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Abstract

Graph Contrastive Learning (GCL), an uprising regime of learning representations of graph-structured
data, has gained significant attention in recent years. At its core, GCL leverages the idea of comparing
different views of a graph to learn representations that capture desirable characteristics of the graph structures.
GCL has been applied to a wide range of graph-structured data, including attributed graphs, multi-relational
graphs, temporal graphs, hierarchical graphs, heterogeneous graphs, and hypergraphs. The learned graph
representations yield predictive performance that generalizes well in various downstream tasks at the node,
link, and graph levels, and can scale up to graphs with millions of nodes. In this paper, we present a review
of representative GCL approaches with a major emphasis on our own recent efforts. Beginning with the
original GCL approach with ad-hoc view generation and simple homogeneous graphs, we demonstrate how
the framework can be further extended to more complex heterogeneous graphs and hypergraphs, as well as
improved via principled view generation towards generalizability, fairness, interpretability, and other aspects.
Theoretical explorations are covered at the end. In conclusion, we discuss the future prospects and ongoing
challenges in the field of GCL.

1 Introduction

Graph-structured data are ubiquitous in various real-world applications, including social networks, biological
networks, transportation systems, and recommender systems [25, 17, 57]. The analysis and learning from graph
data have gained increasing importance as they can unveil hidden patterns and relationships, thereby enhancing
decision-making in practical scenarios. In recent years, graph contrastive learning (GCL) has emerged as a
promising approach for graph representation learning. GCL has demonstrated remarkable success in capturing
the underlying structural properties of graphs and achieving generalized predictive performance.
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The key concept behind GCL, inspired by image representation learning [5], is simple yet effective: comparing
different views of a graph to learn representations that encapsulate its desirable structural properties, which can
scale up to large graphs. However, determining what and how to contrast presents a non-trivial challenge when
it comes to graph data. Unlike images, graph data exhibit high heterogeneity across applications in terms of
both semantics and graph types (e.g., social networks versus molecular scaffolds). Consequently, achieving a
universally beneficial design is exceedingly difficult.

In this paper, we present a comprehensive review of various GCL approaches, with a particular focus on our
recent contributions. We start from introducing the vanilla GCL approach, known as vanilla GCL, which involves
the utilization of ad-hoc view generation and primarily targets simple homogeneous graphs. Subsequently, we
systematically explore the extensions of the GCL framework to accommodate more intricate heterogeneous
graphs and hypergraphs. This involves the integration of principled view generation techniques to enhance
generalizability, fairness, interpretability, and other important aspects. We in addition cover the preliminary but
critical investigations of the theoretical aspects, providing valuable insights into the underlying mechanisms and
potential limitations of GCL. We conclude the paper by discussing future prospects and open challenges in the
GCL field, including potential directions for further research and development in this area.

2 GCL Approaches and Graph Types

2.1 Homogeneous Graphs

A homogeneous graph, denoted as G = {V,£} € G, is characterized by a set of vertices V = {v1, ..., vy}
and a set of edges £ = {(v;,v;)|v;, v; € V}. In different contexts, each vertex and edge can be associated with
specific attributes for feature representation. For example, in social networks [36], vertices may correspond to
user side-information and edges to connections, while in molecular graphs [7], vertices may represent atoms and
edges may represent bond types. These attributes can be mapped to vectorial representations of dimension D
using graph neural networks (GNNs) [24, 48, 64]. Thus, GNNs can be represented as fy : G — R, where 6
denotes the parameters of the GNN, enabling downstream utility.

In the supervised learning setting, the annotated dataset Dy, = {(G1, 1), ...} is provided, where machine
learning models, such as GNNs, can be trained to make predictions on new, unseen data. However, the
effectiveness of supervised learning is hindered by the challenge of limited graph labels [37]. One dominant
solution to address the challenge is to employ self-supervised learning, where models are pre-trained on large-scale
unlabeled data [5, 9]. The rationale behind this approach is well-appropriate principled objectives could enhance
their generalizability. Fortunately, accessing unlabeled datasets Dyn1ap = {1, ...} for graphs is often viable. A
key question then arises: how can self-supervised objectives be designed specifically for graph-structured data?

