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Letter from the Editor-in-Chief

Graph is an essential representation for many real-world data exhibiting intricate relationships. We first surveyed
work in this field in one of our 2017 issues, where the focus was on developing efficient algorithms for very large
graphs. Then, in one of our 2022 issues, we highlighted applications on graph data, including knowledge graphs,
causality, and reasoning over knowledge graphs.

This issue is devoted to Graph Neural Networks (GNNs), a topic that has garnered a great deal of attention
and is the driving force behind many important applications such as personalization and recommendations
systems. GNNs are effective at relational reasoning, which expands the frontiers of traditional machine learning
methodologies. Significant effort was also devoted to the scalability challenge, which is crucial in today’s
data-driven landscape characterized by vast and complex data structures. This issue, curated by Karthik Subbian,
contains eight papers from leading researchers in this field, which include comprehensive surveys as well as deep
dives into key technical challenges.

Wang-Chiew Tan has penned an opinion piece on the topic of data management and LLMs. It is a call to
action for the database community in light of the rise of LLMs and generative AI. While LLMs provide an adept
natural language interface to unstructured data, the absence of structure or a definitive data schema frequently
results in less reliable outcomes. DBMSs, on the other hand, cannot handle unstructured data, a category that
greatly eclipses structured data in terms of sheer volume. Tan suggests that a more robust, next-generation data
management paradigm might emerge from the fusion of LLMs’ strengths with those of DBMSs.

We would also like to congratulate Professor Kyu-Young Whang on receiving the prestigious TCDE Service
Award, as well as celebrate his retirement and enormous contributions to the field of data engineering. We are
privileged to publish a letter from Whang in this issue, in which he reminisced about the many research projects
he had spearheaded, the changes he had witnessed in the field over the decades, and the community he had
mentored.

Haixun Wang
Instacart
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Letter from the TCDE Service Award Winner

A Life-long Saga with Data Engineering

It is my great honor to receive this prestigious TCDE Service Award in recognition of my life-long contribution
to the data engineering community over 3 to 4 decades. I am retired now but, looking back, I have really
been privileged to serve our community for the advancement of the data engineering discipline through various
opportunities.

ICDE, TCDE, and VLDB Endowment

I had opportunities to serve VLDB and ICDE in various capacities including the general chair (VLDB2006),
honorary general chair (ICDE 2015), a PC co-chair (VLDB2000, ICDE 2006), ICDE steering committee member
(2007-2015), VLDB Endowment trustee twice (1998-2003, 2010-2015), and TCDE executive including chair
and advisor (2011-2022). An early contributor of ICDE from the 2nd conference in 1986 as a PC member, I
also served as a program co-chair or vice chair many times in initial years from 1989 helping to settle the newly
established conference. I am glad that ICDE has continuously been a top conference in the data engineering field.
During my tenure as the TCDE Chair, we significantly broadened TCDE activities raising the level of vitality and
prestige of TCDE. We initiated TCDE Archives restoring many years of institutional memory, newly instituted the
IEEE TCDE Awards, and initiated membership promotion tripling the membership. In the VLDB Endowment,
we have done a lot to promote global database research, but I would like to note on two efforts in particular. The
first one is "broadening"; the scope of database research, in which I participated as an endowment trustee and PC
co-chair (VLDB2000). This effort started from VLDB2000, resulting in the creation of the “Infrastructure for
Information System (IIS)” track in 2002. The IIS track had lasted until 2013 when it was merged back with the
Core DB track to a single one as it fulfilled its original mission. This broadening initiative significantly enlarged
the scope of database research as it is today. The second one is that the endowment eagerly supported the Asia-
Pacific region, then lagging in database research, to help bring it up to a level equivalent to those of the Americas
and European regions—by various programs including the “VLDB database school.” Nowadays, the Asia-Pacific
region stands very strong and competitive with others.

The VLDB Journal

I also had the honor to serve the VLDB Journal for 19 years continuously as a founding editorial board member,
an Editor-in-Chief (EIC), and the coordinating EIC (1990-2009). We emphasized on the strong editorial board,
identifying timely impactful topics for thematic special issues, guaranteeing timely reviews, and increasing
availability. During my tenure as the coordinating EIC, the VLDB Journal ranked the top in the Information
Systems field with the highest impact factor (7.067 in 2008) according to Thomson’s Science Citation Index. I
am glad that nowadays the VLDB Journal stands itself as a top journal in the data engineering field.

Awards Committees

It was an honor to serve many prestigious awards committees including the SIGMOD Jim Gray dissertation
award committee (2007-2012), the VLDB 10-year best paper award committee (’03,’05,’06,’10,‘12), ICDE
Influential paper award committee (2004-2008), TCDE awards committee (2014-2017 as advisor and member),
DASFAA awards committee (2011-2019 as chair and member), and many best paper award committees including
ICDE2006 (as chair) helping to ensure high academic standards.
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Asia-Pacific

I also was privileged to serve the Asia-Pacific community through steering committee activities of DASFAA
including chair, advisor, and awards chair for 15 years (1999-2014). An early contributor from the 2 nd conference
in 1991 as a PC co-chair, I helped establish the current stature of DASFAA and globalize the DASFAA conferences.
I am glad that DASFAA stands itself now as a prestigious data engineering conference serving the world-wide
community as well as the Asia-Pacific one. I also had an opportunity to contribute to PAKDD as a life member
of the steering committee and to the Korea-Japan Database (KJDB) Working Group as a co-founder, chair, and
advisor promoting active academic exchanges through annual KJDB workshops.

Korea

A no less important goal of my effort was to help bring up the level of data engineering research in Korea to a
global one, which was barely sprouting when I first came back to Korea in 1990. I served as the chair of the
Special Interest Group on Databases of the Korea Information Science Society (SIGDB of KISS—later renamed
to be the Database Society of KIISE) in early 90’s and the president of the Korean Institute of information
Scientists and Engineers (KIISE) in ‘20’s, through which I promoted globalization of computer science and data
engineering research in Korea—including hosting VLDB2006, PAKDD2003, and DASFAA2004 in Seoul and
creating the KIISE JCSE journal and IEEE BigComp conference with KIISE scholars. Today I am glad to see
that the Korean data engineering research community stands strong by global standards.

Leadership and Goals

In all my effort in the leadership positions, my primary goals have been to ensure the highest standards for publi-
cations and to vitalize the research activities, which I hope made whatever little contribution to the advancement
of our field. I wish to share this honor with so many colleagues who selflessly took initiatives, helped, and
cooperated in various roles and responsibilities in the course of this decades-long saga. They are true heroes who
are behind this flourishing field of data engineering that we are enjoying today. Thank you very much.

Kyu-Young Whang
Distinguished Professor Emeritus, KAIST

ACM Fellow, IEEE Life Fellow
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Letter from the Special Issue Editor

Graph Neural Networks (GNNs) have propelled the field of graph-based machine learning, unlocking new and
innovative applications in various domains, such as natural language processing, drug discovery, recommendation
systems, and social network analysis. By leveraging the graph structure and node features, GNNs capture
intricate relationships and dependencies in complex networks, resulting in more accurate predictions and a deeper
understanding of the data. These advancements have led to significant breakthroughs in drug design, personalized
recommendations, and community detection in social networks. Moreover, GNNs’ ability to model and analyze
structured data has opened up new avenues for advancing artificial intelligence. Particularly, integrating GNNs
with large language models (LLMs) will elevate their capabilities by incorporating world knowledge from LLMs
and enabling natural language querying of graph-structured data. These advancements are poised to reshape the
landscape of GNN research, paving the way for exciting possibilities and future advancements.

Despite their promise, GNNs have limitations. These include challenges in generalizing to unseen graph
structures, scalability issues with large-scale graphs, difficulties in handling heterophily, limited interpretability
resulting in black-box behavior, complexities in data requirements and feature engineering, as well as concerns
regarding over-smoothing and potential loss of discriminative information. In this special edition, seven carefully
selected papers address these limitations and offer insights into improving GNNs.

Graph based machine learning has been centered on the premise of similar nodes have a stronger relationship.
Heterophily breaks this assumption. The first article by Zhu et al., titled “Heterophily and Graph Neural Networks:
Past, Present, and Future,” investigates the performance of GNNs on graphs exhibiting heterophily. The authors
review various GNN designs proposed for handling heterophilous graphs and explore their connections to research
objectives like robustness, fairness, and over-smoothing avoidance. They emphasize the need for tailored GNN
designs specific to heterophily.

Explainable GNN models are often necessary for legal, regulatory, and compliance purposes. Two articles in
this edition focus on the explainability of GNN models. Kakkad et al.’s “A Survey on Explainability of Graph
Neural Networks” offers a comprehensive overview of explainability techniques for GNNs, categorizing them
based on objectives, methodologies, and application scenarios. Rex Ying’s paper, “Generative Explanation for
Graph Neural Networks: Methods and Evaluation,” proposes a unified optimization framework for generative
explanation methods, highlighting the shared characteristics and distinctions among these approaches.

Representation learning is an important topic in GNN research, and this edition features two articles that delve
into this topic. First, Han et al. presents a graph contrastive learning (GCL) framework aimed at learning graph
representations of homogeneous, heterogeneous, and hypergraphs. They discuss improvements in principled view
generation, which contribute to generalizability, fairness, and interpretability. Next, Seshadri’s paper highlights
the limitations of low-dimensional embeddings in learning representations. The work presents theoretical
underpinnings showing how low-dimensional embeddings cannot capture the fine-grained community structure
of real-world data.

Finally, Wang et al. presents the concept of “Customized Graph Neural Networks.” They propose a novel
framework, Customized-GNN, which generates sample-specific GNN models for individual graphs based on
their structures. The authors show the effectiveness of this framework through comprehensive experiments on
various graph classification benchmarks.

We believe these seven articles offer a sample of the ongoing work, recent advances, and existing limitations in
the field of GNN research. By exploring various aspects of GNNs, such as performance on heterophilous graphs,
explainability techniques, generative explanations, graph contrastive learning, limitations of low-dimensional
embeddings, and customized GNN frameworks, these articles contribute to a deeper understanding of GNNs and
their potential applications. Our special thanks to Yoachen Xie for their feedback on selected submissions and to
Nurendra Choudhary for their role as the web publication chair for this edition.

Karthik Subbian
Amazon
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Unstructured and structured data: Can we have the best of both worlds with
large language models?

Wang-Chiew Tan
Reality Labs Research, Meta

1 Introduction

We are witnessing rapid advancements in the area of large language models (LLMs). A search on Google Scholar
shows there are about 3,910 papers with “large language models” in the titles of the papers in 2022. As of April
12, 2023, there are already 1700 articles with LLMs in their titles. In addition to Google Scholar, we are also
witnessing huge volumes of blog posts, news articles, twitter feeds, and open-source repositories around LLMs
that have sprung up in recent months.

Perhaps ChatGPT (released on November 30, 2022) is the epitome of this LLM revolution that truly unleashed
and showcased, to the masses, the power of what has been brewing in the natural language and machine learning
communities in recent years. There are many things ChatGPT1 can do and does so impressively by generating
intelligent human-like responses to your questions. Through natural language as input and output2, it can
solve non-trival mathematical problems, to a certain extent [2, 19], translate your specification into code in a
programming language of your choice (e.g., [9, 19]), help you write proses in different styles and the list of
accolades goes on [16].

In addition to its ability to answer questions, one can also prompt it with tables, such as CSV files, and ask
questions over the tables in natural language. More interestingly, it is also possible to prompt ChatGPT with both
text and tables and ask questions over the two types of information seamlessly. A little more perseverance in this
exercise quickly reveals that ChatGPT has a limit on how much one can input with each prompt and how much
information it will retain, at least based on my experience when I tried this at the end of March 2023.

It is natural to wonder whether we can use ChatGPT, with some extensions, as a system for storing and
querying data, with natural language as the primary medium of input and output, which it excels at. What are
the challenges of doing so, and how can we, as database practitioners and theoreticians, make progress in this
context?

2 Unstructured and structured data

A lot of data, including text, images, audio, and videos, sits “outside the box” today. Often, such unstructured
data contain multiple modalities simultaneously. For example, we often find text in images [10], and we may also
find text associated with videos and/or images on the web. Unstructured data is prevalent to a large extent because
it is easily authored and shared by users [6] through a variety of apps and authoring tools that are widely available.
Such data is often queried with keyword search and today, they can also be queried in natural language with
LLMs. Typically the cost of devising a schema and setting up a database for querying the data inhibits the use of
a database management system (DBMS) upfront. However, as data scales, the need for structure and semantics
becomes more critical, so as to enable faster and more accurate retrieval of content. For example, organizing
photos by year, trips, or entity types (such as people or pets) adds some structure, which makes answering certain
types of queries much faster and more accurate. However, answering complex queries such as “when was the last
time I went to the coffee shop beside restaurant Italio?” or “how many times did I celebrate Anna’s birthday with

1I use the term “ChatGPT” as a representative for general chat systems based on LLMs for the rest of this article.
2GPT-4 can accept image and text inputs.
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a mango cake?” requires non-trivial reasoning and computation over the data that goes beyond the capabilities of
LLMs today [20, 22].

Enterprise data sits on the other end of the spectrum. It is, for the most part, not authored by everyday users
and is highly structured, often sitting "in a box" in some DBMS. Enterprise data comes with a well-devised
schema and is typically highly optimized to serve a sizable query workload with great efficiency. Such data is
often queried directly with SQL which is adequately expressive for specifying complex queries such as those with
aggregates and recursion. Significant research has also been carried out to enable querying a database with natural
language (e.g., [15, 18]), where questions are posed in natural language and translated into SQL, which can then
be executed over the DBMS. A DBMS is highly optimized to handle large amounts of data and can also perform
transactions with ACID guarantees [4]. However, the core dbms does not understand natural language and it tends
to fall short in its ability to query unstructured data, which are often stored as blobs and adding semantics to the
blobs require additional effort. For example, “show me the sales numbers over Black Friday and Cyber Monday
last year” requires commonsense knowledge on what “sales numbers” mean and how that maps to relevant table
attribute(s), which may be stored under different names in different databases, and when Black Friday and Cyber
Monday occurred. Another example is "find all items with good reviews that are similar to these images," which
requires matching images (semantically) and interpreting what “good reviews” mean based on the data.

Despite the divide in how unstructured and structured data are managed today, the desire to query in natural
language is common to both. At the same time, it is unreasonable and unnatural to expect all unstructured data to
fit in some structure, or vice versa to leverage one system for querying. So, how can we effectively query both
types of data with the help of LLMs, which possess tremendous knowledge and language understanding?

3 The best of both worlds with LLMs?

LLMs contain tremendous parametric knowledge in their model parameters but lack the ability to incorporate
external data (i.e., data outside their model). Hence, if a model is trained based on data up to, say, 2021, it will not
provide correct answers about events or facts that require knowledge after 2021. For example, if someone asks the
question "How were the midterm election results of 2022?" on the webpage with text-davinci-003 [13],
the answer returned is "The midterm election results of 2022 are not yet available, as the election has not yet
taken place." This is because text-davinci-003 is trained with data up to June 2021.

Retrieval-augmented language models (e.g., [3, 8, 25]) overcome this limitation by adopting a semi-parametric
approach to answering queries. They use external data, by first retrieving relevant data from an external data store,
and then attempts to answer a question conditioned on the retrieved data and with their parametric knowledge.
However, as demonstrated by (Table 5, [20]), such systems can still perform poorly on complex queries involving
aggregates and certain types of temporal queries. This is because, for such queries, oftentimes, it is impossible to
fit all necessary data for answering the question into the finite-length token input imposed by language models.
However, as LLMs get even larger or as more advances are made to increase the token limits imposed by language
models, one can anticipate that LLMs will take larger and larger inputs in future and the finite-length token limit
may no longer be an issue soon. At the same time, it is likely that there will be even larger datasets to manage and
an even larger set of data is required for computing the right answers. So this problem will persist, at least for a
while.

A proposal to overcome the above limitation for some types of queries is described in [21]. The paper presents
a vision of using views (e.g., as tables) to structure portions of the underlying data sources. The data sources
may be of different modalities, such as text, images, videos, or even tables. Views are used to surface important
properties about data or associations between data of different modalities and LLMs are used to translate natural
language queries into queries (e.g., SQL in this case) that can be executed over the views whenever possible.
With this proposal, a key question is to understand when a natural language query can be answered with views. If
a query cannot be answered using views, the system falls back to retrieval-augmented language models to answer
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the query to its best effort. Alternatively, the two components (view-based and retrieval-based query answering
components) can also collaborate to produce a final answer. There are several other questions raised in the paper,
such as what views should be materialized? How can one automatically select the “right” views to materialize
given an anticipated query workload? And how can one decide when a question is better answered with views,
the retrieval system, or even both?

In addition to the above, I will highlight below what I believe are some of the more pertinent questions that
may be of immediate interest to the database community:

Query answering with different resources and budget constraints The topic of finding a good query plan
to answer an given query was already discussed in [21]. The core of that system relies on two components —
views and a retrieval-augmented language model for answering queries. It is conceivable to augment the system
with additional components, such as one that generates images given a natural language prompt, which may
sometimes be useful for answering certain queries3. A key question then becomes how do we understand when
to leverage which component for answering a query or have the components collaborate to derive an answer?
Furthermore, LLMs are compute-intensive and can be slow in generating an answer. Some LLMs are also not
free. In addition to deciding how best to answer a query with all the available resources, how can one account for
the strengths and limitations of each component to enumerate and compare plans for computing an answer to a
given query and/or under a given budget? Can we also use a language model to generate a query plan or some
parts of it, similar to how language models have been used to self-reason a sequence of steps to derive answers
from questions (e.g., [23, 24])?

Provenance Provenance is well-studied for certain classes of SQL queries, and is roughly defined as the source
tuples that explains why a tuple is in the result of the query. As mentioned in [21], one should attempt to answer
queries using table views whenever possible by translating the natural language query into a SQL query that can
be executed over the views. This way, it is possible that provenance can be obtained “for free”. However, SQL
queries that are generated by LLMs can be complex, for example, with nested SQL queries and/or aggregates in
the FROM or WHERE clauses. For such cases, can we decompose the generated SQL query into a sequence of
one or more “simpler queries” instead, where the provenance for simpler queries is well-understood and can be
derived easily? If this is not possible, can we strategize a plan for answering the query in a different way so that
provenance can be derived? The problem of finding an alternative query plan is related to the discussion in the
earlier paragraph, but here the focus is on deriving a plan with sufficiently simple steps to enable provenance.

Retrieval-augmented language models also provide more guarantees for providing evidence for their answers.
We are also beginning to witness implementations where sources of answers presented by retrieval-augmented
language models are returned as part of the answers [11]. However, more research needs to be carried out to
attribute provenance to training data (e.g., [1, 7, 14]) to form a more comprehensive picture of provenance for
the provided answer.

Prompt Engineering Analysis LLMs have limits on the number of tokens they can take as input. Even if one
takes advantage of all the tokens one can use, prompting them with more information does not always translate to
better answers as sometimes, presenting the language model with more information confuses the language model.
This means one needs to be judicious in what we send to a language model for it to derive a correct answer of
high quality4.

The answers returned by language models are also sensitive to how they are prompted. Sometimes the same
question phrased slightly differently will result in completely different answers. In prompt engineering, the goal
is to find the best prompt for the task at hand.

Given the maximum token limit of language models, can we optimize the answers returned by a language
model by strategically summarizing relevant data and/or removing irrelevant data? For example, the entity
matching system of [12], which uses a language model, immediately performs entity matching more accurately

3As they say, a picture is worth a thousand words.
4There are varied ways to answer a question correctly. Some are better than others.
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when text descriptions of data are strategically shortened using a simple trick; by keeping only tokens of value,
with high TD/IDF. On a more theoretical side, given a suitable definition of what is a prompt and assumptions
about language models, can we characterize what types of queries that require access to external data can be
answered with one prompt, a finite number of prompts, or an asymptotic number of prompts under a budget of
tokens?

