
Graph Data Augmentation for Graph Machine Learning:
A Survey

Tong Zhao1,4, Wei Jin2, Yozen Liu1, Yingheng Wang3, Gang Liu4,
Stephan Günnemann5, Neil Shah1, Meng Jiang4

1Snap Inc., 2Michigan State University, 3Cornell University,
4University of Notre Dame, 5Technical University of Munich

1{tzhao,yliu2,nshah}@snap.com,2jinwei2@msu.edu,3yw2349@cornell.edu,
4{gliu7,mjiang2}@nd.edu,5guennemann@in.tum.de

Abstract

Data augmentation has recently seen increased interest in graph machine learning given its demonstrated
ability to improve model performance and generalization by added training data. Despite this recent surge,
the area is still relatively under-explored, due to the challenges brought by complex, non-Euclidean structure
of graph data, which limits the direct analogizing of traditional augmentation operations on other types of
image, video, or text data. Our work aims to give a necessary and timely overview of existing graph data
augmentation methods; notably, we present a comprehensive and systematic survey of graph data augmentation
approaches, summarizing the literature in a structured manner. We first introduce three different taxonomies
for categorizing graph data augmentation methods from the data, task, and learning perspectives, respectively.
Next, we introduce recent advances in graph data augmentation, differentiated by their methodologies and
applications. We conclude by outlining currently unsolved challenges and directions for future research.
Overall, our work aims to clarify the landscape of existing literature in graph data augmentation and motivates
additional work in this area, providing a helpful resource for researchers and practitioners in the broader
graph machine learning domain. Additionally, we provide a continuously updated reading list at https:
//github.com/zhao-tong/graph-data-augmentation-papers.

1 Introduction

Data driven inference has received a significant boost in generalization capability and performance improvement
in recent years from data augmentation (DA) techniques. DA techniques increase the amount of training data
by creating plausible variations of existing data without additional ground-truth labeling efforts, and have seen
widespread adoption in fields such as computer vision (CV) [15] and natural language processing (NLP) [26].
These techniques allow machine learning models to learn to generalize across those variations and attend to signal
over noise. In recent years, with the rapid development of graph machine learning (GML) methods such as graph
neural networks (GNNs) [57, 38], studies have shown that the effectiveness of GML approaches also largely
depends on the data quality. Given the dependent nature of graph data and the message-passing design of most
GNNs, GML faces unique challenges such as: structural data sparsity brought by power-law degree distributions
in most graphs, noisy and even erroneous topology brought by imperfect construction of the graph structure from
raw data under other formats, low quality and incomplete node attributes, adversarial attacks on structure and
attributes, lack of labelled data due to costly human annotations, and over-smoothing caused by the message
passing design in GNNs. As DA allows researchers to alleviate such challenges from a data perspective, there
has been increased interest and demand for such techniques on graph data [140], and there has been a growing
number of works on graph data augmentation (GDA).

140



With the irregular and non-Euclidean structure of graph data, it is non-trivial to directly analogize DA
techniques from CV and NLP to the graph domain, except for the most basic operations such as random
masking/dropping/cropping. To better promote the effectiveness of GML approaches and alleviate the unique
challenges in GML, recent literature designed graph-specific augmentation techniques following methodologies
such as graph structure learning, graph adversarial training, graph rationalization, etc. Creating a unified taxonomy
for all GDA techniques is not intuitive as they can be categorized under different facets. For example, taking the
data modelity that the augmentation methods work on, they can be separated into structure augmentations, feature
augmentations, and label augmentations. On the other hand, the focusing downstream tasks (i.e., node-level,
edge-level, and graph-level tasks) can also categorize the GDA techniques. Moreover, the GDA methods can also
be separated by whether the methods involves learning during the augmentation process. That is, whether they
are rule-based approaches or learned approaches.

This paper aims to sensitize the GML community towards this growing area of work, as DA has already
drawn much attention in CV and NLP [15, 26]. As interest and work on this topic continue to increase, this
is an opportune time for a comprehensive work to (i) introduce background and motivation of GDA, (ii) give
a bird’s-eye view of existing GDA techniques under different taxonomies, (iii) introduce representative GDA
techniques with their usage and applications, and (iv) identify key challenges to effectively motivate and orient
interest in this area. We hope this survey can serve as a guide for researchers and practitioners who are new to or
interested in studying this topic, and also inspire future research in this area.

The text is structured as follows: Section 2 gives background and motivation on GNNs and GDA. It defines
GDA and motivates its use in GML tasks. Section 3 categorizes GDA techniques based on three different
taxonomies: the operated graph data, the downstream tasks, and whether the method involves learning. Section 4
describes rule-based GDA techniques for GML – which we partition into Data Removal (Section 4.1), Data
Addition (Section 4.2), and Data Manipulation (Section 4.3) focuses. Similarly, Section 5 introduces learned
GDA techniques, which are further categorized by their methodologies: Graph Structure Learning (Section 5.1),
Graph Adversarial Training (Section 5.2), Graph Rationalization (Section 5.3), and Automated Augmentation
(Section 5.4). Section 6 introduces GDA techniques that are used under three different self-supervised learning
objectives: Contrastive Learning (Section 6.1), Non-contrastive Learning (Section 6.2), and Consistency Training
(Section 6.3). Finally, Section 7 discusses challenges and future directions for GDA.

2 Preliminaries

2.1 Notations

Let G = (V, E) be a graph of N nodes, where V = {v1, v2, . . . , vN} is the set of N nodes and E ⊆ V × V is the
set of links. We denote the adjacency matrix as A ∈ {0, 1}N×N , where Ai,j = 1 indicates nodes vi and vj are
connected and vice versa. We denote the node feature matrix as X ∈ RN×F , where F is the number of raw node
features and xi indicates the feature vector of node vi (the i-th row of X). We use y to denote the label each
sample, which can be node, edge, or graph depending on the task. We use symbol with tilde to denote the data
generated by GDA methods. For example, Ã for the augmented adjacency matrix, x̃i for the augmented feature
vector of node vi, etc.

2.2 Graph Neural Networks

Graph neural networks (GNNs) enjoy widespread use in modern graph-based machine learning due to their
flexibility to incorporate node features, custom aggregations, and inductive operation, unlike earlier works
which were based on embedding lookups [87, 34]. Following the initial idea of convolution based on spectral
graph theory [6], many spectral GNNs have since been developed and improved by [19, 57, 67, 59, 80]. As
spectral GNNs generally operate (expensively) on the full adjacency, spatial-based methods which perform

141



G
ra

ph
D

at
a

A
ug

m
en

ta
tio

n

Backgrounds (§2)

Taxonomies (§3)

Data Perspective
Structure Augmentations
Feature Augmentations
Label Augmentations

Task Perspective
Node-level Tasks
Graph-level Tasks
Edge-level Tasks

Learning Perspective Rule-based GDA
Learned GDA

Rule-based GDA (§4)
Data Removal
Data Addition
Data Manipulation

Learned GDA (§5)

Graph Structure Learning

Graph Adversarial Training

Graph Rationalization

Automated Augmentation

GDA in Self-supervsed Learning (§6)

Contrastive Learning

Non-contrastive Learning

Consistency Training

Challenges and Directions (§7)

Domain Adaptation and Regularization

Scalability for Large-scale graphs

Comprehensive Evaluation Criteria and Standards

Theoretical Foundation

Figure 1: Structure of this survey.

graph convolution with neighborhood aggregation became prominent [38, 107], owing to their scalability and
flexibility [128, 121].

Generally, the generic formulation of message passing-based GNNs can be defined by an aggregation function
(AGGREGATE) and an update function (UPDATE). In each layer, AGGREGATE aggregates the embeddings from
previous layer for each node from all its neighbors, and UPDATE updates each node’s embedding by combining
its own previous embedding and the aggregated neighbor embeddings [38]. Specifically,

hlN (v) = AGGREGATE({hl−1
u |u ∈ N (v)}),

hlv = UPDATE(hl−1
v ,hlN (v)),

(48)

where hlv denotes the representation of node v at the l-th layer, and N (v) denotes the set of node v’s neighbors.
In implementation, GNNs can usually be implemented with (sparse) matrix multiplications. Without the loss

of generality, here we take the most commonly used Graph Convolutional Network (GCN) [57] as an example.
One layer of GCN is defined as

Hl = σ(D− 1
2AD− 1

2WlHl−1), (49)

where D is the diagonal degree matrix s.t. Di,i =
∑

j Ai,j (assuming A contains self-loops), σ(·) is the nonlinear
activation function such as ReLU, and Wl denotes the learnable weight matrix at the l-th GNN layer. Furthermore,
we use gΘ(·) to denote the mapping function of the whole GNN model parameterized by Θ.

2.3 Graph Data Augmentation

The DA area encompasses techniques of increasing/generating training data without directly collecting or labeling
more data. Most DA techniques either add slightly modified copies of existing data, or generate synthetic data

142



based on existing data. The augmented data act as a regularizer and reduce overfitting when training data-driven
models [93]. DA techniques has been commonly used in CV [15] and NLP [26], where augmentation operations
such as cropping, flipping, and back-translation are usually used in machine learning model training.

In GML, in contrast to regular and Euclidean data such as grids (e.g., images) and sequences (e.g., sentences),
the graph structure is encoded by node connectivity, which is non-Euclidean and irregular. Most structured
augmentation operations used frequently in CV and NLP cannot be easily analogized to graph data. Therefore,
how to design effective augmentations of graph data is less obvious. For example, the data objects for node-level
and edge-level tasks are inter-connected and non-i.i.d, meaning that GDA techniques typically modify the entire
dataset (graph) instead of a specific data object (nodes or edge) in isolation. Generally, a GDA method can be
defined as a transformation function f : G→ G̃, where the the transformation function f can be either rule-based
or learnable, and the augmented graph G̃ contains the augmented adjacency matrix Ã and node feature matrix X̃
(and optionally augmented edge features, node or graph labels). Moreover, the augmentation function f is not
necessarily deterministic. That is, the same f may generate multiple different versions of the augmented graph G̃,
and the model may use one or multiple of these augmentations as required for training.

2.4 Motivation: Why Augment Graphs?

Graphs are often utilized to model or represent an underlying process of relationships or affinities; for example,
“which individuals are friends with one another?” or “which movies do individuals like?” In some cases, these
relationships are strictly defined and known, e.g. researchers jointly co-authoring articles, or atoms interacting
in a chemical compound. However, in many other cases, an “observed” graph may be misaligned with the true
process it intends to model for a variety of reasons [5]. In some cases, like in social interaction graphs, noise
may be inadvertently or adversarially introduced by spammers who pollute underlying data about authentic
interactions with inauthentic ones for nefarious purposes [90, 65]. In other cases, noise may be inherently created
by limited or partial observation (e.g. a movie recommendation system never recommending a certain genre of
movies to a group of users) caused by privacy reasons [14, 22], biased recommendation policies [55, 143], or
other reasons. Noise can also occur by measurement or thresholding errors (e.g. discretizing continuous signals
between brain voxels into discrete ones) [30], or human errors (e.g. a person forgetting to add a known contact to
their phone’s contact-book). All of these scenarios can introduce gaps between an intended and observed graph.
Moreover, even if all relationships a graph intends to capture are observed properly, there is no guarantee that the
graph is a particularly useful [5] for a particular downstream learning task, especially when utilized in a GML
context, e.g. a graph connecting individuals by similar heights may be unhelpful in regressing income.