Among the various self-supervised tasks for graphs (for a more comprehensive review, please refer to
[62, 34]), graph contrastive learning (GCL) [68, 50, 79, 20, 43, 40] stands out due to its consistently generalizable
performance across diverse applications. The fundamental concept of GCL is to compare different views of a
graph to learn representations that capture the desired structural properties of the graph (refer to Figure 1 for the
overall pipeline). In GCL, prior knowledge is explicitly incorporated into graph neural networks (GNNs) through
the construction of graph views. Consequently, the primary focus of GCL research is to investigate effective
methods for constructing graph views that incorporate appropriate inductive biases. The training of GCL with a
batch of graph samples {G1, ..., Gn } is then formulated using the NT-Xent loss [5] as follows:

exp (Sim (94& o fa(Gn1), g © f@(gn,2)> /T>
> 1t €XP (Sim <9¢> © f3(Gn1), gs © fe(gn',2)) /T>

N
1
min Lo (6, ¢) = min — ;bg (25)

where g, () represents the projection head implemented as a multi-layer perceptron [51, G, ; = h;i(Gy) denotes
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Figure 1: The generic pipeline of homogeneous GCL.

the contrastive view of G,,, G/, is treated as the negative sample, sim(-, -) is the similarity function (typically
implemented using cosine similarity sim(z1, 22) = 2{ z2/||21]|[|22]]), and 7 € R~ is the temperature parameter.

Graph data augmentations for view con- ] ) o ] ]
struction. A well-established approach Table 1: Four generic augmentation strategies (in the spatial domain)

to construct contrastive views is through with the corresponding underlying inductive bias.

graph data augmentations [68, 80, 10, 76,  Data Augmentation Type Underlying Prior
, ], which effectively introduce induc- Node dropping Nodes, edges Vertex missing does not alter semantics.
tive biases speciﬁc to the target applic a- Edge perturbation Edges Semantic robustness against connectivity variations.
. . . Attribute masking Nodes Semantic robustness against partial attribute loss.
tions. For example’ in one of the earliest Subgraph Nodes, edges  Local structure can provide hints to full semantics.

works [68], four generic graph augmenta-
tions are designed, as shown in Table 1, each with an underlying prior incorporated. These augmentations
operate in the spatial domain and include node dropping, edge perturbation, attribute masking, and subgraph
transformations, the resulting views of which capture different aspects of the graph’s semantics.

In addition to augmentations in the spatial domain, spectral augmentations have been proposed for graph data,
leveraging the graph spectrum where the semantic information is more accessible [16, 72, 31]. Furthermore, some

works explore augmentations in the latent space implicitly learned by the model [61, 26, 51], which is believed
to better capture the underlying semantics. Other approaches focus on augmenting specific graph model-based
parameters, such as graphons [ 18, 41] or contextual stochastic block models (CSBMs) [55], based on the explicit

downstream data generation assumptions.

Overall, the choice of graph data augmentations plays a crucial role in constructing effective contrastive views
and capturing the desired inductive biases for the specific graph-structured data. In certain designated applications,
augmentations can be specifically designed to cater to the unique characteristics of the data. For example, small
molecules have been shown to benefit from motif-based [54, 13] or energy-guided [33] perturbations. Similarly,
protein structures can be augmented through cropping while preserving consecutive amino-acid sequences
[73, 71]. The construction of effective graph views for contrastive learning, which are robust across diverse
domains or exhibit strong generalizability in specific applications, remains an active area of research.

2.2 Heterogeneous Graphs

A heterogeneous graph is defined as G = {V,&, Ty, Te} € G, where V = {v1, ..., v)y|} represents the set of
vertices, £ = {(v;, vj)|v;, v; € V} denotes the set of edges, Ty denotes the set of different vertex types, and T¢
represents the set of different edge types. In various contexts, each vertex and edge in a heterogeneous graph
may be associated with specific attributes (e.g., user profiles and relationships in social networks [44], or gene
expressions and regulatory interactions in biological networks [39]), which serve as features for graph learning.