4 Conclusion

The field of LLMs is moving fast, both in research and industry. In addition to [21], [5] have also described the
challenges of answering queries, in the context of augmented language models and data integration, with a single
source or by chaining multiple sources. In [17], the authors described how a DBMS can be extended to leverage
LLMs to improve query answering and also pointed to the direction of a hybrid query answering system involving
both a DBMS and LLMs. I believe this is only the beginning and we will see many more visions, research, and
implementations soon in this area of query answering systems that embrace both unstructured and structured data
through the use of large language models.

Acknowledgements Many of the ideas above are inspired from discussions with Alon Halevy and Yuliang Li.
I also thank many of my colleagues at Meta — Lambert Mathias, Richard Newcombe, and Luna Dong — for
active discussions around large language models from which I have learnt lots and also to Lucian Popa for his
feedback on this article.
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Abstract

Recently, there has been interest in understanding the performance of Graph Neural Networks (GNNs)
on input graphs exhibiting heterophily, or the tendency for nodes of different classes to connect. Initial
findings showed that many standard GNN models struggled on certain benchmark datasets exhibiting high
heterophily, prompting research into existing and novel GNN designs that improved learning in these contexts.
However, further analyses revealed that certain highly heterophilous settings did not challenge GNNs without
these specialized designs, raising questions about the true factors causing performance degradation. In this
work, we first review various GNN designs proposed for handling graphs with heterophily, and examine their
connections to other GNN research objectives such as robustness, fairness, and oversmoothing avoidance. Next,
we conduct an empirical study to investigate the specific heterophilous graph conditions under which GNNs
can and cannot perform effectively. Our analysis reveals that although high heterophily does not universally
impede conventional GNNs, unique challenges in heterophilous graphs, particularly the intertwined effects
with low-degree nodes and complex compatibility patterns, warrant GNN designs specifically tailored to
heterophily. In conclusion, we discuss future research directions aimed at advancing the understanding of the
impact of heterophily on GNNs across a broader range of contexts.

1 Introduction

Graph Neural Networks (GNNs) [51, 43] have gained prominence in recent years due to their remarkable
theoretical and empirical potential for learning powerful representations of graph-structured data. Many real-
world graphs or networks exhibit homophily, where nodes predominantly connect with others belonging to the
same class [27, 58]. While early GNNs demonstrated promise on graphs with this property, they faced challenges
on graphs exhibiting heterophily, where the majority of nodes connect to those of different classes [1, 29, 58].
This prompted investigations into GNN design choices conducive to learning on graphs with heterophily and
sparked interest in developing new GNN models tailored for this property [58, 46, 6, 49, 24, 46, 52, 33].

Beyond improving the effectiveness of GNNs on heterophilous datasets, recent research has shown that
the challenges posed by graphs with heterophily are closely connected to other GNN challenges, including
oversmoothing [19, 5], algorithmic bias [18, 40], and sensitivity to adversarial attacks [60, 8, 44, 42, 17, 25].
Designs addressing heterophily often improve the ability of GNNs to handle these challenges as well, leading to
significant advances in overall GNN capabilities [6, 46, 23, 55, 4].

Another line of work, however, has revisited whether early GNN designs were as ill-suited for learning
from heterophilous graphs as initially thought. On some heterophilous networks, basic Graph Convolutional
Networks (GCNs) [16] have proven competitive with, or even outperformed, models specifically designed for
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heterophily [26, 24]. This has led to the proposition that the challenges posed by some graph datasets are not
best captured by the traditional homophily ratio. Consequently, other works have focused on analyzing the
properties of heterophilous graphs that challenge early GNNs and designing generalized homophily metrics that
offer more insight into the difficulties a graph dataset may present [26, 24]. Thus, a valid debate exists over
whether “heterophily” is a real problem that GNNs face.

Our work revisits this debate with additional analysis. First, we provide a concise review of recent designs for
graphs with heterophily, their connections to other GNN research objectives, as well as generalized heterophily
metrics. We then examine the heterophilous conditions under which conventional GNNs have been shown to be
competitive with those tailored for heterophily. Our analysis reveals that while conventional GNNs can sometimes
succeed in learning on heterophilous graphs without specialized designs, such condition is often broken when the
underlying data has low-degree nodes and complex heterophilous patterns (“compatibility matrices”). Thus, we
believe that continuing to develop GNNs that can learn across the spectrum of low-to-high homophily remains an
important theoretical and empirical problem. We summarize our contributions as follows:

• We review and summarize recent designs proposed for graphs with heterophily (§3.1), providing a unifying
intuition. Moreover, we discuss their use in subsequent GNN works and their implications for other
objectives of GNN research (§3.2), such as fairness, robustness, and reducing oversmoothing.

• We conduct an empirical analysis on the conditions under which conventional GNNs can succeed on
heterophilous datasets (§4). Our analysis demonstrates the unique challenges in achieving high separability
of Neighborhood Label Distribution (NLD) when low-degree nodes (§4.2.2) or complex heterophilous
patterns (§4.2.3) are present. These challenges hinder the effectiveness of conventional GNNs and are best
addressed by GNN designs specifically tailored for heterophily (§4.2.4).

• We discuss future research directions aimed at enhancing our understanding of how heterophily impacts
GNNs across a broader range of contexts (§5). These include moving beyond node classification and
global homophily, introducing more diverse graph datasets and applications, and exploring the connections
between heterophily and heterogeneity.

2 Notation and Preliminaries

Figure 1: Neighborhoods.

In this section, we give the key notations and definitions that we use throughout
our paper. Let G = (V, E) be an undirected, unweighted graph with node set V
and edge set E . We denote a general neighborhood centered around v as N(v)
(G may have self-loops), the corresponding neighborhood that does not include
the ego (node v) as N̄(v), and the general neighbors of node v at exactly i
hops/steps away (minimum distance) as N̄i(v). For example, as shown in Fig. 1,
N̄1(v) = {u : (u, v) ∈ E} are the immediate neighbors of v. We represent
the graph by its adjacency matrix A ∈ {0, 1}n×n and its node feature matrix
X ∈ Rn×F , where the vector xv corresponds to the ego-feature of node v, and
{xu : u ∈ N̄(v)} to its neighbor-features. We further represent the degree
of a node v by dv, which denotes the number of neighbors in its immediate
neighborhood N̄1(v).

We further assume a class label vector y, which for each node v contains a
unique class label yv ∈ Y , and the one-hot encoding onehot(yv) forms the row vectors of label encoding matrix
Y ∈ {0, 1}n×|Y|. We further define Vi as the set of nodes v ∈ V with label yv = i. The goal of semi-supervised
node classification is to learn a mapping ℓ : V → Y , given a set of labeled nodes TV = {(v1, y1), (v2, y2), ...} as
training data.
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Graph Neural Networks (GNNs). From a probabilistic perspective, most GNN models assume the following
local Markov property on node features: for each node v ∈ V , there exists a neighborhood N(v) such that yv
only depends on the ego-feature xv and neighbor-features {xu : u ∈ N(v)}. Most models derive the class label
yv via the following representation learning approach:

r(k)v = f
(
r(k−1)
v , {r(k−1)

u : u ∈ N(v)}
)
, r(0)v = xv, and yv = argmax{softmax(r(K)

v )W}, (1)

where the embedding function f is applied repeatedly in K total rounds, node v’s representation (or hidden state
vector) at round k, r(k)v , is learned from its ego- and neighbor-representations in the previous round, and a softmax
classifier with learnable weight matrix W is applied to the final representation of v. Most existing models differ
in their definitions of neighborhoods N(v) and embedding function f . A typical definition of neighborhood
is N1(v)—i.e., the 1-hop neighbors of v. As for f , in graph convolutional networks (GCN) [16] each node
repeatedly averages its own features and those of its neighbors to update its own feature representation. Using an
attention mechanism, GAT [37] models the influence of different neighbors more precisely as a weighted average
of the ego- and neighbor-features. GraphSAGE [12] generalizes the aggregation beyond averaging, and models
the ego-features distinctly from the neighbor-features in its subsampled neighborhood.
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Figure 2: An example graph (top)
and its empirical class compatibility
matrix H (bottom). It demonstrates
mixed homophily and heterophily,
with node colors represent class la-
bels: nodes in green show strong ho-
mophily, while nodes in orange and
purple show strong heterophily.

Homophily and heterophily. In this work, we focus on heterophily
in class labels. We first define the edge homophily ratio h as a measure
of the graph homophily level, and use it to define graphs with strong
homophily/heterophily:

Definition 2.1 (Edge Homophily Ratio [1, 58]) The edge homophily ra-
tio h = |{(u,v):(u,v)∈E∧yu=yv}|

|E| is the fraction of edges in a graph which
connect nodes that have the same class label (i.e., intra-class edges).

Definition 2.2: Graphs with strong homophily have high edge homophily
ratio h → 1, while graphs with strong heterophily (i.e., low/weak ho-
mophily) have small edge homophily ratio h→ 0.

The edge homophily ratio in Dfn. 2.1 gives an overall trend for all
the edges in the graph. The actual level of homophily may vary within
different pairs of node classes, i.e., there is different tendency of connec-
tion between each pair of classes. For instance, in an online purchasing
network [28] with three classes—fraudsters, accomplices, and honest
users—, fraudsters connect with higher probability to accomplices and
honest users. Moreover, within the same network, it is possible that some
classes exhibit homophily, while others exhibit heterophily; we give an
example in Figure 2. To capture the tendency of connection between each
pair of classes, we define the empirical class compatibility matrix H as
follows:

Definition 2.3 (Empirical Class Compatibility Matrix [58, 57]) The empirical class compatibility matrix H
has entries [H]i,j that capture the fraction of edges from a node in class i to a node in class j:

[H]i,j =
|{(u, v) : (u, v) ∈ E ∧ yu = i ∧ yv = j}|
|{(u, v) : (u, v) ∈ E ∧ yu = i}|

By definition, the class compatibility matrix is a stochastic matrix, with each row summing up to 1.
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Heterophily ̸= Heterogeneity. We remark that heterophily, which we study in this work, is a distinct network
concept from heterogeneity. Formally, a network is heterogeneous [35] if it has at least two types of nodes and
different relationships between them, and homogeneous if it has a single type of nodes (e.g., users) and a single
type of edges (e.g., friendship). The type of nodes in heterogeneous graphs does not necessarily match the class
labels yv, therefore both homogeneous and heterogeneous networks may have different levels of homophily.

3 Progress for Addressing Heterophily in GNNs

In this section, we first present a concise overview of effective design strategies proposed to enhance GNN
performance under heterophily (§3.1), and then discuss the implications of these designs for other GNN research
in robustness, fairness, and reducing oversmoothing (§3.2).

3.1 Effective Designs for Graph Neural Networks on Heterophilous Graphs

We present an overview of the effective design strategies that have been recently proposed to enhance GNN
performance on heterophilous graphs. We initiate our discussion with widely adopted designs (D1-D4) in GNN
architectures for heterophily, three of which were initially explored in [58]. Subsequently, we examine two
emerging designs (D5-D6) introduced by (author?) [46], which offer a novel unified approach to address two
significant challenges faced by GNNs: oversmoothing and heterophily. Our primary focus in this section is to
discuss the design principles and their underlying intuition for improving learning under heterophily without
delving into specific models; we direct interested readers to a comprehensive survey by (author?) [52] for more
details about particular models.

3.1.1 Ego- and Neighbor-embedding Separation

(author?) [58] identified three designs for improving the performance of GNNs on heterophilous graphs and
provided theoretical justifications. At a high level, the first design entails encoding each ego-embedding (i.e.,
a node’s embedding) separately from the aggregated embeddings of its neighbors, since they are likely to be
dissimilar in heterophily settings. Formally, the representation (or hidden state vector) learned for each node v at
GNN layer with depth k is given as:

r(k)v = COMBINE
(
r(k−1)
v , AGGR({r(k−1)

u : u ∈ N̄(v)})
)
, (2)

the neighborhood N̄(v) does not include v (no self-loops), the AGGR function aggregates representations only
from the neighbors (in some way—e.g., average), and AGGR and COMBINE may be followed by a non-linear
transformation. For heterophily, after aggregating the neighbors’ representations, the definition of COMBINE
(akin to ‘skip connection’ between layers) is critical: the ego-embedding and the aggregated neighbor-embedding
should be processed by different sets of weight matrices under COMBINE. A simple way to combine the ego- and
the aggregated neighbor-embeddings without ‘mixing’ them is with concatenation as in GraphSAGE [12]—rather
than averaging all of them as in the GCN model by (author?) [16]. Intuitively, [58] argues that choosing a
COMBINE function that separates the representations of each node v and its neighbors N̄(v) allows for more
expressiveness, where the skipped or non-aggregated representations can evolve separately over multiple rounds
of propagation without becoming prohibitively similar to representations aggregated from neighbors.

While this design was first discussed in [58] as the most critical design in the context of improving GNN
performance under heterophily, it had already been proposed and adopted in prior GNN models such as Graph-
SAGE [12], without addressing the problem of heterophily. GCN-Cheby [9] and MixHop [1] also feature a
variant of this design, with the AGGR function operating on N(v) (with self-loops) instead of N̄(v) (no self-
loops), while still featuring a separate channel for the ego-embedding. Following H2GCN proposed in [58], this
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design has gained wide adaptation for GNNs designed with heterophilous graphs in mind, such as CPGNN [57],
GPR-GNN [6], FAGCN [49], FSGNN [50], JacobiConv [20], GGCN [46], GBK-GNN [10], ACM [24], and
OrderedGNN [33]. More recently, (author?) [30] conducted benchmark experiments on additional heterophilous
datasets and showed that GNNs featuring this design, including GAT [37] and UniMP [32] modified to include
this design, achieve the best results in nearly all cases, which further validates the importance of the ego &
neighbor embedding separation.

3.1.2 Higher-order Neighborhoods

The second design in [58] involves explicitly aggregating information from higher-order neighborhoods in each
GNN layer, beyond the immediate neighbors of each node:

r(k)v = COMBINE
(
r(k−1)
v , AGGR1({r(k−1)

u : u ∈ N̄1(v)}), AGGR2({r(k−1)
u : u ∈ N̄2(v)}), . . .

)
, (3)

where N̄i(v) denotes the neighbors of v at exactly i hops away, and the AGGRi functions applied to different
neighborhoods can be the same or different. This design—first employed in GCN-Cheby [9] and MixHop [1]—
augments the implicit aggregation over higher-order neighborhoods that most GNN models achieve through
multiple layers of first-order propagation based on variants of Eq. equation 2. (author?) [58] attribute the
effectiveness of this design to observations that even though the immediate neighborhoods may be heterophilous,
the higher-order neighborhoods may show homophily in certain datasets (e.g., binary attribute prediction on
2-partite graphs [2, 7]) and thus provide more relevant context to GNNs.

Early implementations of this design, such as GCN-Cheby [9] and MixHop [1], extract embeddings from
higher-order neighborhoods N̄i(v) within each layer by employing “Delta Operators” [1]. These operators differ-
entiate the aggregated embeddings in different orders of the (normalized) adjacency matrices Ai and Ai−1 for
improved computational efficiency. In contrast, H2GCN [58], UGCN [13], TDGNN [39], and OrderedGNN [33]
precisely compute the i-hop neighborhoods N̄i(v) for each node v before applying the AGGRi functions to prevent
mixing nodes from different hops. Notably, the recent approach by (author?) [33] achieves state-of-the-art
classification accuracy on heterophilous datasets by modeling message passing within higher-order neighborhoods
using a rooted-tree hierarchy, and aligning segments of variable length in the resulting node embeddings with
specific neighborhood orders.

3.1.3 Combination of Intermediate Representations

The third design proposed in [58] combines the intermediate representations of each node at the final layer:

r(final)
v = COMBINE

(
r(1)v , r(2)v , . . ., r(K)

v

)
. (4)

This approach explicitly captures both local and global information using COMBINE functions that process
each representation individually, such as concatenation or LSTM-attention [45]. This design was initially
introduced in jumping knowledge networks [45] and demonstrated to enhance the representation power of GCNs
under homophily. Intuitively, each GNN layer gathers information with varying degrees of locality—earlier
layers focus on local information, while later layers increasingly capture global information (implicitly, through
propagation). Similar to D2 (which models explicit neighborhoods), this design models the distribution of
neighbor representations in low-homophily networks more accurately. It also allows the class prediction to
leverage different neighborhood ranges in different networks, adapting to their structural properties.

The application of this design is often linked to graph spectral theory: (author?) [58] provided a theoretical
justification for this design from the perspective of graph spectral filtering. Building upon this foundation,
GPR-GNN [6], FAGCN [3], and ACM [24] further enhance GNN performance under heterophily by develop-
ing additional graph filters and mixture mechanisms to utilize embeddings generated with varying frequency
components at the final layer, in conjunction with this design.
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3.1.4 Similarity-based Attention and Neighbor Discovery

The designs identified in [58] focus on boosting the effectiveness of message passing on heterophilous graphs
without modifying the underlying structure. An alternative approach, however, is to go beyond the original graph
adjacency and discover additional connections between the nodes in the graph, based on the similarity their
original or latent features (e.g., structural embeddings), which replace or augment the original heterophilous
structure of the graph in the message passing. Specifically, UGCN [13], SimP-GCN [14], NL-GNN [22], HOG-
GCN [38] and GPNN [47] update the message-passing graph for GNNs by removing or downweighting the
heterophilous edges in the original graph (i.e., edges that connect nodes with dissimilar features or structural
embeddings), while introducing newly discovered connections that exhibit strong homophily. On the other hand,
Geom-GCN [29] and WRGNN [36] leverage for each node both its original graph neighborhood and the derived
“structural neighborhood” based on proximity of structural node embeddings in order to augment the message
passing and aggregation process.

3.1.5 Signed Messages & Gated Kernel

In most GNN models [16, 37], messages are positively aggregated from neighbors and transformed using a single
kernel or weight matrix. However, in heterophilous graphs, this may degrade GNN performance when messages
from neighbors of different classes are mixed [58, 46]. Although attention-based GNNs, such as GAT [37], can
theoretically reduce aggregation weights on heterophilous edges, they may still accumulate noise in the generated
embeddings in practice.

An intuitive solution to address this issue is to learn signed messages (e.g., GGCN [46] and GReTo [54]) or
gated kernels (e.g., GBK [10]) that separate message passing between homophilous intra-class and heterophilous
inter-class edges. (author?) [46] suggested that ideally, messages from neighbors of a different class should be
multiplied by a negative sign (“negative messages”), while messages from neighbors of the same class should
remain unchanged. However, ground truth node labels are inaccessible in real scenarios, and any approximated
sign function may introduce errors. To identify conditions when signed messages can enhance node classification
performance, [46] introduced the concept of “error rate” that quantifies the portion of non-ideal messages and
analyzed node classification performance under various error rates and homophily levels. The benefits of using
signed messages can also be interpreted from the perspective of graph spectrum: signed messages allow negative
mixture of certain frequency components [49, 6], helping models better capture high-frequency components
in node features. This is especially beneficial for learning on heterophilous graphs as they contain abundant
high-frequency components in their node features, unlike homophilous graphs [58].

From the perspective of practical model design, GGCN [46] and GReTo [54] used proximity between node
features to approximate the sign function. As an alternative to signed messages, (author?) [10] proposed a gated
bi-kernel design that applies separately to the message passing of homophilous and heterophilous edges, and
adopted a learnable gate function to distinguish between the two types of edges based on the node features.

