
Fact Ranking over Large-Scale Knowledge Graphs with Reasoning
Embedding Models

Hongyu Ren††, Ali Mousavi*, Anil Pacaci*, Shihabur R. Chowdhury*, Jason Mohoney‡∗,
Ihab F. Ilyas*, Yunyao Li*, Theodoros Rekatsinas*

*Apple
†Stanford University, hyren@stanford.edu

‡University of Wisconsin-Madison, mohoney2@wisc.edu
*amousavi, apacaci, shihab, iilyas, yunyaoli, thodrek@apple.com

Abstract

Knowledge graphs (KGs) serve as the backbone of many applications such as recommendation systems
and question answering. All these applications require reasoning about the relevance of facts in a KG to
downstream applications. In this work, we describe our efforts in building a solution to reason about the
importance of facts over continuously updated industry-scale KGs. We focus on the problem of fact ranking
and evaluate to what extent modern knowledge graph embedding (KGE) models provide a representation
for addressing this problem. To this end, we discuss unique challenges associated with solving this task in
industrial settings and evaluate how accurately different KGE models and text-based embedding models can
solve the problem of fact ranking.

1 Introduction

Knowledge graphs (KGs) are the backbone of applications such as question answering in virtual assistants and
recommendation systems in. These applications require a broad range of knowledge that is continuously updated
with recent facts from disparate data sources [13, 20]. Reasoning about the importance of facts in an industry-scale
KG with billions of entities and facts across diverse domains is a challenging problem. An automated and scalable
solution scalable across entity types and domains in a KG has obvious benefits.

Here, we focus on the problem of fact ranking. Fact ranking provides an importance-based ranking over
facts for a given real-world entity. For example, given the question “What is the occupation of LeBron James?”,
the answer “basketball player” should be ranked higher than “television actor” or “screenwriter” despite the fact
that these two are also LeBron James’s occupations. Fact ranking generalizes the problem of recommendation
generation [3] over KGs. We are interested in facts that cannot be ranked using a simple importance or popu-
larity score. For example, ranking occupation of entities as described earlier. Another example is to generate
recommendation for entities that are relevant within users’ search context. For example, for the user query “How
tall is LeBron James”, we want to recommend a ranked list of top KG entities that are related to the query entity
“LeBron James” and are aligned with users’ search intent, i.e., they are “Person” entities with a “height” attribute.
Fact ranking is important during rendering these enriching entity-centric experiences in intelligent assistants.

In this paper, we propose a solution to fact ranking based on modern Knowledge Graph Embedding (KGE)
models and present an experimental evaluation in large-scale settings. Our solution adopts state-of-the-art
multi-hop reasoning models. Specifically, we build on the recent Query2Box model [24] and demonstrate how

†work done during an internship at Apple.

126

the embeddings obtained by this model can address fact ranking over large-scale KGs. A major challenge in
employing KGE models for fact ranking in real-world applications is to reason about the importance score and
the rank of a facts obtained by an embedding model. We address this challenge by proposing a new metric for
measuring the stability of embedding models across different rounds, namely, an adaptive version of Kendall’s
Tau that also takes into account the importance scores obtained by the embedding models. In this way, we can
better measure the effects of the learned embeddings on the downstream use cases. Our approach is in contrast to
using the standard forms of Kendall’s Tau or Rank-based Overlap metrics, which measure the consistency across
two ranked lists by considering only the number of discordant pairs/swaps between the two lists. We demonstrate
that the reasoning-based Query2Box model leads to significantly more stable embeddings compared to one-hop
embedding models such as DistMult [37]. We also propose a new indexing scheme and apply multi-query
optimization for efficient search over the generated embedding vectors for supporting use-cases such as vector
similarity-based related entity search.

Finally, we compare Query2Box against modern generative natural language (NL) models [18] and demon-
strate that NL models require significant fine-tuning of the prompt to obtain similar fact ranking results as the
Query2Box model.

2 Preliminaries

We now review background relevant to our study. Our discussion focuses on knowledge graph representation
models and aims to highlight the differences between shallow KG embedding models such as the popular
DistMult [37], TransE [2], and RotatE [27] models and more recent reasoning-based embedding models [24, 25].

2.1 Shallow Knowledge Graph Embeddings

A knowledge graph (KG) G = (V, E ,R) consists of a set of nodes V , a set of edges E . G also defines a set of
relationsR, and each edge e ∈ E represents a triple (vs, r, vo) where r ∈ R and vs, vo ∈ V . Here, vs corresponds
to the vector representation of the subject of the fact that corresponds to the edge and vo to the object of
the fact. Finally, r corresponds to the vector representation of the predicate associated with the triple.