GDA methods offer an attractive solution in denoising, imputing, and generally enhancing graph structure
to align better with an intended modeling processes, or objectives of a target learning task [140]. Adding or
removing nodes and edges can help connect or disconnect a graph to facilitate its use towards targeted objectives.
Moreover, utilizing heuristic graph modification strategies to increase model exposure in training may lead to
better generalizing, more robust and higher performance models [114, 62, 147]. Both learned and rule-based
DA techniques have shown immense potential in other domains like tabular ML (e.g. oversampling [2] and
SMOTE [7]), CV (e.g. rotations, flips and translations of images [93] and random erasure [146]) and NLP
(e.g. synonym replacement and random token additions/deletions [118] and back-translation [89]); however, as
aforementioned, these techniques usually lack clear analogs in the graph domain due to unclear correspondence
of their label-preserving transforms. This lack of clarity motivates work into understanding the limitations of
graphs, suitable designs for augmentation techniques, and their breadth of impact.

143



3 Taxonomies

In this section, we introduce three different taxonomies that can be used to categorize GDA techniques. They
come from different perspectives of data, task, and learnability, respectively. As these taxonomies are orthogonal
to each other, and each of them can in some way categorize all GDA methods, we will only focus on one taxonomy
(rule-based vs. learned augmentation) for the later sections.

3.1 Operated Data Modality

As GDA methods all operate on graph data, they can naturally be categorized by the data modality that they aim
to manipulate. Therefore, one intuitive taxonomy for GDA methods would be classifying them into one or more
of three categories: structure, feature, and label augmentations.

Structure Augmentations are the GDA operations that modify the graph connectivity via adding/removing
edges or adding/removing nodes from the graph. The modifications can be either deterministic (e.g., GDC [60]
and GAug-M [140] both modify the graph structure and used the modifed graph for training/inferencing) or
stochastic (e.g., DropEdge[88] and DropNode [27] randomly drop edges/nodes from the observed training graph).
Feature Augmentations are the GDA operations that modify or create raw node features. For example, You et al.
[129] used Attribute Masking that randomly masked off node features; FLAG [62] augments node features with
gradient-based adversarial perturbations. It’s worth noting that stucture augmentations and feature augmentations
are also sometimes combined in some GDA methods. For example, MoCL [99] substitutes subgraphs in molecular
graphs with subgraphs of different functional groups. Label Augmentations are the GDA operations that involves
modifying the labels. For example, Mixup-based methods [39, 37] interpolate existing training examples and
assign new label for the generated example. Counterfactual data augmentation methods (e.g., CFLP [143])
generate counterfactual examples with corresponding new labels.

3.2 Downstream Tasks

Another straightforward taxonomy of categorizing GDA methods is by the downstream tasks that they tackle.
Generally, most GML methods can be categorized into three high-level task types: node-level, edge-level, and
graph-level tasks. Similarly, many GDA methods are designed toward one of these tasks, and cannot be easily
generalized to other tasks. For example, CFLP [143] generates counterfactual links as augmented data specifically
for training a neural link predictor, and these counterfactual links are useless to other tasks like node classification
as they are counterfactual labels on node pairs under specific treatments. Moreover, certain GDA methods that
are designed for molecular graphs (e.g., MoCL [99]) are not opeartable on the large graph datasets used in other
tasks as they rely on the domain specific substructures of molecular graphs, e.g., functional groups. Nonetheless,
the downside of categorizing by downstream tasks is that a fair number of GDA methods were designed more
generically for various tasks; for example, DropEdge [88] simply conducts random edge dropping during training,
and the method can naturally be applied on most GML methods.

3.3 Rule-based vs. Learned Augmentations

GDA methods can also be categorized by whether the augmentation process involved learning, namely rule-based
GDA approaches and learned GDA approaches. More specifically, rule-based GDA approaches refer to the non-
learnable methods that modify or manipulate the graph data following pre-defined rules, which can be stochastic,
deterministic, or mixture of both. A rule-based GDA method can be as simple as randomly removing a given
fraction of edges [88] or randomly cropping out part of the graph [129]; it can also be more complicated such
as counterfactual augmentation [143] based on similarity matching rules and graph diffusion methods [60] that
follows specific diffusion kernels. We also categorize Mixup-based augmentations [39] as rule-based approaches

144



since they usually only contain one non-learnable parameter (sampled from pre-defined distributions) when
generating new data objects by interpolating two existing data objects.

On the other hand, learned GDA approaches refer to the augmentation methods that contains learnable
parameters in the process of generating augmented examples. The augmentation module can either be trained
independently or in an end-to-end style with the downstream classifier or regressor [140]. For example, graph
structure learning methods [152, 50, 140] often assume the observed graph data is noisy, incomplete, or entirely
missing, so they first try to learn the “clean” graph structure before using it in the training and inference of GNNs.
Graph rationalization methods [120, 71] learn subgraphs that are likely to be causally related with the graph
labels and use them for augmentation. Automated augmentation methods [144, 79] utilize reinforcement learning
agents to learn the optimal augmentation strategy for the given data automatically.

In Sections 4 and 5, we will introduce GDA approaches in more detail based on this separation as it provides
better differentiation of the methodologies and improved readability. Table 1 shows a summary of GDA techniques,
categorized following this taxonomy and the methods’ methodologies.

4 Rule-based Approaches for GDA

Owing to their simplicity and efficiency, rule-based graph data augmentation methods are the most commonly used
augmentation techniques in graph machine learning. The rule-based GDA approaches can generally categorized
into three categories, where the first category of methods would remove part of the data (e.g., Stochastic Masking)
to create new graph data, the second category of methods augments the graph data by generating new graphs
or adding components (e.g., Counterfactual Augmentation, Pseudo-labeling), and the third category includes
methods that manipulate the data following rules can involve both removing and adding operations (e.g., Diffusion,
etc.) In the following subsections, we summarize the representative approaches in each category and also discuss
their applications on different tasks and domains.

4.1 Data Removal

Edge Dropping. Edge dropping methods stochastically remove a certain fraction of edges from the graph data.
Aiming to alleviate the known over-smoothing problem of GNNs, Rong et al. [88] first proposed DropEdge which
randomly dropped a fixed fraction of edges in each training epoch, resembling Dropout [96]. More specifically, at
the beginning of each training epoch, the modified adjacency matrix Ã is defined by

Ã = M⊙A, (50)

where M ∈ {0, 1}N×N is a binary mask on the adjacency matrix s.t. Mi,j = Bernoulli(ε), ε ∈ (0, 1) is the
drop rate hyper-parameter, and ⊙ denotes the Hadamard product.

During GNN training, DropEdge adopts a newly sampled Ã instead of the original graph structure A for
message passing (e.g., Equation equation 49) in each training epoch. By showing the GNN models different
perturbations of the graph in each training epoch, DropEdge improves the model’s generalization and shows
significant performance improvements on deeper GNNs, indicating that the strategy mitigates over-smoothing.
Several other methods [129, 102, 144] also adopt random edge masking in other learning schemes such as
self-supervised learning, which conducts the same operation as DropEdge.

Node Dropping. Similar to edge dropping, node dropping methods stochastically remove nodes from the graph.
Node dropping is typically implemented in two ways: removing all features of the target nodes from the feature
matrix, or removing the target nodes along with all the edges connected with them from the graph structure.
Feng et al. [27] proposed DropNode, which follows the first schema. Concurrently, You et al. [129] proposed
NodeDropping following the latter.

145



Table 1: A summary of GDA techniques, categorized by whether they are learned augmentations and their
methodologies.

Methodology Representative Works Task Level Augmented Data
Node Graph Edge Structure Feature Label

Rule-based GDA

Stochastic Dropping/Masking

DropEdge [88] ✓ ✓
DropNode [27] ✓ ✓
NodeDropping [129] ✓ ✓
Feature Masking [102] ✓ ✓
Feature Shuffling [108] ✓ ✓
DropMessage [23] ✓ ✓ ✓
Subgraph Masking [129] ✓ ✓ ✓

Subgraph Cropping/Substituting
GraphCrop [113] ✓ ✓
M-Evolve [147] ✓ ✓
MoCL [99] ✓ ✓ ✓

Virtual Node Graphormer [127] ✓ ✓
GNN-CM+/CM [45] ✓ ✓

Mixup

Graph Mixup [117] ✓ ✓ ✓
ifMixup [37] ✓ ✓ ✓ ✓
Graph Transparent [86] ✓ ✓ ✓ ✓
G-Mixup [39] ✓ ✓ ✓ ✓

SMOTE
GraphSMOTE [142] ✓ ✓
GATSMOTE [76] ✓ ✓
GNN-CL [70] ✓ ✓ ✓

Diffusion GDA [60] ✓ ✓

Counterfactual Augmentation CFLP [143] ✓ ✓ ✓

Attribute Augmentation LA-GNN [75] ✓ ✓
SR+DR [94] ✓ ✓

Pseudo-labeling Label Propagation [149] ✓ ✓
PTA [21] ✓ ✓

Learned GDA

Graph Structure Learning

GAug [140] ✓ ✓
GLCN [47] ✓ ✓
LDS [28] ✓ ✓
ProGNN [50] ✓ ✓
Eland [141] ✓ ✓

Graph Adversarial Training

RobustTraining [125] ✓ ✓
AdvT [18] ✓ ✓ ✓
FLAG [63] ✓ ✓ ✓ ✓
GraphVAT [25] ✓ ✓

Graph Rationalization GREA [71] ✓ ✓ ✓
AdvCA [97] ✓ ✓ ✓

Automated Augmentation

AutoGDA [144] ✓ ✓ ✓
GraphAug [79] ✓ ✓ ✓
JOAO [130] ✓ ✓ ✓
MolCLE [116] ✓ ✓ ✓

Both DropNode [27] and NodeDropping [129] aim to randomly remove a fraction of the nodes from the
given graph, assuming that the missing nodes should not affect the semantic meanings of the remaining nodes, or
the whole graph G. Feng et al. [27] focused on semi-supervised node classification, where a consistency loss is
used on the predicted logits of different augmented versions of the graphs. On the other hand, You et al. [129]
focused on self-supervised graph representation learning with contrastive targets.