Differing from homogeneous graphs, the complicated relations in heterogeneous graphs are more effec-
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Figure 2: HGCL framework: (a) Overview: Anchor node u and positive example node v in a heterogeneous graph
G are processed with a GNN backbone and projection head using a contrastive loss. (b) Sy (knowledge-driven):
Pre-defined meta-paths guide positive example node v generation. (c) Sy (data-driven): GNN-based encoder
with attention module generates positive example node vg.

tively captured by meta-paths. A meta-path [45, 11] P is a path that connects multiple nodes in the form of

A LN As NN Aj41 (abbreviated as Ay Aa ... Ajy1). It describes a composition of different relations
R, R, ..., R that link objects A; and A; 1. For example, in the heterogeneous graph shown in Figure 2(a),
there are two different meta-paths: Movie-Director-Movie (MDM), which represents the co-director relation
between two movies, and Movie-Actor-Movie (MAM), which represents the co-actor relation between two
movies. Different meta-paths reveal diverse semantics and guide the connection of even distant objects based on
their semantic similarities. Utilizing meta-paths as prior knowledge in positive sampling ensures that the selected
candidates are semantically related to some extent.

Heterogeneous graph contrastive learning (HGCL) has witnessed significant progress through various methods.
HeCo [53] utilizes meta-path-based random walks for self-supervised learning, while STENCIL [78] employs
structural templates to encode neighborhood information. HGCLR [4] learns embeddings by contrasting multiple
meta-path-derived views, and CPT-HG [23] captures node relations through pairwise contrastive learning.
MVSE [75] combines intra-view and inter-view contrastive learning tasks using different meta-path-based views.
Generally, contrastive learning methods can be classified into two categories: knowledge-driven and data-driven,
with a primary focus on generating positive views.

Knowledge-driven views. As illustrated in Figure 2(b), the framework leverages meta-paths to drop nodes or
perturb edges, resulting in related views. This strategy shares similarities with homogeneous graphs, with the key
difference being that the augmentation in heterogeneous graphs depends on meta-paths.

Data-driven views. As demonstrated in Figure 2(c), data-driven methods rely on attention mechanisms
employed in graph neural networks [52, 49, 15]. The attention score, ¢;;, of node j’s embedding to node 7 serves
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Figure 3: Three major lines of HyperGCL pipelines: (i) clique-expansion contrast, (ii) contrasting on augmented
hypergraph views, and (iii) contrasting across scales of augmented hypergraph features.

for the learnable sampling distribution as:

e;j = LeakyReLU(a(Wh;||Wh;j)), «;; = softmax;(e;;) = expleiy) (26)

B Zke/\fi exp(eir)

To ensure differentiability in selecting the positive example v, the Gumbel-Softmax trick [22] is introduced,
using the softmax function as a continuous, differentiable approximation (Gumbel-Softmax trick), facilitating joint
updates of the learned sampling distribution p; during training, resulting in a dynamic and adaptive contrastive
learning framework:

vj-y S— exp((log(aij) + g5)/7) Cforj=1,--- 4,k 27
Zm:l,m;ﬁi eXp(log(aim) + gm)/T)

2.3 Hypergraphs

Hypergraphs extend the concept of homogeneous and heterogeneous graphs
by allowing many-body interactions across nodes, represented by hyperedges.
They have attracted significant attention in the research community [ 14, 65, 6].
A hypergraph is denoted as H = {V, £} € H, where V = {v1, ..., vy, } is the Hypergraph Augmentations

set of vertices and £ = {ey, ..., €| g‘} is the set of hyperedges. Each hyperedge Naive Hyperedge Perturbation
en = {v1,..,vc,|} represents a higher-order interaction among a set of Generalized Hyperedge Perturbation
vertices. Hypergraph neural networks (HyperGNNs) [14, 65, 6] have been A\i f::gzt?;zzfﬁ?fg
proposed as state-of-the-art approaches to encode such complex structures, Subgraph

mapping the hypergraph to a D-dimensional latent space via f : H — R” Generative Augmentation
using higher-order message passing. For contrastive learning, a projection
head h(-) is applied to f(-). Currently, most hypergraph contrastive learning
(HyperGCL) methods focus on node-level applications.

When dealing with complex relationships in hypergraphs, the challenge is how to construct contrastive views
for hypergraphs. However, building effective hypergraph views is non-trivial due to the overly complicated
topology of hypergraphs. Unlike graphs, where there are (gf ) possibilities for one edge with N vertices,
hyperedges in hypergraphs can have 2" possibilities. To address this challenge, three lines of methods have

Table 2: Five generic augmenta-
tion operations for HyperGCL.
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emerged in HyperGCL research, which focus on (i) clique-expansion contrast, (ii) hypergraph view generation,
and (iii) hypergraph objective augmentation, as summarized in Figure 3.