3.1.6 Degree Corrections

Zhu et al. [58] first noted that the performance divide between low- and high-degree nodes is exacerbated
on heterophilous graphs (c.f. Figure 5). Later, (author?) [46] provided a thorough theoretical and em-
pirical analysis of how the interplay of degrees and homophily levels affects the node classification accu-
racy. Specifically, two node-level properties were defined: relative degree θ̄u, which evaluates the degree
of a node compared to its neighbors’ degrees; and node-level homophily hu, which captures the tendency
of a node to have the same class as its neighbors. Formally, the relative degree of a node u is defined

as θ̄u ≡ EA|du(
1
du

∑
v∈N1(u)

θuv|du),where θuv ≡
√

du+1
dv+1 ; and the node-level homophily hu is defined as

hu ≡ P(yu = yv|v ∈ N1(u)). The authors discovered that nodes with higher relative degrees outperform the
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nodes with lower ones under certain conditions of node features when the design of signed messages (D5) is
employed. To improve the performance of nodes with lower relative degrees, they proposed a degree correction
strategy which learns to virtually increase the relative degree of the nodes via structure-based edge attention
weights τ luv = softplus

(
λl0

(
1
θuv
− 1

)
+ λl1

)
, where λl0 and λl1 are the learnable parameters at the l-th GNN

layer. If θuv is small, a large τ luv is learned, which compensates for the current relative degree.

3.2 Heterophily and Other Objectives of GNN Research

Numerous studies have demonstrated that tackling the limitations of GNNs under heterophily not only enhances
their performance on heterophilous datasets, but also improves their properties in other aspects of GNN research.
In this section, we provide an overview of the connections that have been investigated between heterophily and
adversarial robustness, algorithmic fairness, and oversmoothing, all of which are also important for deployment.

Heterophily & Robustness. Recent works have shown that GNNs have a high sensitivity to adversarial
attacks [60, 8, 44, 42, 17, 25]. While most previous works have focused on naturally-occurring heterophily,
heterophilous interactions may also be introduced as adversarial noise: as many GNNs exploit homophilous
correlations, they can be sensitive to changes that render the data more heterophilous. This relation between
adversarial structural attacks and the change of homophily level was first suggested though empirical analyses
on homophilous graphs [42, 15], and was later formalized by (author?) [55] with theoretical and additional
empirical analyses. Specifically, (author?) [55] showed that on homophilous graphs, effective structural attacks
lead to increased heterophily, while, on heterophilous graphs, they alter the homophily level contingent on
node degrees: for low-degree nodes, attacks increasing the heterophily are still effective, but for high-degree
nodes, attacks decreasing the heterophily will be effective. By leveraging these relations, the authors further
demonstrated that some key architectural designs for effectively handling heterophily—separate aggregators for
ego- and neighbor-embeddings (D1) and Combination of Intermediate Representations (D3)—also improve the
robustness of GNNs against attacks. Following these relations, a follow-up work proposed a defense framework
called CHAGNN that improves the robustness of GNNs against Graph Injection Attacks (GIA) by iteratively
pruning the heterophilous edges in the graph and retraining the GNN model [59].

Heterophily & Fairness. Algorithmic fairness is a critical aspect of machine learning that ensures a model
does not disproportionately underperform for certain input classes. In the context of link prediction in networks,
fairness is desirable to prevent the prediction accuracy from being influenced by sensitive node attributes, such as
race or religion in a social network context. To promote fairness in Graph Neural Networks (GNNs), previous
research has suggested learning a fair reweighting or rewiring of the graph structure alongside the parameters of the
GNN [18, 34]. Theoretical analysis has shown that the effectiveness of these approaches depends on the weights
of the intergroup edges (essentially, heterophilous edges according to sensitive attribute), along with the group
sizes and other structural attributes of the graph. For node classification, the global homophily ratio of a graph has
revealed to be crucial in providing bounds for group fairness concerning a sensitive attribute [40]. Other research
has examined GNN fairness with respect to local homophily ratios within individual node neighborhoods [23],
revealing that variations in local homophily can impact model fairness, and that GNN designs for heterophily can
empirically enhance group fairness.

Heterophily & Oversmoothing. The oversmoothing problem relates to the degenerated performance of GNNs
with an increasing number of layers [19]. Though both the heterophily and oversmoothing problems are associated
to the unsatisfactory performance of GNNs, they do not appear to be related at a first glance. However, evidence
from both empirical [5, 6] and theoretical analysis [46, 4] has found that the two problems may share the same
root causes and may be addressed with the same approaches. (author?) [5] addressed the oversmoothing problem
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via initial residual and identity mapping, but their designs were found empirically to help improve the node
classification performance on heterophilous graphs. Vice versa, (author?) [6] addressed the heterophily problem
via generalized PageRank, but they showed that their designs are also effective for addressing the oversmoothing
problem. (author?) [46] are the first to explicitly analyze the relationship between the two problems. They found
that the two problems can be jointly explained by analyzing the changes in the node representations over the
layers, and proposed two designs, namely signed messages (D5) and degree corrections (D6), to address the two
problems jointly. Later, (author?) [4] used cellular sheaves theory to explain the two problems jointly. They
found that the underlying geometry of the graph is related to the performance of GNNs in heterophilous settings
and their oversmoothing behavior, and many GNNs implicitly assume a graph with a trivial underlying sheaf.
These observations and analyses have shown promising results in addressing the two problems jointly, which is
an interesting direction to explore further.

4 Revisiting When is Heterophily Challenging for GNNs

While many works have focused on designing new GNN models with improved performance under heterophily,
few of them have probed whether heterophily persistently presents challenges for GNNs. Some of these works
have found that GNNs without the aforementioned heterophilous designs (e.g., SGC [41], GCN [16], GAT [37])
can exhibit better or equivalent performance to GNNs possessing such designs on certain datasets [26, 24]. In
this section, we first summarize the main findings of these works, and show that the complexity of heterophily can
be measured based on the distinguishability of the Neighborhood Label Distributions (NLDs).1 We then highlight
two key factors, low-degree nodes and complex compatibility matrices, which deteriorate the distinguishability of
the neighborhood label distributions when coupled with heterophily, thus making heterophily a unique challenge
for GNNs in most cases.

4.1 Improved Measures for Complexity of Heterophily

While many works measure the level of homophily/heterophily by the ratio of edges that connect nodes with the
same class label (e.g., edge homophily in Dfn. 2.1, node homophily [29], or class homophily [21]), recent works
have shown that graphs with high heterophily are not always challenging for GNNs without heterophilous designs.
Through independent analyses, (author?) [26] and (author?) [24] arrive at the conclusion that the complexity of
heterophily is closely related to the distinguishability of the neighborhood label distributions, which we define
next.

Definition 4.1 (Neighborhood Label Distribution (NLD)) Given Y as the label encoding matrix defined in §2
for nodes V in graph G, the neighborhood label distribution of node v is defined as D(v) = 1

|N1(v)|
∑

u∈N1(v)
Yu,

where Yu = onehot(yu) is the v-th row of the label encoding matrix Y.

We now rephrase the two metrics proposed by (author?) [26] and (author?) [24] with the above definition,
both of which measure the complexity of heterophily by quantifying the distinguishability of D(v).

Definition 4.2 (Class Neighborhood Similarity (CNS) [26]) The class neighborhood similarity between classes
i, j ∈ Y is defined as the average cosine similarity between the NLDs D(v),D(u) of nodes v, u in class i and j,
respectively, i.e.,

S(i, j) =
1

|Vi||Vj |
∑
v∈Vi

∑
u∈Vj

simcos(D(v),D(u)), (5)

1In parallel with these studies, (author?) [46] conducted a theoretical analysis of performance degradation in heterophilous networks
under the “non-swapping” condition. This condition emerges when the neighboring representations for each node are insufficient to cause
the interchange of node representations from two distinct classes across their separation plane in the latent space. Conversely, the case of
“easy heterophily” [26, 24] that we address in this section corresponds to the “swapping” condition as articulated in [46].
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where Vi and Vj are the sets of nodes with class label i and j, and simcos(·) is the function of cosine similarity. We
refer to the case of i = j as intra-class neighborhood similarity (intra-CNS) and the case of i ̸= j as inter-class
neighborhood similarity (inter-CNS).

Definition 4.3 (Graph Aggregation Homophily [24]) Define the average similarity score of a node v ∈ V to
nodes Vi with class label i ∈ Y as g(v, i) = mean ({sim(D(v),D(u)) : v, u ∈ V, yu = i}), where sim is a
function (e.g., dot product) that measures the similarity between two neighborhood label distributions. The graph
aggregation homophily is then defined as the ratio of nodes v ∈ V where the neighborhood label distribution
D(v) is more similar for nodes in the same class than for nodes in any other class, i.e.,

hagg =
1

|V|

∣∣∣∣{v ∈ V : g(v, yv) ≥ max
j ̸=yv∈Y

g(v, j)

}∣∣∣∣ . (6)

We note that while hagg measures the proportion of nodes with NLD exhibiting greater similarity (regardless of
the extent) to nodes within the same class compared to nodes from different classes, it does not quantify the degree
of similarity between NLDs of nodes within the same class or across different classes, which is captured by the
CNS metric. Consequently, as we show in our empirical analysis in §4.2.4, CNS provides a more comprehensive
and accurate assessment of the complexity of heterophily on synthetic datasets, and thus we focus on CNS in our
empirical analysis below.

4.2 Factors Determining the Complexity of Heterophily

It has been shown that it is possible to have graphs with high level of heterophily but low complexity for GNNs
as measured by CNS or aggregation homophily [26, 24]: when nodes in the same class have strong similarity
with respect to neighborhood label distributions, and nodes from different classes have weak or no similarity,
GCN models are able to perform well due to the high distinguishability of the neighborhood label distributions,
even when the graphs are heterophilous. These are important findings, but this type of analysis does not provide
a complete picture of the complexity of heterophily for GNNs, as the high distinguishability of the class label
distributions under heterophily is largely dependent on key graph properties, such as degree distributions and the
compatibility matrices that drive the generation of the graph. In this section, we provide a detailed analysis of the
above two factors that determine how challenging the data heterophily is for GNNs.

4.2.1 Motivating Example: Differences in Synthetic Datasets

Prior research exploring the impact of heterophily on GNN performance frequently incorporates experiments
on synthetic datasets with controlled homophily/heterophily levels [1, 58, 26, 24]. In line with this research,
in this section we provide a motivating example based on synthetic data that showcases the role of the two
factors—namely, degree distribution and compatibility matrices—in characterizing how challenging heterophily
is for GNN models. We analyze the seemingly contradictory observations arising from the results on two distinct
synthetic datasets based on the Cora dataset: syn-cora [58] and necessity-cora [26].

Before diving into the analysis of the factors that affect the complexity of heterophily, we first provide a brief
overview on the setup and key results on the two synthetic datasets [58, 26].

Data Generation: syn-cora vs. necessity-cora. While both synthetic datasets are generated based
on Cora, their generation processes are largely different. The syn-cora dataset [58, 57] follows a modified
preferential attachment process. In this process, the probability of a new node u with class label c to attach to
existing node v with class label c′ is proportional to: (1) the ratio Dc,c′ specified in the underlying compatibility
matrix D, which determines the homophily level in the resulting graph, as empirically measured by the edge
homophily ratio h (Dfn. 2.1) and the compatibility matrix H (Dfn. 2.3), and (2) the degree dv of the existing
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Figure 3: Semi-supervised node classification accuracy of GCN and MLP observed in [26] and [58] on
necessity-cora and syn-cora, respectively, under increasing level of heterophily (i.e., decrease of
the edge homophily ratio h).

node v. This process results in a power-law degree distribution in the generated graph. On the other hand,
necessity-cora [26] varies the level of homophily by adding heterophilous (cross-label) edges on top
of the existing (homophilous) edges in Cora. To control the randomness of the added heterophilous edges,
necessity-cora adds: (1) non-random heterophilous edges based on an underlying compatibility matrix D,
and (2) random edges that do not follow the underlying compatibility matrix D, but are controlled by a noise
parameter γ.

Observations: syn-cora vs. necessity-cora. When the level of heterophily is varied, largely different
observations are reported on the two sets of synthetic graphs with respect to the GNN performance: [26] shows that
on synthetic graphs with none or few randomly-added heterophilous connections (i.e., with the noise parameter
γ close to 0), the performance of GCNs can even increase as the level of heterophily in the graph gets stronger
(i.e., when the edge homophily ratio h decreases), as shown in Figure 3(a); on the other hand, [58] shows that
the performance of GCNs significantly decreases as the heterophily increases, which we show in Figure 3(b).
As our follow-up analysis below shows, these seemingly contradictory results are due to the different processes
used to generate the synthetic graphs, which lead to very different graph properties (i.e., degree distribution, class
compatibility matrix); these in turn affect the model performance. We analyze the effects of the (F1) degree
distribution in §4.2.2 and the (F2) compatibility matrix in §4.2.3.

4.2.2 Factor (F1): Degree Distributions & Heterophily

In §4.1, we revisit the findings from recent works [26, 24] that the complexity of heterophily for GNNs is largely
determined by the distinguishability of the Neighborhood Label Distributions (NLDs) of nodes with different
class labels. Under the generation process of necessity-cora with noise γ = 0 (§4.2.1), when classes are
different c ̸= c′ and the distributions Dc and Dc′ are distinguishable from each other, one would state that the
GCN models can perform well to distinguish the nodes with class label c from the nodes with class label c′ from
the perspective of NLD distinguishability.

However, we argue that the aforementioned statement ignores the critical factor of degree for each node
v ∈ Vc that impacts the quality of the samples of the distribution Dc: when all the nodes have sufficiently large
degrees, it is expected that Dc can be recovered well in the node neighborhoods due to sufficient samples of
the distributions; however, when many low-degree nodes are present in the graph (which is the case for many
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real-world graphs, which usually follow power-law degree distributions), Dc may not be consistently recovered in
the neighborhood of the low-degree nodes under heterophily due to the insufficiency of the samples. This affects
the intra-class and inter-class similarity of the NLDs in heterophilous settings.

Empirical Analysis. We can further explain how low-degree nodes affect the intra-class and inter-class
distinguishability of the NLD for GCNs under heterophily with a simple empirical analysis: Suppose the
neighborhood label distributions Dc and Dc′ for two classes c ̸= c′ are given in the red dashed boxes in Figure 4.
Following the distributions Dc and Dc′ , we randomly generate the NLDs of 200 nodes with degree 2 for both
classes c and c′; then, we sample the labels of their 2 neighbors, and we visualize a random set of 5 of the 200
synthetic NLDs in Figure 4(a)-(b), for Dc and Dc′ , respectively. We note that since GCN aggregators additionally
consider a self-loop for each node, the NLD observed by GCN models should be considered with self-loops added
to the graphs, even when Dc and Dc′ dictate purely heterophilous connections. To visualize the contributions of
self-loops in the NLDs, we show them in gray in Figure 4.

• Case 1: Low-degree nodes & heterophily. Figure 4(a)-(b) show that the existence of low-degree nodes reduces
the distinguishability of the NLDs. Specifically, we observe that: (1) the intra-class NLDs have a high variance
and can be very different from the corresponding ground-truth distributions (even when not considering the
self-loops). In fact, the mean and standard deviation of the intra-class pairwise cosine similarity among the 200
synthetic neighborhoods of class c and c′ are 0.79± 0.24, where the high standard deviation reflects the strong
variance among the sampled neighborhood distributions. (2) Many of the NLDs from nodes in class c, c′ are
the same when considering the self-loops, which affects their distinguishability across different classes; the
inter-class pairwise cosine similarity for our synthetic neighborhoods of class c and c′ is 0.79± 0.17 in our
analysis, which is the same as the intra-class pairwise similarity with even smaller standard deviation.

• Case 2: High-degree nodes & heterophily. On the other hand, when the node degrees are high, the NLDs are
more similar to the underlying distributions Dc and Dc′ (even with self-loops considered) and thus have much
smaller variances. In our example, we randomly sampled NLDs of another 200 nodes with degree 10 (instead
of 2), and illustrate them for 5 randomly selected nodes in Figure 4(c)-(d). The mean and standard deviation of
the pairwise cosine similarity among the 200 generated neighborhoods of class c and c′ are 0.93± 0.09, while
the inter-class pairwise similarity is only 0.64± 0.15. These changes in intra-class and inter-class similarities
can also be observed in the sampled distributions shown in Figure 4(c)-(d).

• Case 3: Low- / high-degree nodes & strong homophily. We note that the presence of low-degree nodes does not
affect the similarity of NLDs as much in strong homophilous settings as in the heterophilous settings. To show
this empirically, we similarly generate the neighborhood label distributions of 200 nodes with degrees of 2
for class c, c′, but this time with distributions Dc and Dc′ showing strong homophily. In Figure 4(e)-(f), we
observe that, unlike the heterophilous settings, almost all synthetic distributions of nodes from the same class c
(or c′) are close to the expected distribution Dc (or Dc′); most neighbors (considering self-loops) have the same
class label c (or c′) as the ego node, even for low-degree nodes. Numerically, the intra-class pairwise cosine
similarity among the synthetic neighborhoods of class c and c′ is 0.88± 0.15 and 0.91± 0.13, respectively. On
the other hand, the inter-class pairwise similarity is 0.21± 0.29, which shows good separability. This example
shows that the presence of low-degree nodes is a challenge that is more pronounced in heterophilous
settings than in homophilous settings.

Summary & connections to other works. From the above analysis, we see that the existence of low-degree
nodes can lead to weak distinguishability of inter-class NLDs, thus affecting the performance of GCNs.
The significant performance gap between low-degree and high-degree nodes is also observed in [58], as shown
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Case 1: Low-degree nodes & heterophily

(a) Heterophilous distribution Dc of class c (in red box)
and 5 sampled NLDs for nodes with degree 2.

(b) Heterophilous distribution Dc′ of another class c′ (in
red box) and 5 sampled NLDs for nodes with degree 2.

Case 2: High-degree nodes & heterophily

(c) Heterophilous distribution Dc of class c (in red box)
and 5 sampled NLDs for nodes with degree 10.

(d) Heterophilous distribution Dc′ of another class c′ (in
red box) and 5 sampled NLDs for nodes with degree 10.

Case 3: Low-degree nodes & homophily

(e) Homophilous distribution Dc of class c (in red box)
and 5 sampled NLDs for nodes with degree 2.

(f) Homophilous distribution Dc′ of another class c′ (in
red box) and 5 sampled NLDs for nodes with degree 2.

Figure 4: (Factor F1) Degree Distributions: Per case, we sample 200 NLDs from distribution Dc (and Dc′) for
nodes with specific degrees, and visualize 5 sampled NLDs. The gray parts correspond to the contributions of
self-loops in the NLDs aggregated by GCN. (a)-(b) Case 1: Low degrees reduce the distinguishability of NLDs:
for all synthetic NLDs of c and c′, inter-CNS is S(c, c′) = 0.79± 0.17, with even smaller standard deviation than
intra-CNS S(c, c) = S(c′, c′) = 0.79± 0.24. (c)-(d) Case 2: Higher node degrees improve the distinguishability
of NLDs: for all synthetic NLDs of c and c′, inter-CNS is S(c, c′) = 0.64 ± 0.15, which is smaller than the
intra-CNS S(c, c) = S(c′, c′) = 0.93 ± 0.09. (e)-(f) Case 3: Low node degrees matter less under homophily:
for all synthetic NLDs of c and c′, inter-CNS is S(c, c′) = 0.21± 0.29, which is significantly smaller than the
intra-CNS S(c, c) = 0.88± 0.15 and S(c′, c′) = 0.91± 0.13.
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Figure 6: Degree distributions of cora and necessity-cora. As the level of heterophily increases (i.e.,
edge homophily ratio h decreases), the degrees for all the nodes increase in necessity-cora, and the degree
distributions move further away from the original degree distribution of cora. The shift in degree distribution
explains the increase of GCN performance with the level of heterophily for the γ = 0 case in Figure 3(a).

in Figure 5. As a follow-up to our analysis2, (author?) [26] formalized the effects of node degrees on the
distinguishability of NLDs for Contextual Stochastic Block Model (CSBM), and derived a lower bound of node
degrees for GCN-style aggregation to improve the distinguishability of NLDs.
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Revisiting the necessity-cora dataset. The degree distributions of
necessity-cora also explain why GCN performance starts to increase
as the level of homophily h decreases in the range of h < 0.5 (for noise
γ < 0.5): the necessity-cora graphs with homophily ratio h < 0.5
have a significantly higher average degree compared to their corresponding
base graph cora, as a large amount of edges needs to be added in order
to decrease the edge homophily ratio in the (strongly homophilous) base
graph. In Figure 6, we show the degree distribution of base graph cora in
comparison to the degree distributions of the necessity-cora graphs
with γ = 0 (i.e., when all the heterophilous edges are added according to
the underlying compatibility matrix D, without any randomness) for varying
edge homophily ratio h. We see that as h decreases, the degrees for all
nodes in the graph increase, and the degree distributions move further away
from the degree distribution of cora; for the h = 0.077 instance, even the
minimum node degree in the necessity-cora graph has exceeded the
degree of most nodes in cora. In our additional empirical analysis (§4.2.4),
we show that the lack of low-degree nodes is indeed a necessary condition that contributes to the observed high
performance of GCNs on necessity-cora.