Shallow KG embeddings [2, 37, 27, 31] learn an embedding function fθ that maps all the entities and relations
on the graph to latent space in order to preserve the structure of graph. Most KG embeddings implement the
embedding function fθ as a matrix lookup. Specifically, the parameters include an entity embedding matrix
Vθ ∈ R|V|×d and a relation embedding matrix Rθ ∈ R|R|×d, where d is the latent space dimension.
Training Shallow KG Embeddings: In order to train the two embedding matrices, these methods optimize
a contrastive objective, which is to minimize a predefined distance function Dist of existing edges e =
(vs, r, vo) ∈ E while maximize that of non-existing edges e′ = (vs, r, v

′
o) /∈ E . Different shallow KG embeddings

have different definitions of the distance function Dist, the detail is listed in Table 1. In previous KG embedding
works [27, 39], the loss function in the contrastive objective is defined as:

L = − log σ (γ − Dist(vs, r, vo))−
k∑
j=1

1

k
log σ

(
Dist(vs, r, v′oj)− γ

)
, (46)

where σ is the sigmoid function, γ is the margin. We optimize over the loss function using stochastic training for
several iterations. In each iteration, these methods sample a batch of existing edges from the graph and construct
non-existing edges by keeping the subject vs and the type of the edge r fixed while perturbing the object vo.

127

Table 1: The distance function of shallow KG embeddings and KG reasoning embeddings.

Model Embedding Space Distance
TransE [2] fθ(vs), fθ(vo) ∈ Rd, fθ(r) ∈ Rd ∥fθ(vs) + fθ(r)− fθ(vo)∥
RotatE [27] fθ(vs), fθ(vo) ∈ Cd,fθ(r) ∈ Cd ∥fθ(vs) ◦ fθ(r)− fθ(vo)∥

DistMult [37] fθ(vs), fθ(vo) ∈ Rd,fθ(r) ∈ Rd − < fθ(vs), fθ(r), fθ(vo) >

ComplEx [31] fθ(vs), fθ(vo) ∈ Cd, fθ(r) ∈ Cd −Re(< fθ(vs), fθ(r), fθ(vo) >)
Q2B [24] fθ(vs), fθ(vo) ∈ Rd, fθ(r) ∈ R2d Distout + αDistin

2.2 KG Reasoning Embeddings

KG reasoning embedding methods generalize the shallow KG embeddings to more complex reasoning tasks. KG
reasoning embeddings also consider multi-hop reasoning over the KG, i.e., answering complex logical queries
with logical/set operators including conjunction, disjunction and negation, e.g., “Predict drugs that might target
proteins that are associated with a given disease, and do not have a given side effect” [10]. In order to answer
such complex queries, one may need to perform multiple reasoning steps and graph traversal – first find all the
proteins associated with the disease, and predict drugs D1 ⊂ V that bind with the proteins, at the same time find
the drugs D2 ⊂ V that have the side effect and take complement of the set D2, and finally take the intersection of
the two sets D1 ∩D2 to achieve the answers to the query. One of the main challenges of the above graph traversal
method is that it suffers from missing and noisy information on the graph. The key insight of KG reasoning
embedding methods is to embed these complex queries in the same latent space as the entity embeddings so that
all the reasoning steps can be done in the embedding space instead of symbolic graph traversal. In detail, we
follow the logical queries defined in (author?) [25].

Definition 2.1 (First-order logic queries) A first-order logic query q consists of a non-variable anchor entity
set Vq ⊆ V , existentially quantified bound variables V1, . . . , Vk and a single target variable V?, which provides
the query answer. The disjunctive normal form of a logical query q is a disjunction of one or more conjunctions.

q[V?] = V? . ∃V1, . . . , Vk : c1 ∨ c2 ∨ ... ∨ cn

1. Each c represents a conjunctive query with one or more literals e. ci = ei1 ∧ ei2 ∧ · · · ∧ eim.

2. e represents an atomic formula or its negation. eij = r(va, V) or ¬ r(va, V) or r(V ′, V) or ¬ r(V ′, V),
where va ∈ Vq, V ∈ {V?, V1, . . . , Vk}, V ′ ∈ {V1, . . . , Vk}, V ̸= V ′, r ∈ R.

In order to reason over and embed such queries, one needs to consider the following operations. KG reasoning
methods design neural logical operators that simulate their real counterparts. We refer the readers to [24] for
more details.

1. Relation Projection: Given a set of entities S ⊆ V and relation type r ∈ R, compute adjacent entities
∪v∈SAr(v) related to S via r: Ar(v) ≡ {v′ ∈ V : (v, r, v′) ∈ E}.

2. Intersection: Given sets of entities {S1, S2, . . . , Sn}, compute their intersection ∩ni=1Si.

3. Complement/Negation: Given a set of entities S ⊆ V , compute its complement S ≡ V \ S.

4. Union: Given sets of entities {S1, S2, . . . , Sn}, compute their union ∪ni=1Si.

Capturing Relational Context: While KG reasoning queries have been traditionally proposed to answer complex
queries in the presence of incomplete KGs, here, we utilize them to learn vector representations of the entities

128

Relation

Relation

Relation Relation Relation

1-hop path queries 2-hop path queries 2-intersection queries

Figure 1: Types of queries we consider to train Query2box.

that are not biased towards one-hop relationships but take into account a richer relational context. We use a set
of query templates (see Figure 1) to generate a sample workload of queries that can be answered over the input
KG and use that payload to learn robust entity representations as we discuss next. We experimentally show (see
Section 6) that this relational bias in the training process leads to entity representations that are more robust and
lead to more stable representations (see Section 6).
Training KG Reasoning Embeddings: For a KG, G = (V, E ,R), and a query q, we need to learn an embedding
function fθ that maps from a computation graph of a query to its embedding with the parameterized neural logical
operators. Together with the entity and relation embedding matrices (same as the shallow KG embeddings), fθ
also embeds all the nodes on the graph by embedding lookup. In order to measure the similarity/distance between
a query q and an entity v ∈ V , a distance function Dist(·, ·) is defined that takes as input the query embedding
fθ(q) and the entity embedding fθ(v) and outputs the distance. The distance function Dist(·, ·) is tailored to
different embedding space and model design fθ as in Table 1.

