by federated learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 13172–13179, 2020.

[28] Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang. Privacy-preserving traffic flow prediction: A federated
learning approach. IEEE Internet of Things Journal, 7(8):7751–7763, 2020.

[29] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pages 3730–3738, 2015.

[30] M. Lui, Y. Yetim, z. Özkan, Z. Zhao, S.-Y. Tsai, C.-J. Wu, and M. Hempstead. Understanding capacity-
driven scale-out neural recommendation inference. In 2021 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2021.

[31] C. Luo, X. Chen, J. Xu, and S. Zhang. Research on privacy protection of multi source data based on
improved GBDT federated ensemble method with different metrics. Physical Communication, 49:101347,
2021.

[32] K. Maeng, H. Lu, L. Melis, J. Nguyen, M. Rabbat, and C.-J. Wu. Towards fair federated recommen-
dation learning: Characterizing the inter-dependence of system and data heterogeneity. arXiv preprint
arXiv:2206.02633, 2022.

155

[33] M. Malek, I. Mironov, K. Prasad, I. Shilov, and F. Tramer. Antipodes of label differential privacy: PATE
and ALIBI. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[34] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private recurrent language
models. arXiv preprint arXiv:1710.06963, 2017.

[35] I. Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium (CSF),
pages 263–275. IEEE, 2017.

[36] A. Mondal, Y. More, R. H. Rooparaghunath, and D. Gupta. Flatee: Federated learning across trusted
execution environments. arXiv preprint arXiv:2111.06867, 2021.

[37] M. Nalpas and S. Dutton. A more private way to measure ad conversions, the event conversion measurement
API, Oct. 2020.

[38] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang, U. Gupta, C.-J.
Wu, A. G. Azzolini, et al. Deep learning recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[39] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba. Federated learning with
buffered asynchronous aggregation. arXiv preprint arXiv:2106.06639, 2021.

[40] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen. Billion-scale federated learning on
mobile clients: A submodel design with tunable privacy. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, pages 1–14, 2020.

[41] O. I. Orhobor, L. N. Soldatova, and R. D. King. Federated ensemble regression using classification. In
International Conference on Discovery Science, pages 325–339. Springer, 2020.

[42] V. Perifanis and P. S. Efraimidis. Federated neural collaborative filtering. Knowledge-Based Systems,
242:108441, 2022.

[43] J. J. Pfeiffer III, D. Charles, D. Gilton, Y. H. Jung, M. Parsana, and E. Anderson. Masked LARk: Masked
learning, aggregation and reporting workflow. arXiv preprint arXiv:2110.14794, 2021.

[44] A. M. Prasad, L. R. Iverson, and A. Liaw. Newer classification and regression tree techniques: bagging and
random forests for ecological prediction. Ecosystems, 9(2):181–199, 2006.

[45] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. A. Landman,
K. Maier-Hein, et al. The future of digital health with federated learning. NPJ digital medicine, 3(1):1–7,
2020.

[46] P. Sabnagapati. Ad display/click data on taobao.com, 2020.

[47] N. Shi, F. Lai, R. A. Kontar, and M. Chowdhury. Fed-ensemble: Improving generalization through model
ensembling in federated learning. arXiv preprint arXiv:2107.10663, 2021.

[48] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou. A hybrid approach to
privacy-preserving federated learning - (extended abstract). Inform. Spektrum, 42(5):356–357, 2019.

[49] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar. Split learning for health: Distributed deep learning
without sharing raw patient data. arXiv preprint arXiv:1812.00564, 2018.

156

[50] R. Wang, B. Fu, G. Fu, and M. Wang. Deep & cross network for ad click predictions. In Proceedings of the
ADKDD’17, pages 1–7. 2017.

[51] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor. Federated
learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information
Forensics and Security, 15:3454–3469, 2020.

[52] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks, and G.-Y. Wei. RecSSD: Near
data processing for solid state drive based recommendation inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems,
2021.

[53] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li. Distributed hierarchical GPU parameter server
for massive scale deep learning ads systems. Proceedings of Machine Learning and Systems, 2:412–428,
2020.

[54] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai. Deep interest network
for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1059–1068, 2018.

157

Enhance Mono-modal Sentiment Classification With Federated
Cross-modal Transfer

Xueyang Wu† Di Jiang‡ Yuanfeng Song‡ Qian Xu‡ Qiang Yang†

† Department of CSE, HKUST, Hong Kong, China {xwuba,qyang}@cse.ust.hk
‡ AIGroup, WeBank Co. Ltd., Shenzhen, China {dijiang, yfsong, qianxu}@webank.com

Abstract

Sentiment analysis is a complex process that involves multiple modalities, which can provide more
accurate and informative results than using a single modality. Although existing multimodal approaches
have shown to be superior to mono-modal sentiment classification, they are not always practical in
real-world scenarios where only mono-modal input is available, or where multimodal data is limited
due to data scarcity or privacy concerns. To address this issue, we propose a novel approach that
enhances mono-modal sentiment classification through federated transfer learning. Specifically, we
focus on a practical industrial problem where text and speech data are owned by different affiliations,
and we aim to bridge these modalities by sharing a cross-modal feature generator and phone classifier.
Our proposed framework also incorporates differential privacy techniques to ensure privacy-preserving
cross-modal transfer. Our experimental results on real-world spoken language sentiment classification
corpora demonstrate the effectiveness of our proposed framework. We show that our approach can
significantly improve the accuracy of mono-modal sentiment classification, even when only a limited
amount of data is available.

1 Introduction

Sentiment classification has recently attracted significant interest due to its ability to automatically recognize
the polarity of human emotional states or attitudes expressed in spoken or written language, which is crucial
for improving the user experience in human-machine interaction. Communication among humans involves
various modalities, including textual and acoustic content, facial expressions, and body gestures. However, single
modality fails to capture sentimental information entirely and leads to inaccurate classification. To address this
issue, researchers have proposed multi-modal sentiment or emotion classification approaches that utilize features
from different modalities to enhance classification accuracy [12, 11]. Text, speech, and vision are three critical
modalities for sentiment classification [29, 23], and previous research has proposed various fusion strategies to
better utilize multiple modalities [33, 14]. Among these modalities, some researchers highlight the importance of
text and speech modalities [20].

Despite the advantages of multi-modal sentiment classification, two obstacles hinder the application of
traditional multi-modal sentiment classification in industry: data scarcity and user privacy. Collecting multi-
modal data is challenging in real-world applications, and mono-modal speech and text data are often the only

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

158

available options in call centers or text-based conversation systems. Furthermore, annotating parallel multi-modal
data is costly and laborious. Moreover, user privacy has become an increasing concern, and many authorities
have enacted regulations to protect data and model privacy, such as the EU General Data Protection Regulation
(GDPR) [27] in 2018, followed by the US and China.

To address these challenges, we propose a novel federated machine learning paradigm for sentiment classi-
fication. Since mono-modal sentimental corpora are more accessible and cost-effective, it is worth enhancing
mono-modal sentiment classification if we can leverage multiple corpora with different modalities, leveraging the
complementarity of different modalities from multiple sources. To address user privacy concerns when using
multiple corpora, we introduce federated learning [30], a collaborative machine learning paradigm where multiple
parties jointly learn a global model without exposing their private local data. Our work focuses on scenarios
where each party in the federation owns a single-modal sentimental corpus and aims to enhance their sentiment
classification performance collaboratively. Further details on related work are provided in Section 2.

Our proposed framework enables multiple institutes with different modality corpora to collaborate and transfer
their knowledge learned from their data in a privacy-preserving manner. The cross-modal transfer is based on
the phone sequence, which can be obtained from both text and speech modalities, embedding both phonetic
cues and lexical information. Our method takes mono-modal input but utilizes cross-modal transfer to expand
the number of modalities. Using the phone sequence as the intermedium between speech and text modality has
three benefits: 1) the phone sequence is easy to obtain for both textual and audio input without modifying the
existing model significantly; 2) as an intermedium between speech and text, it preserves semantic meaning and
speech characteristics; 3) it is straightforward to align the audio pieces and words using the phone sequence
at the utterance level. The alignment allows us to enrich the raw text input with speech features learned from
the audio modality and embed the acoustic features with semantic meanings learned from the text. During
collaborative training, speech-side and text-side institutions join as a federation, only exchanging intermediate
model parameters protected by the differential-privacy mechanism instead of sharing raw data or bare model
parameters.