2These analyses were first made available in the form of a blog post: Zhu, J. and Koutra, D. (2021) Revisiting the problem of
heterophily for GNNS. Available at: https://www.jiongzhu.net/revisiting-heterophily-gnns/.
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(a) Compatibility matrix with γ = 0
and h = 0.16 in necessity-cora.
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(b) Compatibility matrix with γ = 0.8
and h = 0.16 in necessity-cora.
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(c) Compatibility matrix of cora with
strong homophily.

Figure 7: Comparison of compatibility matrices H of different synthetic graphs in necessity-cora with
homophily ratio h = 0.16 but different noise ratio γ, with comparison to the compatibility matrix of cora (the
homophilous graph which necessity-cora is based on).

4.2.3 Factor (F2): Compatibility Matrices & Heterophily

Another factor that affects the distinguishability of NLDs is the distinguishability of the compatibility matrices
for different classes: Under the generation process of necessity-cora (§4.2.1), when the node degrees are
sufficiently high in the generated graphs (Case 2 of §4.2.2), the NLDs for nodes v ∈ Vc are expected to be
similar to Dc. In this case, the distinguishability of NLDs between nodes in class c and c′ mostly depends on the
distinguishability of Dc and Dc′ , which can also be observed empirically in the compatibility matrices H of the
generated graphs. In this section, we discuss how complex compatibility patterns in the rows of H can reduce the
distinguishability of NLDs and contribute to the complexity of heterophily, in addition to (F1) node degrees.

Observations on heterophilous datasets: necessity-cora under different noise levels. The differences
in the observed performance of GCN on necessity-cora under different noise levels γ (i.e., randomness
of the heterophilous edges) in Figure 3(a) can be explained by the differences in the distinguishability of the
empirical compatibility matrices H (and the underlying compatibility matrices D by extension). In Figure 7,
we visualize the compatibility matrices of graphs from necessity-cora with homophily ratio h = 0.16,
and compare between graphs with noise levels γ = 0 and γ = 0.8: (1) when γ = 0, the compatibility matrices
in necessity-cora are formulated to resemble a “loop”, where almost all connections for nodes of class
c are limited to the two adjacent classes in the “circle” of classes (e.g., nodes in Class 2 almost exclusively
connect to nodes in Class 1 and 3 in Figure 7(a)). This “loop”-pattern helps maintain the high distinguishability
of compatibility patterns among different classes, and thus provides an easier node classification problem for
GCNs compared to more general heterophilous patterns. (2) In comparison, when γ = 0.8, the heterophilous
connections of class c are distributed to all classes c′ ̸= c, and the rows Hc of the compatibility matrix are
less distinct, which is similar to the case of syn-cora (c.f. Figure 8(h)). The high similarity of Hc among
different classes makes it challenging to distinguish different classes from the NLDs even for high-degree nodes,
as many heterophilous connections from class c are uniformly distributed to other classes c′ ̸= c. This explains
the decrease of GCN accuracy under the same homophily level (and degree distribution3) in necessity-cora
when γ increases, as shown in Figure 3(a).

Observations on homophilous datasets. We also note that, echoing the observation in [26], the distinguisha-
bility of the rows in compatibility matrix H is guaranteed for graphs with strong homophily, as the largest
entries in the distributions are concentrated on the diagonal elements of the compatibility matrix H as shown

3Graphs with the same edge homophily ratio h in necessity-cora also have highly similar degree distributions by extension,
since the level of homophily is varied by edge addition.
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in Figure 7(c). Thus, the distinguishability of the compatibility matrices is also a challenge specific to
heterophilous settings.

4.2.4 The Interplay of Degree Distribution, Compatibility Matrices & NLDs

In Sections §4.2.2–4.2.3, we discussed two key factors that determine how challenging heterophily is for GNN
models. Here, we explore the interplay of these factors and NLDs via an empirical study. To this end, we construct
additional synthetic data with properties complementary to those in [58, 26].

Data generation: “loop”-style schema & power-law degree distribution. To study the interplay of factors
(F1) & (F2), we generate synthetic graphs which have: (1) (mostly) “loop”-style compatibility matrices (where
nodes in each class only connect to nodes in its nearby classes, as if all classes are arranged in a circle), e.g.,
Figure 7(a). This schema is similar to that used for necessity-cora; we leverage the same or similar
compatibility matrices as specified in [26] in the generation process. (2) the same power-law degree distribution
as syn-cora by following the same modified preferential attachment generation process as in [58, 57].

We refer to these synthetic graphs as syn-cora-loop, and consider two variants: syn-cora-loop-7
with 7 classes as in necessity-cora, and syn-cora-loop-5with 5 classes as in syn-cora. In Figure 8,
we visualize the degree distributions and compatibility matrices of our syn-cora-loop datasets, along with
the visualizations for necessity-cora and syn-cora.

Models. We assess the influence of degree distributions and compatibility matrices on the performance of three
GNN models: H2GCN [58], GCN [16], and MLP. H2GCN represents GNN models that incorporate one or
more heterophilous designs as discussed in §3.1; we examine two variants of H2GCN, namely H2GCN-1 and
H2GCN-2, with one or two layers of aggregation respectively. In contrast, GCN serves as the GNN baseline
model which does not incorporate any heterophilous designs, while MLP functions as the graph-agnostic baseline
that does not consider the graph structure. For GCN, we adopt the same hyperparameter tuning as in [26], and
further tune the dimension of hidden embeddings between 16 and 64. For H2GCN, we only tune a subset of the
hyperparameters that we tune for GCN (16 vs. 112 combinations), which are more hyperparameter combinations
than those explored in [58]. For each model, we present the mean and standard deviation of the classification
accuracy under five runs with different random seeds per dataset.

Data setup. Our experiments incorporate four sets of synthetic graphs: necessity-cora provided by (au-
thor?) [26], syn-cora from [58], and the newly generated syn-cora-loop-7 and syn-cora-loop-5.
For syn-cora, we select the graph with homophily level h = 0; for necessity-cora, we select the graph
with noise parameter γ = 0 and h nearest to 0 (i.e., h = 0.03) as permitted by its generation process. We
generate syn-cora-loop-7 and syn-cora-loop-5 with h = 0. In Table 1, we present the statistics for
each dataset; the degree distributions and compatibility matrices for all datasets are visualized in Figure 8. For
the train/validation/test splits, we utilize the provided splits for necessity-cora [26], and create splits for
the other datasets using identical sizes as in necessity-cora. Specifically, we randomly select 20 nodes per
class for the training set, 500 nodes throughout the graph for the validation set, and allocate the remaining nodes
to the test set4.

GNN performance & graph properties. In Table 1, we list the performance of each model along with the
corresponding properties of the graphs. We observe the effects of the interplay between low-degree nodes and
more complex compatibility matrices to the performance of GNN models when the graphs share similar edge
homophily ratio h (0 or as close to 0 as the generation process allows):

4This setup is identical to [16], but differs from [58, 57] (where Figure 3(b) was generated), which utilized a larger training set.
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(a) Degree distribution of necessity-cora (γ = 0).

Compatibility matrix of necessity-cora with
γ=0 and edge homophily ratio h=0.08
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(b) Compatibility matrix of necessity-cora (γ = 0).
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(c) Degree distribution of syn-cora-loop-7.

Compatibility matrix of necessity-cora-ours-7
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(d) Compatibility matrix of syn-cora-loop-7.
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(e) Degree distribution of syn-cora-loop-5.

Compatibility matrix of necessity-cora-ours-5
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(f) Compatibility matrix of syn-cora-loop-5.
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(g) Degree distribution of syn-cora.

Compatibility matrix of syn-cora with h=0.00
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(h) Compatibility matrix of syn-cora.

Figure 8: Synthetic networks used to study the interplay of factors (F1) and (F2). syn-cora-loop datasets
have the “loop”-style structure of necessity-cora graphs and the power law degree distribution of the
syn-cora graphs.
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Table 1: Dataset statistics and effectiveness of models for node classification. We report the min, median, and
max values for the intra-class and inter-CNS, and the mean accuracy ± standard deviation for each model. The
best result for each dataset is highlighted in blue.

necessity-cora syn-cora-loop-7 syn-cora-loop-5 syn-cora

#Nodes 2,708 2,708 1,490 1,490
#Edges 132,196 5,394 2,968 2,968
# Classes 7 7 5 5
Edge Hom. h 0.03 0 0 0

(F1) High-degree Nodes Only ✓ ✗ ✗ ✗

(F2) Compatibility “Loop” ✓ ✓ ✓ ✗

Heterophily Type Easy Challenging Challenging Most challenging

Agg. Hom. hagg 1.00 0.90 1.00 0.41
Intra-CNS (min/median/max) 0.97/0.99/1.00 0.79/0.82/0.84 0.78/0.80/0.80 0.62/0.63/0.64
Inter-CNS (min/median/max) 0.00/0.08/0.52 0.00/0.31/0.57 0.30/0.39/0.47 0.53/0.57/0.60

H2GCN-2 99.26± 0.28 88.45± 1.26 87.98± 1.49 68.95± 1.88
H2GCN-1 93.48± 0.93 80.85± 1.69 82.40± 1.77 66.82± 2.13
GCN 100.00± 0.00 65.10± 1.80 59.26± 2.17 27.27± 1.72
MLP 59.16± 0.52 58.20± 2.05 64.16± 1.61 63.84± 2.17

(1) On necessity-cora, with no low-degree nodes and the simpler “loop”-style compatibility matrices
(Figure 8(a)-(b)), models like GCN and H2GCN-2 can achieve near-perfect accuracy.

(2) On syn-cora-loop variants, where we keep the “loop”-style compatibility matrices but modify the degree
distributions to follow a power law, we observe 34.90% to 40.74% decrease in accuracy for GCN, which falls
below the accuracy of H2GCN. As we discussed in §4.2.2, this heterophilous case is challenging; this is also
confirmed by the performance drop for the graph-aware methods, including H2GCN.

(3) On syn-cora, which further strips the “loop”-style compatibility matrices for heterophilous connections
and has more complex connectivity patterns across different classes, the performance of GCN further
decreases by 31.99% and falls much below the performance of the graph-agnostic MLP in this case; though
the accuracy of H2GCN variants also decreases significantly in this challenging case, they still outperform
MLP in this case.

NLD distinguishability & graph properties. The significant changes in the accuracy of GCN can also be
explained by the changes in the distinguishability of NLDs caused by different graph properties. In Table 1, we
report the Class Neighborhood Similarity (CNS) and Graph Aggregation Homophily hagg for the all synthetic
graphs (as defined in §4.1, where we consider self-loops in accordance with GCN aggregation). We also visualize
the CNS and its standard deviation (following Eq. equation 5) between pairs of classes on each dataset in Figure 9.

Based on the intra-class and inter-CNS in Table 1, we observe that:

(1) With the presence of low-degree nodes, the syn-cora-loop variants have reduced intra-CNS with higher
variances compared to necessity-cora, while the inter-CNS also increases, though they share similar
“loop”-style compatibility matrices;

(2) The removal of the “loop” pattern in the compatibility matrices of syn-cora further reduces the intra-CNS to
a level similar to the inter-CNS, which leads to weak distinguishability of the neighborhood label distributions
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Cross-class neighborhood similarity of necessity-cora with γ=0
and edge homophily ratio h=0.08

0.99±0.01 0.05±0.04 0.49±0.07 0.01±0.01 0.01±0.02 0.46±0.06 0.05±0.04

0.05±0.04 0.99±0.01 0.07±0.06 0.5±0.08 0.0±0.01 0.0±0.01 0.49±0.05

0.49±0.07 0.07±0.06 0.99±0.04 0.1±0.07 0.52±0.07 0.0±0.01 0.0±0.01

0.01±0.01 0.5±0.08 0.1±0.07 0.97±0.04 0.09±0.06 0.52±0.08 0.01±0.02

0.01±0.02 0.0±0.01 0.52±0.07 0.09±0.06 0.99±0.02 0.06±0.04 0.47±0.06

0.46±0.06 0.0±0.01 0.0±0.01 0.52±0.08 0.06±0.04 0.99±0.01 0.04±0.02

0.05±0.04 0.49±0.05 0.0±0.01 0.01±0.02 0.47±0.06 0.04±0.02 1.0±0.01

(a) CNS of necessity-cora with γ = 0.

Cross-class neighborhood similarity of necessity-cora-ours-7 with
edge homophily ratio h=0.00

0.76±0.28 0.0±0.0 0.26±0.28 0.0±0.0 0.0±0.0 0.21±0.27 0.0±0.0

0.0±0.0 0.8±0.23 0.0±0.0 0.43±0.3 0.0±0.0 0.0±0.0 0.36±0.31

0.26±0.28 0.0±0.0 0.83±0.22 0.0±0.0 0.68±0.28 0.0±0.0 0.0±0.0

0.0±0.0 0.43±0.3 0.0±0.0 0.79±0.25 0.0±0.0 0.53±0.31 0.0±0.0

0.0±0.0 0.0±0.0 0.68±0.28 0.0±0.0 0.83±0.22 0.0±0.0 0.23±0.26

0.21±0.27 0.0±0.0 0.0±0.0 0.53±0.31 0.0±0.0 0.82±0.22 0.0±0.0

0.0±0.0 0.36±0.31 0.0±0.0 0.0±0.0 0.23±0.26 0.0±0.0 0.82±0.22

(b) CNS of syn-cora-loop-7.
Cross-class neighborhood similarity of necessity-cora-ours-5 with
edge homophily ratio h=0.00

0.79±0.25 0.0±0.0 0.38±0.31 0.42±0.31 0.0±0.0

0.0±0.0 0.77±0.27 0.0±0.0 0.38±0.32 0.41±0.31

0.38±0.31 0.0±0.0 0.79±0.25 0.0±0.0 0.37±0.31

0.42±0.31 0.38±0.32 0.0±0.0 0.79±0.25 0.0±0.0

0.0±0.0 0.41±0.31 0.37±0.31 0.0±0.0 0.79±0.25

(c) CNS of syn-cora-loop-5.

Cross-class neighborhood similarity of syn-cora with edge
homophily ratio h=0.00

0.55±0.29 0.3±0.28 0.44±0.3 0.45±0.31 0.3±0.28

0.3±0.28 0.56±0.3 0.28±0.28 0.46±0.31 0.43±0.31

0.44±0.3 0.28±0.28 0.56±0.29 0.31±0.28 0.44±0.31

0.45±0.31 0.46±0.31 0.31±0.28 0.55±0.3 0.3±0.28

0.3±0.28 0.43±0.31 0.44±0.31 0.3±0.28 0.55±0.3

(d) CNS of syn-cora.

Figure 9: Class neighborhood similarities (CNS) of the synthetic datasets in Table 1.

between nodes from different classes. These observations explain the decrease of GCN performance observed
in our experiments, and show how that the distinguishability of the neighborhood label distributions can
depend on other properties like degree distributions and class compatibility matrices in the underlying graphs.

Additionally, we note that while the Aggregation Homophily hagg is a good indicator of the performance of
GCN on necessity-cora and syn-cora, it does not correlate well with the performance changes of GCN
on syn-cora-loop variants. While hagg is defined as the ratio of nodes with NLD more similar to nodes from
the same class than nodes from other classes (Eq. equation 6), it does not measure the level of similarity between
the NLDs of nodes from the same or different classes as CNS does. Therefore, we believe that CNS is a more
accurate and comprehensive indicator of the complexity of heterophily, as Table 1 shows.

Effectiveness of heterophilous GNN designs. With H2GCN as an example that incorporates three het-
erophilous designs (D1), (D2) and (D3) (discussed in §3.1), we observe that these heterophilous designs can
largely improve the performance of GNNs compared to GCNs even when the heterophilous connections do not
have the ideal distinguishability in the NLDs as in the necessity-cora (γ = 0) case. When the distinguisha-
bility of NLDs among different classes is low (i.e., when intra-CNS is low and inter-CNS is high), the H2GCN
variants largely outperform GCN under heterophilous settings. While our experiments focus more on the effects
of graph properties to NLD distinguishability and GNN performance and only considered H2GCN as an example
for heterophilous GNNs, more comprehensive experiments have been conducted in recent works [30, 46, 21]
which support the effectiveness of these heterophilous GNN designs.

5 Conclusion & Future Directions

In this work, we revisited the debate of whether heterophily is a challenge for GNNs. We first reviewed
representative architectural designs that have been proposed in the literature for improving the performance
of GNNs on heterophilous data, and then discussed the connections with other objectives of GNN research,
such as robustness, fairness, and reducing oversmoothing. To address the debate and reconcile seemingly
contradictory statements in the literature, we conducted an extensive empirical analysis that aimed to provide a
better understanding of when heterophily is challenging and when it does not pose significant additional challenges
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compared to handling graphs with homophily. We also considered recently proposed measures for quantifying the
complexity of heterophily and evaluated their effectiveness across synthetic datasets based on different generation
processes. Our analysis revealed two key factors that increase the complexity of heterophily: (F1) the presence of
low-degree nodes, and (F2) the complexity of the class compatibility matrices of the underlying graphs. These
factors present unique challenges for GNNs under heterophilous settings, and necessitate architectural designs
that can improve the performance of GNNs. We hope that our review and empirical analysis will inspire future
research on better understanding the unique challenges of heterophily in GNNs and developing more effective
GNN models that can handle well both graphs with homophily and heterophily (of variable complexity).

Future Directions. There are many promising research directions towards understanding the unique challenges
that heterophily poses to GNN models. Next we discuss some representative open problems:

• Beyond node classification and global homophily. Most existing works on GNNs and heterophily (including
the ones we review in this work) focus on node classification, where heterophily can be defined and measured
with respect to the agreement of class labels for connected nodes. However, many important applications
on graphs, such as recommendation systems, query matching, and the prediction of molecular properties,
are based on other learning tasks such as link prediction and graph classification. It is thus important to
understand the effects of heterophily on these tasks and inform the design of tailored GNN models that can
handle heterophily. While few works have discussed heterophily in the settings of link prediction [53, 56]
and graph classification [48], their definition of heterophily is still based on node class labels, which are often
not available for these tasks. Measuring homophily in the absence of node is an interesting problem for these
graph learning tasks. Moreover, going beyond a global perspective and exploring the effect of different mixing
patterns across different neighborhoods is an important research direction that has started to gain reaction [23].

• More datasets & applications. Despite recent efforts in collecting and introducing new datasets that address
the drawbacks of existing heterophilous ones [21, 30], we believe that the call for more heterophilous graph
datasets and applications is still important and timely. Many existing works on GNN and heterophily rely
on the six heterophilous graph datasets which were first adopted by (author?) [29]. While these datasets
were useful during the early stages of research on GNNs and heterophily, multiple works [58, 21, 30] have
pointed out the drawbacks of these commonly adopted benchmark datasets, namely their small sizes, artificial
class labels, imbalanced class sizes, unusual network structure, and even leakage of test nodes in the training
set. In light of these, (author?) [21] and (author?) [30] proposed a set of mid- to large-scale social, citation
and web networks with more diverse node features and realistic class labels, but these datasets have yet to
gain widespread adoption, and the relationship between the (heterophilous) links and the class labels is often
ambiguous (e.g., predicting product ratings on Amazon based on edges connecting frequently bought items).
Thus, we believe that there is still a need for datasets that have naturally-occurring heterophilous connections
that align better with defined node class labels. In terms of application domains, it would be useful to go beyond
social, citation, and webpage networks and introduce benchmarks that capture molecular or protein structures,
which could also aid the investigation of more graph learning tasks that we discuss above.