During training, we are given a data sampler D, each sample in D is a tuple (q,Aq,Nq), which represents
a query q, its answers Aq ⊆ V and the negative samples Nq ⊆ Aq. The training objective is to minimize the
distance between the query embedding and its answers Dist(q, v), v ∈ Aq while maximizing the distance
between the query embedding and the negative samples Dist(q, v′), v′ ∈ Nq, optimizing a contrastive loss term
similar to the shallow KG embeddings. As used in most previous KG reasoning embedding works [25, 24], the
loss is defined as:

L = − log σ (γ − Dist(q, v))−
k∑
j=1

1

k
log σ

(
Dist(q, v′j)− γ

)
, (47)

where γ is a margin hyperparameter and σ is the sigmoid function.

3 Fact Ranking

Here we introduce the task of fact ranking and its corresponding applications that power critical user experiences
over KGs. We define a fact on KG as a triple (vs, r, vo), where vs and vo are entities and r is a relation type from
the KG. User queries we target (such as the “What is the occupation of LeBron James?”) correspond to queries
of the form q = (vs, r, ?) .

3.1 Problem Description

Intelligent assistants rely on entity-centric experiences to answer user queries. For many of these experiences,
facts or answers to queries are of different importance/accuracy/uncertainty to users. Besides providing all the
answers, one key aspect of service quality is to display relevant facts in a sorted way according to the importance
or uncertainty score. For example, the answer to a query “What is the occupation of Selena Gomez?” includes
singer and child actor, but for the majority of users, we know the answer singer should rank higher than child
actor. The goal of fact ranking is to rank all the answers to a given set of queries that aligns well with user
expectation. Fact ranking is ubiquitous in intelligent assistants and the key to improving the user experience.

129

We define fact ranking as follows: Given a query q = (vs, r, ?) for a subject vs and a predicate r we see
to find answers Aq (achieved by graph traversal as discussed in Section 2) for the missing object. The goal of
fact ranking is to find a function Rank(a) which can be used to obtain an importance ranking for each answer
a ∈ Aq and generate the ranking list [Rank(a1), . . . ,Rank(an)], a1, . . . , an ∈ Aq. We focus on queries that
target facts that cannot be ranked using simple popularity scores, e.g., occupations, genres etc., (an occupation is
not necessarily more important than the other).

Unsupervised machine learning (ML) mechanisms are needed to learn a function Rank(·). It is typical
that KGs do not associate any importance scores and weights to their edges, which applies to many large KGs
including FreeBase [1] and WikiData [32]. Consequently, it is not possible to use simple traversal mechanisms
to implement the ranking functions for fact ranking and different mechanisms need to be considered. Such a
mechanism may correspond to PageRank-based algorithms which can be used to assign an importance score
for each answer a (or fact (q, a) with personalized PageRank), however, they are often not effective on such
large-scale heterogeneous graphs where multiple edge types exist [12]. To alleviate these challenges, we consider
a setting (see Section 3.2) where unsupervised representation learning is used to learn Function Rank(·).

3.2 A Solution with KG Embeddings

We obtain a solution to the fact ranking problem by leveraging graph embedding models. This solution applies to
both shallow KG embeddings and KG reasoning embeddings. The idea is to first train the entity embeddings,
relation embeddings, and neural logical operators on the KG using standard training protocols [37, 24] (see
Section 2.2). Then, given a fact (vs, r, vo), we can use the pre-trained embeddings to efficiently calculate the
distance Dist(vs, r, vo). The distance plays a crucial role for solving the fact ranking problem since it represents
a proxy of plausibility of a fact. This solution is inspired by our prior work on error detection, missing value
imputation, and data repairs which showed that all problems correspond to inference tasks over a pre-trained
model that learns how to reconstruct the input data [6]. Nonetheless, using the distance obtained by different KG
embedding models raises two critical considerations for industrial settings.

For fact ranking, the distance obtained by the KG embedding model can be applied to rank the candidate
objects for a specific subject and object configuration. However, different models can learn significantly different
geometries and in most cases the distances in these spaces can lead to significant variations in the obtained
rankings. In the settings we consider, it is critical that the rankings obtained are stable (i.e., we do not have
significant variations in the order of different objects) across training iterations of the embedding model. To this
end, we use a post-processing step that verifies the stability of KG embedding models before deployment. This
post-processing step utilizes a consistency metric that extends standard ranking comparison methods such as
Kendall’s Tau to also consider the distance value associated with each query (see Section 4).

4 Consistency in Fact Ranking

We consider different ways to measure the stability of ranking across different training runs. Given a query
(vs, r, ?) and its answers Aq = {a1, . . . , an}, we calculate: di = Dist(vs, r, ai), ∀i = 1, . . . , n, and create a
distance list DistList = [d1, . . . , dn], di ∈ R and a ranking list of the answers by the distance RankList =
[Rank(a1), . . . ,Rank(an)],Rank(ai) ∈ {1, 2, . . . , n}. We consider training KG embeddings multiple times,
and obtain multiple DistList and RankList. Our goal is to measure the stability/consistency of the lists
across different runs. We assume the KG stays unchanged across different runs/training of the embedding models,
hence the items in the list of a query also remain the same.

