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Abstract

The learning of graph representations, also called graph embeddings, is a fundamental technique in
machine learning (ML). The aim is to represent the vertices of a graph by low-dimensional real-valued vectors,
which can be used for a variety of downstream ML tasks. The popular technique of Graph Neural Networks
(GNNs) can be thought of a type of graph representation learning method. This article surveys some recent
work on the limitations of graph embedding methods. These results provide mathematical theorems proving
that low-dimensional embeddings cannot recreate “community-like" structure, through commonly used kernels.
These theorems are supported by empirical results, showing that many classic graph embedding methods
actually perform poorly on important machine learning tasks. Low-dimensional representations often lose
much of the fine-grained community structure of real-world data. The results surveyed in this article provide
an interesting counterpoint to the popularity of graph embeddings and GNNs for machine learning.

1 Introduction

Capturing the rich structure of graph is central for many machine learning tasks. The heterogenous, non-local,
and massive structure of modern graphs are a problem for many basic machine learning tasks, such as ranking,
link prediction, and classification [14]. Graph representation learning provides a convenient solution to this
problem. Each vertex of a graph is represented as a vector in low-dimensional space. These vectors form the
(low-dimensional) embedding of the graph. The vectors can be used for a plethora of downstream machine
learning tasks. The aim is to have these vectors combine the graph structure with vertex features into a compact
geometric representation.

The study of low-dimensional graph embeddings is an incredibly popular research area, and has generated
many exciting results over the past few years (see surveys [19, 8] and a Chapter 23 in [27]). The most successful
methods for graph embeddings often use Deep Learning techniques, together with classic approaches like matrix
factorization [29, 16, 28, 30, 31, 24]. Graph Neural Networks (GNNs) can be thought of as specific class of graph
embeddings algorithms [18, 37, 40]. Despite the large variety of algorithms used for graph representation learning
(and specifically GNNs), their output has a simple, consistent structure. Given a graph G on n vertices, these
methods map each vertex to a vector in Rd, where d≪ n. In a typical applications, n is the order of millions or
more, while d is in the hundreds.

Much of the advances in this field are primarily empirical; there are numerous papers in major machine learn-
ing conferences on more complex GNN architectures or more involved graph embedding methods. Nonetheless,
there is limited principled understanding of the power of low-dimensional graph embeddings. Small changes
in training or input data can lead to major differences in the output [17]. Much of the research on graph em-
beddings and GNNs, for example, report significant success in prediction tasks on graphs [16, 18, 31]. On the
other hand, some papers suggest that low-dimensional graph embeddings can be beaten by simpler hand-tuned
methods [17, 22]. It is useful to have a rigorous mathematical framework to understand graph embeddings.
Specially, we wish to address the following questions.
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• To what extent can relevant graph structure be captured by low-dimensional graph embeddings?
• How does low-dimensional geometry relate to downstream ML tasks on graphs?
• How does the choice of kernel functions (for prediction tasks) affect the task?

Contrary to most research in this area, our approach to investigating these questions is through limitations or
lower bounds. Our aim is develop a theoretical framework that is agnostic to the specific algorithm performing
the embedding. We first describe some basic terminology and central concepts.

The importance of matrix factorizations: A low-dimensional matrix factorization approximates gives an
algorithm-independent view of how low-dimensional embeddings represent graphs. We think of M as an
adjacency matrix, or any matrix representation of our graphG. In many Deep Learning methods,M is constructed
by long walks with appropriate vertex-centric aggregation functions [29, 16, 30]. The matrix V is the collection
of embeddings, where each column vector corresponds to a vertex. Recent work has shown the many different
graph embedding methods can be cast as matrix factorizations, with different choices of matrices M , and different
notions of approximations [31]. Indeed, the simplest low-dimensional embedding is obtained by a low-rank SVD
of the adjacency matrix, arguably the most basic of matrix factorizations.

The importance of dot products: Regardless of how the graph embedding vectors are obtained, the general
strategy is to use “nearness" in geometric space as a proxy for the similarity of the corresponding vectors. Thus,
the downstream ML tasks treat vertices i and j as similar if their corresponding vectors v⃗i and v⃗j are similar.
Arguably, the most important measure of similarity is the dot product v⃗i · v⃗j or cosine similarity (which is a
normalized dot product). This has special significance for matrix factorizations, since V TV is precisely the
matrix of all pairs of dot products.