• Connections between heterophily & heterogeneity. Although we highlighted in §2 that heterophily and
heterogeneity are two distinct concepts that should not be confused, heterogeneity may introduce unique forms
and challenges of heterophily that are worth investigating: connected nodes of different types could imply
dissimilarity in their embeddings, resembling the concept of heterophily, while the level of homophily may
also vary across different local mixing patterns. As a result, GNN models operating on heterogeneous graphs
have already adopted designs similar to those tailored for heterophily, such as the separation of ego- and
neighbor-embeddings and the use of type-specific kernels in message passing [31], in order to address the
challenges of heterogeneity. Moreover, recently, (author?) [11] also discussed how enhancing the homophily
level in the meta-paths of heterogeneous graphs can improve GNN performance. Therefore, we believe that
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further research on the connections between heterophily and heterogeneity can help better understand the
connections between the methodologies and findings of these two settings, which in turn may lead to the
development of more effective GNNs for both scenarios.
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Abstract

Graph neural networks (GNNs) are powerful graph-based deep-learning models that have gained significant
attention and demonstrated remarkable performance in various domains, including natural language processing,
drug discovery, and recommendation systems. However, combining feature information and combinatorial
graph structures has led to complex non-linear GNN models. Consequently, this has increased the challenges
of understanding the workings of GNNs and the underlying reasons behind their predictions. To address this,
numerous explainability methods have been proposed to shed light on the inner mechanism of the GNNs.
Explainable GNNs improve their security and enhance trust in their recommendations. This survey aims to
provide a comprehensive overview of the existing explainability techniques for GNNs. We create a novel
taxonomy and hierarchy to categorize these methods based on their objective and methodology. We also
discuss the strengths, limitations, and application scenarios of each category. Furthermore, we highlight
the key evaluation metrics and datasets commonly used to assess the explainability of GNNs. This survey
aims to assist researchers and practitioners in understanding the existing landscape of explainability methods,
identifying gaps, and fostering further advancements in interpretable graph-based machine learning.

1 Introduction

Recent years have seen a tremendous rise in the use of Graph Neural Networks (GNNs) for real-world applications,
ranging from healthcare [128, 129], drug design [110, 52, 90], recommender systems [9], and fraud detection [78].
Predictions made in these domains have a substantial impact and therefore require to be highly trustworthy. In the
realm of deep learning, one effective approach to enhance trust in these predictions is to provide an explanation
supporting them [86]. These explanations elucidate the model’s predictions for human understanding and can be
generated through various methods. For instance, they may involve identifying important substructures within the
input data [56, 81, 121], providing additional examples from the training data [12], or constructing counterfactual
examples by perturbing the input to produce a different prediction outcome [55, 92, 9].

The interpretability of deep learning models is influenced by the characteristics of the input domain as the
content and the complexity of explanations can vary depending on the inputs. When it comes to explaining
predictions made by graph neural networks (GNNs), several challenges arise. First, since graphs are combinatorial
data structures, finding important substructures by evaluating different combinations that maximize a certain
prediction becomes difficult. Second, attributed graphs contain both node attributes and edge connectivity,
which can influence the predictions and they should be considered together in explanations. Third, explanations
must be adaptable to different existing GNN architectures. Lastly, explanations for the local tasks (e.g., node
or edge level) may differ from those for global tasks (e.g., graph level). Due to these challenges, explaining
graph neural networks is non-trivial and a large variety of methods have been proposed in the literature to tackle

¶Both authors contributed equally.
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it [114, 68, 106, 76, 5, 96, 56, 118, 92, 4, 72]. With the increasing use of GNNs in critical applications such as
healthcare and recommender systems, and the consequent rise in their explainability methods, we provide an
updated survey of the explainability of GNNs. Additionally, we propose a novel taxonomy that categorizes the
explainability methods for GNNs, providing a comprehensive overview of the field.

Existing surveys on GNN explainability predominantly focus on either factual methods [119, 13, 47] or
counterfactual methods [26] but not both. These surveys thus lack a comprehensive overview of the different
methods in the literature by limiting the discussion to specific methods [119, 47] or only discussing them
under the broad umbrella of trustworthy GNNs [13, 103]. Our survey aims to bridge this gap by providing a
comprehensive and detailed summary of existing explainability methods for GNNs. We include both factual as
well as counterfactual methods of explainability in GNNs. To enhance clarity and organization, we introduce
a novel taxonomy to categorize these methods for a more systematic understanding of their nuances and
characteristics.

1.1 Graph Neural Networks

Graph neural networks (GNNs) have been used to learn powerful representations of graphs [42, 95, 28]. Consider
a graph G given by G = (V,E), where V denotes the set of n nodes and E denotes the set of m edges. We can
create an adjacency matrix A ∈ [0, 1]n×n such that Aij = 1 if (i, j) ∈ E and 0 otherwise. Each node may have
attributes, given by the matrix X ∈ Rn×F such that each row i stores the F -dimensional attribute vector for node
i. A GNN modelM embeds each node v ∈ V into a low-dimensional space Z : Rn×d by following this message
passing rule for k steps as

Z(k+1)
v = UPDATEΦ(Z

(k)
v ,AGG({MSGΘ(Z

(k)
v ,Z(k)

u ) : (u, v) ∈ E})), (7)

such that Z0 = X and Z := Z(k). Different instances of the update UPDATEΦ, aggregation AGGΦ and
message generator MSGΘ functions give rise to different GNN architectures. For example, GCN [42] has an
identity message, a mean aggregation, and weighted update functions, while GAT [95] learns an attention-based
message generation instead. These embeddings are trained for a specific task T that can be either supervised (e.g.,
node classification, graph classification, etc.) or unsupervised (e.g., self-supervised link prediction, clustering,
etc.).

1.2 Explainability in ML

Problem 1 (Explainability [8]) Consider a supervised task T with the aim of learning a mapping from X to
Y , and a modelM trained for this task. Given a set of (x, y) pairs ⊆ (X ,Y) and the modelM, generate an
explanation e from a given set DE such that e “explains” the prediction ŷ =M(x).

These explanations can be either local to a single test input (x, y) or global when they explain prediction
over a specific dataset D′ ⊆ (X ,Y). Further, the explanation can be generated either post-hoc (i.e., after the
model training) or ante-hoc where the model itself is self-interpretable, i.e., it explains its predictions. With
some exceptions, post-hoc explanations usually consider a black-box access to the model while self-interpretable
methods update the model architecture and/or training itself. We can further differentiate the explanation methods
based on their content, i.e., the explanation set DE . Local explanations only consider the local neighborhood
of the given data instance while global explanations are concerned about the model’s overall behavior and thus,
searches for patterns in the model’s predictions. On the other hand, explanations can also be counterfactual,
where the aim is to explain a prediction by providing a contrasting example that changes it.
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2 Overview

With the widespread adoption of GNNs across various applications, the demand for explaining their predictions
has grown substantially. Recently, the community has witnessed a surge in efforts dedicated to the explainability
of GNNs. These methods exhibit variations in terms of explanation types, utilization of model information,
and training procedures, among other factors. We organize and categorize these methods to develop a deeper
understanding of the existing works and provide a broad picture of their applicability in different scenarios.

Figure 1: Overview of the Schema. (1) Factual. Information constraints: GIB [117], VGIB [115], GSAT [68], LRI
[69]; Structural Constraints: DIR [106], ProtGNN [124], SEGNN [12], KER-GNN [21]; Decomposition: CAM [76],
Excitation-BP [76], DEGREE [22], GNN-LRP [83]; Gradient-based: SA [5] , Guided-BP [5] , Grad-CAM [76]; Surrogate:
PGM-Ex [56], GraphLime [34], GraphSVX [17], ReLex [123], DnX [74]; Perturbation-based: GNNExplainer[114],
GraphMask [81], PGExplainer [56], ReFine [99], ZORRO [23], SubgraphX [121], GstarX [122]; Generation: XGNN [118],
RGExplainer [84], GNNInterpreter [100], GFlowExplainer [46], GEM [49]; (2) Counterfactual. Search-based: MMACE
[101] , MEG [72]; Neural Network-based: RCExplainer [4], CLEAR [57]; Perturbation-based: GREASE [9], CF2 [92],
CF-GNNexplainer [55]

Main Schema: Factual and Counterfactual Methods. Figure 1 provides an overview of the broad categoriza-
tion of the existing works. Based on the type of explanations, we first make two broad categories: (1) Factual and
(2) Counterfactual. Factual methods aim to find an explanation in the form of input features with the maximum
influence over the prediction. These explanations can be a set of either node features or a substructure (set of
nodes/edges) or both. On the other hand, counterfactual methods provide an explanation by finding the smallest
change in the input graph that changes the model’s prediction. Hence, counterfactual explanations can be used to
find a set of similar features that can alter the prediction of the model.
Organization. In the following sections, we describe each category in detail and provide summary of various
explainability methods in each category. In Sec. 3, we describe the factual approaches which are further classified
into self-interpretable and post-hoc categories. In Sec. 4, the counterfactual methods are categorized into
perturbation-based, neural network-based and search-based methods. Sec. 5 presents three special categories of
explainers such as temporal, global and causality-based. In Sec. 6, we overview the explainer methods that are
relevant for specific applications in different domains such as in social networks, biology, and computer security.
Lastly, we review widely used datasets in Sec. 7 and evaluation metrics in Sec. 8.
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(a) Self-Interpretable & Post-hoc (b) Categorization of Post-hoc methods

Figure 2: (a) Self-interpretable and post-hoc architectures : In self-interpretable methods, the subgraph extraction
module g uses constraints to find an informative subgraph Gs from the input graph G. The prediction module f uses
this Gs to predict the label Y . In contrast, Post-hoc methods consider model as pre-trained with fixed weights. For
any instance G, post-hoc methods generate explanation using model’s input D, output Y and in some cases the model’s
internal parameters. (b) White-box and Black-box post-hoc methods: Methods are shown in the individual categories.
Decomposition-based: CAM [76], Excitation-BP [76], DEGREE [22], GNN-LRP [83]; Gradient-based: SA [5] , Guided-BP
[5] , Grad-CAM [76]; Surrogate: PGM-Ex [56], GraphLime [34], GraphSVX [17], ReLex [123], DnX [74]; Perturbation-
based: GNNExplainer [114], GraphMask [81], PGExplainer [56], ReFine [99], ZORRO [23], SubgraphX [121], GstarX
[122]; Generation-based: XGNN [118], RGExplainer [84], GNNInterpreter [100], GFlowExplainer [46], GEM [49].

3 Factual

We classify the factual explainer methods broadly into two categories based on the nature of the integration of the
explainability architecture with the main model as follows.

• Post-hoc: Post-hoc methods do not have the explainable architecture inbuilt into the model to attribute
a model’s prediction to the input. As seen in Figure 2a, the explainability architecture (EA) is separated
from the model which is pre-trained with fixed weights. For any instance G, post-hoc methods generate an
explanation using the model’s input D, output Y and sometimes even internal parameters of the model.
Note that different EAs use different inputs D that are fed to the model. Post-hoc methods might not
be always accurate as they may end up extracting features that are spuriously correlated with the task
[124, 80, 68, 45].

• Self-interpretable: Contrary to post-hoc methods, self-interpretable explainable methods design explain-
ability architecture directly inside the model. As seen in Figure 2a, these methods usually have two
modules. The subgraph extraction module (the function g) uses constraints to find an informative subgraph
Gs from the input graph G. Then, the prediction module f uses Gs to predict label Y . Gs also acts as an
explanation. Both modules are trained together with an objective L(f ◦ g(G), Y ) to minimize the loss
between prediction f ◦ g(G) and label Y . One major drawback of self-interpretable models is that the good
interpretability of the models is often at the cost of the prediction accuracy [68].

3.1 Post-hoc

We divide the post-hoc methods based on their approaches used to find explanation into the following categories:
a) Decomposition-based methods (Sec. 3.1.1), b) Gradient-based methods (Sec. 3.1.2), c) Surrogate methods
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Table 1: Key highlights of decomposition-based methods

Method Parameters Form of Explanation Task

CAM [76]
Node embedding of last layer

and MLP weights Node importance Graph Classification

Excitation-BP [76] Weights of all GNN layers Node importance Node and Graph Classification

DEGREE [22]
Decomposes messages and

requires all parameters Similar nodes Node and Graph Classification

GNN-LRP [83] Weights of all layers Collection of edges Node and Graph Classification

(3.1.3), d) Perturbation-based methods (Sec. 3.1.4), e) Generation-based methods (3.1.5). The post-hoc methods
can also be categorized based on their requirement to access the internal parameters of the model. As seen in
figure 2b, this division results into the following categories of the methods: white-box and black-box.
White-box: These methods require access to internal model parameters or embeddings to provide explanations.
For instance, all decomposition-based methods (Sec. 3.1.1) require model parameters such as node weights of
each layer to compute an importance score of different parts of the input. Even gradient based methods (Sec.
3.1.2) require access to the gradients. Thus, all methods in these categories are considered as white-box methods
and they are not suitable in cases where a model’s internal parameters are inaccessible.
Black-box: Contrary to the white-box methods, black-box methods do not require access to the model’s internal
parameters. For instance, all approaches in the category of surrogate methods (Sec. 3.1.3) generate a local dataset
using the model’s input and output. Since these methods do not require access to the model parameters, all of
them can be categorized as black-box methods.

3.1.1 Decomposition-based Methods

These methods consider the prediction of the model as a score that is decomposed and distributed backwards
in a layer by layer fashion till it reaches the input. The score of different parts of the input can be construed as
its importance to the prediction. However, the decomposition technique can vary across methods. They also
require internal parameters of the model to calculate the score. Hence, these explanation methods are considered
as white-box methods. Table 1 provides a summary of these methods.

One of the decomposition-based methods, CAM [76] aims at constructing the explanation of GNNs that
have a Global Average Pooling (GAP) layer and a fully connected layer as the final classifier. Let en be the final
embedding of node n just before the GAP layer and wc be the weight vector of the classifier for the class C. The
importance score of the node n is computed as (wc)T en. This means that the node’s contribution to the class
score yc is taken as the importance. It is clear that this method is restricted to GNNs that have a GAP layer and
perform only the graph classification task.

Another method, Excitation-BP [76] considers that the final probability of the prediction can be decomposed
into excitations from different neurons. The output of a neuron can be intuitively understood as the weighted
sum of excitations from the connected neurons in the previous layer combined with a non-linear function where
the weights are the usual neural network parameters. With this, the output probability can be distributed to
the neurons in the previous layer according to the ratios of these weights. Finally, the importance of a node is
obtained by combining the excitations of all the feature maps of that node.

Contrary to other methods, DEGREE [22] finds explanation in the form of subgraph structures. First, it
decomposes the message passing feed-forward propagation mechanism of the GNN to find a contribution score of
a group of target nodes. Next, it uses an agglomeration algorithm that greedily finds the most influential subgraph
as the explanation. GNN-LRP [83] is based on the concept that the function modeled by GNN is a polynomial
function in the vicinity of a specific input. The prediction score is decomposed by approximating the higher
order Taylor expansion using layer-wise relevance propagation [3]. This differs from other decomposition-based
methods not only in the decomposition technique but also in the score attribution. While other methods attribute
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Table 2: Key highlights of gradient-based methods

Method Explanation Type Task Explanation Target Datasets Evaluated

SA [5] Instance level
Graph classification
Node classification

Nodes, Node features
Edges, Edge features Infection, ESOL [15]

Guided-BP [5] Instance level
Graph classification
Node classification

Nodes, Node features
Edges, Edge features Infection, ESOL [15]

Grad-CAM [76] Instance level Node classification Nodes, Node features BBBP, BACE, TOX21 [40]

scores to nodes or edges, GNN-LRP attributes scores to walks i.e., a collection of edges.

3.1.2 Gradient-based Methods

The gradient-based explainer methods follow the following key idea. Gradients represent the rate of change, and
the gradient of the prediction with respect to the input represents how sensitive the prediction is to the input. This
sensitivity is seen as a measure of importance. We provide a summary of these methods in Table 2.

Sensitivity Analysis (SA) [5] is one of the earlier methods to use gradients to explain GNNs. Let x be
an input, which can be a node or an edge feature vector, SA(x) be its importance, and ϕ be the GNN model,
then the importance is computed as SA(x) ∝ ||∇xϕ(x)||2. The intuition behind this method is based on the
aforementioned sensitivity to the input. Guided Backpropagation (Guided-BP) [5], a slightly modified version
of the previous method SA, follows a similar idea except the fact that the negative gradients are clipped to zero
during the backpropagation. This is done to preserve only inputs that have an excitatory effect on the output.
Intuitively, since positive and negative gradients have opposing effect on the output, using both of them could
result in less accurate explanations.

The method Grad-CAM [76] builds upon CAM [76] (see Section 3.1.1), and uses gradients with respect to
the final node embeddings to compute the importance scores. The importance score is ( 1

N

∑N
n=1∇en(yc))T en,

where en is the final embedding of node n just before the GAP layer, and wc is the weight vector of the classifier
for class C, g = 1

N

∑N
n=1 en is the vector after the GAP layer, and the final class score yc of C is wT g. This

removes the restriction about the necessity of GAP layer. This equation shows that the importance of each node is
computed as the weighted sum of the feature maps of the node embeddings, where the weights are the gradients
of the output with respect to the feature maps.

All the above methods depend on this particular intuition that the gradients can be good indicators of
importance. However, this might not be useful in many settings. Gradients indicates sensitivity which does not
reflect importance accurately. Moreover, saturation regions where the prediction of the model does not change
significantly with the input, can be seen as another issue in SA and Guided-BP.

3.1.3 Surrogate Methods

Within a large range of input values, the relationship between input and output can be complex. Hence, we need
complex functions to model this relationship and the corresponding model might not be interpretable. However,
in a smaller range of input values, the relationship between input and output can be approximated by simpler and
interpretable functions. This intuition leads to surrogate methods that fit a simple and interpretable surrogate
model in the locality of the prediction. Table 3 shows different locality-based data extraction techniques and
surrogate models used by surrogate methods. This surrogate model can then be used to generate explanations. As
seen in the figure 3a, these methods adopt a two-step approach. Given an instance G, they first generate data
from the prediction’s neighborhood by utilizing multiple inputs D within the vicinity and recording the model’s
prediction Y . Subsequently, a surrogate model is employed to train on this data. The explanation E provided by
the surrogate model serves as an explanation for the original prediction.
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(a) Generic schema of surrogate methods (b) Generic schema of perturbation-based methods

Figure 3: a) Surrogate: These methods follow a two-step process. For any instance G, they generate data from the
neighbourhood of the prediction by using multiple inputs D in the locality and recording its model prediction Y . Then
a surrogate model is used to fit this data. Explanation E for the surrogate model is the explanation for the prediction, b)
Perturbation-based: They have two key modules: a subgraph extraction architecture and a scoring function. For an input
G, the subgraph extraction module extracts a subgraph Gs. The model prediction Ys for subgraph Gs are scored against the
actual predictions Y using a scoring function. The feedback from the scoring function can be used to train the subgraph
extraction module. Sometimes model parameters are also used as the training input to the subgraph extraction module. The
optimal subgraph G∗

s acts as the final explanation E.