SPE 𝜙𝑠𝑝𝑒 Mono-modal Training①②

text classifier

𝑓𝑡

SPE 𝜙𝑠𝑝𝑒

TPE 𝜙𝑡𝑝𝑒

phone

classifier 𝑓𝑝

⑤ Collaborative Training

TPE 𝜙𝑡𝑝𝑒

phone

classifier 𝑓𝑝

modal fusion

𝑓𝑚
𝑡

modal fusion

𝑓𝑚
𝑠

③
Sharing

④ Local Training ④ Local Training

data flow model

speech classifier

𝑓𝑠

Figure 1: The Joint-view of Cross-modal Transfer Learning Framework of Text and Speech module

2 Related Work

2.1 Multi-modal Sentiment Analysis

Multi-modal sentiment and emotion analysis often involve multiple modalities, such as text, speech, and vision
[29, 23]. Different approaches have been proposed to leverage the information from multiple modalities more

159

effectively [33, 14, 21], showing that well-designed fusion strategies significantly affect the model performance.
Other research works have further explored two-modal sentiment analysis, such as visual-audio fusion [16, 29]
and textual-audio fusion [12, 20]. These works typically focus on model architecture design or representation
extraction. In contrast, our proposed method enhances mono-modal sentiment classification by a novel federated
cross-modal transfer framework, where each party in the federation owns data in only one modality.

2.2 Cross-modal Transfer

Cross-modal transfer has been used in image classification since 2013 [25]. It allows an image classifier to
classify a given image class, even if it has not been seen in the training data. Cross-modal transfer leverages the
textual description of the object, forces the textual modal and visual modal embedding to map into the same space,
and hence allows zero-shot inference with only a textual description of the unseen class. Existing cross-modal
transfer methods for sentiment classification often focus on fusing audio and visual modalities based on the
correlation between speech and facial expression [2, 6]. Our approach differs in that it focuses on the semantic
complementarity between speech and spoken words. We use phonetic features as an intermediary to connect
audio and textual information. For example, when in intense emotion, the pronunciation of words may have
distortion, which cannot be observed in the text generated by automatic speech recognition (ASR) but can be
captured in the phone sequence.

2.3 Federated Learning

Federated learning was first proposed by Google researchers in 2016 [15] as a way to learn a global model without
explicitly gathering data from different clients. Federated learning has since been extended to various architectures
[30, 31], such as horizontal federated learning, vertical federated learning, and federated transfer learning, with
different privacy protection approaches, such as differential privacy [7], homomorphic encryption [22], and
multiparty security computation [32]. Among these privacy and security protection techniques, differential privacy
has emerged as a widely adapted approach for deep learning because it is practical in terms of computational
efficiency. Differential privacy for deep learning is a mechanism that injects deliberately generated noise into
the model during the training phase, which offers strong and robust guarantees to bound the probability of
revealing raw data under a reasonable threshold. However, there is a tradeoff between high utility and high privacy
protection, as injecting more noise into the model leads to less utility. To achieve higher privacy protection, we
apply differential privacy to our proposed method, and to maintain high utility, the noises are only injected into
a small portion of the model parameters that are shared across parties. Our proposed framework is well-suited
for federated learning as it allows two parties to collaborate and share knowledge while keeping sensitive data
locally, which effectively relieves the challenges of data scarcity and data privacy in sentiment classification.

3 Federated Cross-modal Transfer

3.1 Settings and Notations

For simplification, we describe our setting as consisting of two parties, and we can easily extend it to the
multi-party scenario. We summarize our cross-modal transfer framework in the form of the flow chart in Fig. 1,
where the red block stands for text modality and the blue one for speech modality. The circled numbers state the
general steps of cross-modal joint learning.

Denote datasets for text-side and speech-side parties as Dt = {wi, yi}Nt
i=1 and Ds = {si, yi}Ns

i=1, respectively,
consisting of pairs of the text w or speech s and the label y, where Nt and Ns are the numbers of training
instances of the text-side party and the speech-side party. We use subscripts (·)s, (·)t to distinguish where a

160

variable belongs to. As a decentralized federated learning setting, this framework does not involve a central
orchestrator, two parties directly set up connections and exchange parameters with each other.

3.2 Phone as Intermedium

We use phone-level information as an intermedium between text and speech modalities in this work. Phones
are the units of speech that constitutes the pronunciation of words. The phone sequence captures the speech
pronunciation of a sentence or a word, including the tones and pronunciation variation, such as stress and rhythm,
which implies a speaker’s sentiment. Phonetic cues have been used to enhance multi-lingual text classification [24]
and text representation learning [19], as phones entail more semantic and sentiment cues than text. On the other
hand, the phone sequence is obtainable from both speech and text sides, making it a good bridge to connect the
two modalities. For example, a classic DNN-HMM hybrid ASR system can conduct the speech-to-phone
transformation to produce the phone sequence of a given speech as the byproduct. The text can also be transformed
into a phone sequence with the lexicon representing the “standard” pronunciation of the text, denoting this process
as text-to-phone.

3.3 Federated Cross-modal Transfer Framework

As shown in Fig. 1, our federated cross-modal transfer framework involves two parties and can be summarized in
5 steps. For clarity, we denote the speech-side (blue block) as client-s, and the text-side (red block) as client-t.
Client-s and client-t are two independent institutes that collaboratively enhance their mono-modal sentiment
classifier with federated cross-modal transfer with each following the Alg. 5 and 6 respectively.

Algorithm 4 Federated cross-modal transfer
Require: two parties client-s and client-t with speech sentiment corpus and text sentiment corpus respectively;

1: client-s conducts lines 1-5 in Alg. 5 for initialization;
2: client-t conducts lines 1-2 in Alg. 6 for initialization;
3: while not reach maximum rounds do
4: client-s conducts lines 7-12 in Alg. 5 and client-t conducts lines 4-9 in Alg. 6 parallelly;
5: client-s sends ϕ(s)tpe, f

(s)
p , f

(s)
m to client-t;

6: client-t sends ϕ(t)tpe, f
(t)
p , f

(t)
m to client-s;

7: client-s conducts lines 13 to update ϕ(s)tpe, f
(s)
p , f

(s)
m ;

8: client-t conducts lines 10 to update ϕ(t)tpe, f
(t)
p , f

(t)
m ;

Step 1. The workflow of the proposed framework starts with client-s training a mono-modal speech sentiment
classifier. Then client-s build a Speech-Phone-Extractor (SPE) that embeds the speech signal-level information to
phonemes. The speech classifier (fs) and text classifier (ft) are implemented with mono-modal models mentioned
in Section 4.4.

Step 2. To avoid missing the focus on our framework, we propose a vanilla SPE practice, which represents a
phone with its responding fs averaged by utterances where this appears.

Step 3. Sharing SPE helps client-t build a homogeneous phone classifier as client-s, which allows two clients
to start federated learning, even though their input modalities are different.

Step 4-5. Client-s and client-t have different input modalities and mono-modal models while sharing the
same phone classifier and the modal-fusion weights. The input of client-s is a piece of speech features x, noted as
s = [x1,x2, ...,xT], extracted from the raw audio wave, where T is the number of frames. The input of client-t is
a sentence, i.e., a word sequence w = [w1, w2, ..., wL], where L is the length of the sentence. We hence obtains

161

phone sequences from s and w with

ps = speech-to-phone(s) ,

pt = text-to-phone(w).
(100)

Thereafter, each client has two input sequences: speech/text sequence and phone sequence. The speech/text
sequence is fed into the mono-modal model, i.e,

os = fs(s) , ot = ft(w). (101)

Processing phone sequence is identical for the two clients, so we ignore the superscript of the models
ϕ
(·)
tpe, f

(·)
p , f

(·)
m . We extract the distributed speech-phone representation rsp and text-phone representation rtp of

the given phone sequence p,

rsp = ϕspe(p) , rtp = ϕtpe(p). (102)

The phone representations from two modalities are concatenated and fed into the phone classifier, i.e.,

rp = [rsp; rtp] , op = hp(rp) (103)

We apply the late fusion (a.k.a., decision-level fusion) strategy [33] to combine information from different
modalities, i.e,

y = fm(os,op), y = fm(ot,op), (104)

We compute the cross-entropy loss with the output y and label l as well as the gradients of parameters through
Eq. (100)-(104). The training data of text and speech are store at each client isolatedly, and the two clients
only share ϕ(·)tpe, f

(·)
p , and f (·)m to each other. ϕ(·)tpe represents ϕ(s)tpe and ϕ(t)tpe, for simplicity, as well as f (·)p , and

f
(·)
m . All models are updated with the Stochastic Gradient Descent optimization algorithm (SGD). To achieve

differentially private models, the shared models are updated with the differentially private version of SGD that
provides privacy protection of the released model [1], noted as DP-SGD. In more detail, we inject Gaussian noise
[8] to the parameters during optimization. The scale of noise is related to the privacy budget (ϵ, δ) indicating the
probabilities of leaking privacy. A larger privacy budget allows less model perturbation.