Feature Masking. Other than the graph structure, i.e., nodes and edges, multiple works also adopted masking
augmentations on the node features. For example, graph contrastive learning methods [102, 129, 130, 151]
commonly utilize stochastic feature masking as an efficient way of augmenting or corrupting the graph. On top

146



of randomly masking feature values (i.e., random entries in X) or feature signals (i.e., random columns in X),
Velickovic et al. [108] utilized row swapping as an effective way of corrupting the graph. Specifically, Velickovic
et al. [108] randomly re-assigned the each node’s feature vector to another node in the graph, which can be
obtained by row-wise shuffling of X.

More recently, Fang et al. [23] proposed DropMessage, which masks the features aggregated by message
passing in GNNs. More specifically, denoting the aggregated neighbor feature of node v by the l-th layer as
hlN (v) (Equation equation 48), DropMessage randomly applies a binary mask on hlN (v) for each node v ∈ V in
every GNN layer. Similar to other dropping methods, the masks are sampled according to a Bernoulli distribution.

Subgraph Cropping. Another common data removal augmentation approach is cropping out part of the graph
data. Such subgraph cropping can usually be achieved by either sampling the remaining subgraph or the subgraph
that will be cropped out. For example, You et al. [129] first proposed the Subgraph augmentation, which samples
the remaining subgraph via random walk. The method later learns the graph representations by contrasting the
sampled subgraphs, with the assumption that the semantics of the whole graph can be preserved in part or its local
structure. On the other hand, GraphCrop [113] crops a contiguous subgraph from each of the given graph object.
GraphCrop adopts a graph diffusion-based node-centric strategy, performing graph diffusion on the randomly
selected seed nodes, to maintain the topology characteristics of original graphs after the cropping.

4.2 Data Addition

Opposite to data removal methods, data addition methods augments the graph data by adding components to
the existing/observed graph data or directly generating additional graphs. Note that although edge dropping is
one of the most common techniques in data removal, rule-based edge addition is rather uncommon due to the
huge search space for potential edge addition candidates (with a complexity of O(N2)). While graph diffusion
methods include adding edges, we discuss them later in Section 4.3 as they also include sparsification operations
after edge addition.

Virtual Node. For graph classification, creating a virtual node that connect to all nodes in the graph is a commonly
used GDA approach [31, 69, 46, 44, 127]. The idea of virtual node is to compute a graph representation in
parallel with the node representations during the aggregation process. Therefore, instead of using an additional
pooling layer, the virtual node’s representation can directly be used as the graph representation, in a way similar
to the [CLS] token in language modeling. Moreover, as the virtual node connects to all the nodes, it allows
feature aggregation between previously unreachable nodes without adding additional GNN layers. Ying et al.
[127] further show that it acts similar as self-attention in Transformers. Other than graph-level tasks, Hwang et al.
[45] also studied virtual nodes for link prediction. As the graph data for link prediction is usually much larger for
link prediction when compared with those in graph-level tasks, Hwang et al. [45] proposed to augment the graph
data multiple virtual nodes, each connecting with a subset of all nodes in the graph with assignment decided by
clustering methods.

Data Interpolation. With it’s simplicity and effectiveness, Mixup [135] has been commonly used in image and
language domains for augmenting new data samples. Specifically, Mixup constructs virtual training examples by
interpolating two labeled training samples:

x̃ = λxi + (1− λ)xj ,
ỹ = λyi + (1− λ)yj , (51)

where (xi,yi) and (xj ,yj) are two randomly selected labeled training examples, and λ ∈ [0, 1]. By linearly
interpolating the feature vectors and labels, Mixup incorporates the prior knowledge and extends the training
distribution. Similarly, Manifold Mixup [109] performs Mixup on latent intermediate representations instead of
raw features of the two training samples.

147



The direct analog of Mixup on graphs is not obvious, given the inter-dependent and irregular nature of graph
data. Verma et al. [110] proposed GraphMix that augmented the training of a GNNs with a Fully-Connected
Network, which is trained by interpolating the hidden states and labels. As GraphMix is more of a regularization
method than the analog of Mixup on graphs, Wang et al. [117] proposed Graph Mixup, which analogized
Manifold Mixup with a two-branch graph convolution module. Given a pair of nodes, Graph Mixup mixes their
raw features, passes them into the two-branch GNN layer, and mixes the hidden representations of each layer.
Notably, mixing up the nodes on features and hidden states avoids re-assembling the local neighborhoods of the
two nodes. Graph Mixup also works for the task of graph classification. To avoid the node matching problem
when mixing up two independent graphs, Graph Mixup mixes the latent representations of the pair of graphs.

On the other hand, ifMixup [37] directly applies Mixup on the graph data instead of the latent space for graph-
level tasks. As the pair of graphs are irregular and the nodes from two graphs are not generally aligned, ifMixup
arbitrarily assigns indices to the nodes in each graph and matches the nodes according to the indices. Empirically,
ifMixup shows marginal performance improvements over Graph Mixup on the task of graph classification.
Following ifMixup, Graph Transplant [86] also mixes graph in data space , but uses substructures as mixing units
to preserve the local structural information. Graph Transplant employs the node saliency information to select
one meaningful substructure from each graph, where the saliency information is defined as the l2 norm of the
gradient of the classification loss.

Different from the above Mixup-based methods which operate on instance level, Han et al. [39] proposed
G-Mixup that performs Mixup on class-level. Instead of directly interpolating the individual graphs, G-Mixup
interpolates the graph generators (graphons) for each class. Specifically, G-Mixup first estimates a graphon for
each class of the training graphs, then mixes up the graphons of different classes, and finally generate synthetic
graphs with the mixed graphons. Denoting the graphons of classes a and b as Wa and Wb, respectively, G-Mixup
can be formulated as

x̃ ∼Wc, where Wc = λWa + (1− λ)Wb,
ỹ = λya + (1− λ)yb,

(52)

where ya and yb are corresponding labels for graphs in classes a and b, respectively.
Besides Mixup, SMOTE [7] is also a classical data augmentation method that interpolates data instances.

Different from Mixup which interpolates examples from different classes, SMOTE interpolates examples within
the minority classes. Hence, SMOTE is especially effective when dealing with imbalanced data. On graph data,
GraphSMOTE [142] augments the minority class by over-sampling synthetic nodes and then generating edges
for them. GATSMOTE [76] and GNN-CL [70] further utilize attention designs to improve the edge generating
process between the synthetic nodes and original nodes in the graph.

Counterfactual Augmentations. Counterfactual augmentation has been relatively under-explored in the field of
graph machine learning. Zhao et al. [143] first proposed a counterfactual data augmentation method CFLP for the
task of link prediction. To better understand the relationship between observed graph structure and link formation,
CFLP asks the counterfactual question of “would the link still exist if the graph structure became different from
observation?” To answer the question, Zhao et al. [143] proposed counterfactual links that approximates the
unobserved outcome in the question. CFLP then trains a link prediction model with both the given training
data and the generated counterfactual links (as augmented data). Similarly, CLBR Zhu et al. [148] proposed
counterfactual data augmentation for bundle recommendation. CLBR generates the counterfactual example by
answering the counterfactual question “what would a user interact with if the bundle-item affiliation relations
change?”.

Attribute Augmentation. Besides updating the graph topology, several works were also proposed to augment
the graph data by generating additional node attributes. For example, LA-GNN [75] enhances the locality of
node representations by generating node features based on the conditional distribution of the local structures
and neighbor features. LA-GNN learns the new features of each node by the conditional distribution of its local
neighborhood. The generated feature is directly used together with the raw node features as part of the input of

148



GNNs for both training and inference. Similarly, SR+DR [94] generates topology features with DeepWalk [87],
and uses a dual GNN model with topology regularization to jointly train with both raw and topology features.

Pseudo-labeling. The training data in graph tasks is often only partially labeled due to the generally high cost of
human labeling. With the large amount of unlabeled data, pseudo-labeling for the unlabeled data is often adopted
under semi-supervised learning settings. Label Propagation [150, 149, 21] is one of the most classical methods
for generating pseudo labels when only part of the nodes in the graph are labeled. Label propagation assumes
that the two nodes are more likely to have the same label if they are connected, so it iteratively propagates node
labels along the edges. With the propagated labels on the previously unlabeled nodes, the GNN model can then
be trained with more labeled data.

4.3 Data Manipulation

Other than only adding or removing graph data, several rule-based methods also augment the graph data by
combining both kind of operations. In order to separate them from the methods that purely conducts data removal
or data addition, we introduce such augmentation methods in this subsection.

Diffusion. Klicpera et al. [60] first proposed generalized graph diffusion that modeled a “future” state of the
graph where the signals were more spread out. Specifically, the generalized graph diffusion is formulated as

Ã =

∞∑
k=0

θkT
k, (53)

where θk denote the global-local coefficient and T ∈ RN×N represents the transition matrix derived from the
adjacency matrix A (e.g., AD−1 or D− 1

2AD− 1
2 ). θk is usually pre-defined by specific diffusion variants, e.g.,

heat kernel [61] (θk = e−t t
k

k! ) or Personalized PageRank (PPR) [84] (θk = α(1 − α)k), where α denotes the
teleport probability in a random walk and t is diffusion time. The analytical solution of the heat kernel and PPR
diffusions are defined as

Ãheat = e−(tT−t); ÃPPR = α(IN − (1− α)T)−1, (54)

where IN is the N by N identity matrix. As the obtained adjacency matrix after diffusion Ã is often too dense
as input for GNNs, graph sparsification is commonly conducted to filter out some trivial edges, e.g., setting a
threshold to cut-off edges with small weights.

For (semi-)supervised learning on graphs, Ã can be directly used for both training and inferencing with
GNNs [60]. While most message passing-based GNNs are only capable of aggregating one-hop information
in each layer, the augmented graph after diffusion allows GNNs to learn from multi-hop (global) information
without specifically re-designing the GNN models. In self-supervised graph representation learning, Ã is often
used as the augmented view for self-supervised learning objectives such as contrastive learning [40, 132].

Subgraph Substituting. Several methods also make use of special substructures such as motifs and functional
groups during subgraph augmentation. For example, M-Evolve [147] utilizes motifs to augment the graph data.
M-Evolve first finds and selects the target motif in the graph, then adds or removes edges within the selected
motifs based on a sampling weight calculated with Resource Allocation index. Similarly, MoCL [99] utilizes
biomedical domain knowledge to augment the molecular graphs on the substructures such as functional groups.
MoCL selects a substructure from each molecular graph and replaces it with another substructure.