PGMExplainer constructs a Bayesian network to explain the prediction. First, it creates a tabular dataset by
random perturbations on node features of multiple nodes of the computational graph and records its influence on
the prediction. A grow-shrink algorithm is used to select top influential nodes. Using structure learning, a Bayesian
network is learnt that optimizes the Bayesian Information Criterion (BIC) scores and the DAG of conditional
probabilities act as an explanation. In GraphLime [34], the local explanations are based on Hilbert-Schmidt
Independence Criterion Lasso (HSIC Lasso) model, which is a kernel-based nonlinear interpretable feature
selection algorithm. This method assumes that the node features in the original graph are easily interpretable.
The HSIC model takes a node and its N-hop neighbourhood (for some N ), and selects a subset of node features
that are the most influential to the prediction. These selected features act as the explanation. To construct a local
dataset, GraphSVX [17] uses a mask generator to jointly perturb the nodes and the features and observes its
effects on the predictions. The mask generator isolates the masked nodes and replaces masked features by its
expected values. It then fits a weighted linear regression model (WLR) on the local dataset. The coefficients of
WLR act as explanations.

The next two approaches use GNN based models to act as surrogate models. RelEx [123] uses a BFS-based
sampling strategy to select nodes and then perturb them to create the local dataset. Then, a GCN model with
residual connections is used to fit this dataset. In contrast to other methods in this category, the surrogate model
of RelEx is not interpretable. Hence, it uses perturbation-based strategy to find a mask that acts as explanation.
We note that the surrogate model is more complex compared to other methods and it requires the use of another
explanation method to derive explanations from the surrogate model. DistilnExplain (DnX) [74] first learns a
surrogate GNN via knowledge distillation and then provides an explanation by solving a simple convex program.
In contrast to RelEx, DnX uses a simpler surrogate model which is a linear architecture termed as Simplified
Graph convolution (SGC) [104]. SGC does not have any non-linear activation layers and uses a single parameter
matrix across layers. The parameters in SGC are learned via knowledge distillation with an objective to minimize
the KL-divergence between the predictions by SGC and the model. Furthermore, explanations can be derived
from SGC by solving a simple convex program.
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Table 3: Key highlights of surrogate methods

Method Local Dataset extraction Surrogate model Explanation

GraphLime [34] N-hop neighbor nodes HSIC Lasso Weights of the model
PGMExplainer [96] Random node feature perturbation Bayesian network DAG of conditional dependence

ReLex [123] Random sampling of connected subgraphs GCN Perturbation-based method
DistilnExplain [74] Entire dataset Knowledge distilled Simple GCN [104] Convex programming, decomposition

GraphSVX [17] Input perturbations via mask generator Weighted Linear Regression (WLR) Weights of WLR

3.1.4 Perturbation-based Methods

These methods find important subgraphs as explanations by perturbing the input. Fig. 3b presents two key
modules of these methods: the subgraph extraction module and the scoring function module. For an input G, the
subgraph extraction module extracts a subgraph Gs. The model predictions Ys for subgraphs are scored against
the actual predictions Y using a scoring function. The feedback from the scoring function can be used to train the
subgraph extraction module. In some cases, model parameters are also used as the training input for the subgraph
extraction module. These methods provide explanations E in the form of a subgraph structure and some also
provide node features as explanations. Table 4 presents a summary of these methods.

GNNExplainer [114] is one of the initial efforts towards the explainability of GNNs. It identifies an
explanation in the form of a Subgraph including a subset of node features that have the maximum influence on
the prediction. It learns continuous masks for both adjacency matrix and features by optimizing cross entropy
between the class label and model prediction on the masked subgraph. In a follow-up work, PGExplainer [56]
extends the idea in GNNExplainer by assuming the graph to be a random Gilbert graph, where the probability
distribution of edges is conditionally independent. The distribution of each edge is independently modeled as
a Bernoulli distribution, i.e., each edge has a different parametric distribution. These parameters are modeled
by a neural network (MLP), and the parameters of this MLP is computed by optimizing the mutual information
between the explanation subgraph and the predictions of the underlying GNN model. Another masking-related
method, GraphMask [81] provides an explanation by learning a parameterized edge mask that predicts the edge
to drop at every layer. A single-layer MLP classifier is trained to predict the edges that can be dropped. To keep
the topology unaffected, these edges are not dropped but are replaced by a learned baseline vector. The training
objective is to minimize the L0 norm i.e., the total number of edges not masked, such that the prediction output
remains within a tolerance level. To make the objective differentiable, it uses sparse relaxations through the
reparameterization trick and the hard concrete distribution [59, 36].

Another approach Zorro [23] finds explanations in the form of important nodes and features that maximizes
Fidelity (see Sec. 8). It uses a greedy approach that selects the node and the feature at each step with the highest
fidelity score. Fidelity is computed as the expected validity of the perturbed input. The approach uses a discrete
mask for selecting a subgraph without any backpropagation. A two-staged approach, ReFine [99] consists of
the edge attribution or pre-training and the edge selection or fine-tuning steps. During pre-training, a GNN and
an MLP are trained to find the edge probabilities for the entire class by maximizing mutual information and
contrastive loss between classes. During the fine-tuning step, the edge probabilities from the previous stage are
used to sample edges and find an explanation that maximizes mutual information for a specific instance.

The next two approaches use cooperative game theoretic techniques. SubgraphX [121] applies the Monte
Carlo Tree search technique for subgraph exploration and uses the Shapley value [85] to measure the importance
of the subgraphs. For the search algorithm, the child nodes are obtained by pruning the parent graph. In computing
the Shapley values, the Monte Carlo sampling helps to find a coalition set and the prediction from the GNN is used
as the pay-off in the game. In a subsequent work, GStarX [122] uses a different technique from cooperative game
theory known as HN value [27], to compute importance scores of a node for both graph and node classification
tasks. In contrast to the Shapley value, the HN value is a structure-aware metric. Since computing the HN values
is expensive, Monte Carlo sampling is used for large graphs. The nodes with the top-k highest HN values act as
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Table 4: Key highlights of the perturbation-based methods.

Method Subgraph Extraction Strategy Scoring function Constraints Node Feature Explanation

GNNExplainer [114] Continuous relaxation Mutual Information Size Yes
SubgraphX [121] Monte Carlo Tree Search Shapley Value Size, connectivity No
GraphMask [81] Layer-wise parameterized edge selection L0 norm Prediction divergence No
PGexplainer [56] Parameterized edge selection Mutual Information Size and/or connectivity No

Zorro [23] Greedy selection Fidelity Threshold fidelity Yes
ReFine [99] Parameterized edge attribution Mutual Information Number of edges No
GstarX [122] Monte Carlo sampling HN-value Size No

Table 5: Key highlights of the generation-based methods

Methods Explanation Type Optimization Constraints Task

XGNN [118] Model level RL-policy gradient Domain specific rules Graph classification
RG-Explainer [84] Instance level RL-policy gradient Size, radius, similarity Node & Graph classification

GFLOW Explainer [46] Instance level TD flow matching Connectivity / cut vertex Node & Graph classification
GNNinterpreter [100] Model level Continuous relaxation Similarity to mean Graph Classification

GEM [49] Instance level Autoencoder Graph validity rules Node & Graph Classification

an explanation.

3.1.5 Generation-based methods

Generation-based approaches either use generative models or graph generators to derive instance-level or model-
level explanations. Furthermore, to ensure the validity of the generated graphs, different approaches have been
proposed. Table 5 provides a summary of the generation-based methods.

XGNN [118] provides model-level explanations by generating key subgraph patterns to maximize prediction
for a certain class. The subgraph is generated using a Reinforcement learning (RL) based graph generator which
is optimized using policy gradient. In the setup for the RL agent, the previous graph is the state; adding an edge is
an action; and the model prediction along with the validity rules acts as the reward. Unsurprisingly, the validity
rules are specified based on domain knowledge. Another RL-based method, RG-Explainer [84] formulates the
underlying problem as combinatorial optimization instead of using continuous relaxation or search methods to
find the subgraph. A starting point is selected using an MLP which acts as an input to the graph generator. The
graph generator is an RL agent that optimizes for the policy using policy gradient with subgraph as the state,
adding neighboring nodes as the action, and the function of the cross entropy loss as the reward.

A non-RL method, GNNinterpreter [100] is a generative model-level explanation method for the graph
classification task. Its objective is to maximize the likelihood of predicting the explanation graph correctly
for a given class. The similarity between the explanation graph embedding and the mean embedding of all
graphs act as an optimization constraint. Intuitively, this ensures that the explanation graph stays closer to the
domain and is meaningful. Since the adjacency matrix and sometimes even the features can be categorical,
GNNinterpreter uses the Grumbel softmax method [36] to enable backpropagation of gradients. Contrary to
XGNN with domain-specific hand-crafted rules, GNNinterpreter uses numerical optimization and does not need
any domain knowledge.

GFLOW Explainer [46] uses GFLOWNETs as the generative component. The objective is to construct a
TD-like flow matching condition [6] to learn a policy to generate a subgraph by sequentially adding neighbors
(nodes) such that the probability of the subgraph of a class is proportional to the mutual information between
the label and the distribution of possible subgraphs. A state consists of several nodes with the initial state as the
single most influential node and the end state that satisfies the stopping criteria. Action is adding a node and the
reward is a function of the cross-entropy loss.

GEM [49] uses the principles of Granger causality to generate ground-truth explanations which are used to
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Figure 4: Self-interpretable methods: Every self-interpretable method has a subgraph extraction and a prediction module.
The subgraph extraction module (the function g) uses constraints to find an informative subgraph Gs from input graph G.
The prediction module uses Gs to predict label Y . This also shows the techniques used by each method to implement these
individual modules. Self-interpretable Methods are categorized based on constraints: (1) Information constraint: GIB
[117], VGIB [115], GSAT [68], LRI [69]; (2) Structural constraint: DIR [106], ProtGNN [124], SEGNN [12], KER-GNN
[21].

train the explainer. It quantifies the causal contribution of each edge in the computational graph by the difference
in the loss of the model with and without the edge. This distilled ground-truth for the computation graph is used
to train the generative auto-encoder based explainer. This explainer provides an explanation for any instance in
the form of the subgraph of the computation graph.

3.2 Self-interpretable

In self-interpretable methods, the explainable procedure is intrinsic to the model. Such methods derive explainabil-
ity by incorporating interpretability constraints. These methods use either information constraints or cardinality
(structural) constraints to derive an informative subgraph which is used for both the prediction and the explanation.
Based on the design of the explainability, we further classify the self-interpretable methods into two types based
on the imposed constraints (Fig. 4).

3.2.1 Methods with information constraints

One of the major challenges in constructing explanations via subgraphs is that the critical subgraphs may have
different sizes and can be irregular. Thus, constraining the size of the explanation may not be appropriate for
the underlying prediction task. To address this challenge, the methods based on information constraint use the
principle of information bottleneck (IB) [93] to impose constraints on the information instead of the size. For a
graph G, subgraph Gs and label Y , the graph information bottleneck (GIB) objective is:

max
Gs

I(Y,Gs) such that I(G,Gs) ≤ γ
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Table 6: Key highlights of the methods with information constraints

Method Process of calculating I(G,Gs) Injection of Randomness Subgraph Extractor Architecture

GSAT [68] Stochastic attention Bernoulli as Prior for KL divergence GNN + MLP + Reparameterization
LRI [69] Learnable Randomness injection Bernoulli and Gaussian as prior GNN + MLP + Reparameterization

GIB [117] Donsker-Vardhan KL representation [16] No randomness injection Statistic Network: GNN + MLP
VGIB [115] Compression via Noise injection Gaussian noise on node features GNN + MLP + Reparameterization

where I denotes the mutual information. Using Lagrangian multiplier β, we can write the equation as:

min
Gs

−I(Y,Gs) + β ∗ I(G,Gs)

As seen from the above equations, GIB objective-based methods have two parts in the objective function
and both are intractable. All methods approximate I(Y,Gs) by calculating the cross-entropy loss. However, all
methods vary in their approach in making I(G,Gs) tractable i.e., all have different approaches to compressing
the graph and finding the informative subgraph Gs. This subgraph is used for both prediction and interpretation.
Table 6 provides the key highlights of all methods in this category.

GSAT [68] uses a stochastic attention mechanism to calculate the variational upper bound for I(G,Gs).
First, it encodes graph G using a GNN to find the representation for each node. Then, for each node pair (u, v),
GSAT uses an MLP to calculate Puv. This is used to sample stochastic attention from Bernoulli distribution
Bern(Puv) to extract a subgraph Gs. The variational upper bound is the KL divergence between Bern(Puv)
and Bern(α) where α is a hyper-parameter. Building on similar concepts, LRI [69] uses both Bernoulli and
Gaussian distribution as the prior distribution. LRI-Bernoulli provides the existence importance of points and
LRI-Gaussian provides the location importance of the points i.e., how perturbing the location of the point in
different directions affects the prediction. Another method, GIB [117] assumes that there is no reasonable prior
distribution to solve I(G,Gs) via KL divergence in the graph space. Hence, it uses the Donsker-Vardhan KL
representation [16] in the latent space. It employs a bi-level optimization wherein the statistic network of the
Donsker-Varadhan representation is used to estimate I(G,Gs) in the inner loop. This estimate with classification
and connectivity loss is used to optimize the GIB objective in the outer loop. This bi-level training process is
inefficient and unstable; and hence VGIB [115] uses a different compression technique. The information in the
original graph is dampened by injecting noise into the node representations via a learned probability Pi for each
node i. The classification loss will be higher if the informative substructure G∗

s is injected with noise. Hence, G∗
s

is less likely to be injected with noise compared to label-irrelevant substructures.

3.2.2 Methods with structural constraints

Imposing structural constraints on the input to derive the most informative subgraph has also been a common
approach. The obtained informative subgraph is used for both making predictions and generating explanations.
The key difference across the methods is the set up of the structural constraints. In Table 7, we provide the key
highlights of these methods.

One of the earlier methods, DIR [106] finds explanations in the form of invariant causal rationales by learning
to split the input into causal (C) and non-causal (S) parts. The objective is to minimize the classification loss
such that Y (the prediction) is independent of S given C. To achieve this, it first creates multiple interventional
distributions by conducting interventions on the training distribution. The part that is invariant across these
distributions is considered a causal part. Moreover, the implementation has three key stages. First, the architecture
consists of a rationale generator (GNN) that splits the input graph into a causal part with top k edges and a
non-causal part. Second, a distribution intervener, i.e., a random replacement from a set, creates perturbed
distribution to infer the invariant causal parts. Finally, two classifiers are used to generate a joint prediction on
causal and non-causal parts.
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Table 7: Key highlights of explainability methods with structural constraints. Note that NC and GC denote node
and graph classification respectively.

Method Subgraph Extraction Explanation form Prediction/ classification module Task

DIR [106]
Separating pattern that is invariant
across interventional distribution

Invariant rationale
Seperate MLP for spurious

and invariant parts
GC

ProtoGNN [124]
Computes similarity between Graph embedding

and several learned diverse prototypes
Prototypes with high similarity

MLP with similarity
scores as input

GC

SEGNN [12]
Finds K nodes that have similar structure and

node features via contrastive loss
Similar nodes

classification via negative
sampling of nodes

NC

KER-GNN [21]
Kernel filters integrated in message

passing of GNNs
learned kernels and

output node attributes
MLP with node

attributes as input
NC, GC

ProtoGNN [124] combines prototype learning [82] with GNNs. Prototype learning is a form of case-based
reasoning which makes predictions for new instances by comparing them with several learned exemplar cases
also called prototypes. ProtoGNN computes the similarity scores between the graph embedding and multiple
learned prototypes. Moreover, these prototypes are projected onto the nearest latent training subgraph during
training using the Monte Carlo tree search [87, 7]. The similarity scores are used for the classification task where
the subgraphs with high similarities can be used for explanation. In another work, for a given unlabeled node,
SEGNN [12] finds k nearest labeled nodes that have structural and feature similarities and can be used for both
generating predictions and explanations. It uses contrastive loss on node representations for feature similarity and
also on edge representations of local neighborhood nodes for structural similarity. Moreover, the classification
loss uses negative sampling with approximate k similar nodes. These k nearest nodes can be used to derive an
explanation subgraph with threshold importance.

The method, KER-GNN [21] integrates graph kernels into the message-passing process of GNNs to increase
the expressivity of GNNs beyond the 1-WL isomorphism test. In each layer, the node embeddings are updated by
computing the similarity between the node’s subgraph (the node with its ego-net) and trainable filters in the form
of hidden graphs. The learned graph filters can provide important structural information about the data. Moreover,
the output node attributes can be used to extract important substructures.

4 Counterfactual Explanation

Counterfactual methods provides an explanation by identifying the minimal alteration in the input graph that
results in a change in the model’s prediction. Recently, there have been several attempts to have explanations
of graph neural networks (GNNs) via counterfactual reasoning. We classify these explainer methods that find
counterfactuals into three major categories based on the type of methods: (1) Perturbation-based, (2) Neural
framework-based, and (3) Search-based. We discuss the works in the individual categories below.

4.1 Perturbation-based methods

An intuitive way to generate counterfactuals for both the graph classification and the node classification task is to
alter the edges, i.e., add or delete the edges in the graph such that it would change the prediction of the underlying
GNN method. This alteration can be achieved by perturbing either the adjacency matrix or the computational
graph of a node. The perturbation-based methods are summarized in Table 8.

One of the initial efforts, CF-GNNExplainer [55] aims to perturb the computational graph by using a binary
mask matrix. It uses a binary matrix (all values are 0 or 1) P and modifies the computational graph matrix as
Ãv = P ⊙Av, where Av is the original computational graph matrix and Ãv is computational graph matrix after
the perturbation. The matrix P is computed by minimizing a combination of two different loss functions: Lpred,
and Ldist. They are combined using a hyper-parameter in the final loss (L) as Lpred + βLdist. The loss function,
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Table 8: Key highlights of perturbation-based methods for counterfactuals

Method Explanation Type Downstream Task Perturbation Target Datasets Evaluated

CF-GNNExplainer [55] Instance level Node Classification Computation graph
Tree-Cycles [114], Tree-Grids [114]

BA-Shapes [114]

CF2 [92] Instance level
Graph Classification
Node Classification Original graph

BA-Shapes [114], Tree-Cycles [114]
Mutag [14], NCI1 [98], CiteSeer [24]

GREASE [9] Instance level Node Ranking Computation graph LastFM, Yelp

Lpred quantifies the accuracy of the produced counterfactual, and Ldist captures the distance (or similarity)
between the counterfactual graph and the original graph. In follow-up work, the method CF2 [92] extends the
method in CF-GNNExplainer [55] by including a contrastive loss that jointly optimizes the quality of both the
factual explanation and the counterfactual one. For an input graph, G, it aims to find an optimal subgraph Gs
where Gs is a good factual explanation, and G\Gs is a good counterfactual. These objectives are formulated
as a single optimization problem with the corresponding loss as Loverall = αLfactual + (1− α)Lcounterfactual,
where α is a hyperparameter.

Another method, GREASE [9] follows the standard technique of using a perturbation matrix to generate a
counterfactual, but with two key modifications mainly to accommodate GNNs used for recommendation systems
instead of classification tasks. In the recommendation task, GNNs rank the items (nodes) by assigning them a
score instead of classifying them. GREASE uses a loss function based on the scores given by the GNN before and
after the perturbation. This score helps to rank the items or nodes. The second modification is the perturbation
matrix, which acts as the mask, and is used to perturb the computational graph (l-hop neighborhood of the node)
instead of perturbing the entire graph. Here l denotes the number of layers in the GNN. Similar to CF2 [92],
GREASE also optimizes counterfactual and factual explanation losses, but not jointly.

In summary, all these techniques share similarities in computing the counterfactual similarity and constructing
the search space. Similarity is measured by the number of edges removed from input instances and the search
space is the set of all subgraphs obtained by edge deletions in the original graph. Because of the unrestricted
nature of the search space, these methods might not be ideal for graphs such as molecules, where the validity
of the subgraphs has valency restrictions. On the other hand, the mentioned methods differ mainly in the loss
function formulations and the perturbation operations for the downstream tasks. For instance, CF-GNNExplainer
[55] and GREASE [9] perform node classification and regression, they can use perturbations on the computation
graph. However, CF2 [92] considers both graph and node classification tasks, hence it uses perturbations on the
entire graph, i.e., the adjacency matrix.