Each client conducts local training using their local data, and conducts weighted average over parameters of
ϕ
(·)
tpe, f

(·)
p , and f (·)m . As a decentralized federated learning scheme, two parties directly exchange differentially

private parameters of shared models with each other without the need for a central server [31]. Within each party,
the weighted averaging follows Eq. (105), i.e.,

ϕ
(s)
tpe = ϕ

(t)
tpe =

(
|Ds| · ϕ(s)tpe + |Dt| · ϕ(t)tpe

)
(|Ds|+ |Dt|)

,

f (s)p = f (t)p =

(
|Ds| · fp(s) + |Dt| · fp(t)

)
(|Ds|+ |Dt|)

.

(105)

4 Experiments

4.1 Experimental Setup

In this study, we assess the performance of our proposed framework on two public multi-modal datasets, namely
MOSI [34] and MOSEI [35], which are available in the CMU Multimodal Data SDK 1.

1https://github.com/A2Zadeh/CMU-MultimodalDataSDK

162

https://github.com/A2Zadeh/CMU-MultimodalDataSDK

Algorithm 5 DP cross-modal transfer (client-s)
Require: local training data Ds;

1: initialize the local speech classifier (fs);
2: train fs with local training data;
3: build SPE ϕ(s)spe with fs according to Alg. 7;
4: share ϕ(s)spe to client-t;
5: initialize TPE ϕ(s)tpe, phone-classifier f (s)p , and model-fusion function f (s)m ;
6: while not reach maximum rounds do
7: for local training iteration i do
8: sample (s, l) from local training data;
9: compute gradients of fs, ϕ(s)tpe, f (s)p , and f (s)m with (s, l) according to Eq. (100)-(104);

10: update parameters of fs with SGD;
11: update parameters of ϕ(s)tpe, f (s)p , and f (s)m with DP-SGD;

12: send differentially private parameters of ϕ(s)tpe and f (s)p to client-t;
13:
14: receive differentially private parameters of ϕ(t)tpe and f (t)p from client-t;
15:
16: update ϕ(s)tpe and f (s)p according to Eq. (105);

return ϕ(s)spe, ϕ(s)tpe, f (s)p , and f (s)m ;

Algorithm 6 DP cross-modal transfer (client-t)
Require: local training data Dt;

1: receive ϕ(s)spe from client-t;
2: initialize ϕ(t)tpe, f (t)p , f (t)m , and text classifier (ft);
3: while not reach maximum rounds do
4: for local training iteration i do
5: sample (w, l) from local training data ;
6: compute gradients of ft, ϕ

(t)
tpe, f (t)p , and f (t)m with (w, l) according to Eq. (100)-(104);

7: update parameters of ft with SGD;
8: update parameters of ϕ(t)tpe, f (t)p , and f (t)m with DP-SGD;

9: send differentially private parameters of ϕ(t)tpe and f (t)p to client-s;
10:
11: receive differentially private parameters of ϕ(s)tpe and f (s)p from client-s;
12:
13: update ϕ(t)tpe and f (t)p according to Eq. (105);

return ϕ(t)tpe, f (t)p , and f (t)m ;

163

4.2 Dataset Description

Table 19 presents a summary of the datasets, including their size and label distributions. For both datasets, we
leverage the training set to train the model and the validation set to fine-tune the hyperparameters. The evaluation
of the models is performed on the test set using the hyperparameters chosen through the validation set.

4.3 Baseline Models and Evaluation Metrics

To demonstrate the efficacy of our framework, we compare it with two classes of representative mono-modal
sentiment classification methods, i.e., Textual Modal Model and Audio Modal Model, referred to as baseline
models. We also perform experiments in the centralized oracle settings. To control for variables, the oracle
settings employ the neural network model proposed in this study, but its inputs (text and speech) are aligned per
utterance. The oracle settings are ideal but impractical, and they indicate the model’s full potential. To further
validate the compatibility of our framework with state-of-the-art models, such as BERT [5] and Transformer,
we substitute the mono-modal text model with pre-trained BERTLarge and the speech model with a standard
Transformer [26].

All models are tuned with the validation set, and the evaluation metrics are F1-scores reported on the testing
sets, which includes four testing sets obtained from two modalities and two datasets.

Table 19: The statistics of the reference label distribution

Dataset MOSI MOSEI

Train 1283 605:678‡ 16331 8279:8052
Valid 299 105:124 1871 939:932
Test 686 409:277 5057 2375:2287
‡ positive-negative count of reference labels

4.4 Implementation

We provide details of the implementation of our proposed framework, specifically focusing on the phone feature
extractor and the acoustic phone feature mapper.

The textual phone feature extractor (ϕtp) leverages the Forward-Maximum-Matching (FMM) algorithm to
translate an utterance w to the corresponding phone sequence pt, with the help of a lexicon.

To recover the acoustic feature from the phone sequence, we propose a concise acoustic phone feature mapper
(ϕsp). We build a mapper from each context-free phone to an acoustic feature, either from MFCCs or openSMILE
[9], following Algorithm 7. For a given phone sequence ps, we generate a sequence of acoustic feature vectors
Rs. We obtain an utterance vector by taking the mean over Rs.

As we focus on the sentiment classification task, the sentiment labels in the datasets are normalized to positive
(intensity > 0) and negative (intensity ≤ 0). For the acoustic model, we use a handcrafted feature set extracted
by openSMILE2 [9]. This produces a set of features that indicate intensity, loudness, Mel-frequency cepstral
coefficients (MFCCs), and pitch. openSMILE extracts 384-dimensional acoustic features for every 100ms-frame.
The maximum sequence lengths for words, phones, and acoustic features are all limited to 800.

We have implemented the Textual Modal Model using a multi-layer bi-directional GRU model [4], referred to
as BiGRU. For the Audio Modal Model, we have used a Convolutional Neural Network [10] (CNN). Furthermore,
to ensure a fair comparison between different settings, we have limited the training iteration at each epoch to
1000.

2We used the IS09 configuration from https://github.com/naxingyu/opensmile/blob/master/config/.

164

https://github.com/naxingyu/opensmile/blob/master/config/

Algorithm 7 Build speech-phone-extractor

Require: an utterance-level acoustic feature extractor Ms for speech classification, and a set of speech Xs, a
vocabulary of phone V

1: Ps = speech-to-phone(Xs);
2: for each phone p in V do
3: Psp = {ps| p ∈ ps, ∀ ps ∈ Ps};
4: Rsp = {Ms(ps)| ps ∈ Psp};
5: rsp =

∑
r ∈ Rsp

(r)

|Rsp| ;
6: map[p] = rsp;

7: ϕspe(p) := (map[pj] | p = [p1, ..., pj , ..., pN]); return ϕspe
The proposed framework and baselines have been implemented using PyTorch [18], and the differential

private algorithm has been applied using PyVacy [28]. We have used the differentially private optimizer [1] to
train the shared phone classifier. In the differential privacy settings, we have set all δ to 10−5, and we have varied
ε to evaluate both protection and performance. All experiments have been conducted on a machine equipped with
an Intel(R) Xeon(R) CPU E5-2630, 128 GB RAM, and 4 NVIDIA GeForce GTX TiTian XP GPUs.

4.5 Experimental Results

Table 20: The F1-score of cross-modal transfer under different privacy budgets

Dataset
Baseline

(Mono-modal)
Oracle

(Centralized)
ϵ = 1 ϵ = 5 ϵ = 10 ϵ = 15 ϵ =∞ Avg. #turn

MOSI-MOSI 55.61 59.23 57.59 57.56 57.53 57.50 56.77 3
MOSEI-MOSEI 62.02 66.91 63.54 65.84 65.82 65.71 65.73 4.8
MOSI-MOSEI 55.61 N/A 57.65 57.53 58.04 58.01 57.88 7.2
MOSEI-MOSI 62.02 N/A 65.86 65.56 65.88 65.86 65.58 5.8

MOSI-MOSI 57.42 65.23 63.32 61.59 61.33 60.81 61.97 4.2
MOSEI-MOSEI 68.53 70.91 70.30 70.54 70.51 69.98 69.73 5
MOSI-MOSEI 68.53 N/A 69.74 70.04 69.95 69.73 69.76 6.8
MOSEI-MOSI 57.42 N/A 62.01 62.86 62.31 60.16 60.38 6.8

Table 20 presents the performance of four data settings with varying privacy budgets. The first column
provides the details of the four settings in the form of speech-side and text-side data. In addition to transferring
between identical data distributions (MOSI-MOSI and MOSEI-MOSEI), we also validate our framework’s
effectiveness for non-IID and imbalanced distributions (MOSEI-MOSI and MOSI-MOSEI), which are more
realistic in real-world scenarios 3. The columns from ε = 1 to ε = ∞ display the results under different
parameter settings. The larger the value of ϵ, the weaker the privacy protection, and the less noise injected into
the framework. According to [17], ε between 6 and 14 is practical in real-world applications. When ϵ =∞, the
model is trained without any differential privacy protection (e.g., FedAvg).