Clique-expansion contrast. The first line of HyperGCL methods contrasts the representations of hypergraphs
with clique-expansion views [59, 3]. This method is intuitive but computationally expensive in terms of time
and memory, as it requires optimizing multiple neural networks of different modalities. Additionally, contrasting
between clique expansion poses the risk of losing higher-order awareness by bringing the representations of
hypergraphs and graphs closer together [56].

Contrasting on augmented hypergraph views. The second line of methods explores the structure of
hypergraphs itself to construct contrastive views [56]. They assess whether generic augmentations are suitable for
HyperGCL. Since hypergraphs are composed of hyperedges and vertices, they propose two strategies to augment
hyperedges: direct perturbation on hyperedges and perturbation on the “edges” between hyperedges and vertices in
the converted bipartite graph. To augment vertices, they adopt three schemes: vertex dropping, attribute masking,
and subgraph, which are borrowed from graph-structured data augmentations [68]. Their findings show that while
vertex augmentations benefit graphs more, hypergraphs mostly benefit from hyperedge augmentations, revealing
that higher-order information encoded in hyperedges is usually more downstream-relevant than information in
vertices.

Contrasting across scales of augmented hypergraph features. The last line of methods [29, 42] focuses on
contrasting augmented features beyond the node-level. The main idea is to perform multi-level contrast, aiming to
maximize the agreement between the same node, the node members of the same hyperedge, and each hyperedge
and its node members in two augmented views. This approach expects that complementary information can be
captured from different views to enhance HyperGCL.

2.4 Principled Graph Views for Contrastive Learning

The construction of appropriate contrastive views is crucial in GCL, but it often relies on empirical rules of thumb,
which can vary significantly depending on the nature of the graph dataset. Therefore, the question arises: could
we develop principled ways to construct graph views for contrastive learning? The answer lies in two folds:
defining the space of GCL views and formulating principles to search within that space (Figure 4).

Space of graph contrastive views. Contrastive Views

Defining a good search space is essential

for well-behaved search algorithms. The e

view constructor can be represented by a Input Graph

mapping function hy : G — G, where InfoBN

g~ _ h g d h |7 Adversarial Pr]nuple GCL
= hy(G) and v represents the parame- Principle Optimization

ters of the mapping function. The search

space is defined on this family of func-

- : —»:}

Flons, specifically on the parameters ). Var- hy, hyy ho

ious approaches have been proposed to Ry, hoy,

Space of Graph

construct the function space, such as us- View Constructors

ing learnable sampling distributions com-
bined with prefabricated graph augmenta-
tion functions [67], masking operators on
topology or node features [80, 46], and training graph generative models to define the augmentation space in
a data-driven manner [69, 66]. While the construction of search spaces is domain-agnostic, there is a need for
further research to explore how to construct search spaces tailored to specific applications, e.g., in molecular
graph analysis, chemical knowledge can be incorporated to define the graph augmentation functions. Future
research can focus on customizing the search space construction to the characteristics of the target application.
Principles for view searching. The choice of graph contrastive views can be sensitive to different datasets in

Figure 4: Two indispensable steps for principled graph view con-
struction: defining view space and formulating search principles.
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GCL. However, evidence shows that views derived from certain principles, conditioned on the dataset, provide
more robust benefits. View searching can be formulated as a bi-level optimization problem, where the upper-level
optimization aims to minimize the GCL loss with respect to the parameters 6 and ¢, while the lower-level
optimization finds the optimal parameters ¢)* that minimize a principled objective Lpyinciple. Various principles
have been proposed for view construction. For example, adversarial training can enforce GCL to optimize on
“difficult” views [67], leveraging graph properties can guide the view construction [80], and the information
bottleneck principle can eliminate superficial features from raw graph data [69, 46, 63]. Future research can
focus on unifying different principles and understanding the relationships among them. Additionally, theoretical
analysis to bridge principled view construction and downstream performance is needed for further development.