Even when the embedding vectors are not obtained by matrix factorizations, the Gram matrix V TV is
commonly used for downstream prediction tasks. A natural strategy for any prediction task is to use nearest
neighbor (k-NN) search according to the dot product/cosine similarity. There are many open course packages for
k-NN, making it the default choice in industrial applications of graph embeddings [2].

We now can formalize our initial questions in matrix language. Observe how there is no reference to any
embedding method or GNN; we directly analyze the behavior of the output representation.

Can a Gram matrix V TV for V ∈ Rd×n (d≪ n) capture the structure of either real-world networks or the
properties of prediction matrices arising from downstream ML tasks (on graphs)?

This framework captures the vast majority of graph embedding constructions and applications.

1.1 Limitations of graph embeddings

This article presents two results on the limitations of low-dimensional graph embeddings for prediction and
machine learning on real-world graphs [34, 36]. The underlying theoretical results are algorithm agnostic, and
the limitations hold for any graph embedding algorithm. These results come with empirical backing, performed
on classic and important graph embedding methods.

Inability to recreate triangle structure [34]: This result focuses on the fundamental premise of low-dimensional
embeddings, rather than a specific ML task. Algorithms to construct (or predict from) low-dimensional embed-
dings implicitly pose a low-dimensional graph/matrix model. This model represents a distribution of graphs that
are created from a set of real vectors (where each vector represents a vertex). The embedding is constructed by
fitting this model to an input graph, typically using dot product as a proximity measure.
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This result mathematically proves that no low-dimensional model (using a dot product kernel) can simultane-
ously recreate two central properties of real-world graphs: sparsity and triangle density. It is well-known from the
early days of network science that real-world graphs are sparse but have high clustering coefficients [39, 32, 33, 13].
Hence, typical models used to construct low-dimensional embeddings cannot generate realistic graphs. They
miss the (crucial) triangle structure of real data.

The theory is supported with empirical results. These empirical results are demonstrated on other kernels
beyond the dot product, thus suggesting that the limitations are fundamental. We discuss these results in §2.

There are notable counterpoints to these results. Firstly, Chanpuriya et al show that asymmetric embeddings
avoid the rank lower bounds discussed above [9]. Another result of Chanpuriya et al shows that graphs can
sometimes be reconstructed from their embeddings. In some cases, the community structure of the reconstruction
is actually enhanced [10]. We give more detail in §2.

Weak performance on community labeling tasks [36]: This result takes a complementary angle, and focuses
on a downstream ML task. Community labeling is a binary prediction problem, where we wish to predict if two
vertices belong to a community. This work sets up a community labeling problem for both real and synthetic data
sets. First, the authors create a simple benchmark algorithm using logistic regression on classic graph features
(like Personalized PageRank and short path counts). This benchmark has fairly good performance, as measured
by distributions of local precision. On the other hand, many well-established graph embedding methods have
surprisingly poor performance on the same task.

These observations are backed up with theoretical proofs. The prediction matrices based on low-dimensional
embeddings provably do not have the typical community structure of real data. This work also investigates
alternate kernels, like the normalized softmax (used in results like DeepWalk and node2vec [29, 16]). These
kernels have other limitations in that slight noise can destroy community structure in the corresponding prediction
matrices.

These results are discussed in §3.

1.2 Broader context

A reader may ask: how are the limitations stated in this article consistent with large body of work on the
effectiveness of graph embeddings and GNNs? Our answer is two-fold, backed up by [17, 22]. First, most
research on graph embeddings compare various representation learning methods with each other, and do not
consider alternative baselines. Secondly, we believe that many graph embeddings methods do not have good
predictions with respect to other metrics. For example, almost all these result use the AUC metric to measure link
prediction performance. On the other hand, AUC is a bad measure for sparse ground truth [20, 25]. Indeed, in §3,
we show poor prediction performance (for graph embedding methods) on a local precision metric.