The results in Table 20 show that our federated cross-modal transfer framework enhances performance in all
settings. Moreover, we observe that our framework effectively improves the performance of mono-modal inputs to
reach the ideal level of aligned multimodal inputs, as compared to the oracle settings. For instance, under-setting
ϵ = 5, our framework achieves absolute accuracy improvements of 3.82% and 2.01% over the baselines in

3Note that the training data of speech-side and text-side are neither parallel nor aligned

165

MOSEI and MOSE datasets, respectively. The results also suggest that the improvement is more significant
for the side with less training data (as shown in the MOSI-MOSI and MOSEI-MOSI results from Table 20).
The numbers in the last column demonstrate that our framework converges within a few rounds, indicating low
network overload. Furthermore, we find that stricter privacy protection does not necessarily lead to performance
decreases. In fact, smaller privacy budgets may provide excellent performance, where the injected noise acts as
regularization for the model, avoiding overfitting. Importantly, our proposed framework is fully compatible with
secure-enhanced schemes such as homomorphic encryption [13] and secure multi-party computing [3].

Table 21: F1-score of large-scale models under different privacy budgets

Dataset
Baseline

(Mono-modal)
Oracle

(Centralized)
ϵ = 1 ϵ = 5 ϵ = 10 ϵ = 15 ϵ =∞ Avg. #turn

MOSI-MOSI 56.98 66.13 60.77 60.96 60.32 59.53 57.17 2
MOSEI-MOSEI 62.01 70.22 66.14 66.81 66.22 66.44 66.73 4.4
MOSI-MOSEI 56.98 N/A 60.12 60.33 61.11 60.01 59.88 6
MOSEI-MOSI 62.01 N/A 67.16 67.86 66.28 65.98 65.38 4.6

MOSI-MOSI 72.26 75.32 73.12 72.99 72.53 71.81 70.97 4.2
MOSEI-MOSEI 74.20 78.38 76.60 77.45 77.23 76.89 76.73 8
MOSI-MOSEI 74.20 N/A 76.47 77.23 76.95 76.83 76.76 10.8
MOSEI-MOSI 72.26 N/A 73.20 74.16 73.93 73.71 73.88 6.8

In order to evaluate the potential of our proposed framework on large-scale models, we replaced the simple
CNN speech model and BiGRU text model with a standard Transformer and a pre-trained BERTLarge model,
respectively. The results are presented in Table 21, which shows four settings with two testing sets under different
privacy budgets, following the same format as the baseline models. Our findings are interesting. Firstly, we
observed that the performance on the text-side testing set is significantly improved by using a pre-trained model.
Nevertheless, our federated cross-modal transfer still helps improve the mono-modal performance, approaching
the oracle performance. On the other hand, upgrading the speech-side model to a Transformer does not yield a
remarkable improvement, and the performance boost provided by our framework remains consistent with the
baseline models. Furthermore, we noted that when the models are larger, weaker DP protections are more likely
to result in overfitting (as seen in the last few columns of Table 21).

5 Conclusions

In this paper, we have proposed a framework for privacy-preserving cross-modal sentiment classification,
which leverages the power of multi-modal input features and models trained on different modalities to enhance
performance. Our experimental results, both on classic and large-scale models, demonstrate the efficacy of our
framework in achieving higher accuracy in sentiment classification, alleviating data scarcity issues, and preserving
data privacy for all parties involved. Our work represents a promising initial exploration into knowledge transfer
among private modality data, which may hold great potential for improving mono-modal performance via
federated cross-modal transfer. However, we acknowledge that this approach also presents challenges, such as
privacy protection and communication efficiency, which require further research. We hope that this work will
inspire future investigations in this area.

166

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learn-
ing with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

[2] S. Albanie, A. Nagrani, A. Vedaldi, and A. Zisserman. Emotion recognition in speech using cross-modal
transfer in the wild. In 2018 ACM Multimedia Conference on Multimedia Conference, MM 2018, Seoul,
Republic of Korea, October 22-26, 2018, pages 292–301, 2018.

[3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and
K. Seth. Practical secure aggregation for privacy-preserving machine learning. In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 1175–1191, 2017.

[4] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] S. H. Dumpala, I. Sheikh, R. Chakraborty, and S. K. Kopparapu. Audio-visual fusion for sentiment
classification using cross-modal autoencoder. NIPS2018 ViGIL Workshop, 2018.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of cryptography conference, pages 265–284. Springer, 2006.

[8] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[9] F. Eyben, M. Wöllmer, and B. Schuller. Opensmile: the munich versatile and fast open-source audio feature
extractor. In Proceedings of the 18th ACM international conference on Multimedia, pages 1459–1462.
ACM, 2010.

[10] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014.

[11] A. Korhonen, D. R. Traum, and L. Màrquez, editors. Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers. Association for Computational Linguistics, 2019.

[12] B. Li, D. Dimitriadis, and A. Stolcke. Acoustic and lexical sentiment analysis for customer service calls. In
ICASSP, pages 5876–5880. IEEE, 2019.

[13] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang. A secure federated transfer learning framework. IEEE
Intelligent Systems, 35(4):70–82, 2020.

[14] N. Majumder, D. Hazarika, A. Gelbukh, E. Cambria, and S. Poria. Multimodal sentiment analysis using
hierarchical fusion with context modeling. Knowledge-Based Systems, 161:124–133, 2018.

[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al. Communication-efficient learning of deep
networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

[16] A. Metallinou, S. Lee, and S. Narayanan. Audio-visual emotion recognition using gaussian mixture models
for face and voice. In 2008 Tenth IEEE International Symposium on Multimedia, pages 250–257. IEEE,
2008.

167

[17] A. Orr. Google’s differential privacy may be better than apple’s, 2017.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[19] H. Peng, Y. Ma, S. Poria, Y. Li, and E. Cambria. Phonetic-enriched text representation for chinese sentiment
analysis with reinforcement learning. Information Fusion, 70:88–99, 2021.

[20] S. Poria, E. Cambria, D. Hazarika, N. Majumder, A. Zadeh, and L.-P. Morency. Context-dependent
sentiment analysis in user-generated videos. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 873–883, 2017.

[21] S. Poria, I. Chaturvedi, E. Cambria, and A. Hussain. Convolutional mkl based multimodal emotion
recognition and sentiment analysis. In 2016 IEEE 16th international conference on data mining (ICDM),
pages 439–448. IEEE, 2016.

[22] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. On data banks and privacy homomorphisms. Foundations
of secure computation, 4(11):169–180, 1978.

[23] V. Rozgić, S. Ananthakrishnan, S. Saleem, R. Kumar, and R. Prasad. Ensemble of svm trees for multi-
modal emotion recognition. In Proceedings of The 2012 Asia Pacific Signal and Information Processing
Association Annual Summit and Conference, pages 1–4. IEEE, 2012.

[24] S. K. Singh and M. K. Sachan. Classification of code-mixed bilingual phonetic text using sentiment analysis.
International Journal on Semantic Web and Information Systems (IJSWIS), 17(2):59–78, 2021.

[25] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In
Advances in neural information processing systems, pages 935–943, 2013.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017.

[27] P. Voigt and A. Von dem Bussche. The eu general data protection regulation (gdpr). A Practical Guide, 1st
Ed., Cham: Springer International Publishing, 2017.

[28] C. Waites. Pyvacy: Towards practical differential privacy for deep learning. Article, 2019.

[29] M. Wöllmer, F. Weninger, T. Knaup, B. Schuller, C. Sun, K. Sagae, and L.-P. Morency. Youtube movie
reviews: Sentiment analysis in an audio-visual context. IEEE Intelligent Systems, 28(3):46–53, 2013.

[30] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

[31] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu. Federated Learning. Morgan & Claypool
Publishers, 2020.

[32] A. C.-C. Yao. Protocols for secure computations. In FOCS, volume 82, pages 160–164, 1982.

[33] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency. Tensor fusion network for multimodal
sentiment analysis. arXiv preprint arXiv:1707.07250, 2017.

[34] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency. Mosi: multimodal corpus of sentiment intensity and
subjectivity analysis in online opinion videos. arXiv preprint arXiv:1606.06259, 2016.

168

[35] A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency. Multimodal language analysis in the wild:
Cmu-mosei dataset and interpretable dynamic fusion graph. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 2236–2246, 2018.