To measure the stability of ranking, i.e., compare whether two RankList from two runs are consistent, we
consider several metrics, including 1) the Kendall rank correlation coefficient, 2) a weighted version of Kendall’s
Tau, 3) set-based overlap, and 4) rank-biased overlap. Given two distance lists DistList1 = [x1, . . . , xn] and

130

Algorithm 1: AdaptiveCluster
Input :A list of distance of answers DistList = [x1, . . . , xn], a scalar threshold δ′ (hyperparameter).
Output :A list of cluster IDs ClusterList.

DiffList = [];
for i← 1 to n do

DiffList.append(xi − xi−1);

µ = DiffList.mean(), σ = DiffList.std();
Threshold δ = min(µ− 0.2σ, δ′);
ClusterList = [0], clusterid = 0;
for i← 0 to n− 1 do

if DiffList[i] > δ then
clusterid++;

ClusterList.append(clusterid);

return ClusterList;

Algorithm 2: Adaptive Tau
Input :Two lists of distance of answers DistList1, DistList2, a scalar threshold δ′ (hyperparameter).
Output :Kendall’s Tau coefficient.

ClusterList1 = AdaptiveCluster(DistList1, δ
′);

ClusterList2 = AdaptiveCluster(DistList2, δ
′);

return KendallTau(ClusterList1, ClusterList2);

DistList2 = [y1, . . . , yn], the four metrics are calculated as:

1. Kendall’s Tau: mc−md

(m2)
, wheremc is the number of concordant pairs between DistList1 and DistList2,

and md is the number of discordant pairs. A pair of (i, j) is concordant if the sort order of (xi, xj) and
(yi, yj) is the same, otherwise the pair is discordant. Kendall’s Tau ranges from -1 to 1.

2. Weighted Tau: It is an extension of Kendall’s Tau where each pair also has a weight that is inverse-
proportional to the rank, i.e., low ranking objects are not as important as the top ranking objects.

3. Rank-biased overlap (RBO): (1− p)∑n
i=1 p

i−1 ·Ai, where i is the depth of the ranking being examined.
With ArgSort function, let ASList = ArgSort(DistList), we define Ai =

|ASList1[:i]∩ASList2[:i]|
i .

The idea of RBO is to compare the overlap of the two rankings at incrementally increasing depths. It is a
weighted metric, which means that the top rank items get higher weights.

However, the downside of the above metrics is that they do not explicitly consider the absolute value
of items in DistList. One observation is that when two answers have similar distance with the query
embedding, a swap in the ranking of the two answers from two runs should not matter as much as a swap
in the ranking when the two answers have different distance to the query embedding. Consider the follow-
ing two scenarios, assume in both scenarios, the length of the DistList is 3. In Scenario #1 we have
DistList1 : [0.20, 0.30, 0.33] DistList2 : [0.45, 0.61, 0.60] and in Scenario #2 we have DistList1 :
[0.20, 0.30, 0.63] DistList2 : [0.45, 0.61, 0.50].

Although in both scenarios, there exists one discordant pair (the second and third item), yet in Scenario #1,
the two items have extremely close distance compared with Scenario #2. So an ideal metric would output a higher
consistency score for Scenario #1 than Scenario #2. However, all above metrics give the same results.

To address the above shortcoming, we use an evaluation metric that adaptively considers the margins of
different items when measuring the consistency of two DistList. In order to identify the items with close

131

Graph Engine

Embedding
Model

Knowledge
Graph

Graph ViewFiltering

Graph Engine

Knowledge
Graph

Candidate
Triples

Candidate
Generation

Tr
ai

ni
ng

In
fe

re
nc

e

Embedding
Model

GPU Cluster

Batch Multi-GPU
Inference

GPU Cluster

Single or Multi-node
Multi-GPU training

Model Registry

Inference Results

User
Queries

Indexing Query
Optimizer

Candidate
Triples
Scores

KG Search

Figure 2: An overview of using Knowledge Graph Embedding models for large-scale fact ranking.

values, we sort the DistList, calculate the difference between neighbor items, and measure the average and
variance, which we use to set as a threshold. Then, we loop over all the items and aim to cluster the item by
checking whether the difference between the current item and the previous item is larger than the threshold. For
items in the same cluster, we assign the same value to them such that they will have the same ranking. Finally,
we run Kendall’s Tau metric over this updated list. The details are shown in Algorithms 1 and 2. We refer to
this method as Adaptive Tau since it considers the absolute value of the discordant pairs using clustering with an
adaptive threshold. An experimental analysis of the different metrics is shown in Section 6. We find that Adaptive
Tau provides a more precise description of the stability and utility of the rankings obtained by embedding models.

5 Scaling to Large KGs

We discuss systems considerations when using KG reasoning embedding models over large-scale KGs. Beyond
scalable training, we also require that inference over Query2Box models is scalable and incremental. This
requirement is important to enable practical deployments over dynamic billion-scale KGs. We next discuss the
main components of the architecture we adopt (see Figure 2).