There has been compelling empirical work showing that GNNs and embeddings can be outperformed by
simpler methods. We mention two results in detail because they highlight empirical weaknesses in graph
embeddings, and reinforce the previous points.

Gurukar et al, the lack of good experimental design [17]: Gurukar et al do a detailed comparison of
twelve different graph representation learning methods on a variety of ML tasks. They focus on two of the most
important tasks of link prediction and node classification. Despite there being many newer methods, they observe
that the M-NMF algorithm is best for link prediction [38] and NetMF algorithm [31] is best for node classification.
No graph representation method outperforms on both metrics. This paper does an exceptional job of clearly
specifying the experimental design and thoroughly investigating previous work.

Along the lines of the current article, simple task specific baselines are competitive with graph embedding
methods. These baselines are formed by a simple model that uses basic graph features (like Common Neighbors,
Adamic-Adar index [4], Jaccard similarity, etc.). These results are analogous to what we observe in [36].
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Gurukar et al point out a major problem with evaluations in graph embedding papers. Quoting from there:
“. . . a new method almost always compares its performance against a subset of other methods [and] datasets
previously evaluated. While great care is taken to tune the new method, the same care is often not taken when
evaluating baselines."

Huang et al, easier methods beat GNNs [22]: Huang et al devise an alternate graph learning algorithm
called Correct and Smooth (C&S). Consider the problem of node classification. This method starts with a “base
predictor" that ignores the graph structure. Using only node features, one can train a basic model for classification.
Then, the graph is introduced a post-processing step to “correct and smooth" the errors. The idea is that the errors
should be correlated along edges. So this method tries to find a smooth error estimation on the graph, which is
computed using standard label propagation methods. This smoothed error estimate is used to correct the base
predictor.

The C&S method is shown to outperform GNNs on node classification tasks on the OGB leaderboard [1]. In
some cases, a state-of-the-art GNN has slightly better performance, but the GNNs always have many orders of
magnitude more parameters. Hence, it is much more expensive to train them than C&S.

We also mention another line of weaknesses, specific to message passing GNN architectures. These results
show that certain graph-theoretic properties cannot be learned by common GNN architectures [40, 26, 15]. There
are formal limits on what GNN-based representations can learn. Some of these results show that message passing
GNNs are no more powerful than the classic Weisfeiler-Lehman (WL) isomorphism test [40].

The work presented in the current article is different from these results because of the (algorithm agnostic)
focus on the geometry of graph representations.

2 Impossibility of capturing sparse, triangle-rich structure

The first result we present argues that low-dimensional embeddings with dot product geometries are not good
representation of real-world graphs. Seshadhri, Sharma, Stolman, and Goel demonstrate mathematically and
empirically that they lose local cluster structure, a central aspect of graphs that arise from real data [34].

Graph embeddings are often generated by assuming that the embeddings vectors lie in a hidden, latent space.
We assume a model that generates graphs from these vectors, which can be thought of as the model parameters.
The embeddings are constructed by optimizing for these parameters, given the input graph.

Consider the graph embedding vectors v⃗1, v⃗2, . . . , v⃗n ∈ Rd (denoted by the d × n matrix V ). Let GV
denote the following distribution of graphs over the vertex set [n]. For each index pair i, j, independently insert
(undirected) edge (i, j) with probability max(0,min(v⃗i · v⃗j , 1)). (If v⃗i · v⃗j is negative, (i, j) is never inserted. If
v⃗i · v⃗j ≥ 1, (i, j) is always inserted.) This model subsumes the classic Stochastic Block Model [21] and Random
Dot Product Model [42, 6]. Many graph embedding methods, including GNNs, effectively optimize over such a
model to generate the embedding vectors.

Two hallmarks of real-world graphs are: (i) Sparsity: average degree is constant with respect to n, and (ii)
Triangle density: there are many triangles incident to low degree vertices [39, 32, 33, 13]. The large number of
triangles is an important aspect of community structure.

Definition 2.1: For parameters c > 1 and ∆ > 0, a graph G with n vertices has a (c,∆)-triangle foundation if
there are at least ∆n triangles contained among vertices of degree at most c.