169

NVIDIA FLARE:
Federated Learning from Simulation to Real-World

Holger R. Roth Yan Cheng Yuhong Wen Isaac Yang Ziyue Xu Yuan-Ting Hsieh
Kristopher Kersten Ahmed Harouni Can Zhao Kevin Lu Zhihong Zhang Wenqi Li

Andriy Myronenko Dong Yang Sean Yang Nicola Rieke Abood Quraini Chester Chen
Daguang Xu Nic Ma Prerna Dogra Mona Flores Andrew Feng

NVIDIA Corporation*

Shanghai, China
Munich, Germany

Bethesda, Santa Clara, USA

Abstract

Federated learning (FL) enables building robust and generalizable AI models by leveraging diverse
datasets from multiple collaborators without centralizing the data. We created NVIDIA FLARE1 as
an open-source software development kit (SDK) to make it easier for data scientists to use FL in their
research and real-world applications. The SDK includes solutions for state-of-the-art FL algorithms and
federated machine learning approaches, which facilitate building workflows for distributed learning across
enterprises and enable platform developers to create a secure, privacy-preserving offering for multiparty
collaboration utilizing homomorphic encryption or differential privacy. The SDK is a lightweight,
flexible, and scalable Python package. It allows researchers to apply their data science workflows in any
training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) in real-world FL settings. This paper
introduces the key design principles of NVFlare and illustrates some use cases (e.g., COVID analysis)
with customizable FL workflows that implement different privacy-preserving algorithms.

1 Introduction

Federated learning (FL) has become a reality for many real-world applications [34]. It enables multinational
collaborations on a global scale to build more robust and generalizable machine learning and AI models. In this
paper, we introduce NVIDIA FLARE (NVFlare), an open-source software development kit (SDK) that makes it
easier for data scientists to collaborate to develop more generalizable and robust AI models by sharing model
weights rather than private data. While FL is attractive in many industries, it is particularly beneficial for healthcare
applications where patient data needs to be protected. For example, FL has been used for predicting clinical

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Contact: {hroth,yanc,chesterc,daguangx,pdogra,andyf}@nvidia.com
1Code is available at https://github.com/NVIDIA/NVFlare.

170

https://github.com/NVIDIA/NVFlare

outcomes in patients with COVID-19 [7] or to segment brain lesions in magnetic resonance imaging [39, 38].
NVFlare is not limited to applications in healthcare and is designed to allow cross-silo FL [18] across enterprises
for different industries and researchers.

In recent years, several efforts (both open-source and commercial) have been made to bring FL technol-
ogy into the healthcare sector and other industries, like TensorFlow Federated [1], PySyft [48], FedML [14],
FATE [26], Flower [3], OpenFL [33], Fed-BioMed [40], IBM Federated Learning [27], HP Swarm Learning [42],
FederatedScope [44], FLUTE [8], and more. Some focus on simulated FL settings for researchers, while others
prioritize production settings. NVFlare aims to be useful for both scenarios: 1) for researchers by providing
efficient and extensible simulation tools and 2) by providing an easy path to transfer research into real-world
production settings, supporting high availability and server failover, and by providing additional productivity
tools such as multi-tasking and admin commands.

2 NVIDIA FLARE Overview

NVIDIA FLARE – or short NVFlare – stands for “NVIDIA Federated Learning Application Runtime Environment”.
The SDK enables researchers and data scientists to adapt their machine learning and deep learning workflows to a
federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for distributed
multiparty collaboration.

NVFlare is a lightweight, flexible, and scalable FL framework implemented in Python that is agnostic to the
underlying training library. Developers can bring their own data science workflows implemented in PyTorch,
TensorFlow, or even in pure NumPy, and apply them in a federated setting. A typical FL workflow such as the
popular federated averaging (FedAvg) algorithm [28], can be implemented in NVFlare using the following main
steps. Starting from an initial global model, each FL client trains the model on their local data for a while and
sends model updates to the server for aggregation. The server then uses the aggregated updates to update the
global model for the next round of training. This process is iterated many times until the model converges.

Though used heavily for federated deep learning, NVFlare is a generic approach for supporting collaborative
computing across multiple clients. NVFlare provides the Controller programming API for researchers to create
workflows for coordinating clients for collaboration. FedAvg is one such workflow. Another example is cyclic
weight transfer [5]. The central concept of collaboration is the notion of “task”. An FL controller assigns tasks
(e.g., deep-learning training with model weights) to one or more FL clients and processes results returned from
clients (e.g., model weight updates). The controller may assign additional tasks to clients based on the processed
results and other factors (e.g., a pre-configured number of training rounds). This task-based interaction continues
until the objectives of the study are achieved.

The API supports typical controller-client interaction patterns like broadcasting a task to multiple clients,
sending a task to one or more specified clients, or relaying a task to multiple clients sequentially. Each interaction
pattern has two flavors: wait (block until client results are received) or no-wait. A workflow developer can use
these interaction patterns to create innovative workflows. For example, the ScatterAndGather controller (typically
used for FedAvg-like algorithms) is implemented with the broadcast_and_wait pattern, and the CyclicController
is implemented with the relay_and_wait pattern. The controller API allows the researcher to focus on the control
logic without needing to deal with underlying communication issues. Figure 1 shows the principle. Each FL
client acts as a worker that simply executes tasks assigned to it (e.g., model training) and returns execution results
to the controller. At each task interaction, there can be optional filters that process the task data or results before
passing it to the Controller (on the server side) or task executor (client side). The filter mechanism can be used
for data privacy protection (e.g., homomorphic encryption/decryption or differential privacy) without having to
alter the training algorithms.

171

Figure 1: NVFlare job execution. The Controller is a Python object that controls or coordinates the Workers to
get a job done. The controller is run on the FL server. A Worker is capable of performing tasks. Workers run on
FL clients.

Key Components NVFlare is built on a componentized architecture that allows FL workloads to move from
research and simulation to real-world production deployment. Some of the key components of this SDK include:

• FL Simulator for rapid development and prototyping.

• NVFlare Dashboard for simplified project management, secure provisioning, and deployment, orchestra-
tion.

• Reference FL algorithms (e.g., FedAvg, FedProx, SCAFFOLD) and workflows, like scatter and gather,
cyclic, etc.

• Privacy preservation with differential privacy, homomorphic encryption, and more.

• Specification-based API for extensibility, allowing customization with plug-able components.

• Tight integration with other learning frameworks like MONAI [4], XGBoost [6], and more.

High-Level Architecture NVFlare is designed with the idea that less is more, using a specification-based design
principle to focus on what is essential. This allows other people to be able to do what they want to do in real-world
applications by following clear API definitions. FL is an open-ended space. The API-based design allows others
to bring their implementations and solutions for various components. Controllers, task executors, and filters
are just examples of such extensible components. NVFlare provides an end-to-end operation environment for
different personas. It provides a comprehensive provisioning system that creates security credentials for secure
communications to enable the easy and secure deployment of FL applications in the real world. It also provides
an FL Simulator for running proof-of-concept studies locally. In production mode, the researcher conducts an
FL study by submitting jobs using admin commands using Notebooks or the NVFlare Console – an interactive
command tool. NVFlare provides many commands for system operation and job management. With these
commands, one can start and stop a specific client or the entire system, submit new jobs, check the status of jobs,
create a job by cloning from an existing one, and much more.

172

With NVFlare’s component-based design, a job is just a configuration of components needed for the study.
For the control logic, the job specifies the controller component to be used and any components required by the
controller.

3 System Concepts

A NVFlare system is a typical client-server communication system that comprises one or more FL server(s), one
or more FL client(s), and one or more admin clients. The FL Servers open two ports for communication with FL
clients and admin clients. FL clients and admin clients connect to the opened ports. FL clients and admin clients
do not open any ports and do not directly communicate with each other. The following is an overview of the key
concepts and objects available in NVFlare and the information that can be passed between them.

Workers and Controller NVFlare’s collaborative computing is achieved through the Controller/Worker
interactions.

Shareable Object that represents a communication between server and client. Technically, the Shareable is
implemented as a Python dictionary that could contain different information, e.g., model weights.

Data Exchange Object (DXO) Standardizes the data passed between the communicating parties. One can
think of the Shareable as the envelope and the DXO as the letter. Together, they comprise a message to be shared
between communicating parties.

FLComponent The base class of all the FL components. Executors, controllers, filters, aggregators, and their
subtypes are all FLComponents. FLComponent comes with some useful built-in methods for logging, event
handling, auditing, and error handling.

Executors Type of FLComponent for FL clients that has an execute method that produces a Shareable from an
input Shareable. NVFlare provides both single- and multi-process executors to implement different computing
workloads.

FLContext One of the most important features of NVFlare is to pass data between the FL components.
FLContext is available to every method of all common FLComponent types. Through FLContext, the component
developer can get services provided by the underlying infrastructure and share data with other components of the
FL system.