4.4 Applications of Rule-based GDA

The rule-based augmentation techniques are mostly designed for improving general graph learning, and usually
does not have constrains on specific tasks or domains. For example, although Rong et al. [88] only evaluated
DropEdge for node classification task, the usage of it on other tasks is straightforward, and similar for most

149



stochastic data removal methods discussed in Section 4.1. Nonetheless, some rule-based GDA methods are
more suitable for certain domains. For instance, subgraph substituting methods [147, 99] utilizes substructure
information or even biomedical domain knowledge to augment the graphs, which makes them naturally more
suitable for graph-level tasks on biomedical data. On the other hand, graph diffusion methods [60] are designed
based on the spread of information along the relations in the graph, which makes such methods for suitable for
larger graphs such as social networks or citation networks. Similarly, designed for exploring the formation of the
links, counterfactual augmentation methods [143, 148] are tailored for link prediction or recommendation on
larger graphs. We also specify the targeted tasks for each GDA method in Table 1.

Other than supervised graph representation learning schemes, the stochastic data removal methods (Sec-
tion 4.1) are also commonly used in self-supervised graph representation learning methods as an efficient way of
augmenting/corrupting graph data. For example, several methods [108, 129, 130, 102] use one or multiple of the
above-mentioned techniques as augmentation methods for generating the augmented views of graph data. We
further elaborate on the usage of data removing augmentations for self-supervised learning in Section 6.

5 Learned Approaches for GDA

In the previous section, we introduced rule-based GDA approaches where no learnable parameters are involved
during data augmentation. However, these approaches could sometimes be suboptimal since the augmentations
do not take advantage of the rich information from downstream tasks, especially in (semi-)supervised training.
Indeed, some prior works from the vision [15] and natural language [83] learning domains show the promise
of learned augmentation approaches. To address this concern, learned GDA approaches are proposed to learn
augmentation strategies in a data-driven manner. The existing methods can be categorized into the following
types: (1) structure learning, (2) adversarial training, (3) rationalization, and (4) automated augmentation.

5.1 Graph Structure Learning

In real-world scenarios, given graph structures are often incomplete [28], noisy [50, 78] or manipulated by
adversarial attacks [49, 36]. Simply applying rule-based GDA approaches for training (semi-)supervised models
on such graphs can lead to suboptimal performances, as they may not necessarily generate better graph structures
for downstream tasks. To tackle these issues, several works propose graph structure learning approaches
which aim to search for a better graph structure that augments the initial graph structure. Essentially, those
methods treat the graph structure as learnable parameters and iteratively refine it while learning the model
parameters [140, 50, 28, 12, 78, 145]. Numerous studies have demonstrated the effectiveness of graph structure
learning methods in improving model generalization [140, 12] and robustness [50, 145]. In the following, we
introduce several representative works that fall into the category of graph structure learning.

Improving Generalization. There are numerous methods for graph structure learning that target improving
the generalization performance. Overall, they can be divided into two categories based on the adjacency matrix
which they learn: learning continuous structure and learning discrete structure.

Although the original adjacency matrix is usually discrete (or binary), continuous structure methods do
not assume the learned adjacency matrix to be discrete, as modeling discrete structure requires additional
efforts in optimization. Typically, these methods either model the adjacency matrix as free parameters or use a
parameterized neural network to model the structure. For instance, GLCN [47] is an early work which proposes a
unified network architecture to learn an optimal graph structure and GNN. It incorporates the similarities of node
features to learn a sparse and continuous graph structure. Formally, it defines a graph learning loss LGL as:

LGL =
N∑

i,j=1

∥xi − xj∥22 Ãij + γ∥Ã∥2F + β∥Ã−A∥F , (55)

150



where the first two terms control the smoothness and sparsity of the augmented graph, respectively; the third term
forces the augmented graph to be close to the original graph; γ and β are the hyper-parameters that balance the
three terms. By minimizing LGL together with the classification loss, GLCN is able to learn a graph structure
that best serves the downstream task. TO-GCN [126] also considers the feature similarity, but it further employs
label similarity to refine the graph topology. To handle the inductive learning setting, IDGL [12] casts the graph
structure learning problem as similarity metric learning which will be jointly trained with the prediction model
dedicated to a downstream task. To encourage learning graph structure invariant to task-irrelevant information,
Sun et al. [100] utilized the Information Bottleneck [103] principle to solve the graph structure learning problem.
Moreover, SLAPS [24] identifies a supervision starvation problem in previous structure learning approaches and
proposes to incorporate additional self-supervision by designing a feature denoising task.

Despite the appeal of the first type of methods, continuous structures typically deviate from the original,
sparse and discrete structure evident in many real-world graphs. To address this concern, some works focus on
sampling the graph structures from a targeted distribution. For instance, by taking advantage of neural edge
predictors like GAE [58], Zhao et al. [140] proposed GAug to generate plausible edge augmentations for an input
graph. The output of the edge predictor can be formulated as

M = σ0
(
ZZT

)
, with Z = Hl, (56)

where M is the edge probabilities matrix and σ0 is an element-wise sigmoid function. Based on the edge
probabilities matrix, two variants GAug-M and GAug-O are proposed to tackle augmentation in settings where
edge manipulation is and is not feasible at inference time, respectively. Specifically, GAug-M deterministically
adds edges with the highest edge probabilities to the graph at inference time; GAug-O optimizes the graph
structure by minimizing the downstream classification loss together with the edge prediction loss and samples the
adjacency matrix according to an element-wise Bernoulli distribution. Another representative work is LDS [28],
which aims at learning discrete structure between data points while learning GNN parameters. It models the
process as learning the edge probability matrix, which parameterizes the element-wise Bernoulli distribution from
which the discrete structure is sampled. Then it formulates the learning process as a bi-level problem and updates
the structure and model parameters in a differentiable way. Shang et al. [91] improves the efficiency of LDS
by converting the bi-level problem to a uni-level problem and extends it to multivariate time series. In addition
to Bernoulli distribution, recent studies have investigated other distributions to sample the discrete structure.
For example, to account for the underlying generation of graphs, GEN [111] hypothesizes that the estimated
graph is drawn from Stochastic Block Model (SBM) [42]. Similarly, BGCN [138] iteratively trains an assortative
mixed membership stochastic block model with predictions of GCN to produce multiple denoised graphs, and
ensembles results from multiple GCNs. To explicitly guarantee the strength and diversity of graph augmentation,
MH-Aug [85] draws augmented graphs from an explicit target distribution through the Metropolis-Hastings
algorithm, which can also be viewed as a graph structure learning process.

Instead of drawing discrete structures from targeted distributions, another line of works focus on drop-
ping/adding edges from the original graph which can also lead to a discrete adjacency matrix. For instance, to
improve the performance of GNNs under random noise, PTDNet [78] proposes to prune task-irrelevant edges by
penalizing the number of edges in the sparsified graph and imposing the low-rank constraint with parameterized
networks. Similarly, NeuralSparse [145] learns to drop task-irrelevant edges; it takes node/edge features as parts
of input and jointly optimizes graph sparsification from the supervision of downstream task. Moreover, Gao
et al. [29] proposed TADropEdge which leverages the graph spectrum to generate edge weights that represent the
edges’ criticality for the graph connectivity and drops edges by treating their weights as probabilities. Besides
node classification tasks, Spinelli et al. [95] proposed FairDrop for the task of fair graph representation learning,
which biasedly dropped edges with a sensitive attribute homophily mask to protect against unfairness. Later,
Chen et al. [8] proposed AdaEdge, which iteratively adds/removes edges according to the node classification
prediction. In each iteration, after the GNN model is sufficiently trained, AdaEdge adds edges between nodes
that are predicted to be in the same class with high confidence, and vice versa. AdaEdge iteratively performs

151



GNN training and graph modification until convergence. Besides, Zhao et al. [141] proposed Eland for the task
of anomaly detection on time-stamped user-item bipartite graphs. Eland first transforms the user-item graph
into users’ action sequences and adopts seq2seq model for future action prediction. The predicted user actions
are added back into the graph to yield the augmented graph data. As the augmented graph contains richer user
behavior information, Eland enhances the anomaly detection performance and detects anomalies at an early
stage. It is worth mentioning that the aforementioned techniques are focused on one specific task such as node
classification. To make graph structure learning benefit various downstream tasks, Liu et al. [77] proposed an
unsupervised approach to learn graph structures with the aid of self-supervised contrastive learning [153].

While existing methods majorly focus on training-time augmentation, i.e., modifying the training graph
data, a new line of work (e.g., GTrans [54]) introduces test-time augmentation by transforming the test graph
through optimizing a self-supervised loss. It has been demonstrated to significantly improve the generalization
performance of GNNs on out-of-distribution data.

Improving Robustness. Recent studies have demonstrated the vulnerability of GNNs under adversarial attacks,
i.e., carefully-crafted small perturbation on the input graph leads GNNs into giving wrong predictions [157, 17,
154, 51]. A series of works are proposed to focus on enhancing the robustness of graph neural networks under
adversarial attacks by learning clean graph structure. Jin et al. [50] observed that adversarial attacks violate
important graph properties such as sparsity, low-rank, and feature smoothness; it then proposes the ProGNN
framework to robustify GNNs by alternatively updating the graph structure by preserving these graph properties by
adding penalizing regularization terms and training GNN parameters on the updated graph structure. Specifically,
it defines the following graph learning loss:

LGL = α∥Ã∥1 + β∥Ã∥∗ + λ tr
(
XT L̃X

)
+ ∥Ã−A∥2F , (57)

where ∥ · ∥1 is the ℓ1 norm, ∥ · ∥∗ is the nuclear norm, and L̃ is the normalized Laplacian matrix of Ã. The first
three terms in Equation equation 57 force the learned graph to preserve the properties of sparsity, low-rank, and
feature smoothness, respectively. Similar to GLCN [47], ProGNN also includes the downstream classification
loss in the graph learning process. Despite the robustness of ProGNN, it is computationally expensive with O(N3)
time complexity and O(N2) space complexity. To speed up ProGNN, LRGNN [124] decouples the adjacency
matrix into a low-rank component and a sparse one, and learns the graph structure by minimizing the rank of the
low-rank component and suppressing the sparse one. Furthermore, as robust GNNs tend to yield unsatisfying
performance when trained with limited labeled nodes, Dai et al. [16] took advantage of self-supervision and
uses node attributes to predict the links so as to boost robust performance, which also saves computational
cost from direct structure learning. Also using a link predictor, DefenseVAE [134] employs variational graph
autoencoder [58] to reconstruct graph structure that can reduce the effects of adversarial perturbations and boost
the performance of GNNs under adversarial attacks. In addition, utilizing information theory, CoGSL [74]
targets at learning the most compact structure relevant to downstream tasks in order to achieve a better balance
between robustness and accuracy. Instead of explicitly learning the graph structure, GNNGuard [137] mitigates
the negative effects of adversarial attacks by assigning higher weights to edges connecting similar nodes while
pruning edges between dissimilar nodes, which can also be considered as implicit graph structure learning. While
the aforementioned techniques have shown robustness in some specific settings, one recent work [82] revealed
that their robustness decreases significantly under proper evaluation (in particular the adaptive attacks). This
suggests that a more powerful and adaptive GSL method is needed for effective defense.