Typically, we think of both c and ∆ as constants. We emphasize that n is the total number of vertices in G,
not the number of vertices in S. In Figure 1, we plot the value of c vs ∆ as the thick blue line. (Specifically, the
y axis is the number of triangles divided by n.) Observe that for all graphs, for c ∈ [10, 50], we get a value of
∆ > 1 (in many cases ∆ > 10). As mentioned earlier, there is much work in network science showing that there
are often a linear number of triangles among low degree vertices [33, 13].
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Figure 1: Plots of degree c vs ∆: We plot results for a variety of real-world graphs: (i) ca-HepPh, a High Energy Physics
coauthorship network (ii) Facebook, a small snapshot of a Facebook social network, (iii) String_hs, a Protein-protein
interaction network. We plot c versus the total number of triangles only involving vertices of degree at most c. We divide the
latter by the total number of vertices n, so it corresponds to ∆, as in Definition 2.1. We plot these both for the original graph
(in thick blue), and for a variety of embeddings and kernel functions. For each embedding, we plot the maximum ∆ in a set
of 100 samples from a 100-dimensional embedding. The embedding analyzed by Theorem 2.1 (TDP) is given in thick red.
Observe how the embeddings generate graphs with very few triangles among low degree vertices. The gap in ∆ for low
degree is 2-3 orders of magnitude. The other lines correspond to alternate embeddings, using the NODE2VEC vectors and/or
different functions of the dot product.

Our main result is that any embedding of graphs that generates graphs with (c,∆)-triangle foundations, with
constant c,∆, must have near linear rank. This contradicts the belief that low-dimensional embeddings capture
the structure of real-world complex networks.

Theorem 2.1: Fix constant c > 4,∆ > 0. Suppose the expected number of triangles in G ∼ GV that only
involve vertices of expected degree c is at least ∆n. Then, the rank of V is at least Ω(n/ lg2 n).

Equivalently, graphs generated from low-dimensional embeddings cannot contain many triangles only on
low-degree vertices. In all applications, d is thought of as a constant, or at least much smaller than n. On the
contrary, Theorem 2.1 implies that d must be Ω(n/ lg2 n) to accurately model the low-degree triangle behavior.
This lower bound holds regardless of how the vectors are constructed.

2.1 Empirical validation

We empirically validate the theory on a collection of complex networks. For each real-world graph, we compute
a 100-dimensional embedding through SVD and an important Deep Learning method, node2vec [16]. We
generate 100 samples of graphs from these embeddings, and compute their c vs ∆ plot. This is plotted with the
true c vs ∆ plot. (To account for statistical variation, we plot the maximum value of ∆ observed in the samples,
over all graphs. The variation observed was negligible.) Fig. 1 shows such a plot for three different real-world
networks.

In all cases, this plot is significantly off the mark at low degrees for the embedding. Around the lowest degree,
the value of ∆ (for the graphs generated by the embedding) is 2-3 orders of magnitude smaller than the original
value. The local triangle structure is destroyed around low degree vertices. The total number of triangles is
preserved well, as shown towards the right side of each plot. A nuanced view of the triangle distribution, as given
in Definition 2.1, is required to see the shortcomings of low dimensional embeddings.

We note that several other functions of dot product have been proposed in the literature, such as the softmax
function [29, 16] and linear models of the dot product [18]. Theorem 2.1 does not have direct implications for
such models, but our empirical validation holds for them as well. The embedding in Theorem 2.1 uses the
truncated dot product (TDP) function max(0,min(v⃗i · v⃗j , 1)) to model edge probabilities. We construct other
embeddings that compute edge probabilities using machine learning models with the dot product and Hadamard
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product as features. This subsumes linear models as given in [18]. We also consider (scaled) softmax functions,
as in [29], and standard machine learning models (LRDP, LRHP).

For each of these models, we perform the same experiment described above. Fig. 1 also shows the plots for
these other models. Observe that none of them capture the low-degree triangle structure, and their ∆ values are
all 2-3 orders of magnitude lower than the original. Chanpuriya et al also validate these results on various other
embedding methods [9].