Communication Drivers NVFlare abstracts the communication layers out so that different deployment sce-
narios can implement customizable communication drivers. By default, we use GRPC for data communication
in task-based communication. However, the driver can be replaced to run other communication protocols,
for example, TCP. The customizable nature of communication in NVFlare allows for both server-centric and
peer-to-peer communication patterns. This enables the user to utilize both scatter and gather-type workflows like
FedAvg [28], decentralized training patterns like swarm learning [42], or direct peer-to-peer communication as in
split learning [12].

Fig. 2 compares the times for model upload and download from the client’s perspective using different
communication protocols available in NVFlare using a model of ∼18MB in size.

The experiment runs in a multi-cloud environment with the server and eight clients running on Azure, while
two clients run on AWS. One can observe that the global model download is slower as all clients are trying to

173

download the global model at the same time, and hence the server is more busy. In contrast, the clients’ model
uploads happen at slightly different times and therefore are faster. One can also see how this multi-cloud setup
causes the clients on AWS to take slightly longer during model download due to communication across different
cloud infrastructures.

upload grpc download grpc upload tcp download tcp
operation

0.0

0.1

0.2

0.3

0.4

0.5

tim
e

[s
ec

]

client
Azure1
Azure2
Azure3
Azure4
Azure5
Azure6
Azure7
Azure8
AWS1
AWS2

Figure 2: Comparison of GRPC and TCP communication drivers in NVFlare. The server is running on Azure.
The clients are distributed between Azure and AWS. The message size is ∼18MB. Communication times were
measured over 100 rounds of FedAvg. Error bars indicate the 95% confidence intervals.

Filters Filters in NVFlare are a type of FLComponent that have a process method to transform the Shareable
object between the communicating parties. A Filter can provide additional processing to shareable data before
sending or after receiving from a peer. Filters can convert data formats and a lot more and are NVFlare’s primary
mechanism for data privacy protection [24, 13]:

• ExcludeVars to exclude variables from shareable.

• PercentilePrivacy for truncation of weights by percentile.

• SVTPrivacy for differential privacy through sparse vector techniques.

• Homomorphic encryption filters used for secure aggregation.

As an example, we show the average encryption, decryption, and upload times when using homomorphic
encryption for secure aggregation2. We compare raw data to encrypted model gradients uploaded in Table 22
when hosting the server on AWS3 and connecting 30 client instances using an on-premise GPU cluster. One can
see the longer upload times due to the larger message sizes needed by homomorphic encryption.

2https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption
3For reference, we used an m5a.2xlarge instance with eight vCPUs, 32-GB memory, and up to 2,880 Gbps network bandwidth.

174

https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption
https://aws.amazon.com/ec2/instance-types

Table 22: Federated learning exchanging homomor-
phic encrypted vs. raw model updates.

Time in seconds Mean Std. Dev.

Encryption 5.01 1.18
Decryption 0.95 0.04
Enc. upload 38.00 71.17
Raw upload 21.57 74.23

Event Mechanism NVFlare comes with a powerful event mechanism that allows dynamic notifications to be
sent to all event handlers. This mechanism enables data-based communication among decoupled components:
one component fires an event when a certain condition occurs, and other components can listen to that event and
processes the event data. Each FLComponent is automatically an event handler. To listen to and process an event,
one can simply implement the handle_event() method and process desired event types. Events represent some
important moments during the execution of the system logic. For example, before and after aggregation or when
important data becomes available, e.g., a new “best” model was selected.

3.1 Productivity Features

NVFlare contains features that enable efficient, collaborative, and robust computing workflows.

Multi-tasking For systems with a large capacity, computing resources could be idle most of the time. NVFlare
implements a resource-based multi-tasking solution, where multiple jobs can be run concurrently when overall
system resources are available. Multi-tasking is made possible by a job scheduler on the server side that constantly
tries to schedule a new job. For each job to be scheduled, the scheduler asks each client whether they can satisfy
the required resources of the job (e.g., number of GPU devices) by querying the client’s resource manager. If all
clients can meet the requirement, the job will be scheduled and deployed to the clients.

High Availability and Server Failover To avoid the FL server as a single point of failure, a solution has been
implemented to support multiple FL servers with automatic cut-over when the currently active server becomes
unavailable. Therefore, a component called Overseer is added to facilitate automatic cut-over. The Overseer
provides the authoritative endpoint info of the active FL server. All other system entities (FL servers, FL clients,
admin clients) constantly communicate (i.e., every 5 seconds) with the Overseer to obtain and act on such
information. If the server cutover happens during the execution of a job, then the job will continue to run on the
new server. Depending on how the controller is written, the job may or may not need to restart from the beginning
but can continue from a previously saved snapshot.

Simulator NVFlare provides a simulator to allow data scientists and system developers to easily write new
FLComponents and novel workflows. The simulator is a command line tool to run a NVFlare job. To allow simple
experimentation and debugging, the FL server and multiple clients run in the same process during simulation.
A multi-process option allows efficient use of resources, e.g., training multiple clients on different GPUs. The
simulator follows the same job execution as in real-world NVFlare deployment. Therefore, components developed
in simulation can be directly deployed in real-world federated scenarios.

3.2 Secure Provisioning in NVFlare

Security is an important requirement for FL systems. NVFlare provides security solutions in the following areas:
authentication, communication confidentiality, user authorization, data privacy protection, auditing, and local

175

Internet

TLS

TLSTLS

TLS

Study
Conf

Provisioning
tool

FL Client #1 FL Client #N

FL Server
Admin
Client

Lead
Researcher

Lead IT Startup
Kits

Figure 3: High-level steps for running a real-world study with secure provisioning with NVFlare.

client policies.

Authentication NVFlare ensures the identities of communicating peers using mutual Transport Layer Security
(TLS). Each participating party (FL Servers, Overseer, FL Clients, Admin Clients) must be properly provisioned.
Once provisioned, each party receives a startup kit containing TLS credentials (public cert of the root, the party’s
own private key and certificate) and system endpoint information, see Fig. 3. Each party can only connect to the
NVFlare system with the startup kit. Communication confidentiality is also achieved with the use of TLS-based
messaging.

Federated Authorization NVFlare’s admin command system is very rich and powerful. Not every command
is for everyone. NVFlare implements a role-based user authorization system that controls what a user can or
cannot do. At the time of provision, each user is assigned a role. Authorization policies specify which commands
are permitted for which roles. Each FL client can define its authorization policy that specifies what a role can or
cannot do to the client. For example, one client could allow a role to run jobs from any researchers. In contrast,
another client may only allow jobs submitted by its researchers (i.e., the client and the job submitter belong to the
same organization).

NVFlare automatically records all user commands and job events in system audit files on both the server and
client sides. In addition, the audit API can be used by application developers to record additional events in the
audit files.

Client-Privacy NVFlare enhances the overall system security by allowing each client to define its policies for
authorization, data privacy (filters), and computing resource management. The client can change its policies at
any time after the system is up and running without having to be re-provisioned. For example, the client could
require all jobs running on it to be subject to a set of filters. The client could also change the number of computing
resources (e.g., GPU devices) to be used by the FL client.

176

4 Federated Data Science

As a general distributed computing platform, NVFlare can be used for various applications in different industries.
Here we describe some of the most common use cases where NVFlare was deployed.

4.1 Federated Deep Learning

A go-to example dataset for benchmarking different FL algorithms is CIFAR-10 [20]. NVFlare allows users to
experiment with different algorithms and data splits using different levels of heterogeneity based on a Dirichlet
sampling strategy [41]. Figure 4(a) shows the impact of varying alpha values, where lower values cause higher
heterogeneity on the performance of the FedAvg.

Apart from FedAvg, currently available in NVFlare include FedProx [23], FedOpt [32], and SCAFFOLD [19].
Figure 4(b) compares an α setting of 0.1, causing a high data heterogeneity across clients and its impact on more
advanced FL algorithms, namely FedProx, FedOpt, and SCAFFOLD. FedOpt and SCAFFOLD show markedly
better convergence rates and achieve better performance than FedAvg and FedProx with the same alpha setting.
SCAFFOLD achieves this by adding a correction term when updating the client models, while FedOpt utilizes
SGD with momentum to update the global model on the server. Therefore, both perform better with the same
number of training steps as FedAvg and FedProx.

Other algorithms available in or coming soon to NVFlare include federated XGBoost [6], Ditto [22],
FedSM [45], Auto-FedRL [11], and more.

(a) FedAvg with increasing levels of heterogeneity (smaller α
values).

(b) FL algorithms with a heterogeneous data split (α=0.1).

Figure 4: Federated learning experiments with NVFlare.

4.2 Federated Machine Learning

Traditional machine learning methods, such as linear models, support vector machine (SVM), and k-means
clustering, can be formulated under a federated setting.