It is worth noting that there are some other graph structure learning works which aim at learning graphs to
improve the scalability of graph machine learning models [53, 52, 73]. They do not target improving model
performance or robustness of GNNs, and hence are not in the GDA scope tackled in this work.

152



5.2 Graph Adversarial Training

Adversarial training is a widely used countermeasure for adversarial attacks on computer vision [32], and has also
been extended to graph domain [17, 25, 20, 43, 18, 10, 63]. Unlike graph structure learning, graph adversarial
training does not seek to find an optimal graph structure. Instead, it augments input graphs with adversarial
patterns during model training by perturbing node features or graph structure. The adversarially trained models
are expected to tolerate adversarial perturbations in graph data and yield better generalization and robustness
performance at test time. At the core of adversarial training is the injection of adversarial examples into the
training set, with which the trained model can predict the test adversarial examples properly. Thus, we can adopt
this strategy to enhance the robustness of GNNs as follows,

min
Θ

max
∆A∈PA
∆X∈PX

Ltrain (gΘ(A+∆A,X+∆X)) , (58)

where Ltrain denotes the training loss for the downstream task; ∆A and ∆X stand for the perturbation on
A,X, respectively; PA and PX denote the perturbation space. From the bi-level optimization problem in
Equation equation 58, we can observe that adversarial training generates perturbations that maximize the
prediction loss and updates model parameters to minimize the prediction loss. The process of generating
perturbations (i.e., A+∆A,X+∆X) can be viewed as adversarial data augmentation and we can leverage such
augmentations to improve the model robustness and generalization.

To augment the adjacency matrix, Dai et al. [17] proposed to randomly drop edges during adversarial training
without any optimization on the graph data. While this strategy does not bring significant improvement, such
cheap adversarial training still shows some improvement in robust classification accuracy. This finding is also in
line with that from Zügner and Günnemann [156]. Instead of randomly dropping edges, Xu et al. [125] leveraged
projected gradient descent (PGD) to optimize the bi-level problem and generate perturbations on the discrete
structure, which achieves significant improvement in robust performance. Similarly, Chen et al. [9] and Dai
et al. [18] also used existing adversarial attacks to modify the input graph structure during adversarial training,
designed for network embedding methods. Furthermore, Suresh et al. [101] proposed to generate adversarial
graph augmentation by learning to drop edges such that the augmentation can capture the minimal information
that is sufficient to classify each graph.

On the other hand, there are some works focusing on perturbing the input features to serve as adversarial exam-
ples. For instance, Feng et al. [25] proposed an adversarial training strategy with dynamic regularization, which
aims to reconstruct graph smoothness and constrains the divergence between the prediction of the target node
and its connected nodes. Deng et al. [20] proposed batch virtual adversarial training to promote the smoothness
of GNNs and thus defend against adversarial perturbations. Moreover, Kong et al. [63] proposed FLAG which
utilizes adversarial training to iteratively augment the node features with gradient-based adversarial perturbations
and improves the performances of GNNs on node classification, link prediction, and graph classification tasks.
In addition, Zügner and Günnemann [155] studied certifiable robustness of GNNs w.r.t. perturbations of node
attributes and propose a robust training scheme inspired by the certificates. Several other variants of adversarial
training on perturbing node features are introduced in [112, 43].

5.3 Rationalization

A rationale is defined as a subset of input features that best represent, guide and support model prediction [71]. In
the graph domain, rationales are subgraphs intrinsically learned by graph learning models. Rationales can be
viewed as a form of augmented graph data that provide intrinsic explanations to the graph models’ predictions,
as opposed to the post-hoc explanation methods. Rationalization is commonly applied to graph-level property
prediction or classification tasks [119, 71, 129, 13, 81, 68] for drug and material discovery on molecular and
polymer datasets, etc.

153



Rationalization emerged in the graph domain as an approach to enhance both the interpretability and overall
performance of graph classification and regression. Yu et al. [131] found similarity to the Information Bottleneck
(IB) problem, and proposed the Graph Information bottleneck framework (GIB), which learns to generate the
maximally informative and compressed subgraph (IB-graph) by leveraging a bi-level optimization scheme and a
novel connectivity loss. Also rooted in the IB paradigm, Miao et al. [81] proposed GSAT to better learn and select
task-relevant subgraphs that improve interpretation and prediction by injecting stochasticity into the attention
weights in order to constrain information from task-irrelevant components. GREA, another rationalization work
proposed by Liu et al. [71], proposed a novel environment replacement augmentation method, which separates
the rationale and the environment subgraphs (the remaining and complementary subgraphs to the rationale ones)
and optimized the separation (rationalization identification) with data augmentation by replacing the original
environment subgraph with a different one in the latent space.

Rationalization models are also effective in addressing data bias and out-of-distribution (OOD) problems
for graph property prediction tasks since rationales are both interpretable and generalizable [81]. Wu et al.
[120] proposed DIR to generate distribution perturbation on training data with causal intervention. Based on
the idea that causal patterns are stable to distribution shift, they created a rationale generator that separates
causal and non-causal graphs, applies causal intervention to create perturbed distributions, and then jointly learn
both the causal and non-causal representation to minimize invariant risk. Similarly, Chen et al. [13] also took a
causal perspective to solve the OOD problem. They proposed CIGA to model the graph generation process and
the interactions between invariant and spurious features with Structural Causal Models (SCM). The resulting
subgraphs generated by CIGA maximally preserves the invariant intra-class information. Li et al. [68] also
proposed to separate invariant and variant graphs. In their framework GIL, they proposed a GNN based subgraph
generator to identify potentially invariant subgraphs, then infer latent environment labels for the variant subgraphs,
before jointly optimizing all modules. To address the limited environments and unstable causal features in data
augmentation methods for graph rationalization, AdvCA [97] was proposed to improve the generalization capacity
against covariate shift through adversarial causal augmentation.

5.4 Automated Augmentation

GDA techniques mentioned in Section 4 take rule-based approaches to augment graph data, applying the same
augmentation method to subgraphs and graphs which embody different attributes and characteristics like degree
distribution and homophily. To tackle this issue, Automated GDA techniques [98, 79, 144, 130, 64, 41, 153] were
recently explored to automatically learn tailored augmentations for different subgraphs or graphs. For example,
Sun et al. [98] proposed AutoGRL for the task of node classification. Through the training process, AutoGRL
learns the best combination of GDA operations, GNN architecture, and hyper-parameters. The searching space of
AutoGRL includes four GDA operations implemented by random masking and GAug-M [140]: drop features,
drop nodes, add edges, and remove edges.

Since automated GDA objectives are often complex to optimize, some recent works use reinforcement
learning approaches as a solution. Zhao et al. [144] framed the AutoGDA as a bi-level optimization problem,
aiming to find a different set of augmentation strategies for each community in the graph as they observed
various characteristics in each community. They employ an RL-agent to generalize the learning and find localize
augmentation strategies for node classification tasks. On graph classification tasks, Luo et al. [79] set out to learn
an automated augmentation model with GraphAug, to provide label-invariant augmentations for each graph in the
dataset. Applying reinforcement learning, they maximize the estimated label-invariance probability to learn the
augmentation category and transformation selection.

Another group of works on automated augmentation focus on graph contrastive learning. You et al. [130]
proposed to learn augmentations to replace ad hoc and handpicked augmentations for contrastive learning. They
design an augmentation-aware projection head to avoid complicated augmentations, and formulate a bi-level
optimization problem to learn both the augmentation strategy and graph representation. Hassani and Khasahmadi

154



Table 2: Representative self-supervised graph learning works that utilized graph data augmentation techniques.
†Although the methods in this category are semi-supervised methods, they used GDA operations with only
self-supervised learning objectives (i.e, consistency loss). Therefore, we categorize their GDA techniques as
designed for self-supervised learning objectives.

Representative Works Task Level Augmented Data
Node Graph Edge Structure Feature Label

Contrastive Learning

DGI [108] ✓ ✓
GRACE [151] ✓ ✓ ✓
MVGRL [40] ✓ ✓
GraphCL [129] ✓ ✓ ✓
JOAO [130] ✓ ✓ ✓

Non-contrastive Learning

CCA-SSG [136] ✓ ✓ ✓
GBT [3] ✓ ✓ ✓
BGRL [102] ✓ ✓ ✓
T-BGRL [92] ✓ ✓ ✓

Consistency Training†
GRAND [27] ✓ ✓ ✓
NodeAug [114] ✓ ✓ ✓
MV-GCN [132] ✓ ✓
NASA [4] ✓ ✓

[41] learned a probabilistic policy that contains a set of distributions over different augmentation operations in
their method LG2AR, and samples an augmentation strategy from the policy in each training epoch. Zhu et al.
[153] proposed GCA, which proposes adaptive augmentations based on node centrality measures. Unlike the
aforementioned methods which find the best augmentation strategy for the dataset, GCA adaptively augments
different nodes according to their importance. Wang et al. [116] proposed to use a generative probabilistic model
and a learnable feature selector to automatically parameterize topological and attribute augmentations, which
can also provide explanations for underlying patterns in molecular graphs. Lastly, Kose and Shen [64] proposed
FairAug which utilizes adaptive augmentations for fair graph representation learning.

6 GDA for Self-supervised Learning

Other than directly using the augmented graph data in supervised learning, the most common use case for
GDA is under self-supervised learning (SSL) schemes, e.g. contrastive learning. Self-supervised objectives
learn representations that are robust to noise and perturbations by maximizing the (dis)agreements of learned
representations. Therefore, unlike most of the previously mentioned learned GDA techniques (Section 5) which
aim to enhance the task-relevant information in the data, most of the GDA techniques for self-supervised learning
are rule-based augmentations (Section 4) which aim to corrupt or perturb the given graph data. Moreover,
most self-supervised graph representation learning methods tend to use a combination of several simple GDA
operations. In this section, we introduce three commonly used self-supervised graph learning schemes as well as
the GDA approaches they utilize.

6.1 Contrastive Learning

In recent years, with the rapid development of contrastive learning in CV [11], many contrastive learning
methods [151, 129, 105, 122, 71, 56] have been proposed for applications on graph data. Typically, a graph
contrastive learning framework includes three main components: a GDA module that generates different views of
the given graph data, a GNN-based encoder to compute the representations, and a contrastive learning objective
to train the model. For each data example (nodes for node-level tasks and graphs for graph-level tasks), these
methods consider augmented views or variants of itself as associated positive samples and other data examples in

155



the same batch as associated negative samples. Contrastive learning objectives then maximize the (dis)agreements
of the representations between each data example with their (negative) positive examples.