The multi-hop nature of embedding models such as Query2Box poses unique challenges when training
these models over billion-scale KGs. In the case of shallow KG embedding models, graph partitioning is a
common method for scaling training [40, 17]. Unfortunately, these methods are not applicable in the case of
reasoning-based embeddings. When using Query2Box it is important that we can generate training samples by
performing multi-hop traversals of the graph. Such traversals can span multiple partitions. At the same time, it is
not always practical to pre-compute such samples in advance. To alleviate this issue, we opt for a single-machine
multi-GPU deployment during training and leverage the recently introduced SMORE engine [23] to perform
training. SMORE provides a mixed GPU-CPU solution that leverages both the main memory and GPU memory
to scale training. In addition, training examples are generated on the fly thus avoiding unnecessary pre-compution.
Indicative throughput measurements and scaling of SMORE is shown in Figure 3. A requirement here is that
the machine have sufficient main and on-device memory to store the entire graph and thus avoid partitioning.
While this requirement is satisfied by modern hardware configurations it is a cost-hungry option. We believe
disk-based or distributed training of reasoning-based KG embeddings is an exciting research direction. Once
training is complete, the embedding models are archived and then used for inference.

At inference time, we opt for a batch inference setting. We first compute a series of candidate queries that
correspond to the set of facts that we want to enable ranking over. We leverage a computation graph engine
to materialize all candidate queries (i.e., (subject, predicate, object triples) and use the learned
Query2Box model to obtain a score for each query. The number of candidate facts can exceed the size of the

132

DistMult Q2B0
20000
40000
60000
80000

100000
120000
140000
160000

Qu

er
ie

s /
 se

c

Multi-GPU Speedup
1-GPU
2-GPU
4-GPU
8-GPU

Figure 3: Multi-GPU scaling of SMORE for training the DistMult and Query2box embedding models.

Figure 4: Fact ranking using Query2Box vs. RoBERTa and Query2Box vs. DistMult.

original KG as we consider multiple subject, object configurations that may not appear in the original graph.
To deal with the volume of generated queries we opt for a scatter gather-based multi-GPU inference across
multiple machines in a GPU cluster. The trained model is loaded in the executor allocated to each machine and
the candidate facts are partitioned across machines. The corresponding inference results are gathered into a single
relational store and then used for downstream processing. Given the stability of the Query2Box representations
(see Section 6), we maintain the fact ranking results via periodic retraining of the Query2Box models followed by
batch inference. Inference results for fact ranking are versioned across different training and batch inference runs.

6 Experiments

We evaluate reasoning-based KG embeddings for fact ranking. We focus on fact ranking tasks that align with use
cases in industrial deployments. We evaluate the following aspects of our proposed framework: (1) the utility to
end users when using KG embeddings for fact ranking, (2) the stability of KG embedding models and hence to
what extent they satisfy deployment requirements.

133

Table 2: Average user preference (based on results in Figures 4) for Q2Box vs other methods for different tasks.
For RoBERTa models, (H): high finetuning, (A): average finetuning, (N): no finetuning.

Query2Box DistMult RoBERTa (N) RoBERTa (A) RoBERTa (H)
1- TV Actor 1- Film Actor 1- Singer 1- Film Producer 1- Actor

2- Film Actor 2- Singer 2- Film Producer 2- Film Director 2- Singer
3- Film Director 3- Film Director 3- Film Director 3- Film Actor 3- Film Producer

4- Actor 4- Film Producer 4- Film Actor 4- TV Actor 4- Film Director
5- Film producer 5- Actor 5- Actor 5- Actor 5- Film Actor

6- Singer 6- TV Actor 6- TV Actor 6- Singer 6- TV Actor

Table 3: Average user preference (based on results in Figure 4) for Q2Box vs other methods for different tasks.
For RoBERTa models, (H): high finetuning, (A): average finetuning, (N): no finetuning.

Comparison Task Competitor Competitor Avg. Percentage Q2Box Avg. Percentage
DistMult / Q2Box DistMult 12% 88%
RoBERTa (H) / Q2Box RoBERTa (H) 70% 30%
RoBERTa (A) / Q2Box RoBERTa (A) 57% 43%
RoBERTa (N) / Q2Box RoBERTa (N) 7% 93%

Table 4: Stability results of fact ranking. Query2box consistently achieves better performance than DistMult.

Kendall
Weighted
Kendall

Set-based
Overlap

Rank-biased
Overlap

AdaptiveTau
δ′ = 0.02

AdaptiveTau
δ′ = 0.05

AdaptiveTau
δ′ = 0.1

DistMult 0.380 0.384 0.962 0.990 0.460 0.498 0.484
Query2Box 0.854 0.868 0.990 0.997 0.877 0.917 0.943

6.1 Experiment Setup

Queries and Facts We focus on queries of the format “What is the occupation of [Celeb_Name]?” which
captures the ranking task. We rank possible object completions for the structured query (vs,OccupationOf, ?),
where vs is the entity of interest. Our dataset contains several million queries obtained by real intelligent assistant
user queries.
Knowledge Graph We consider the entire Wikidata KG [32] to validate the proposed framework. The version of
Wikidata that we use contains 1,754,058,566 facts defined over 91,900,599 entities and 35,446 relation types.
We train our framework on this KG and obtain the answers to the aforementioned set of user queries by finding
entities in this KG.
Baselines We evaluate a diverse array of methods, including KG reasoning embeddings Query2box [24], shallow
KG embeddings DistMult [37], and masked language models (MLMs) RoBERTa [18].