With certain libraries, the federated machine learning algorithms need to be designed considering two
factors: algorithm-wise, each of these models has distinct training schemes and model representations; and
implementation-wise, popular libraries providing these functionalities (e.g., scikit-learn, XGBoost) have different
APIs and inner logics. Hence, when developing an FL variant of a particular traditional machine learning method,
several questions need to be answered at these two levels:

177

First, at the algorithm level, we need to break down the optimization process into individual steps/rounds (if
possible) and have answers to three major questions:

1. What information should clients share with the server?

2. How should the server aggregate the collected information from clients?

3. What should clients do with the global aggregated information received from the server?

Second, at the implementation level, we need to know what APIs are available and how to utilize them in a
federated pipeline to implement a distributed version of the algorithm.

A major difference between federated traditional machine learning and federated deep learning is that, for
traditional machine learning methods, the boundary between “federated” and “distributed”, or even “ensemble”,
can be much more vague than for deep learning. Due to the characteristics of a given algorithm and its API
design, the concepts can be equivalent. Take XGBoost and SVM, for example: Algorithm-wise, XGBoost can
distribute the training samples to several workers and construct trees based on the collected histograms from
each worker. Such a process can be directly adopted under a federated setting because the communication cost is
affordable. In this case, “federated” is equivalent to “distributed” learning. API-wise, some algorithms can be
constrained by their implementation. Take scikit-learn’s SVM for instance. Although theoretically SVM can be
formulated as an iterative optimization process, the API only supports one-shot “fitting” without the capability of
separately calling the optimization steps. Hence a federated SVM algorithm using the scikit-learn library can
only be implemented as a two-step process. In this case, “federated” is equivalent to “ensemble”.

For clarification, we provide the full formulation for tree-based federated XGBoost, illustrated in Fig. 5:

1. XGBoost, by definition, is a sequential optimization process: each step adds one extra tree to the model
to reduce the residual error. Hence, federated XGBoost can be formulated as follows: each round of FL
corresponds to one boosting step at the local level. Clients share the newly added tree trained on local data
with the server at the end of local boosting.

2. The model representation is a decision/regression tree. To aggregate the information from all clients, the
server will bag all received trees to form a “forest” to be added to the global boosting model.

3. With the updated global model from the server, each client will continue the boosting process by learning a
new tree starting from the global model of the boosted forest.

Boosting

Communication: Client to Server Server to Client

Client 1

Client 2

Client 3

Client 4

Server

Round 2 Round 1

Server

Round 3

Server

……

Figure 5: Tree-based federated XGBoost: a “boosting of forests.”

178

4.3 Split learning

Split learning assumes a vertical data partitioning [46] that can be useful in many distributed learning scenarios
involving neural network architectures [12].

As an introductory example, we can assume that one client holds the images, and the other holds the labels to
compute losses and accuracy metrics. Activations and corresponding gradients are being exchanged between the
clients using NVFlare, as illustrated in Fig. 6. We use a cryptographic technique called private set intersection

Setup Training Time [min]

Simulated PyTorch 19
Routing through server (TCP) 27
Peer-to-peer (TCP) 25

Figure 6: Simple split learning scenario using CIFAR-10. The table compares multiple communication patterns.
Using 50,000 training samples and 15,625 rounds of communication with a batch size of 64.

(PSI) [43] to compute the alignment between images and labels on both clients. NVFlare’s implementation of
PSI can be extended to multiple parties and applied to other use cases than split learning, e.g., requiring a secure
and privacy-preserving alignment of different databases.

Using NVFlare’s capability to implement different communication patterns, we can investigate the communi-
cation speed-ups one can achieve by implementing split learning using direct peer-to-peer communication as
opposed to routing the messages between the two clients through a central server.

The table in Fig. 6 compares the training speeds of split learning on the CIFAR-10 dataset in a local simulation
scenario. First, we use the same PyTorch script to simulate split learning. Then, we implement two distributed
solutions using NVFlare. One that routes the messages through the server and one using a direct peer-to-peer
connection between the clients. As expected, the direct peer-to-peer connection is more efficient, achieving only
a slight overhead in total training time compared to the standalone PyTorch script, which could not be translated
to real-world scenarios.

4.4 Federated Statistics

NVFlare provides built-in federated statistics operators (Controller and Executors) that will generate global
statistics based on local client statistics. Each client could have one or more datasets, such as “train” and “test”
datasets. Each dataset may have many features. NVFlare will calculate and combine the statistics for each feature
in the dataset to produce global statistics for all the numeric features. The output gathered on the server will be
the complete statistics for all datasets in clients and global, as illustrated in Fig. 7.

179

(a) Federated statistics. Note the data of “site-4” violates the client’s privacy
policy and therefore does not share its statistics with the server.

(b) Histogram visualization.

Figure 7: Federated statistics with NVFlare.

5 Real-world Use Cases

NVFlare and its predecessors have been used in several real-world studies exploring FL for healthcare scenarios.
The collaborations between multinational institutions tested and validated the utility of federated learning, pushing
the envelope for training robust, generalizable AI models. These initiatives included FL for breast mammography
classification [35], prostate segmentation [37], pancreas segmentation [41], and most recently, chest X-ray
(CXR) and electronic health record (EHR) analysis to predict the oxygen requirement for patients arriving in the
emergency department with symptoms of COVID-19 [7].

(a) Mammography. (b) Prostate. (c) Pancreas. (d) CXR & EHR.

Figure 8: Real-world use cases of NVFlare.

6 Summary & Conclusion

We described NVFlare, an open-source SDK to make it easier for data scientists to use FL in their research and
to allow an easy transition from research to real-world deployment. As discussed above, NVFlare’s Controller
programming API supports various interaction patterns between the server and clients over internet connections,
which could be unstable. Therefore, the API design mitigates various failure conditions and unexpected crashes
of the client machines, such as allowing developers to process timeout conditions properly.

NVFLare’s unique flexibility and agnostic approach towards the deployed training libraries make it the
perfect solution for integrating with different deep learning frameworks, including popular ones used for training
large language models (LLM). With our dedication to addressing the current limitations of communication
protocols, we are working towards supporting the communication of large message sizes, enabling the federated

180

fine-tuning of AI models with billions of parameters, such as those used for ChatGPT [31] and GPT-4 [30].
Moreover, our team is implementing parameter-efficient federated methods to adapt LLM models to downstream
tasks [47], utilizing techniques such as prompt tuning [21] and p-tuning [25], adapters [16, 15], LoRA [17],
showing promising performance. Our commitment to innovation and excellence in this field ensures that we
continue to push the boundaries of what is possible with federated learning.

We did not go into all details of exciting features available in NVFlare, like homomorphic encryption,
TensorBoard streaming, provisioning web dashboard, integration with MONAI4 [29, 4], etc. However, we hope
that this overview of NVFlare gives a good starting point for developers and researchers on their journey to using
FL and federated data science in simulation and the real world.

NVFlare is an open-source project. We invite the community to contribute and grow NVFlare. For more
information, please visit the code repository at https://github.com/NVIDIA/NVFlare.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.
{TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages 265–283, 2016.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learn-
ing with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 308–318, 2016.

[3] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P. de Gusmão, and N. D. Lane. Flower: A friendly
federated learning research framework. arXiv preprint arXiv:2007.14390, 2020.

[4] M. J. Cardoso, W. Li, R. Brown, N. Ma, E. Kerfoot, Y. Wang, B. Murrey, A. Myronenko, C. Zhao, D. Yang,
et al. Monai: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701,
2022.

[5] K. Chang, N. Balachandar, C. Lam, D. Yi, J. Brown, A. Beers, B. Rosen, D. L. Rubin, and J. Kalpathy-
Cramer. Distributed deep learning networks among institutions for medical imaging. Journal of the
American Medical Informatics Association, 25(8):945–954, 2018.

[6] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. ACM.

[7] I. Dayan, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z. Abidin, A. Liu, A. B. Costa, B. J. Wood, C.-S.
Tsai, et al. Federated learning for predicting clinical outcomes in patients with covid-19. Nature medicine,
27(10):1735–1743, 2021.

[8] D. Dimitriadis, M. H. Garcia, D. M. Diaz, A. Manoel, and R. Sim. Flute: A scalable, extensible framework
for high-performance federated learning simulations. arXiv preprint arXiv:2203.13789, 2022.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of cryptography conference, pages 265–284. Springer, 2006.

[10] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients-how easy is it to break privacy
in federated learning? Advances in Neural Information Processing Systems, 33:16937–16947, 2020.

4https://monai.io

181

https://github.com/NVIDIA/NVFlare
https://monai.io

[11] P. Guo, D. Yang, A. Hatamizadeh, A. Xu, Z. Xu, W. Li, C. Zhao, D. Xu, S. Harmon, E. Turkbey, et al.
Auto-fedrl: Federated hyperparameter optimization for multi-institutional medical image segmentation.
arXiv preprint arXiv:2203.06338, 2022.