4.2 Neural framework-based methods

The approaches in this section use neural architectures to generate counterfactual graphs as opposed to the
perturbation-based methods where the adjacency matrix of the input graph is minimally perturbed to generate
counterfactuals. Table 9 summarizes these methods.

The objective of RCExplainer [4] is to identify a resilient subset of edges that, when removed, alter the
prediction of the remaining graph. This is accomplished by modeling the implicit decision regions using graph
embeddings. Even though the counterfactual graph generated by a neural architecture is used in conjunction with
the adjacency matrix of the input graph, the counterfactual itself is not generated through perturbations on the
adjacency matrix. RCExplainer addresses the issue of fragility where an interpretation is fragile (or non-robust) if
systematic perturbations in the input graph can lead to dramatically different interpretations without changing the
label. The standard explainers aim to generate good counterfactuals by choosing the closest counterfactual to
the input instance and it might induce over-fitting. RCExplainer reduces this over-fitting by first clustering input
graphs using polytopes, and finding good counterfactuals close to the cluster (polytope) instead of individual
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Table 9: Key highlights of neural framework-based methods for counterfactuals

Method Explanation Type Downstream Task Counterfactual Generator Datasets Evaluated

RCExplainer [4] Instance level
Graph classification
Node classification

Edge prediction
with Neural Network

Mutag [14], BA-2motifs [56], NCI1 [98]
Tree-Cycles [114], Tree-Grids [114]

BA-Shapes [56], BA-Community [114]

CLEAR [57] Instance level
Graph classification
Node classification

Graph generation
with Variational Autoencoder Community [18], Ogbg-molhiv, IMDB-M

instances. Another method, CLEAR [57] generates counterfactual graphs by leveraging a graph variational
autoencoder. Two major issues often seen in other explainer methods, namely, generalization and causality are
addressed in this paper.

Both methods use a generative neural model to find counterfactuals, but the generative model is different
across the methods. While RCExplainer [4] uses a neural network that takes pairwise node embeddings and
predict the existence of an edge between them, CLEAR [57] uses a variational autoencoder to generate a complete
graph. This shows that while the former method cannot create nodes that are not present in the original graph, the
latter can. In terms of the objective, the primary focus in RCExplainer [4] is the robustness of the generated
counterfactual, but CLEAR [57] aims to generate counterfactuals that explain the underlying causality.

4.3 Search-based methods

These methods usually depend on search techniques over the counterfactual space for relevant tasks or applications
(see the highlights in Table 10). For example, given an inactive molecule in a chemical reaction, the task is to find
a similar but active molecule. Here, generative methods or perturbation methods might not be effective, and the
perturbations might not even result in a valid molecule. In such cases, a good search technique through the space
of counterfactuals could be more useful. An inherent challenge is that the search space of counterfactuals might
be exponential in size. Hence, building efficient search algorithms is required.

The major application is finding counterfactual examples for molecules in related tasks. The method MMACE
[101] finds counterfactuals for molecules. In the corresponding graph classification problem, it aims to classify
a molecule based on a specific property. Examples include whether a molecule will permeate blood brain
barrier and molecule’s solubility. The search space can be generated by a method called Superfast Traversal,
Optimization, Novelty, Exploration and Discovery (STONED) [71]. MMACE uses this method to generate the
close neighbourhood and searches with a BFS-style algorithm to find an optimal set of counterfactuals.

Similarly, MEG [72] also aims to find a counterfactual and the search space consists of molecules. However,
instead of searching the space with traditional graph search algorithms, MEG uses a reinforcement learning-based
approach to navigate the search space more efficiently. The reward for finding a counterfactual is defined as the
inverse of the probability that the candidate molecule found by the agent is not a counterfactual. This method
is applied in a classification problem of predicting toxicity of a molecule as well as in a regression problem of
predicting solubility of a molecule.

Another approach GCFExplainer [35] uses a random walk-based method to search the counterfactual
space. The objective is not to find an individual counterfactual for each input sample but to find a small set of
counterfactuals that explain all or a subset of the input samples. Hence, this is a global method (see Sec. 5.2).
Here the counterfactual search space is obtained by applying graph edit operations on the training data. The
method uses a random walk called Vertex Reinforced Random Walk (VRRW) [73], which is a modified version
of a Markov chain where the state transition probabilities depend on the number of previous visits to that state.

Both MMACE [101] and MEG [72] are developed for GNNs that predict molecular properties while the
objective of GCFExplainer [35] is to generate global explanations. However, the search algorithms and the
generation mechanisms of the counterfactual space are quite different. For instance, MMACE employs a graph
search algorithm to locate the nearest counterfactual instance. In contrast, MEG utilizes reinforcement learning,
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Table 10: Key highlights of search-based methods for counterfactuals

Method Explanation Type Downstream Task Counterfactual Similarity Metric Datasets Evaluated

MMACE [101] Instance level
Graph classification
Node classification Tanimoto similarity

Blood brain barrier dataset [62]
Solubility data [88]

HIV drug dataset [72]
GCFExplainer [35] Global Graph classification Graph edit distance Mutag [14], NCII [98]

MEG [72] Instance level
Graph classification
Node classification

Cosine Similarity
Tanimoto similarity Tox21 [40], ESOL [107]

and GCFExplainer employs random walks to achieve the same goal.

5 Others

In this section we describe the explainer methods in three special categories: explainer for temporal GNNs,
global explainers and causality-based explainers in this section.

5.1 Explainers for Temporal GNNs

In temporal or dynamic graphs, the graph topology and node attributes evolve over time. For instance, in social
networks the relationships can be dynamic, or in the citation networks co-authorships change over time. There
has been effort towards explaining the GNN models that are specifically designed for such structures.

One of the earlier explainer methods on dynamic graphs is GCN-SE [20]. GCN-SE learns the attention
weights in the form of linear combination of the representations of the nodes over multiple snapshots (i.e., over
time). To quantify the explanatory power of the proposed method, importance of different snapshots are evaluated
via these learned weights. Another method [31] designs a two-step process. It uses static explainer such as
PGM-explaine [96] to explain the underlying temporal GNN (TGNN) model (such as TGCN [125]) for each
time step separately and then it aims to discover the dominant explanations from the explanations identified by
the static one. DGExplainer [109] also generates explanations for dynamic GNNs by computing the relevance
scores that capture the contributions of each component for a dynamic graph. More specifically, it redistributes
the output activation score to the relevance of the neurons of its previous layer in the model. This process
iterates until the relevance scores of the input neuron are obtained. Recently, T-GNNExplainer [108] has been
proposed for temporal graph explanation where a temporal graph constituted by a sequence of temporal events.
T-GNNExplainer solves the problem of finding a small set of previous events that are responsible for the model’s
prediction of the target event. In [51], the approach involves a smooth parameterization of the GNN predicted
distributions using axiomatic attribution. These distributions are assumed to be on a low-dimensional manifold.
The approach models the distributional evolution as smooth curves on the manifold and reparameterize families
of curves by designing a convex optimization problem. The aim is to find a unique curve that approximates the
distributional evolution and will be useful for human interpretation.

The following ones also design explainers of temporal GNNs but with specific objectives or applications. [97]
studies the limit of perturbation-based explanation methods. The approach constructs some specific instances
of TGNNs and evaluate how reliably node-perturbation, edge-perturbation or both can reliably identify specific
graph components carrying out the temporal aggregation in temporal GNNs. In [113], a novel interpretable model
on temporal heterogeneous graphs has been proposed. The method constructs temporal heterogeneous graphs
which represent the research interests of the target authors. After the detection task, a deep neural network has
been used for the generation process of interpretation on the predicted results. This method has been applied to
research interest shift detection of researchers. Another related work [29] is on explaining GraphRC which is a
special type of GNN and popular because of its training efficiency. The proposed method explores the specific
role played by each reservoir node (neuron) of GraphRC by using attention mechanism on the distinct temporal
patterns in the reservoir nodes.
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5.2 Global Explainers

Majority of the explainers provide explanation for specific instances and can be seen as local explainers. However,
global explainers aim to explain the overall behavior of the model by finding common input patterns that explain
certain predictions [118]. Global explainers provide a high-level and generic explanation compared to local
explainers. However, local explainers can be more accurate compared to global explainers [118] especially for
individual instances. We categorize global explainers into following three types.
(1) Generation-based: These post-hoc methods use either a generator or generative modeling to find explanations.
For instance, XGNN [118] uses a reinforcement learning (RL) based graph generator optimized using policy
gradient. In contrast, GNNInterpreter [100] is a generative global explainer that maximizes the likelihood of
explanation graph being predicted as the target class by the model (the details are in Sec. 3.1.5).
(2) Concept-based: These methods provide concept based explanations. Concepts are small higher level units
of information that can be interpreted by humans [25]. The methods differ in the approaches to find concepts.
GCExplainer [60] adapts an image explanation framework known as automated concept based explanation
(ACE) [25] to find global explanation for graphs. It finds concepts by clustering the embeddings from the last
layer of the GNN. A concept and its importance are represented by a cluster and the number of nodes in it
respectively. Another method GCneuron [112], which is inspired by Compositional Explanations of Neurons
[70], finds global explanation for GNNs by finding compositional concepts aligned with neurons. A base concept
is a function C on Graph G that produces a binary mask over all the input nodes V . A compositional concept is
logical combination of base concepts. This method uses beam search to find compositional concept that minimizes
the divergence between the concept and the neuron activation. Lastly, GLGExplainer [2] uses local explanations
from PGExplainer [56] and projects them to a set of learned prototype or concepts (similar to ProtGNN [124]) to
derive a concept vector. A concept vector is vector of distances between graph explanation and each prototype.
This concept vector is then used to train an Entropy based logic explainable network (E-LEN) [10] to match the
prediction of the class. The logic formula from the entropy layer for each class acts as explanations.
(3) Counterfactual: Global counterfactual explainer [35] finds a candidate set of counterfactuals using vertex
re-inforced random walk. It then uses a greedy strategy to select the top k counterfactuals from the candidate set
as global explanations. We explain it in more detail in Sec. 4.3.

5.3 Causality-based Explainers

Most of the GNN classifiers learn all statistical correlation between the label and input features. As a result, these
may not distinguish between causal and non-causal features and may make prediction using shortcut features [89].
Shortcut features serve as confounders between the causal features and the prediction. Methods in this category
attempt to reduce the confounding effect so that the model exploits causal substructure for prediction and these
substructures also act as explanations. They can be categorized into the followings.

Self-interpretable methods. Methods in this category have the explainer architecture inbuilt into the model.
One of the methods, DIR [106] creates multiple interventional distribution by conducting intervention on the
training distribution. The invariant part across these distributions is considered as the causal part (see details in
Sec. 3.2.2). CAL [89] uses edge and node attention to estimate causal and shortcut features of the graph. Two
classifiers are used to make prediction on causal and shortcut features respectively. Loss on causal features is
used as classification loss. Moreover, KL divergence is used to push the prediction based on shortcut features
to have uniform distribution across classes. Finally, CAL creates an intervention graph in the representation
space via random additions. The loss on this intervened graph classification is considered as the causal loss.
These three loss terms are used to reduce the confounding effect and find the causal substructure that acts as
explanation. DisC [19] uses a disentangled GNN framework to separate causal and shortcut substructures. It first
learns a edge mask generator that divides the input into causal and shortcut substructures. Two separate GNNs
are trained to produce disentangled representation of these substructures. Finally, these representations are used
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to generate unbiased counterfactual samples by randomly permuting the shortcut representation with the causal
representation.

Generation-based methods. These methods use generative modeling to find explanations and are post-hoc.
GEM [49] trains a generative auto-encoder by finding the causal contribution of each edge in the computation
graph (details are in Sec. 3.1.5). While GEM focuses on the graph space, OrphicX [50] identifies the causal
factors in the embedding space. It trains a variational graph autoencoder (VGAE) that has an encoder and a
generator. The encoder outputs latent representations of causal and shortcut substructures of input. Generator
uses both of these representations to generate the original graph and the causal representation to produce a causal
mask on original graph. The information flow between the latent representation of the causal substructure and the
prediction is maximized to train the explainer. The causal substructure also acts as an explanation.

6 Applications

We describe the explainers methods that are relevant for specific applications in different domains such as in
social networks, biology, and computer security.

Computer Security. This work [30] focuses on designing an explanation framework for cybersecurity appli-
cations using GNN models by identifying the important nodes, edges, and attributes that are contributing to
the prediction. The applications include code vulnerability detection and smart contract vulnerability detection.
Another work [33] proposes CFGExplainer for GNN oriented malware classification and identifies a subgraph
of the malware control flow graph that is most important for the classification. Some other work focuses on
the problem of botnet detection. The first method BD-GNNExplainer [127] extracts the explainer subgraph by
reducing the loss between the classification results generated by the input subgraph and the entire input graph.
The XG-BoT detector proposed in [53] detects malicious botnet nodes in botnet communication graphs. The
explainer is based on the GNNExplainer and saliency map in the XG-BoT.

Social Networks. A recent work [79] studies the problem of detecting fake news spreaders in social networks.
The proposed method SCARLET is a user-centric model that uses a GNN with attention mechanism. The
attention scores help in computing the importance of the neighbors. The findings include that a person’s decision
to spread false information is dependent on its perception (or trust dynamics) of neighbor’s credibility. On the
other hand, GCAN [54] uses sequence models. The aim is to find a fake tweet based on the user profile and the
sequence of its retweets. The sequence models and GNNs help to learn representation of retweet propagation and
representation of user interactions respectively. A co-attention mechanism is further used to learn the correlation
between source tweet and retweet propagation and make prediction. In [58], a GNN model has been proposed
along with the explanation of its prediction for the problem on drug abuse in social networks.

Computational Biology. One of the long standing problems in neuroscience is the understanding of Brain
networks, especially understanding the Regions of Interests (ROIs) and the connectivity between them. These
regions and their connectivity can be modelled as a graph. A recent work on explainability, IBGNN [11]
explores the explainable GNN methods to solve the task of identifying ROIs and their connectivity that are
indicative of brain disorders. It uses a perturbation matrix to create an edge mask, and extracts important edges
and nodes. A few more works also focus on the same task of identifying ROIs, but use different explanation
techniques. In [63], the method uses a perturbation matrix with feature masks and optimizes mutual information
to find the explanations. This work [126] uses Grad-CAM [76] to find important ROIs. [1] uses a search-based
method to extract counterfactuals, which can serve as good candidates for important ROIs. The method uses
graph edit operations to navigate from input graph to a counterfactual, but it optimizes this by using a lookup
database to select edges that are the most effective in discriminating between different predicted classes. As
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another interesting application, this work [75] explores is related to the extraction of subgraphs in protein-protein
interaction (PPI) network, where the downstream task is to detect the relevance of a protein to cancer.

Chemistry. GNNs are being used to study molecular properties extensively and often requires explanations
to better understand the model’s predictions. A recent work [32] focuses on improving self-interpretability of
GCNs by imposing orthogonality of node features and sparsity of the GCN’s weights using Gini regularization.
The intuition behind the orthogonality of features is driven by the assumption that atoms in a molecule can be
represented by a linear combination of orthonormal basis of wavefunctions. Another method, APRILE [111]
aims at finding the parts of a drug molecule responsible for side effects. It uses perturbation techniques to extract
an explanation. In drug design, the method in [38] uses integrated gradients [91] to assign importance to atoms
(nodes) and the atomic properties (node features) to understand the properties of a drug.

Pathology. In medical diagnosis a challenging task is to understand the reason behind a particular diagnosis,
whether it is made by a human or a machine learning system. To this end, explainer frameworks for the machine
learning models become useful. In many cases the diagnosis data can be represented by graphs. This work [105]
builds a graph using words, entities, clauses and sentences extracted from a patient’s electronic medical record
(EMR). The objective is to extract the entities most relevant for the diagnosis by training an edge mask, and is
achieved by minimizing the sum of the elements in the mask matrix. Another method [37] focuses on generating
explanations for histology (micro-anatomy) images. It first converts the image into a graph of biological entities,
where the nodes could be cells, tissues or some other task specific biological features. Afterwards the standard
explainer techniques described in gradient 3.1.2 or perturbation 3.1.4 based methods are used to generate the
explanations. Another work [116] in this field modifies the objective to optimise for both necessity and sufficiency
(Sec. 8). The explanation is generated in such a way that the mutual information between explanation subgraph
and the prediction is maximized. Additionally, the mutual information between the remaining graph after
removing the explanation subgraph and the prediction is minimized.

7 Datasets

A set of synthetic as well as real-world datasets have been used for evaluating the proposed explainers in
several tasks such as node classification and graph classification. Table 11 lists down the set of datasets and the
corresponding explanation types and tasks used in the literature.

7.1 Synthetic datasets

Annotating ground truth explanations in graph data is laborious and requires domain expertise. To overcome this
challenge, several explainers have been evaluated using synthetic datasets that are created using certain motifs as
ground truth values. We highlight six popular synthetic datasets:
BA-Shapes [114]: This graph is formed by randomly connecting a base graph to a set of motifs. The base graph
is a Barabasi-Albert (BA) graph with 300 nodes. It includes 80 house-structured motifs with five nodes each,
formed by a top, a middle, and a bottom node type.
BA-Community [114]: The BA-community graph is a combination of two BA-Shapes graphs. The features of
each node are assigned based on two Gaussian distributions. Also, nodes are assigned a class out of eight classes
based on the community they belong to.
Tree Cycle [114]: This consists of a 8-level balanced binary tree as a base graph. To this base graph, 80 cycle
motifs with six nodes each are randomly connected. It just has two classes; one for the nodes in the base graph
and another for nodes in the defined motif.

50



Table 11: It shows the datasets for different categories, explanation types and tasks.

Dataset References Nature Explanation Type Task

BA-Shapes [114, 96, 123, 56, 49, 55, 4] Synthetic Compared to Motif Node classification
BA-Community [84, 114, 56, 4, 57] Synthetic Compared to Motif Node classification

Tree Cycle [49, 56, 123, 4, 55] Synthetic Compared to Motif Node classification
Tree Grids [114, 56, 123, 49, 4, 55] Synthetic Compared to Motif Node classification
BA-2Motif [56, 121, 68, 4] Synthetic Compared to Motif Graph classification

Spurious Motifs [68, 106] Synthetic Compared to Motif Graph classification
Mutagenicity [114, 56, 49, 124, 121, 4, 118] Real-World Compared to Chemical property Graph classification

NCI1 [49, 4] Real-World Compared to Chemical property Graph classification
BBBP [124, 92, 107] Real-World Compared to Chemical property Graph classification
Tox21 [72, 107] Real-World Compared to Chemical property Graph classification

MNIST-75sp [96, 68, 43] Real-World Visual Graph classification
Sentiment Graphs [121, 68, 124, 120] Real-World Visual Graph classification

Tree Grids [114]: This graph uses same base graph but a different motif set compared to the tree cycle graph. It
uses 3 by 3 grid motifs instead of the cycle motifs.
BA-2Motifs [56]: This is used for graph classification and has two classes. The base graph is BA graph for both
the classes. However, one class has a house-structure motif and another has a 5-node cycle motif.
Spurious Motifs [106]: With 18000 graphs in the dataset, each graph is a combination of one base S (Tree,
Ladder or Wheel) and one motif C (Cycle, House, Crane). Ground-truth Y is determined by the motif. A spurious
relation between S and Y is manually induced. This spurious correlation can be varied based on a parameter that
ranges from 0 to 1.

7.2 Real-world datasets

Due to the known chemical properties of the molecules, molecular graph datasets become a good choice for
evaluating the generated explanation structure. We highlight some widely used molecular datasets for evaluating
explainers in the graph classification task.
Mutag [14]: This consists of 4337 molecules (graphs) with two classes based on the mutagenic effect. Using
domain knowledge, specific chemical groups are assigned as ground truth explanations.
NCI1 [98]: It is a graph classification dataset with 4110 instances. Each graph is a chemical compound where a
node represents an atom and an edge represents a bond between atoms. Each molecule is screened for activity
against non-small cell lung cancer or ovarian cancer cell lines.
BBBP [107]: Similar to Mutag, Blood-brain barrier penetration (BBBP) is also a molecule classification dataset
with two classes with 2039 compounds. Classification is based on their permeability properties.
Tox21 [107]: This dataset consists of 7831 molecules with 12 different categories of chemical compounds. The
categorization is based on the chemical structures and properties of those compounds.