To efficiently generate different augmented data for graph contrastive learning, rule-based data removal
operations (Section 4.1) are the most commonly used GDA techniques, as they are fast and easy to apply. For
example, multiple methods (GRACE [151], GraphCL [129], etc.) adopt stochastic edge dropping and/or feature
masking due to their simplicity. DGI [108] adopts feature corruption by conducting a row-wise shuffling on the
raw node feature matrix X. In general, graph contrastive learning methods usually adopt a combination of multiple
augmentation techniques to generate different augmented views. GraphCL [129] and InfoGCL [123] adopt four
GDA operations: node dropping which randomly removes nodes along with its edges, edge perturbation which
randomly adds or drops edges, attribute masking which randomly masks off certain node attributes, and subgraph
sampling which samples connected subgraphs. SUBG-CON [48] utilizes a subgraph sampler to extract the
context subgraph as a proxy of data augmentation. GRACE [151] uses only the basic random edge dropping and
attribute masking for creating different views of the graph.

Other than data removal augmentations, graph diffusion is also commonly used in contrastive learning as it
can naturally create a “future view” of the given graph where the information are more spread out. MVGRL [40]
adopts the diffusion graph proposed by GDC [60] as the second view. Interestingly, Hassani and Khasahmadi
[40] showed that using three views (original graph, PPR diffusion graph and heat kernel diffusion graph) would
not result with better performance than using two views (original graph and one diffusion graph), and concluded
“increasing the number of views does not improve the performance.” However, Yuan et al. [132] later proposed
MV-CGC which adopted a similar contrastive learning framework with three views: the original graph, diffusion
graph, and a proposed feature similarity view. Empirically, the node representations learned by MV-CGC
outperformed those learned by MVGRL on node classification, suggesting that additional well-designed GDA
methods or views may be helpful to graph contrastive learning approaches.

More recently, several studies [101, 106, 72] pointed out that stochastic rule-based GDA operations may
suffer from failing to induce useful task-relevant invariance on common benchmark datasets. Specifically,
Trivedi et al. [106] analyzed that the generalization error of graph contrastive learning can be bounded under the
assumptions of invariance to relevant augmentations, recoverability, and separability, which refer to data-centric
properties, by instantiating rule-based GDA as a composition of graph edit operations. Such bound demonstrates
conditions with low separability and recoverability during the usage of rule-based GDA, which motivates the
necessity of inducing task-relevant invariance. Following the theoretical analysis, Zhang et al. [139] proposed a
covariance-preserving feature augmentation technique, in which the augmented feature has bounded variance.
Wang et al. [115] proposed to use different levels in hierarchical graphs as augmented views.

6.2 Non-contrastive Learning

While showing promising performance on various tasks, contrastive learning methods rely heavily on disagreement
between data examples and their associated negative examples to avoid model collapse [33]. As sampling high
quality negative examples is often costly, and random negative sampling usually requires large batch sizes,
several works [33, 133, 1] propose non-contrastive self-supervised learning methods to learn representations in
a self-supervised manner without needing negative examples. Instead of comparing across different samples,
non-contrastive self-supervised methods compare only between different views of the same sample and use
designs such as prediction heads and stop gradient to avoid model collapsing [33], or measure the cross-correlation
matrix between the representations learned form different views [133].

As the non-contrastive methods are designed for more efficient self-supervised learning than the contrastive
methods, the GDA techniques they adopt are all the most basic, stochastic ones (Section 4.1). Specifically, all the
non-contrastive self-supervised graph representation learning methods (CCA-SSG [136], GBT [3], BGRL [102],
and T-BGRL [92]) utilized only random edge dropping and node feature masking as the augmentation strategies.
While the first three methods generates two augmented views for comparison, to further improve the performance

156



on link prediction under inductive settings, T-BGRL [92] also used the same augmentation strategies but with
higher masking probability as an efficient corruption to create an third “negative” view to mitigate collapse, which
is later used in a triplet loss.

6.3 Consistency Training

In real GML applications, semi-supervised learning usually plays an important role as only a small fraction of
training data are labeled in most of the cases [121]. Due to such label scarcity, consistency training is commonly
used to leverage the unlabeled data to improve the model quality. Similar to contrastive learning, consistency
training itself is a self-supervised learning objective that aims to maximizes the agreement of representations
learned from different views of the data. However, unlike (non-)contrastive learning that compares between
data objects, the consistency loss compares the distributions of a batch of representations via metrics like KL-
divergence. Therefore, the consistency loss is rarely used itself, but often used along with supervised losses in the
semi-supervised learning settings. The final learning objective is usually a linear combination of the supervised
loss (e.g., cross entropy for classification tasks) and the consistency loss.

NodeAug [114] uses three local structure-based augmentation operations: replacing attributes, removing and
adding edges. NodeAug minimizes the KL-divergence between the node representations learned from the original
graph and augmented graph. GRAND [27] creates multiple different augmented graphs with node dropping
and feature masking. The consistency loss then minimizes the distances of the representations learned from the
augmented graphs. NASA [4] proposes Neighbor Replace augmentation to randomly replace the 1-hop neighbors
with 2-hop neighbors, and then use a neighbor-constrained consistency regularization during training. To further
utilize the information given by different graph diffusions, MV-GCN [132] generates two complementary views
with PPR and heat kernel and learns from both created views and the original graph. Then, it feeds three views of
the graph into three GCNs, and uses a consistency regularization loss to reduce the distribution distance of the
representations learned across the views, and derives the final node representations as a combination of the three.

7 Challenges and Directions

Despite substantial progress has been achieved in graph data augmentation research, several open problems
remain to solve. In this section, we summarize several promising yet under-explored research directions.

7.1 Domain Adaptation and Regularization

Given the rapid development of GDA techniques in recent years, automated GDA methods have been proposed to
automatically tune the augmentation strategy for different datasets and tasks. Nonetheless, the existing automated
GDA methods for graph data (as introduced in Section 5.4) mainly focus on specific datasets and downstream
tasks. Ideally, automated augmentation solutions should be transferable. That is, domain adaptation is a desired
characteristic for automated GDA techniques. When the automated augmentation method trained on one dataset
could only be used on that dataset, the method may be equivalent to automating the hyperparameter tuning
process and lose the generalizability across datasets [144]. Therefore, for an ideal automated GDA method, it
should be able to be trained on one dataset and used for many, ideally cross domain or under OOD settings.
While OOD benchmarks are already available in the GML community [35], automated GDA methods that
can be transferable across domains are still missing in the literature. Moreover, on certain types of graph data
such as molecule graphs, most commonly used GDA operations would change the underlying semantics of
the graph. For example, dropping a carbon atom from the phenyl ring of aspirin breaks the aromatic system
and results in a alkene chain [66], which is an entirely different chemical compound. This motivates a need
for domain-based regularization methods for such tasks. So far, only Sun et al. [99] proposed MoCL that

157



considers the semantic information brought by local substructures when augmenting the molecule graphs, leaving
domain-based regularization GDA methods rather under-explored.

7.2 Scalability for Large-Scale Graphs

GDA techniques add additional complexity on top of the existing GNNs, and many GDA techniques use global
information during the augmentation process, which might not be able to easily scale. For example, GAug-
M [140] involves selecting the top K out of O(N2) logits for node pairs when selecting edges to add. Such high
complexity operations can cause scalability issues in actual applications where the graph size can be very large,
e.g., at billion scale. While complex GDA techniques bring significant performance improvements, the scalability
of these methods are still worthy of attention. For example, in order to enable end-to-end training, GAug-O [140]
requires back-propagating on the entire learned adjacency matrix, creating massive memory overheads. To
improve the performance of DropEdge [88], TADropEdge [29] required the pre-calculation of a score for each
edge in the graph prior to the training of GNNs. Therefore, to be applicable in practical applications, efficiency
is also a necessity for GDA techniques. As mentioned in the previous subsections, automated solution which
combine the fast and simple augmentation operations may be a promising direction. Nonetheless, how to design a
scalable and efficient automated GDA framework is still an open line of research.

7.3 Comprehensive Evaluation Criteria and Standards

Similar to the DA research in other domains, a general concern for GDA research is that the evaluation only
focuses on the prediction performance on specific datasets. Although this is likely the most important metric,
other metrics such as additional time and resource consumption, transferability, or scalability are also important
for researchers to more comprehensively understand the methods. For example, as aforementioned, while
graph structure learning methods such as GAug [140] shows promising performances for node classification,
the method’s design inherently limits its ability to generalize on large-scale graphs. Furthermore, only few
works discuss the additional time and resource requirement needed for applying their proposed GDA methods,
especially for the learned augmentations which may require training of additional modules. Therefore, a set of
comprehensive evaluation criteria and standards is desired for better understanding the benefits and costs of the
newly proposed GDA methods. Ideally, such a benchmark could contain multiple datasets in different scales and
domains, enabling researchers to better evaluate transferability and scalability tradeoffs.

7.4 Theoretical Foundation

GDA is a powerful technology to improve the performance of data-driven inference on graphs without the need of
extra labeling effort or complex models. Empirically, GDA methods are also shown to improve the generalization
of GML methods and alleviate the over-smoothing problem encountered by GNNs. Yet, there is little rigorous
understanding of how and why GDA achieves those benefits, especially for (semi-)supervised learning. Although
several works [140, 8] have analyzed the relation between graph homophily and classification performance or
the over-smoothing problem, there is limited work showcasing rigorous proofs or theoretical bounds on these
relationships.

Recently, several works provided theoretical insights of DA in the CV domain. For example, Wu et al. [119]
theoretically analyzed the generalization effect of data augmentation on images. They interpreted the effect of
data augmentation from a bias-variance perspective, where data augmentation adds new information to model
training while also serving as a regularizer. Due to the irregular characteristics of graph data, these theoretical
analysis cannot be directly applied for the GDA context. Besides the generalization perspective, several recent
works have studied the certified robustness of GNNs [156]. Improved robustness bounds would be a desired
property of GDA techniques. Recent studies [104] on the topology bottleneck and over-squashing of GNNs

158



provide theoretical guides for edge-based GDA techniques. Counterfactual augmentation methods on graphs such
as CFLP [143] can also bring insights for analyzing GDA from the perspective of causality.

7.5 Data Augmentation for Complex Graph Types

Existing GDA approaches are mainly designed for homogeneous graphs, while not all of them can be easily
generalized to other complex types of graphs such as heterogeneous graphs, dynamic graphs, hypergraphs,
etc. These complex graphs have broader applications with their ability of modeling more complex relationship,
nonetheless, the complexity of the data requires more sophisticated design of GDA methods. Taking heterogeneous
graphs as an example, even the simplest edge dropping would require a drop rate hyper-parameter for each
of the edge types in the graph, which could introduce significant computational overhead for hyper-parameter
searching. Additionally, beyond direct analogous of GDA methods for homogeneous graph for complex graph
types, specially designed GDA methods for different graph types could better utilize the rich information contained
in them. Therefore, a comprehensive evaluation of the existing GDA methods on complex graphs is needed by
the community to better understand the effectiveness of existing GDA methods and also better design principled
augmentation approaches for each graph types.