2.5 Principled View towards Interpretability and Fairness

While graph contrastive learning has shown success in various tasks, fairness and interpretability are important
aspects that have received less attention in this area. In this section, we discuss the principled view for fairness
and interpretability in graph contrastive learning, highlighting recent studies.

Fairness. Fairness in graph representation learning is crucial to prevent biased results, especially towards
underrepresented groups. Graph contrastive learning methods can benefit from incorporating fairness-aware data
augmentations to promote fair and unbiased representations. Studies such as Graphair [32], as well as other
approaches [28, 27], propose fairness-aware data augmentations that are learned from data. These augmentations,
which can be integrated into graph contrastive learning frameworks, aim to mitigate sensitive information while
preserving other useful information. By doing so, they improve the fairness-accuracy trade-off performance in
various node classification datasets, leading to more equitable graph contrastive learning outcomes.

Interpretability. Interpretability is another important aspect of graph contrastive learning, as it helps users
understand and trust the decisions made by graph neural networks (GNNs). Task-Agnostic GNN Explainer
(TAGE) [60] is a self-supervised, task-independent explanation approach that can be applied to GNNs used in
graph contrastive learning. TAGE enables the explanation of GNN embedding models with unseen downstream
tasks and allows efficient explanation of multitask models. Integrating TAGE into graph contrastive learning
frameworks can significantly enhance their explanation efficiency while achieving similar or better explanation
quality than existing state-of-the-art GNN explanation methods.

Another approach to improve the interpretability of GNNs in graph contrastive learning is to focus on their
reasoning capabilities. Existing neural reasoners often struggle with out-of-distribution (OOD) test data featuring
larger input sizes. A recent study [1] proposes data augmentation procedures that leverage causal frameworks to
develop self-supervised objectives, which can also be applied to graph contrastive learning. By incorporating
these data augmentation procedures into graph contrastive learning, the OOD generalization capabilities of the
reasoner can be improved, resulting in better performance on OOD test data.

In summary, enhancing fairness and interpretability in graph contrastive learning is crucial for developing
trustworthy and unbiased node representations. By incorporating fairness-aware data augmentations, self-
supervised objectives, and interpretable explanation methods, we can create more robust and equitable graph
contrastive learning frameworks that remain interpretable and generalizable across various application domains.

2.6 Theoretical Exploration

Although numerous algorithms and principles have been developed for GCL pretraining, the explicit theoretical
connection between pretraining and downstream fine-tuning performance still lags behind. The gap between
pretraining and fine-tuning performance can be attributed to several factors, including the misalignment between
the optimization objectives of pretraining and fine-tuning, the discrepancy between the data distributions used in
pretraining and fine-tuning, and the inductive biases encoded in neural networks. While the latter two factors have
been more heavily studied in graph out-of-distribution generation [2, 70], little work has been done to analyze
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the sources of error arising from the misalignment between pretraining and fine-tuning optimization objectives,
especially in the context of GCL.

One major challenge in analyzing the misalignment between pretraining and fine-tuning in GCL is the
diverse range of downstream applications for graph-structured data. Unlike Euclidean data, which has more
standardized downstream tasks such as image classification [12, 19], graph-structured data is used in a wide range
of applications, from molecule generation to social network analysis. This diversity makes it difficult to establish
appropriate assumptions about downstream data distributions for analysis.

In a recent study, Trivedi et al. [47] attempted to bridge the gap between pretraining and fine-tuning in
GCL by assuming a highly generic “label-preserving” behavior of graph views. They justified this assumption
through the use of graph edit distances between contrastive views and label-preserved samples, which measure
the similarity between two graphs based on the number of operations required to transform one into the other.
While this approach provides a starting point for analyzing the misalignment between pretraining and fine-tuning
in GCL, more fine-grained analyses are needed to fully understand the relationship between these two processes.

3 Applications and Benchmarks

3.1 Graph Types

The benchmarks and datasets used to evaluate graph contrastive learning methods come from a variety of domains
and cover a range of graph types and tasks. These graph types include bioinformatics, social networks, molecules,
computer vision, and synthetic graphs. Each of these types is characterized by unique properties that affect the
tasks they are suited for and the evaluation metrics used to assess contrastive learning methods.