2.2 Counterpoints

We discuss two important results of Chanpuriya, Musco, Sotiropoulos, and Tsourakakis [9, 10]. The first result
show that the rank lower bound of Theorem 2.1 can be circumvented with an asymmetric embedding. They prove
that one can construct two matrices U, V ∈ Rd×n such that the graph distribution from UV T can generate realistic
triangle structure. They show that any bounded degree graph can be embedded in this method with at most
max-degree dimensions. This introduces a new technique for graph embeddings. We note, however, that such
asymmetric embeddings lose the geometric structure of the standard embeddings. One wants geometric proximity
of vectors to represent structural closeness. For vertices i and j, an asymmetric embedding approximates the edge
probability by u⃗i · v⃗j , but the similarity of i and j would be measured by looking at (say) u⃗i and u⃗j . It would be
interesting to incorporate similarity in asymmetric embeddings.

Another result shows that, in some cases, community structure can be reconstructed from DeepWalk
embeddings [10]. This shows that some structure is being retained by the embeddings. We note that these results
mostly focus on SBMs with a constant (at most 5) blocks, or only the largest few communities in real data.
Theorem 2.1 and the other results in this article focus on cases where the number of blocks/communities is large.
We believe that low-dimensional embeddings can recover the top few communities, but fail to capture the rich
structure of many small communities. In the next section, we discuss this point further.

3 Challenges for community labeling using graph embeddings

One central promise of unsupervised graph embedding methods is to preserve network structure in the geometry.
To what extent do embedding methods capture graph structure relevant to downstream ML tasks?

This section is based on the paper of Stolman, Levy, Seshadhri, and Sharma [36]. We begin this discussion
with the empirical results, because they highlight the core observation. After that, we will go into the mathematical
explanations that relate to low-dimensional embeddings and factorization.

Consider the following well-defined pairwise community labeling problem. Given two vertices i and j,
the binary classification task is to determine whether they belong to the same community. We note that this
community labeling problem is an instance of a broad range of community detection problems that have a long
history of study in the graph mining literature [23].

3.1 Empirical setup

We use a set of real-world datasets with ground truth community labels, an Amazon co-purchase graph of products
and a DBLP citation network [41]. We also create a synthetic Stochastic Block model, with 100K vertices, and
small blocks of size 20 each. There is a dense graph within each block, and a random sparse graph connecting all
the blocks.

As explained earlier, the prediction task is to determine if an input pair i, j of vertices belong to a community.
(They may belong to multiple communities; to make the problem simpler, we do not require any community
labels to be determined.)
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Figure 2: Each point, (x, y), on the curve represents the approximate fraction of vertices, y, for which the
given method produces a precision@10 score of at least x. LR-Structural is plotted against the two best
performing embedding methods. 1000 vertices are sampled and for each vertex v sampled, the vertices of the graph
u1, . . . , un, are ordered by decreasing score assigned by the given classifier. The precision@10 is the fraction
of u1, . . . , u10 which share a community with v. Across all instances, the simple baseline LR-Structural
handily outperforms more complex graph embedding methods.

The setup for graph embeddings: We experiment with a set of important graph embedding methods based
on factorizations and Deep Learning (GraRep, DeepWalk, node2vec, NetMF [29, 7, 28, 16, 31]). We
note that the NetMF method was reported to be one of the best embedding methods for node classification [17].
Given the embedding for each vertex, we need to construct pairwise features for pairs in (i, j) ∈ V × V , for the
community prediction task. The standard approach is to either take the dot product v⃗i · v⃗j or the Hadamard product
v⃗i ◦ v⃗j . (Recall that the Hadamard product is a d-dimensional vector whose rth coordinate is the product of the
rth coordinates of v⃗i and v⃗j .) We finally train a logistic regression model on these features for the prediction
problem. This is the standard pipeline used in prior work [11, 16, 8].

A simple baseline: We compute four basic structural graph features for pairs of vertices (i, j). We look at
the cosine similarity and cut size between neighborhoods, and the Personalized PageRank values. These are
well-known classic features used in the literature [35, 5]. We train a simple logistic regression model on these
four features; the model is denoted LR-Structural .