8 Conclusion

Our work presents a comprehensive and structured survey of data augmentation techniques for graph machine
learning (GML). We categorized existing graph data augmentation (GDA) techniques three taxonomies from
different perspectives, introduced recent GDA approaches based on their core methodology, and introduced their
applications in self-supervised learning. Finally, we outlined current challenges as well as directions for future
research explorations in the GDA domain. We hope this survey serves as a guide for GML researchers and
practitioners to study and use GDA techniques, and inspires additional interest and work on this topic.

References
[1] R. Balestriero and Y. LeCun. Contrastive and non-contrastive self-supervised learning recover global and local spectral

embedding methods. arXiv:2205.11508, 2022.
[2] R. Barandela, R. M. Valdovinos, J. S. Sánchez, and F. J. Ferri. The imbalanced training sample problem: Under or

over sampling? In Joint IAPR international workshops on SPR and SSPR, 2004.
[3] P. Bielak, T. Kajdanowicz, and N. V. Chawla. Graph barlow twins: A self-supervised representation learning

framework for graphs. Knowledge-Based Systems, 2022.
[4] D. Bo, B. Hu, X. Wang, Z. Zhang, C. Shi, and J. Zhou. Regularizing graph neural networks via consistency-diversity

graph augmentations. In AAAI, 2022.
[5] I. Brugere, B. Gallagher, and T. Y. Berger-Wolf. Network structure inference, a survey: Motivations, methods, and

applications. CSUR, 2018.
[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs.

arXiv:1312.6203, 2013.
[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling technique.

JAIR, 2002.
[8] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving the over-smoothing problem for graph

neural networks from the topological view. In AAAI, 2020.
[9] J. Chen, Y. Wu, X. Lin, and Q. Xuan. Can adversarial network attack be defended? arXiv:1903.05994, 2019.

[10] J. Chen, X. Lin, H. Xiong, Y. Wu, H. Zheng, and Q. Xuan. Smoothing adversarial training for gnn. IEEE Transactions
on Computational Social Systems, 2020.

[11] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representa-
tions. In ICML, 2020.

159



[12] Y. Chen, L. Wu, and M. Zaki. Iterative deep graph learning for graph neural networks: Better and robust node
embeddings. In NeurIPS, 2020.

[13] Y. Chen, Y. Zhang, Y. Bian, H. Yang, M. KAILI, B. Xie, T. Liu, B. Han, and J. Cheng. Learning causally invariant
representations for out-of-distribution generalization on graphs. In NeurIPS, 2022.

[14] F. Chierichetti, A. Epasto, R. Kumar, S. Lattanzi, and V. Mirrokni. Efficient algorithms for public-private social
networks. In KDD, 2015.

[15] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation strategies from
data. In CVPR, 2019.

[16] E. Dai, W. Jin, H. Liu, and S. Wang. Towards robust graph neural networks for noisy graphs with sparse labels. In
WSDM, 2022.

[17] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song. Adversarial attack on graph structured data. In ICML,
2018.

[18] Q. Dai, X. Shen, L. Zhang, Q. Li, and D. Wang. Adversarial training methods for network embedding. In TheWebConf,
2019.

[19] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast localized spectral
filtering. In NeurIPS, 2016.

[20] Z. Deng, Y. Dong, and J. Zhu. Batch virtual adversarial training for graph convolutional networks. arXiv:1902.09192,
2019.

[21] H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui. On the equivalence of decoupled graph convolution
network and label propagation. In TheWebConf, 2021.

[22] Q. Duong, M. P. Wellman, and S. Singh. Modeling information diffusion in networks with unobserved links. In IEEE
PASSAT/SocialCom, 2011.

[23] T. Fang, Z. Xiao, C. Wang, J. Xu, X. Yang, and Y. Yang. Dropmessage: Unifying random dropping for graph neural
networks. arXiv:2204.10037, 2022.

[24] B. Fatemi, L. El Asri, and S. M. Kazemi. Slaps: Self-supervision improves structure learning for graph neural
networks. NeurIPS, 2021.

[25] F. Feng, X. He, J. Tang, and T.-S. Chua. Graph adversarial training: Dynamically regularizing based on graph structure.
TKDE, 2019.

[26] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and E. Hovy. A survey of data augmentation
approaches for nlp. arXiv:2105.03075, 2021.

[27] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang. Graph random neural
networks for semi-supervised learning on graphs. NeurIPS, 2020.

[28] L. Franceschi, M. Niepert, M. Pontil, and X. He. Learning discrete structures for graph neural networks. In ICML,
2019.

[29] Z. Gao, S. Bhattacharya, L. Zhang, R. S. Blum, A. Ribeiro, and B. M. Sadler. Training robust graph neural networks
with topology adaptive edge dropping. arXiv:2106.02892, 2021.

[30] K. A. Garrison, D. Scheinost, E. S. Finn, X. Shen, and R. T. Constable. The (in) stability of functional brain network
measures across thresholds. Neuroimage, 2015.

[31] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry.
In ICML, 2017.

[32] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv:1412.6572, 2014.
[33] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo,

M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.
[34] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.
[35] S. Gui, X. Li, L. Wang, and S. Ji. Good: A graph out-of-distribution benchmark. NeurIPS, 2022.
[36] S. Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural Networks: Foundations, Frontiers,

and Applications. 2022.
[37] H. Guo and Y. Mao. Intrusion-free graph mixup. arXiv:2110.09344, 2021.
[38] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In NeurIPS, 2017.
[39] X. Han, Z. Jiang, N. Liu, and X. Hu. G-mixup: Graph data augmentation for graph classification. In ICML, 2022.
[40] K. Hassani and A. H. Khasahmadi. Contrastive multi-view representation learning on graphs. In ICML, 2020.

160



[41] K. Hassani and A. H. Khasahmadi. Learning graph augmentations to learn graph representations. arXiv:2201.09830,
2022.

[42] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social networks, 1983.
[43] W. Hu, C. Chen, Y. Chang, Z. Zheng, and Y. Du. Robust graph convolutional networks with directional graph

adversarial training. Applied Intelligence, 2021.
[44] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec. Ogb-lsc: A large-scale challenge for machine learning

on graphs. NeurIPS, 2021.
[45] E. Hwang, V. Thost, S. S. Dasgupta, and T. Ma. Revisiting virtual nodes in graph neural networks for link prediction.

2021.
[46] K. Ishiguro, S.-i. Maeda, and M. Koyama. Graph warp module: an auxiliary module for boosting the power of graph

neural networks in molecular graph analysis. arXiv preprint arXiv:1902.01020, 2019.
[47] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo. Semi-supervised learning with graph learning-convolutional networks.

In CVPR, 2019.
[48] Y. Jiao, Y. Xiong, J. Zhang, Y. Zhang, T. Zhang, and Y. Zhu. Sub-graph contrast for scalable self-supervised graph

representation learning. In ICDM, 2020.
[49] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang. Adversarial attacks and defenses on graphs: A review,

a tool and empirical studies. arXiv:2003.00653, 2020.
[50] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph structure learning for robust graph neural networks. In

KDD, 2020.
[51] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang. Adversarial attacks and defenses on graphs. SIGKDD

Explorations, 2021.
[52] W. Jin, X. Tang, H. Jiang, Z. Li, D. Zhang, J. Tang, and B. Yin. Condensing graphs via one-step gradient matching. In

KDD, 2022.
[53] W. Jin, L. Zhao, S. Zhang, Y. Liu, J. Tang, and N. Shah. Graph condensation for graph neural networks. In ICLR,

2022.
[54] W. Jin, T. Zhao, J. Ding, Y. Liu, J. Tang, and N. Shah. Empowering graph representation learning with test-time graph

transformation. ICLR, 2023.
[55] T. Joachims and A. Swaminathan. Counterfactual evaluation and learning for search, recommendation and ad

placement. In SIGIR, 2016.
[56] M. Ju, T. Zhao, Q. Wen, W. Yu, N. Shah, Y. Ye, and C. Zhang. Multi-task self-supervised graph neural networks

enable stronger task generalization. ICLR, 2023.
[57] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907,

2016.
[58] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv:1611.07308, 2016.
[59] J. Klicpera, A. Bojchevski, and S. Günnemann. Predict then propagate: Graph neural networks meet personalized

pagerank. arXiv:1810.05997, 2018.
[60] J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion improves graph learning. NeurIPS, 2019.
[61] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In ICML, 2002.
[62] K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, and T. Goldstein. Flag: Adversarial data augmentation

for graph neural networks. arXiv:2010.09891, 2020.
[63] K. Kong, G. Li, M. Ding, Z. Wu, C. Zhu, B. Ghanem, G. Taylor, and T. Goldstein. Robust optimization as data

augmentation for large-scale graphs. In CVPR, 2022.
[64] O. D. Kose and Y. Shen. Fair node representation learning via adaptive data augmentation. arXiv:2201.08549, 2022.
[65] S. Kumar and N. Shah. False information on web and social media: A survey. arXiv:1804.08559, 2018.
[66] N. Lee, J. Lee, and C. Park. Augmentation-free self-supervised learning on graphs. In AAAI, 2021.
[67] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cayleynets: Graph convolutional neural networks with complex

rational spectral filters. IEEE Transactions on Signal Processing, 2018.
[68] H. Li, Z. Zhang, X. Wang, and W. Zhu. Learning invariant graph representations for out-of-distribution generalization.

In NeurIPS, 2022.
[69] J. Li, D. Cai, and X. He. Learning graph-level representation for drug discovery. arXiv preprint arXiv:1709.03741,

2017.

161



[70] X. Li, L. Wen, Y. Deng, F. Feng, X. Hu, L. Wang, and Z. Fan. Graph neural network with curriculum learning for
imbalanced node classification. arXiv:2202.02529, 2022.

[71] G. Liu, T. Zhao, J. Xu, T. Luo, and M. Jiang. Graph rationalization with environment-based augmentations. In KDD,
2022.

[72] G. Liu, E. Inae, T. Zhao, J. Xu, T. Luo, and M. Jiang. Data-centric learning from unlabeled graphs with diffusion
model. arXiv preprint arXiv:2303.10108, 2023.

[73] M. Liu, S. Li, X. Chen, and L. Song. Graph condensation via receptive field distribution matching. arXiv:2206.13697,
2022.

[74] N. Liu, X. Wang, L. Wu, Y. Chen, X. Guo, and C. Shi. Compact graph structure learning via mutual information
compression. In TheWebConf, 2022.