TUDataset. TUDataset [38] is extensively used in the evaluation of graph contrastive learning methods. It
contains a diverse set of graph data from various domains, including small molecules and proteins, computer
vision, and social networks. The datasets within TUDataset cover different types of relational networks, including
graphs with discrete or continuous node and edge attributes. The small molecules datasets contain class labels
representing toxicity or biological activity, with the graphs representing molecules and nodes representing atoms,
while edges represent chemical bonds. The bioinformatics datasets in TUDataset represent macromolecules such
as proteins and use a graph model where nodes represent secondary structure elements, annotated by their type,
and several physical and chemical information, with edges connecting neighboring nodes. The computer vision
datasets contain graphs representing various tasks such as image processing, fingerprint recognition, and letter
recognition. Finally, the social network datasets within TUDataset include Reddit discussion threads, scientific
collaboration networks, actor collaborations, and GitHub users, each with different tasks, such as distinguishing
between discussion-based and question-answer-based subreddits, predicting the research field of researchers,
predicting the genre of actor collaborations, and identifying GitHub users who starred popular repositories.

Pokec-z and Pokec-n. Pokec-z and Pokec-n [8] are two social graphs sampled from a larger Facebook-like
social network in Slovakia called Pokec. The nodes in these graphs correspond to users living in two major
regions, with the region information being used as the sensitive attribute. The Recidivism graph is built upon the
information of defendants who got released on bail at the US state courts, where the edges are created based on the
similarity of past criminal records and demographics. The sensitive attribute for this graph is race, where the node
classification task is built upon classifying defendants into bail or no bail. Similarly, the Credit defaulter graph is
generated by creating links between people based on the similarity of their spending and payment patterns, with
labels for node classification corresponding to whether a person will handle the credit card payment or not, and
age being used as the sensitive attribute.

MoleculeNet. MoleculeNet [58] is a collection of molecular graph datasets used for the prediction of different
molecule properties. Each atom in the molecule is considered a node in the graph, with each bond considered
an edge. The prediction of molecule properties is a graph-level task, and three graph classification tasks from
MoleculeNet are used in the evaluation of contrastive learning methods.
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PPI. The Protein-Protein Interaction (PPI) [81] dataset documents the physical interactions between proteins
in 24 different human tissues. In PPI graphs, each protein is considered as a node with its motif and immunological
features, and there is an edge between two proteins if they interact with each other. The prediction of each protein
function is considered an individual task instead of a multi-class classification, and hence typical approaches
require individual explainers for the 121 tasks.

ACM. The ACM [74] heterogeneous graph dataset comprises academic papers divided into three classes based
on research areas. Each paper is associated with multiple attributes, such as authors, subjects, and publication
venues. With an average of 3.33 authors per paper and one subject, the ACM dataset captures the collaboration
and knowledge-sharing dynamics among researchers in various disciplines.

DBLP. In DBLP [15] heterogeneous graph dataset, the target nodes represent authors classified into four
research areas. The dataset captures the relationships between authors, their publications, and the venues in which
they are published. With an average of 4.84 papers per author, the DBLP dataset offers insights into the academic
productivity and research contributions of authors across different fields.

Freebase. The Freebase [30] heterogeneous graph dataset contains information about movies, which are
categorized into three genres. The dataset captures various relationships, such as the ones between movies, actors,
directors, and writers. With an average of 18.7 actors, 1.07 directors, and 1.83 writers per movie, the Freebase
dataset provides a comprehensive view of the complex interactions among entities in the film industry.

AMiner. The AMiner dataset [21] is a heterogeneous graph that focuses on academic papers extracted from
a subset of the original dataset, divided into four research areas. In addition to capturing relationships between
papers, authors, and references, the dataset includes an average of 2.74 authors and 8.96 references per paper.
This comprehensive dataset offers valuable insights into the citation patterns, research trends, and collaborations
in the academic world.

3.2 Special Tasks

In addition to the normal evaluation setting, GCL methods are evaluated in various special learning settings
[68, 67,69, 56, 28, 27, 32, 60], including semi-supervised learning, unsupervised representation learning, transfer
learning, adversarial robustness, and the accuracy-fairness trade-off. These settings are important because
they reflect real-world scenarios and challenges that GCL methods may encounter in practical applications,
such as limited labeled data, unsupervised learning, transferability, robustness, and fairness. By evaluating the
performance of GCL methods in these special settings, we can gain a better understanding of their strengths and
limitations and improve their applicability and robustness in real-world scenarios.