For KG embedding based methods, both DistMult and Query2box fit in our unified framework. We adopt the
standard training procedures for these models (see Section 2). For DistMult, we sample existing edges as positive
samples and non-existing edges as negative samples to train the DistMult model with the objective defined in
equation 46, where the distance and residue functions are defined in Section 2. For Query2box, similar to [24]
and as discussed in Section 2.2, we sample multi-hop queries (Figure 1), and their answers and non-answers to
optimize the contrastive objective in equation 47. Besides the entity and relation embedding matrices, we use the
neural logic operators in Query2box to embed the complex queries and optimize the query embeddings such that
they are close to the answer embedding and pushed far away from the embedding of the sampled non-answers.
We use the distance function of the original Query2box model and design the residue function as described in
Section 2.

134

For both DistMult and Query2Box, we use SMORE [23] for training. We train both for 100k iterations with
the Adam optimizer [16]. We anneal the learning rate from 0.001 to 0.0001, and adopt a batch size of 8,192
queries with 1,024 negative answers for each query in the batch. We score each candidate answer using the
distance functions defined for both models.

For MLMs, we use the RoBERTa model. Given a triple-format query (vs,OccupationOf, ?), we provide
three templates and convert the query into a natural language question. These templates include (1) “vo is a
[mask].”, (2) “The occupation of vo is [mask].”, and (3) prompting [34] in which the template is “Barack
Obama is a politician, LeBron James is a basketball player, vo is a [mask].”. For different query types, we
need to provide different prompts in order to make predictions more effective. As we show later, fine-tuning of
the prompt is necessary to obtain competitive results and hence, MLMs are not a universal solution to our task.
Given vo, we score the candidate answer by calculating the likelihood score of vo in replacement of the [mask]
in each of the three templates.

6.2 Fact Ranking Evaluation

Utility We first evaluate the utility of our framework on the fact ranking task. To assess the quality of Query2Box
and compare it against other methods, we consider eleven celebrities and their occupations as listed in WikiData.
We present our users with four different questionnaires. Each of these questionnaires compares Query2box
ranking vs. another baseline ranking obtained using one of the methods we mentioned earlier. Each questionnaire
contains eleven questions where each asks users to choose between two different rankings (Query2Box vs. a
baseline) of a celebrity occupation.

Figure 4 shows the summary of user preferences between DistMult/RoBERTa and Query2box rankings. In
Figure 4, Query2box has outperformed DistMult and Query No. 3 (occupations of Jennifer Lawrence) shows
the tightest competition. Table 2 shows the ranking derived from these methods. Jennifer Lawrence is mostly
known as a Film Actor which is correctly predicted by DistMult. Some users have focused on the first occupation
and hence voted for DistMult while other users have considered other occupations and voted for Query2box. In
addition, we can notice the flipping of user preferences based on the amount of fine-tuning for RoBERTa models
(see also Table 3). As shown in Table 3 which represents the average user preference, Query2Box outperforms
DistMult and RoBERTa requires significant fine-tuning of the prompt to outperform the Query2box model.
Stability We now measure the stability of different systems using the metrics we introduced in Section 3.2. We
take all triples with OccupationOf as the relation type from the massive KG. Overall the dataset involves
6,566,224 queries of structure (vo,OccupationOf, ?) for which we measure the stability and consistency
of rankings. Here we mainly consider two methods Query2box and DistMult, but not the MLMs due to their
necessity of contexts for better ranking utility as discussed. We train both models 5 times and measure the
stability of both models using the metrics introduced in Section 4. As shown in Table 4, we find Query2box is
more stable and consistent than DistMult since Query2box is trained on more complex multi-hop queries, which
better captures the neighborhood structure for each fact. For set-based overlap and rank-biased overlap, both
methods achieve extremely high values. This is expected since the occupations of a celebrity are fixed across
runs, and the overlap will always be 1 at the last step as we gradually compare the intersection of two sets starting
from top-ranking items to the low-ranking ones. Among evaluation metrics, our adaptive method can better
characterize a more meaningful measurement of ranking stability than the vanilla Kendall’s Tau and rank-biased
overlap. As shown in Table 4, Query2box achieves higher performance in AdaptiveTau than the other two metrics.
We argue such an adaptive metric is crucial in evaluating ranking stability in production.

135

7 Use-case: Ranking for Related Entity Search

Recommendation generation is a key component of question answering in entity-centric user experiences, and the
task of providing a ranked list of KG entities related to that of users’ query can be performed via fact ranking with
KGE models. Specifically, given a user query q = (vs, r, ?), the goal of related entity search is to find a ranking
function Rank(vr) over a subset KG of entities vr ∈ R ⊆ V such that the query qr = (vr, r, ?) is relevant to
the original query, and Rank(vr) provides a ranking of each entity vr based on relatedness to the original query.
We leverage the KGE models described in the previous sections for embedding a KG into a vector space and
define relatedness between two entities in a KG to be the similarity between their vector representations. Thus,
we can use similarity search over KG embeddings to find related entities for a given KG entity. Depending on
the specific application of related entity search, we can use different embedding models. As an example, if
we are interested in relatedness in the ontology space of a KG, Poincaré embeddings [41] is a suitable model.
Otherwise, if we care about relatedness in the whole graph we can use either a shallow (e.g., DistMult [37]) or
reasoning-based embedding model.