Performance metric: For both real and simulated data, the ground truth is sparse, i.e. the vast majority of node
pairs do not belong to the same community. We do not use AUC because of its problems in measuring sparse
data [20, 25]. Instead, it is appropriate to measure the prediction performance using precision-recall curves for
this highly imbalanced label distribution [12].

The methods are evaluated by comparing the “precision@10" distributions. We sample 1000 random vertices.
For each of 1000 vertices sampled, v, we order the other vertices of the graph, u1, . . . , un, in decreasing order of
their prediction score. (The model predictors based on logistic regression on the embedding vectors or structural
features assign a score in [0, 1].) We compute the precision, per vertex, of the classifier among the top 10 scores,
with respect to the ground truth. When the predictor is based on dot product, this is simply the top 10 neighbors in
geometric space. In other words, we sample a vertex at random and report the fraction of its ten nearest neighbors
with which it shares a community.

We represent the distribution of values of precision@10 scores as a reliability curve. This is the curve (x, y)
such that at least a y fraction of vertices sampled had a precision@10 score score of at least x. Higher y values
for a given x indicate better performance. Fig. 2 contains the curves for the best methods against the baseline (we
leave out methods with poorer performance).
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Main observation: Across all instances, the baseline LR-Structural method heavily outperforms the more
complex graph embedding methods. The performance gap for the simple Stochastic Block Model instance is
striking. The graph is practically learnable (just a collection of dense blocks with sparse connections), but the
embedding methods fail to accurately predict pairs within blocks. For the LR-Structural method, in all
instances, at least 90% of the vertices have a precision@10 of at least 0.5. This means, for at least 90% of the
vertices, at least five of the top 10 scores are in the same community. By contrast, for the embedding methods,
this fraction is less than 75%. When looking for a precision of more than 0.8, the embeddings methods have less
than 20% of vertices achieving high scores. Overall, we observe that the embeddings methods do not perform the
community labeling task well, despite the simple LR-Structural baseline having good precision values.

3.2 Theoretical explanation of limitations

As explained earlier, a large variety of graph embedding methods (including those using Deep Learning) implicitly
factorize a matrix M as V TV . Here, M denotes some matrix representing the input graph data or the final
prediction, and V ∈ Rd×n is the matrix of graph embeddings. Broadly speaking, we can classify these methods
into two categories:

• Direct factorizations: Here, we set V as
argminV ∥V TV −M∥2, where M is typically (some power of) the graph adjacency matrix. Methods such as
Graph Factorization, GraRep [7], and HOPE [28] would fall under this category.

• Softmax factorizations: These methods factorize a stochastic matrix, such as (powers of) the random walk
matrix. (A stochastic matrix has row sums equal to one.) Since V TV is not necessarily stochastic, these methods
apply the softmax to generate a stochastic matrix. Notable examples are such methods are DeepWalk [29] and
Node2vec [16]. Formally, consider the normalized softmax matrix nsm(V ) given by

nsm(V )ij =
exp(v⃗i · v⃗j)∑
k exp(v⃗i · v⃗k)

(28)

Note that nsm(V ) is stochastic by construction.
The NetMF [31] method interpolates between these categories and shows that a number of existing methods

can be expressed as factorization methods, especially of the above forms.

The notion of community pairs: We start with an abstraction of community structure from a matrix standpoint:
many dense blocks in an overall sparse matrix. We quantify “how much" community structure can be present in
a matrix V TV or nsm(V ), for any matrix V ∈ Rd×n (for d≪ n). This formulation captures the fundamental
notion of a low-dimensional embedding, without referring to any specific method to compute it.

Let us start with an n × n matrix M that represents the “similarity" or likelihood of connection between
vertices. This is the final prediction matrix for community labeling. For convenience, let us normalize so that the
∀i ∈ [n],

∑
j≤nMi,j ≤ 1. (So the sum of similarities of a vertex is at most 1.) A communities is essentially a

dense block of entries, which motivates the following definition. We use ε to denote a parameter for the threshold
of community strength. One should think of ε as a small constant, or something slowly decreasing in n (like
1/poly(log n)).

Definition 3.1: A pair of vertices (i, j) is a potential community pair if both Mij and Mji are at least ε.