Semi-supervised learning. Semi-supervised learning addresses the issue of limited labeled data in graph
classification. Existing works on graph contrastive learning evaluate their models in this setting using small social
network benchmarks and large-scale graph datasets. They compare their models’ performance against conven-
tional pre-training schemes such as adjacency information reconstruction and local and global representation
consistency enforcement.

Unsupervised learning. Unsupervised learning is another important setting for graph contrastive learning
because it allows for the learning of representations without any labeled data, which is useful for many applications
where labeled data is scarce. Existing works on graph contrastive learning evaluate their models in unsupervised
learning tasks using graph embeddings generated by unsupervised methods, which are then fed into a downstream
SVM classifier.

Transfer learning. Transfer learning enables the evaluation of a model’s transferability across different
datasets, tasks, and domains. Existing works on graph contrastive learning evaluate their models in transfer
learning tasks on molecular property prediction in chemistry and protein function prediction in biology. They
pre-train and fine-tune their models on different datasets and evaluate the transferability of their pre-training
schemes.

Adversarial robustness. Adversarial robustness is an important setting for graph contrastive learning because
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it addresses the issue of adversarial attacks on graph data, which are becoming increasingly common in many
applications. Existing works on graph contrastive learning evaluate their models’ robustness on synthetic data to
classify the component number in graphs, facing the RandSampling, GradArgmax, and RL-S2V attacks. They
show that graph contrastive learning boosts GNN robustness compared to training from scratch under these
evasion attacks.

Accuracy and fairness trade-off. The trade-off between accuracy and fairness is a crucial setting for graph
contrastive learning because it enables the evaluation of a model’s performance with respect to both accuracy
and fairness metrics. Existing works on graph contrastive learning compare the accuracy-fairness trade-off
performance of their models with several baselines using demographic parity as the fairness metric. They show
that their model achieves the best ACC-DP trade-off compared to all fairness-aware baselines on three datasets.

4 Conclusion

The paper provides an overview of GCL, an emerging pipeline for generating generalizable graph representations
that are crucial in real-world graph applications. The paper first introduces the vanilla formulations of GCL
on various graph types and then discusses advanced variants guided by different principles, such as robustness,
interpretability, and fairness. The paper also covers routine assessment and datasets commonly used for evaluating
GCL methods. Based on the reviewed foundations, the paper summarizes several future perspectives and open
challenges in the field of GCL.

Tailored pipeline for focused applications. While the reviewed methods are generally designed to be
task-agnostic, real-world applications often require more focused approaches that leverage domain-specific
knowledge. Designing tailored GCL pipelines that address domain-specific problems can leverage algorithmic
advancements and incorporate domain priors. Examples of such tailored pipelines include applications in the
fields of molecules and proteins. It is expected that more sophisticated and effective designs will be developed in
the future.

Explicit theoretical bridge between pre-training and downstream. A notable phenomenon in graph
pre-training is negative transfer, where inappropriate pre-training strategies can lead to performance degradation.
This is due to the heterogeneous nature of graph data and the absence of a universal good prior for downstream
tasks. In addition to being guided by implicit principles, there is a need for an explicit understanding of the
relationship between GCL pre-training and downstream performance in theory. This will help answer questions
about why and when to use pre-trained graph representations.

Handling more complicated and composed graph structures. With the rise of artificial general intelligence
and digital medicine, the field of graph learning is entering an era of multi-modality learning, where in-silico
models serve as proxies for real-world intelligent and biological systems. In this context, data structures are
becoming more complex, with multi-modal graphs that are heterogeneous and contain multi-body relations. This
presents a new frontier for graph learning, particularly in the area of generalizable representation learning that
can handle extremely complex and composed graph data structures.

Unifying graph pre-training strategies under the umbrella of GCL. One advantage of the GCL pipeline
is its simplicity and flexibility, allowing for the incorporation of various strategies into a unified framework.
A future ambition is to further unify different lines of graph pre-training strategies, including both predictive
and generative approaches, within this framework. This will provide a better understanding of the theoretical
underpinnings and the optimal approach for specific applications by exploring the full space of graph pre-training
methods within the GCL framework.
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