In addition to the use of KGE-based fact ranking for similarity based relatedness, the task of finding a ranked
list of related KG entities for a query requires evaluating additional constraints for aligning answers with users’
search intent. For instance, for the query “How tall is LeBron James”, the goal is to find other “Person” entities
that are related to “Lebron James” and have the corresponding fact for the same predicate “height”. Consequently,
related entity search use-case goes beyond the traditional vector similarity search and requires batch processing of
hybrid queries [42]. Hybrid queries are two part queries consisting of: (i) vector similarity search for retrieving
the most similar entities in the embedding space; and (ii) evaluation of conjunction of relational constraints for
ensuring the returned results are relevant to search context (e.g., only include “Person” entities). In addition to
hybrid query processing, the task of related entity search exhibits following characteristics: (i) hybrid queries
are evaluated in a batch setting over past user queries, (ii) and relational predicates in industrial KG workloads
exhibit filter commonality and filter stability [28], allowing us to customize the system design based on available
prior workload characteristics. To this end, we employ HQI [42] hybrid vector similarity search system for
batch inference over KG embeddings and adopt the following suite of optimizations for high-throughput batch
processing of hybrid queries:

Workload-aware vector index: Specialized vector indexes that either partition the data or form multi-level
indexes over centroids are commonly used in vector databases to speed-up vector similarity search [33]. HQI
utilizes the past workload information to guide the partitioning of the vectors in the underlying index in a way that
hybrid queries can be answered by accessing as few partitions as possible. By extending the concept of query-data
routing trees (qd-trees) [36] to vector databases, HQI considers both vectors and relational predicates from a
hybrid query workload when generating physical data layout at data loading time. The resulting data layout
partitions the vectors using the distribution of the attributes associated with vectors, the attribute constraints, and
similarity of vectors present in the hybrid query workload. We then use the resulting partitioning scheme to
generate an index layout that enables processing a batch workload of hybrid queries by accessing vectors from as
few partitions as possible.

Batch query optimization: Second, we use HQI’s a multi-query optimization technique that (i) batches
queries with similar attribute and vector similarity constraints; and (ii) performs batch vector distance computation
against a posting list of vectors obtained from a clustering-based index over the vectors. This optimization is
motivated by the fact that the set of candidate queries are computed from past user queries and evaluated in a
batch setting, which enables computation sharing across queries. Note that this optimization is orthogonal to the
workload-aware vector index and is applicable to any clustering-based vector index.

We evaluate the performance improvements of these optimizations for related entity search over KG. We use
a subset of KG entity embedding vectors, and we focus on ranking related entities for queries of the format “What
is the [Predicate] of [Entity_Name]?”, similar to Section 6. Table 5 compares the performance of our
solution against available existing hybrid query processing strategies (see [42] for more details) using a randomly

136

Table 5: Slowdown for related entity search compared to HQI @ Recall >= .8

HQI PreFilter PostFilter Range
Slowdown 1× 31× 136× NA

sampled and aggregated query workload from anonymized, historical queries. HQI and its optimizations provide
orders of magnitude performance improvements over best performing baselines for the related entity search task.

8 Conclusion

In this work, we studied fact ranking over large-scale knowledge graphs. We evaluated to what extent modern
knowledge graph embedding (KGE) models provide a solution for addressing the problem of fact ranking. We
highlighted unique challenges associated with solving this task in industrial settings and evaluated different KGE
and text-based embedding models. Our work demonstrated that, in contrast to neural language models or shallow
KGE models, multi-hop reasoning models such as Query2Box can better meet user satisfaction.

References
[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for

structuring human knowledge. SIGMOD, 2008.
[2] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko. Translating Embeddings for Modeling

Multi-Relational Data. Neural Information Processing Systems, 2787—2795, 2013.
[3] S. Bouraga, I. Jurerta, S. Faulkner, and C. Herssens. Knowledge-based recommendation systems: a survey.

International Journal of Intelligent Information Technologies, 10(2):1–19, 2014.
[4] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Re, and K. Murphy. Machine learning on graphs: A model and comprehensive

taxonomy. arXiv preprint, arXiv:2005.03675, 2020.
[5] W. Cohen. TensorLog: A Differentiable Deductive Database. arXiv preprint, arXiv:1605.06523, 2016.
[6] C. De Sa, I. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas. A formal framework for probabilistic unclean databases.

arXiv preprint, arXiv:1801.06750, 2018.
[7] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowl-

edge vault: A web-scale approach to probabilistic knowledge fusion. ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 601–610, 2014.

[8] D. Xin, and T. Rekatsinas. Data Integration and Machine Learning: A Natural Synergy. ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[9] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang. From Data Fusion to Knowledge
Fusion. VLDB, 7(10):881–892, 2014.

[10] W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Embedding Logical Queries on Knowledge Graphs.
Neural Information Processing Systems, 2018.