Note that we do not expect all such pairs (i, j) to truly be together in a community. Hence, we only consider
such a pair a potential candidate. We expect community relationships to be mutual, even if the matrix M is not.
A community can be thought of as a submatrix where at least a constant fraction of pairs are potential community
pairs. It is natural to expect that Θ(n) pairs are community pairs; indeed, most vertices should participate in
communities, and will have at least a constant number of community neighbors. Our mathematical analyses
shows that direct and softmax factorizations cannot produce these many potential community pairs.
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Lower bound for direct factorizations: We prove that the number of potential community pairs in V TV is
linear in the rank, and thus, a low-dimensional factorization cannot capture community structure. The proof uses
the rotational invariance of Frobenius norms.

Theorem 3.1: Consider any matrix V ∈ Rd×n such that row sums in V TV have absolute value at most 1. Then
V has at most d/2ε2 potential community pairs.

Proof: Since V TV has row sums of absolute value at most 1, the largest absolute value of eigenvalue is also at
most 1 (a consequence of the Gershgorin circle theorem [3].). The rank of V TV is at most d, so V TV has at
most d non-zero eigenvalues. We can express the Frobenius norm squared, ∥V TV ∥22, by the sums of squares of
eigenvalues. By the arguments above, ∥V TV ∥22 ≤ d.

But the Frobenius norm squared ∥V TV ∥22 is also the sums of squares of entries. Each potential community
pair contributes at least 2ε2 to this sum. Hence, there can be at most d/2ε2 potential community pairs.

The instability of softmax factorizations: The properties of softmax factorizations are more nuanced. Firstly,
we can prove that softmax factorizations can represent community structure quite effectively.

Theorem 3.2: For d = O(log n), there exists V ∈ Rd×n such that nsm(V )ij exhibits community structure.
Specifically, for any natural number b ≤ n, there exists V ∈ Rd×n such that nsm(V ) has n/b blocks of size b,
such that all entries within blocks are at least 1/2b.

Indeed, this covers the various SBM settings we study, and demonstrates the superiority of softmax factoriza-
tions for modeling community structure. We note that a similar theorem, for assymmetric factorizations, was
proved in [9].

On the other hand, these factorizations are highly unstable to small perturbations. Indeed, with a tiny amount
of noise, any community pair can be destroyed with high probability. The noise model scales each vector with
small (1± δ) Gaussian noise to get the matrix nsm(Ṽ (δ)). (The formal definition is given in [36].)

Theorem 3.3: Let c denote some absolute positive constant. Consider any V ∈ Rd×n. For any δ > c ln(1/ε)/ lnn,
the following holds in nsm(Ṽ (δ)) (this is the matrix formed by nsm(V ) with δ Gaussian noise). For at least
0.98n vertices i, for any pair (i, j), the pair is not a potential community pair with probability at least 0.99.

Thus, with overwhelming probability, any community structure in nsm(V ) is destroyed by adding o(1)
(asymptotic) noise. This is strong evidence that either noise in the input or numerical precision in the final
optimization lead to destruction of community structure. These theorems give an explanation of the poor
performance of the embeddings.

4 Conclusion

Instead of interpreting these limitations pessimistically, we reiterate the need for rigorous, foundational work
in graph embeddings and GNNs. The work in this article merely scratches the surface. The limitations given
in [34, 36] might not hold for all low-dimensional embedding methods, but they cover a large class of them. The
limitations certainly hold for the most popular methods used, and is reinforced by the empirical results. The
counterpoints of [9, 10] lead to a more nuanced picture for specialized embedding methods. We need a deeper
understanding of how limitations can be avoided and how they relate to the downstream ML tasks.

The limitations question a purely empirical approach of designing better and better embedding methods and
GNNs. As [17] correctly point out, each method comes with many hyperparameters, so it might be possible to
tune one method to beat another and vice versa. Small improvements on some test datasets might not reveal the
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complete picture. The theoretical and mathematical framework discussed in this article provide a more rigorous
basis for research. If there are fundamental limitations from low-dimensional geometry for certain methods, we
should not try to “tune" the problems away by experimenting with hyperparameters.

Overall, we believe that the work surveyed in this article provide an exciting new research perspective for
graph embeddings and GNNs.
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