[12] O. Gupta and R. Raskar. Distributed learning of deep neural network over multiple agents. Journal of
Network and Computer Applications, 116:1–8, 2018.

[13] A. Hatamizadeh, H. Yin, P. Molchanov, A. Myronenko, W. Li, P. Dogra, A. Feng, M. G. Flores,
J. Kautz, D. Xu, et al. Do gradient inversion attacks make federated learning unsafe? arXiv preprint
arXiv:2202.06924, 2022.

[14] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu, et al. FedML:
A research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.

[15] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig. Towards a unified view of parameter-efficient
transfer learning. arXiv preprint arXiv:2110.04366, 2021.

[16] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and
S. Gelly. Parameter-efficient transfer learning for nlp. In International Conference on Machine Learning,
pages 2790–2799. PMLR, 2019.

[17] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[18] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[19] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine Learning, pages 5132–5143.
PMLR, 2020.

[20] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[21] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691, 2021.

[22] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through personalization. In
International Conference on Machine Learning, pages 6357–6368. PMLR, 2021.

[23] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in heteroge-
neous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

[24] W. Li, F. Milletarì, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust, Y. Cheng, S. Ourselin, M. J. Cardoso,
et al. Privacy-preserving federated brain tumour segmentation. In International workshop on machine
learning in medical imaging, pages 133–141. Springer, 2019.

[25] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt understands, too. arXiv preprint
arXiv:2103.10385, 2021.

[26] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang. Fate: An industrial grade platform for collaborative learning
with data protection. J. Mach. Learn. Res., 22(226):1–6, 2021.

182

[27] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, Y. Ong, J. Radhakrishnan,
A. Verma, M. Sinn, et al. Ibm federated learning: an enterprise framework white paper v0. 1. arXiv preprint
arXiv:2007.10987, 2020.

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[29] MONAI Consortium. MONAI: Medical Open Network for AI, 9 2022.

[30] OpenAI. Gpt-4 technical report, 2023.

[31] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

[32] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and H. B. McMahan. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295, 2020.

[33] G. A. Reina, A. Gruzdev, P. Foley, O. Perepelkina, M. Sharma, I. Davidyuk, I. Trushkin, M. Radionov,
A. Mokrov, D. Agapov, et al. Openfl: An open-source framework for federated learning. arXiv preprint
arXiv:2105.06413, 2021.

[34] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. A. Landman,
K. Maier-Hein, et al. The future of digital health with federated learning. NPJ digital medicine, 3(1):1–7,
2020.

[35] H. R. Roth, K. Chang, P. Singh, N. Neumark, W. Li, V. Gupta, S. Gupta, L. Qu, A. Ihsani, B. C. Bizzo, et al.
Federated learning for breast density classification: A real-world implementation. In Domain Adaptation
and Representation Transfer, and Distributed and Collaborative Learning, pages 181–191. Springer, 2020.

[36] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora. Fetchsgd:
Communication-efficient federated learning with sketching. In International Conference on Machine
Learning, pages 8253–8265. PMLR, 2020.

[37] K. V. Sarma, S. Harmon, T. Sanford, H. R. Roth, Z. Xu, J. Tetreault, D. Xu, M. G. Flores, A. G. Raman,
R. Kulkarni, et al. Federated learning improves site performance in multicenter deep learning without data
sharing. Journal of the American Medical Informatics Association, 28(6):1259–1264, 2021.

[38] M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko, W. Xu, D. Marcus,
R. R. Colen, et al. Federated learning in medicine: facilitating multi-institutional collaborations without
sharing patient data. Scientific reports, 10(1):1–12, 2020.

[39] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas. Multi-institutional deep learning modeling
without sharing patient data: A feasibility study on brain tumor segmentation. In International MICCAI
Brainlesion Workshop, pages 92–104. Springer, 2018.

[40] S. Silva, A. Altmann, B. Gutman, and M. Lorenzi. Fed-biomed: A general open-source frontend framework
for federated learning in healthcare. In Domain Adaptation and Representation Transfer, and Distributed
and Collaborative Learning, pages 201–210. Springer, 2020.

[41] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni. Federated learning with matched
averaging. arXiv preprint arXiv:2002.06440, 2020.

183

[42] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R. Sarveswara,
K. Händler, P. Pickkers, N. A. Aziz, et al. Swarm learning for decentralized and confidential clinical
machine learning. Nature, 594(7862):265–270, 2021.

[43] Wikipedia contributors. Private set intersection — Wikipedia, the free encyclopedia, 2023. [Online; accessed
27-April-2023].

[44] Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang, Y. Li, B. Ding, and J. Zhou. Federatedscope: A com-
prehensive and flexible federated learning platform via message passing. arXiv preprint arXiv:2204.05011,
2022.

[45] A. Xu, W. Li, P. Guo, D. Yang, H. R. Roth, A. Hatamizadeh, C. Zhao, D. Xu, H. Huang, and Z. Xu. Closing
the generalization gap of cross-silo federated medical image segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 20866–20875, 2022.

[46] Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

[47] H. Zhao, W. Du, F. Li, P. Li, and G. Liu. Reduce communication costs and preserve privacy: Prompt tuning
method in federated learning. arXiv preprint arXiv:2208.12268, 2022.

[48] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke, J.-M. Nounahon, J. Passerat-
Palmbach, K. Prakash, N. Rose, et al. Pysyft: A library for easy federated learning. In Federated Learning
Systems, pages 111–139. Springer, 2021.

184

Obituary for Professor Gio Wiederhold

Professor Gio Wiederhold passed away in the early hours of December 26, 2022, aged 86, just 10 weeks after
an unexpected diagnosis of stage 4 liver cancer. Gio died at home, surrounded by his family members who had
gathered for Christmas, including his wife of 56 years, Voy Wiederhold, and his sons John and Randy.

Gio was a great scholar, educator, and mentor. His influence on the database field is immense. As a pioneer
in the database field, he wrote the influential 1977 textbook Database Design, one of the first in the field and
adopted around the world. In his DARPA-supported Knowledge-Base Management Systems project in the
early 1980s, Gio pioneered the concept of integrating databases and AI, a topic that is now enjoying a revival.
Beginning in the 1970s, Gio also pursued the application of databases to medical informatics, another area just
now entering the mainstream. In 1992, Gio introduced the notion of mediators (IEEE Computer) as a way of
intelligently integrating information from large-scale heterogeneous sources such as databases, file systems, and
repositories, a seminal idea for the nascent field of information integration. Gio continued to innovate after
retirement from Stanford, most notably in establishing an approach for valuing software and the intellectual
property of multinational firms.

Gio advised 36 PhD students at Stanford. Today, Gio’s academic descendants can be found in companies and
universities all over the world, including early students Hector Garcia-Molina (the late Stanford professor), David
Shaw (DE Shaw founder), Ramez Elmasri (the late textbook author and UT Arlington professor), Kyu-Young
Whang (KAIST professor and Naver founder’s advisor), and Marianne Winslett (UIUC professor). Gio’s many
subsequent students continue to lead the database field today.

An influential mentor, Gio always emphasized the practical aspects of research, encouraging people to develop
both theoretical and engineering approaches to solve real-world problems. This outlook stemmed from his many
years of experience in computing practice before he joined the Stanford University faculty.

Gio’s service to the professional community includes serving as the third Editor-in-Chief of ACM Transactions
on Databases during 1985-1995, during which time he significantly contributed to making the new journal a
top one in the field. Together with five colleagues, Gio co-founded the IEEE International Conference on Data
Engineering in 1984. Perhaps the first venue to use the term data engineering, the conference was unique in
focusing on engineering aspects of database research; today it stands as one of the three top-tier conferences in
database research. Gio also served as the conference’s program committee chair, co-chair, and general chair in its
early years. During 1991-1994, Gio served as the program manager for DARPA’s Knowledge-based Systems
program, which collaborated with NSF to fund innovative new research related to information integration and
digital libraries — including the project that led to the creation of Google.

In recognition of his many contributions, Gio received the IEEE Technical Community on Data Engineering’s
Service Award in 2016. He was also a Fellow of the ACM, the IEEE, and the American College of Medical
Informatics.

The many accomplishments and contributions listed above do not capture the full extent of Gio’s impact and
influence on our community, nor his diligence and persistence. As Gio’s former students, we dearly miss him for
his warm heart towards his students, colleagues, and friends, and above all, his love and kindness for everyone he
knew. We are deeply saddened by Gio’s unexpected death and send our sincerest condolences to his surviving
family and friends.

Kyu-Young Whang and Marianne Winslett
Distinguished Professor Emeritus, KAIST

Research Professor Emerita, UIUC
together with Gio’s other former students

185

186

IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

Non-profit Org.
U.S. Postage

PAID
Los Alamitos, CA

Permit 1398