[11] A. Heidari, G. Michalopoulos, S. Kushagra, I. Ilyas, and T. Rekatsinas. Record fusion: A learning approach. arXiv
preprint, arXiv:2006.10208, 2020.

[12] H. Huang, L. Sun, B. Du, C. Liu, W. Lv, and H. Xiong. Representation Learning on Knowledge Graphs for Node
Importance Estimation. ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 646-655, 2021.

[13] I. Ilyas, T. Rekatsinas, V. Konda, J. Pound, X. Qi, and M. Soliman. Saga: A Platform for Continuous Construction and
Serving of Knowledge At Scale. ACM SIGMOD International Conference on Management of data, 2022.

[14] I. Ilyas, and X. Chu. Data Cleaning. Morgan & Claypool, 2019.
[15] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S.Y. Philip. A survey on knowledge graphs: Representation, acquisition,

and applications. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[16] D. Kingma, and J. Ba. Adam: A method for stochastic optimization. International Conference on Learning

Representations (ICLR), 2015.

137

[17] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich. Pytorch-biggraph: A large-scale
graph embedding system. Conference on Machine Learning and Systems (MLSys), 2019.

[18] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint, arXiv:1907.11692, 2019.

[19] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, S. Venkataraman. Marius: Learning Massive Graph Embeddings on a
Single Machine. USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2021.

[20] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-Scale Knowledge Graphs: Lessons and
Challenges. Queue, 17(2):48–75, 2019.

[21] J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge graph identification. International semantic web conference,
542-557, 2013.

[22] T. Rekatsinas, X. Chu, I. Ilyas, and C. Ré. HoloClean: Holistic Data Repairs with Probabilistic Inference. VLDB
Endowment, 10(11):1190–1201, 2017.

[23] H. Ren, H. Dai, B. Dai, X. Chen, D. Zhou, J. Leskovec, and D. Schuurmans. SMORE: Knowledge Graph Completion
and Multi-hop Reasoning in Massive Knowledge Graphs. arXiv preprint, arXiv:2110.14890, 2021.

[24] H. Ren, W. Hu, and J. Leskovec. Query2box: Reasoning over Knowledge Graphs in Vector Space using Box
Embeddings. International Conference on Learning Representations (ICLR), 2020.

[25] H. Ren, and J. Leskovec. Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs. Neural
Information Processing Systems (NeurIPS), 2020.

[26] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, P. Merialdo. Knowledge graph embedding for link prediction: A
comparative analysis. ACM Transactions on Knowledge Discovery from Data, 15(2)1–49, 2021.

[27] Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space.
International Conference on Learning Representations (ICLR), 2019.

[28] L. Sun, M.J. Franklin, S. Krishnan, and R.S. Xin. Fine-grained partitioning for aggressive data skipping, ACM
SIGMOD International Conference on Management of Data, 1115-1126, 2014

[29] Z. Sun, S. Vashishth, S. Sanyal, P. Talukdar, and Y. Yang. A re-evaluation of knowledge graph completion methods.
arXiv preprint, arXiv:1911.03903, 2019.

[30] P. Tabacof and L. Costabello. Probability Calibration for Knowledge Graph Embedding Models. International
Conference on Learning Representations (ICLR), 2020.

[31] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard. Complex embeddings for simple link prediction.
International Conference on Machine Learning (ICML), 2016.

[32] D. Vrandečić, and M. Krötzsch. Wikidata: A Free Collaborative Knowledgebase. Communications of the ACM,
57(10):78–85, 2014.

[33] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li, X. Xu, and others. Milvus: A purpose-built vector
data management system. ACM SIGMOD International Conference on Management of Data, 2614–2627, 2021.

[34] C. Wei, S.M. Xie, and T. Ma. Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of
Head and Prompt Tuning. Advances in Neural Information Processing Systems, 2021.

[35] G. Weikum. Knowledge graphs 2021: a data odyssey. VLDB Endowment, 14(12):3233–3238, 2021.
[36] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U.F. Minhas, P. Larson, D. Kossman, and R. Acharya. Qd-Tree:

Learning Data Layouts for Big Data Analytics. ACM SIGMOD International Conference on Management of Data,
193–208, 2020.

[37] B. Yang, W. Yih, X. He, J. Gao, L. Deng. Embedding Entities and Relations for Learning and Inference in Knowledge
Bases. International Conference on Learning Representations (ICLR), 2015.

[38] J. You, X. Ma, Y. Ding, M. Kochenderfer, and J. Leskovec. Handling missing data with graph representation learning.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[39] S. Zhang, Y. Tay, L. Yao, Q. Liu. Quaternion knowledge graph embeddings. Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[40] Z. Zhu, S. Xu, J. Tang, and M. Qu. Graphvite: A high-performance cpu-gpu hybrid system for node embedding. The
World Wide Web Conference (WWW), 2019.

[41] M. Nickel, and D. Kiela. Poincaré embeddings for learning hierarchical representations Advances in neural
information processing systems (NeurIPS), 2017.

[42] J. Mohoney, A. Pacaci, S.R. Chowdhury, A. Mousavi, I. Ilyas, U.F. Minhas, J. POund, T. Rekatsinas High-Throughput
Vector Similarity Search in Knowledge Graphs ACM SIGMOD/PODS International Conference on Management of

138

Data (SIGMOD), 2023.

139