[75] S. Liu, H. Dong, L. Li, T. Xu, Y. Rong, P. Zhao, J. Huang, and D. Wu. Local augmentation for graph neural networks.
arXiv:2109.03856, 2021.

[76] Y. Liu, Z. Zhang, Y. Liu, and Y. Zhu. Gatsmote: Improving imbalanced node classification on graphs via attention and
homophily. Mathematics, 2022.

[77] Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan. Towards unsupervised deep graph structure learning. In
TheWebConf, 2022.

[78] D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang. Learning to drop: Robust graph neural network via
topological denoising. In WSDM, 2021.

[79] Y. Luo, M. McThrow, W. Y. Au, T. Komikado, K. Uchino, K. Maruhash, and S. Ji. Automated data augmentations for
graph classification. arXiv:2202.13248, 2022.

[80] Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah. A unified view on graph neural networks as graph signal
denoising. In CIKM, 2021.

[81] S. Miao, M. Liu, and P. Li. Interpretable and generalizable graph learning via stochastic attention mechanism. In
ICML, 2022.

[82] F. Mujkanovic, S. Geisler, S. Günnemann, and A. Bojchevski. Are defenses for graph neural networks robust?
NeurIPS, 2022.

[83] T. Niu and M. Bansal. Automatically learning data augmentation policies for dialogue tasks. arXiv:1909.12868, 2019.
[84] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical

report, Stanford InfoLab, 1999.
[85] H. Park, S. Lee, S. Kim, J. Park, J. Jeong, K.-M. Kim, J.-W. Ha, and H. J. Kim. Metropolis-hastings data augmentation

for graph neural networks. NeurIPS, 2021.
[86] J. Park, H. Shim, and E. Yang. Graph transplant: Node saliency-guided graph mixup with local structure preservation.

arXiv:2111.05639, 2021.
[87] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In KDD, 2014.
[88] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph convolutional networks on node classification.

arXiv:1907.10903, 2019.
[89] R. Sennrich, B. Haddow, and A. Birch. Improving neural machine translation models with monolingual data.

arXiv:1511.06709, 2015.
[90] N. Shah, A. Beutel, B. Gallagher, and C. Faloutsos. Spotting suspicious link behavior with fbox: An adversarial

perspective. In ICDM, 2014.
[91] C. Shang, J. Chen, and J. Bi. Discrete graph structure learning for forecasting multiple time series. In ICLR, 2021.
[92] W. Shiao, Z. Guo, T. Zhao, E. E. Papalexakis, Y. Liu, and N. Shah. Link prediction with non-contrastive learning.

arXiv:2211.14394, 2022.
[93] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data,

2019.
[94] R. Song, F. Giunchiglia, K. Zhao, and H. Xu. Topological regularization for graph neural networks augmentation.

arXiv:2104.02478, 2021.
[95] I. Spinelli, S. Scardapane, A. Hussain, and A. Uncini. Fairdrop: Biased edge dropout for enhancing fairness in graph

representation learning. TAI, 2021.
[96] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. JMLR, 2014.

162



[97] Y. Sui, X. Wang, J. Wu, A. Zhang, and X. He. Adversarial causal augmentation for graph covariate shift. arXiv
preprint arXiv:2211.02843, 2022.

[98] J. Sun, B. Wang, and B. Wu. Automated graph representation learning for node classification. In IJCNN, 2021.
[99] M. Sun, J. Xing, H. Wang, B. Chen, and J. Zhou. Mocl: data-driven molecular fingerprint via knowledge-aware

contrastive learning from molecular graph. In KDD, 2021.
[100] Q. Sun, J. Li, H. Peng, J. Wu, X. Fu, C. Ji, and S. Y. Philip. Graph structure learning with variational information

bottleneck. In AAAI, 2022.
[101] S. Suresh, P. Li, C. Hao, and J. Neville. Adversarial graph augmentation to improve graph contrastive learning.

NeurIPS, 2021.
[102] S. Thakoor, C. Tallec, M. G. Azar, M. Azabou, E. L. Dyer, R. Munos, P. Veličković, and M. Valko. Large-scale

representation learning on graphs via bootstrapping. In ICLR, 2022.
[103] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. arXiv, 2000.
[104] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein. Understanding over-squashing and

bottlenecks on graphs via curvature. In ICLR, 2022.
[105] P. Trivedi, E. S. Lubana, Y. Yan, Y. Yang, and D. Koutra. Augmentations in graph contrastive learning: Current

methodological flaws & towards better practices. arXiv:2111.03220, 2021.
[106] P. Trivedi, E. S. Lubana, M. Heimann, D. Koutra, and J. J. Thiagarajan. Analyzing data-centric properties for graph

contrastive learning. In NeurIPS, 2022.
[107] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks.

arXiv:1710.10903, 2017.
[108] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep graph infomax. ICLR, 2019.
[109] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Bengio. Manifold mixup: Better

representations by interpolating hidden states. In ICML, 2019.
[110] V. Verma, M. Qu, A. Lamb, Y. Bengio, J. Kannala, and J. Tang. Graphmix: Regularized training of graph neural

networks for semi-supervised learning. arXiv:1909.11715, 2019.
[111] R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and X. Xie. Graph structure estimation neural networks. In

TheWebConf, 2021.
[112] X. Wang, X. Liu, and C.-J. Hsieh. Graphdefense: Towards robust graph convolutional networks, 2019.
[113] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi. Graphcrop: Subgraph cropping for graph classification.

arXiv:2009.10564, 2020.
[114] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi. Nodeaug: Semi-supervised node classification with data

augmentation. In KDD, 2020.
[115] Y. Wang, Y. Min, X. Chen, and J. Wu. Multi-view graph contrastive representation learning for drug-drug interaction

prediction. In TheWebConf, 2021.
[116] Y. Wang, Y. Min, E. Shao, and J. Wu. Molecular graph contrastive learning with parameterized explainable

augmentations. In BIBM, 2021.
[117] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi. Mixup for node and graph classification. In TheWebConf, 2021.
[118] J. Wei and K. Zou. Eda: Easy data augmentation techniques for boosting performance on text classification tasks.

arXiv:1901.11196, 2019.
[119] S. Wu, H. Zhang, G. Valiant, and C. Ré. On the generalization effects of linear transformations in data augmentation.

In ICML, 2020.
[120] Y. Wu, X. Wang, A. Zhang, X. He, and T.-S. Chua. Discovering invariant rationales for graph neural networks. In

ICLR, 2021.
[121] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph neural networks.

TNNLS, 2020.
[122] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji. Self-supervised learning of graph neural networks: A unified review.

TPAMI, 2022.
[123] D. Xu, W. Cheng, D. Luo, H. Chen, and X. Zhang. Infogcl: Information-aware graph contrastive learning. NeurIPS,

2021.
[124] H. Xu, L. Xiang, J. Yu, A. Cao, and X. Wang. Speedup robust graph structure learning with low-rank information. In

CIKM, 2021.

163



[125] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and X. Lin. Topology attack and defense for graph neural
networks: An optimization perspective. arXiv:1906.04214, 2019.

[126] L. Yang, Z. Kang, X. Cao, D. Jin, B. Yang, and Y. Guo. Topology optimization based graph convolutional network.
In IJCAI, 2019.

[127] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do transformers really perform badly for
graph representation? NeurIPS, 2021.

[128] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In KDD, 2018.

[129] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with augmentations. NeurIPS,
2020.

[130] Y. You, T. Chen, Y. Shen, and Z. Wang. Graph contrastive learning automated. In ICML, 2021.
[131] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He. Graph information bottleneck for subgraph recognition.

arXiv:2010.05563, 2020.
[132] J. Yuan, H. Yu, M. Cao, M. Xu, J. Xie, and C. Wang. Semi-supervised and self-supervised classification with

multi-view graph neural networks. In CIKM, 2021.
[133] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised learning via redundancy reduction.

In ICML, 2021.
[134] A. Zhang and J. Ma. Defensevgae: Defending against adversarial attacks on graph data via a variational graph

autoencoder. arXiv:2006.08900, 2020.
[135] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization.

arXiv:1710.09412, 2017.
[136] H. Zhang, Q. Wu, J. Yan, D. Wipf, and P. S. Yu. From canonical correlation analysis to self-supervised graph neural

networks. NeurIPS, 2021.
[137] X. Zhang and M. Zitnik. Gnnguard: Defending graph neural networks against adversarial attacks. NeurIPS, 2020.
[138] Y. Zhang, S. Pal, M. Coates, and D. Ustebay. Bayesian graph convolutional neural networks for semi-supervised

classification. In AAAI, 2019.
[139] Y. Zhang, H. Zhu, Z. Song, P. Koniusz, and I. King. Costa: Covariance-preserving feature augmentation for graph

contrastive learning. In KDD, 2022.
[140] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah. Data augmentation for graph neural networks. In

AAAI, 2021.
[141] T. Zhao, B. Ni, W. Yu, Z. Guo, N. Shah, and M. Jiang. Action sequence augmentation for early graph-based anomaly

detection. In CIKM, 2021.
[142] T. Zhao, X. Zhang, and S. Wang. Graphsmote: Imbalanced node classification on graphs with graph neural networks.

In WSDM, 2021.
[143] T. Zhao, G. Liu, D. Wang, W. Yu, and M. Jiang. Learning from counterfactual links for link prediction. In ICML,

2022.
[144] T. Zhao, X. Tang, D. Zhang, H. Jiang, N. Rao, Y. Song, P. Agrawal, K. Subbian, B. Yin, and M. Jiang. Autogda:

Automated graph data augmentation for node classification. In LoG, 2022.
[145] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang. Robust graph representation learning

via neural sparsification. In ICML, 2020.
[146] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation. In AAAI, 2020.
[147] J. Zhou, J. Shen, and Q. Xuan. Data augmentation for graph classification. In CIKM, 2020.
[148] S. Zhu, Q. Shen, Y. Zhang, Y. Pang, and Z. Wei. Data-augmented counterfactual learning for bundle recommendation.

arXiv:2210.10555, 2022.
[149] X. Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.
[150] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. 2002.
[151] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Deep graph contrastive representation learning. arXiv:2006.04131,

2020.
[152] Y. Zhu, W. Xu, J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang, and S. Wu. A survey on graph structure learning: Progress

and opportunities. arXiv, 2021.
[153] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Graph contrastive learning with adaptive augmentation. In

164



TheWebConf, 2021.
[154] D. Zügner and S. Günnemann. Adversarial attacks on graph neural networks via meta learning. arXiv preprint

arXiv:1902.08412, 2019.
[155] D. Zügner and S. Günnemann. Certifiable robustness and robust training for graph convolutional networks. In KDD,

2019.
[156] D. Zügner and S. Günnemann. Certifiable robustness of graph convolutional networks under structure perturbations.

In KDD, 2020.
[157] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on neural networks for graph data. In KDD, 2018.

165