Visual explanation can be an important component of comparing explainers. Hence, researchers also use
datasets that do not have ground truth explanations but can be visually evaluated through generated examples.
Below are some of the datasets used for visual analysis:
MNIST-75sp [43]: An MNIST image is converted to a super-pixel graph with at most 75 nodes, where each node
denotes a “super pixel”. Pixel intensity and coordinates of their centers of masses are used as the node attributes.
Edges are formed based on the spatial distance between the super-pixel centers. Each graph is assigned one of the
10 MNIST classes, i.e., numerical digits.
Sentiment Graphs [120]: Graph SST2, Graph SST5, and Graph Twitter are based on text sentiment analysis data
of SST2, SST5, and Twitter datasets. A graph is constructed by considering tokens as nodes, relations as edges,
and sentence sentiment as its label. The BERT architecture is used to obtain 768-dimensional word embeddings
for the dataset. The generated explanation graph can be evaluated for its textual meaning.
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8 Evaluation

The evaluation of the explainer methods is based on the quality of the explainer’s ability to generate human-
intelligible explanations about the model prediction. As this might be subjective depending on the applications in
hand, the evaluation measures consider both quantitative and qualitative metrics.

8.1 Quantitative Evaluation

Quantitative evaluation metrics help in having a standardized evaluation that is free of human bias. For this,
explainability is posed as a binary classification problem. The explainers assign a score to the node features, edges,
and motifs, which are the most responsible for the prediction according to the explainer. We are also provided
with the ground-truth binary labels for the features and structures based, denoting whether they are responsible for
the prediction or not. The explainer is then evaluated by comparing these scores to the ground-truth explanation
labels using different methods:
Accuracy [55, 92]: To find the accuracy, the top-k edges produced by the explainer are set to be positive, and the
rest are negative. These top-k edges and the ground-truth labels are compared to compute the accuracy.
Area Under Curve (AUC) [123, 101, 4]: We compare the top-k raw scores directly against the ground-truth
labels by computing the area under the ROC curve.
Fidelity [115, 55, 4]: This is used for explainers that generate a subgraph as the explanation. It compares the
performances of the base GNN model on the input graph and the explainer subgraph. Let N be the number
of samples, yi is the true label of sample i, ŷi is the predicted label of sample i, ŷk is the predicted label after
choosing the subgraph formed by nodes with top-k% nodes, and 1[·] is the indicator function. Fidelity measures
how close the predictions of the explanation sub-graph are to the input graph. For factual explainers, the lower
this value, the better is the explanation. It is formally defined as follows:

Fidelity =
1

N

N∑
i=1

1[yi = ŷi]− 1[yi = ŷki ]

Sparsity [115, 55]: It measures the conciseness of explanations (e.g., the sub-graphs) that are responsible for the
final prediction. Let |pi| and |Gi| denote the number of edges in the explanation, and the same in the original
input graph, respectively. The sparsity is then defined as follows:

Sparsity = 1− 1

N

N∑
i=1

|pi|
|Gi|

Robustness [4]: It quantifies how resistant an explainer is to perturbations on input graph. Here perturbations are
addition or deletion of edges randomly such that it does not change the prediction of the underlying GNN. The
robustness is the percentage of graphs for which these perturbations do not change the explanation.
Probability of Sufficiency (PS) [92, 9]: It is the percentage of graphs for which the explanation graph is sufficient
to generate the same prediction as the original input graph.
Probability of Necessity (PN) [92, 9]: It is the percentage of graphs for which the explanation graph when
removed from the original input graph will alter the prediction made by the GNN.
Generalization [84]: This measures the capability of generalization of the explainer method in an inductive
setting. To measure this, the training dataset size is usually varied and the AUC scores are computed for these
tests. Generalisation plays an important role in explanability as the good generalizable models are generally
sparse in terms of inputs. This metric is highly relevant for the self-interpretable models.
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8.2 Qualitative Evaluation

Explanations can also be evaluated qualitatively using expert domain knowledge. This mode of evaluation is
crucial especially while working with real-world datasets that do not have ground truth labels.
Domain Knowledge [114]: Generated explanations can be evaluated for their meaning in the application domain.
For example, GNNExplainer [114] correctly identifies the carbon ring as well as chemical groups NH2 and NO2,
which are known to be mutagenic.
Manual Scoring [96]: Another method of evaluating the explanations is by asking users (e.g., domain experts) to
score, say on a scale of 1-10, the explanations generated by various explainers and compare them. One can also
use RMSE scores to quantitatively compare these explainers based on the scores.

9 Future Directions

Combinatorial problems: Most of the existing explanation frameworks are for prediction tasks such as node
and graph classification. However, graphs are prevalent in various domains, such as in social networks [39, 67],
healthcare [102], and infrastructure development [65, 64]. Solving combinatorial optimization problems on
graphs is a common requirement in these domains. Several architectures based on Graph Neural Networks
(GNNs) [41, 61, 77] have been proposed to tackle these problems that are usually computationally hard. However,
the explainability of these methods for such combinatorial problems is largely missing. One potential direction is
to build frameworks that can explain the behavior of the solution set in such problems.
Global methods: Most explainers primarily adopt a local perspective by generating examples specific to
individual input graphs. From global explanations, we can extract higher-level insights that complement the
understanding gained from local explanations (see details on global methods in Sec. 5.2). Moreover, global
explanations can be easily understood by humans even for large datasets. Real-world graph datasets often
consist of millions of nodes. When generating explanations specific to each instance, the number of explanations
increases proportionally with the size of the dataset. As a result, the sheer volume of explanations becomes
overwhelming for human cognitive capabilities to process effectively. Global approaches can immensely help in
these scenarios.
Visualization and HCI tools: Graph data, unlike textual and visual data, cannot be perceived by human
senses. Thus, qualitative evaluation of explanation becomes a non-trivial problem and often requires expert
guidance [114, 96]. This makes crowdsourcing evaluations difficult and not scalable. Other ways to qualitatively
assess graph structures for explanation of a certain prediction can be explored. Additionally, since explainability
is human-centric, it is crucial that explainers are influenced by human cognition and behavior, particularly those
of domain experts [48] while using GNNs in making important decisions [66]. HCI research can help in designing
the interface for the experts to assess the generated explanation graphs [55].
Temporal GNNs: Temporal graph models are designed to predict the graph structure and labels in the future by
exploiting how the graph has evolved in the past. This increases the complexity of explanations significantly as
they now involve combinations of graph structures at different time intervals. Existing methods [20, 109, 31, 44]
mostly focus on discrete-time models where graphs are provided at different points in time. Future works can
explore ways to explain the prediction of a continuous-time dynamic graph model, where interactions happen in
real time [108]. One direction could be to optimize over a parameterized temporal point process [94].

10 Conclusions

In this survey, we have provided a comprehensive overview of explanation methods for Graph Neural Networks
(GNNs). Besides outlining some background on GNNs and explainability, we have presented a detailed taxonomy
of the papers from the literature. By categorizing and discussing these methods, we have highlighted their
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strengths, limitations, and applications in understanding GNN predictions. Moreover, we have highlighted some
widely used datasets and evaluation metrics in assessing the explainability of GNNs. As GNNs continue to play a
significant role in various fields, such as healthcare, recommendation systems, and natural language processing,
the need for interpretable and transparent models becomes increasingly important. Overall, we believe this
survey serves as a valuable resource for researchers and practitioners interested in the explainability of GNNs and
provides a foundation for further advancements in interpretable graph representation learning.
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[95] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[96] Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural networks.
Advances in neural information processing systems, 33:12225–12235, 2020.

[97] Minh N Vu and My T Thai. On the limit of explaining black-box temporal graph neural networks. In AAAI, 2022.

[98] Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems, 14:347–375, 2008.

[99] Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-grained explainability for
graph neural networks. Advances in Neural Information Processing Systems, 34:18446–18458, 2021.

[100] Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level explanation for graph neural
networks. arXiv preprint arXiv:2209.07924, 2022.

[101] Geemi P Wellawatte, Aditi Seshadri, and Andrew D White. Model agnostic generation of counterfactual explanations
for molecules. Chemical science, 13(13):3697–3705, 2022.

[102] Bryan Wilder, Han-Ching Ou, Kayla de la Haye, and Milind Tambe. Optimizing network structure for preventative
health. In AAMAS, pages 841–849, 2018.

[103] Bingzhe Wu, Jintang Li, Junchi Yu, Yatao Bian, Hengtong Zhang, CHaochao Chen, Chengbin Hou, Guoji Fu, Liang
Chen, Tingyang Xu, et al. A survey of trustworthy graph learning: Reliability, explainability, and privacy protection.
arXiv preprint arXiv:2205.10014, 2022.

59



[104] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In International conference on machine learning, pages 6861–6871. PMLR, 2019.

[105] Haoran Wu, Wei Chen, Shuang Xu, and Bo Xu. Counterfactual supporting facts extraction for explainable medical
record based diagnosis with graph network. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 1942–1955, 2021.

[106] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales for graph
neural networks. International Conference on Learning Representations, 2022.

[107] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing,
and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science, 9(2):513–530, 2018.

[108] Wenwen Xia, Mincai Lai, Caihua Shan, Yao Zhang, Xinnan Dai, Xiang Li, and Dongsheng Li. Explaining temporal
graph models through an explorer-navigator framework. In The Eleventh International Conference on Learning
Representations, 2023.

[109] Jiaxuan Xie, Yezi Liu, and Yanning Shen. Explaining dynamic graph neural networks via relevance back-propagation.
arXiv preprint arXiv:2207.11175, 2022.

[110] Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural networks for
automated de novo drug design. Drug Discovery Today, 26(6):1382–1393, 2021.

[111] Hao Xu, Shengqi Sang, Herbert Yao, Alexandra I Herghelegiu, Haiping Lu, James T Yurkovich, and Laurence Yang.
Aprile: Exploring the molecular mechanisms of drug side effects with explainable graph neural networks. bioRxiv,
pages 2021–07, 2021.

[112] Han Xuanyuan, Pietro Barbiero, Dobrik Georgiev, Lucie Charlotte Magister, and Pietro Lió. Global concept-based
interpretability for graph neural networks via neuron analysis. arXiv preprint arXiv:2208.10609, 2022.

[113] Qiang Yang, Changsheng Ma, Qiannan Zhang, Xin Gao, Chuxu Zhang, and Xiangliang Zhang. Interpretable research
interest shift detection with temporal heterogeneous graphs. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pages 321–329, 2023.

[114] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

[115] Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph information bottleneck. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19396–19405, 2022.

[116] Junchi Yu, Tingyang Xu, and Ran He. Towards the explanation of graph neural networks in digital pathology with
information flows. arXiv preprint arXiv:2112.09895, 2021.

[117] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information bottleneck for
subgraph recognition. International Conference on Learning Representations, 2021.

[118] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 430–438, 2020.

[119] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[120] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[121] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via subgraph
explorations. In International Conference on Machine Learning, pages 12241–12252. PMLR, 2021.

60



[122] Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. Gstarx: Explaining graph neural networks with structure-
aware cooperative games. In Advances in Neural Information Processing Systems, 2022.

[123] Yue Zhang, David Defazio, and Arti Ramesh. Relex: A model-agnostic relational model explainer. In Proceedings of
the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages 1042–1049, 2021.

[124] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. Protgnn: Towards self-explaining graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 9127–9135, 2022.

[125] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: A temporal graph
convolutional network for traffic prediction. IEEE transactions on intelligent transportation systems, 21(9):3848–
3858, 2019.

[126] Houliang Zhou, Lifang He, Yu Zhang, Li Shen, and Brian Chen. Interpretable graph convolutional network of
multi-modality brain imaging for alzheimer’s disease diagnosis. In 2022 IEEE 19th International Symposium on
Biomedical Imaging (ISBI), pages 1–5. IEEE, 2022.

[127] Xiaolin Zhu, Yong Zhang, Zhao Zhang, Da Guo, Qi Li, and Zhao Li. Interpretability evaluation of botnet detection
model based on graph neural network. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6. IEEE, 2022.

[128] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with graph convolutional
networks. Bioinformatics, 34(13):i457–i466, 2018.

[129] Marinka Zitnik, Francis Nguyen, Bo Wang, Jure Leskovec, Anna Goldenberg, and Michael M Hoffman. Machine
learning for integrating data in biology and medicine: Principles, practice, and opportunities. Information Fusion,
50:71–91, 2019.

61



Generative Explanation for Graph Neural Network:
Methods and Evaluation

Jialin Chen1, Kenza Amara2, Junchi Yu3, Rex Ying1,
1Department of Computer Science, Yale University
2Department of Computer Science, ETH Zurich

3Institute of Automation, Chinese Academy of Sciences
1{jialin.chen,rex.ying}@yale.edu,2kenza.amara@ai.ethz.ch,3yujunchi2019@ia.ac.cn

Abstract

Graph Neural Networks (GNNs) achieve state-of-the-art performance in various graph-related tasks. How-
ever the black-box nature often limits their interpretability and trustworthiness. Numerous explanation methods
have been proposed to uncover the decision-making logic of GNNs, by generating underlying explanatory
substructures. In this paper, we conduct a comprehensive review of the existing explanation methods for GNNs
from the perspective of graph generation. Specifically, we propose a unified optimization objective for current
generative explanation methods, comprising two sub-objectives: Attribution and Information constraints. We
further demonstrate their specific manifestations in different generative model architectures and explanation
scenarios. With the unified objective of the explanation problem, we reveal the shared characteristics and
distinctions among current methods, laying the foundation for future methodological advancements. Empirical
results demonstrate the advantages and limitations of different approaches in terms of explanation performance,
efficiency, and generalizability.

1 Introduction

Graph Neural Networks (GNNs) have emerged as a powerful tool for studying graph-structured data in various
applications, such as social networks, drug discovery, and recommendation systems [55, 10, 40, 11, 9, 46, 13].
The explainability and trustworthiness of GNNs are crucial for their successful deployment in real-world
scenarios, especially in high-stake applications, such as anti-money laundering, fraud detection, and healthcare
forecasting [51, 31, 1]. Explanations for GNNs aim to discover the reasoning logic behind their predictions,
making them more understandable and transparent to users. Explanations also help identify potential biases
and build trust in the decision-making process of the model. Furthermore, they aid users in understanding
complex graph-structured data, leading to improved outcomes in various applications through better feature
extraction [54, 12, 47].

Numerous explanation methods have been extensively studied for GNNs, including gradient-based attribution
methods [32, 6, 36], perturbation-based methods [48, 41, 52, 34, 16], etc. However, most of these methods
optimize individual explanations for a specific instance, lacking global attention to the overall dataset and
the ability to generalize to unseen instances. To tackle this challenge, generative explainability methods have
emerged recently, which instead formulate the explanation task as a distribution learning problem. Generative
explainability methods aim to learn the underlying distributions of the explanatory graphs across the entire graph
dataset [42, 22, 28, 50], providing a more holistic approach to GNN explanations.

Current surveys in the field of Graph Neural Networks (GNNs) explainability primarily focus on the taxonomy
and evaluation of explanation methods [51, 1, 33], as well as broader trustworthy aspects such as robustness,
privacy, and fairness [44, 54, 23, 47]. The emerging generative explainability methods prompt us to consider
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the potential advantages of incorporating distribution learning into the optimization objective, such as better
explanation efficiency and generalizability.

Our work stands apart from previous works by thoroughly investigating the different mechanisms for
generating explanations. We explore a comprehensive range of graph generation techniques that have been
employed in GNN explanation tasks, including cutting-edge techniques such as the Variational Graph Autoencoder
(VGAE) and denoising diffusion models. Our study begins by elucidating the core design considerations of
different generative models and employs a novel generative perspective to unify a group of effective GNN
explanation approaches. The key insight lies in a unified optimization objective, which includes an Attribution
constraint and an Information constraint to ensure that the generated explanations are sufficiently succinct and
relevant to the predictions. We subsequently delve into the details of the practical designs of the Attribution and
Information constraints to facilitate the analysis of the connections and potential extensions of current generative
explainability methods. The proposed unified optimization objective also empowers GNN users to efficiently
design effective generative explainability methods.

Comprehensive experiments on synthetic and real-world datasets demonstrate the advantages and drawbacks
of these existing methods. Specifically, our results show that generative approaches are empirically more efficient
during the inference stage. Meanwhile, generative approaches achieve the best generalization capacity compared
to other non-generative approaches.

This paper is structured as follows. First, we introduce the notations and problem setting in Sec. 2. Then,
we propose a standard optimization objective with Attribution constraint and Information constraint to unify
generative explanation methods in Sec. 3.1. Detailed expressions of these two constraints are elaborated in
Sec. 3.2 and Sec. 3.3, respectively. In Sec. 3.4, we discuss how to generalize the proposed framework to extensive
explanation scenarios, e.g.counterfactual and model-level explanations. Additionally, we present a taxonomy
of representative works with different generative backbones in Sec. 4. Finally, we conduct comprehensive
evaluations and demonstrate the potential of deep generative methods for GNN explanation in Section 5.

2 Preliminaries

2.1 Notations and Definitions

Given a well-trained GNN model f (base model) and an instance (i.e.a node or a graph) of the dataset, the
objective of the explanation task is to identify concise graph substructures that contribute the most to the model’s
predictions. The given graph (or N -hop neighboring subgraph of the given node) can be represented as a
quadruplet G(V, E ,X,E), where V is the node set, E ⊆ V × V is the edge set. X ∈ R|V|×dn and V ∈ R|E|×de

denote the feature matrices for nodes and edges, respectively, where dn and de are the dimensions of node features
and edge features. In this work, we focus on structural explanation, i.e.we keep the dimensions of node and edge
features unchanged. The notations used throughout this paper are summarized in Table 1. Depending on the
specific explanation scenario, we define the explanation graphs with different target labels as follows.

Definition 2.1 (Explanation Graph) Given a well-trained GNN f and an instance represented asG(V, E ,X,V),
an explanation graph Ge(Ve, Ee,Xe,Ee) for the instance is a compact subgraph of G, such that Ve ⊆ V , Ee ⊆ E ,
Xe = {Xj |vj ∈ Ve} and Ee = {Ek|ek ∈ Ee}, where vj and Xj denote the graph node and the corre-
sponding node feature, ek and Ek denote the graph edge and the corresponding edge feature. Explanation
graph Ge is expected to be compact and result in the same predicted label Y ∗ as the label of G made by f ,
i.e.Y ∗ = Yf (Ge) = Yf (G), where Yf (·) denotes the predicted label made by the model f .

Definition 2.2 (Counterfactual Explanation Graph) Given a well-trained GNN f and an instance G, a coun-
terfactual explanation graph Gce is as close as possible to the original graph G, while it results in a different
predicted label Y ∗ with the label of G predicted by f , i.e.Y ∗ = Yf (Gce) ̸= Yf (G).
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Notation Description

G(V, E ,X,E) a graph with nodes V , edges E , node features X and edge features E
vj ∈ V a graph node
ek ∈ E a graph edge
Ge an explanation graph
Gce a counterfactual explanation graph
Gcm a model-level explanation graph for the target class c

G = {G1, · · · , GM} the graph set of M input instances
Ge = {G1

e, · · · , GMe } the set of M generated explanation graphs
X = {X1, · · · , X|V|} ∈ R|V|×dn the node feature matrix with dn feature dimensions
E = {E1, · · · , E|E|} ∈ R|E|×de the edge feature matrix with de feature dimensions

A ∈ {0, 1}|V|×|V| the unweighted adjacency matrix
Y the label space
f the well-trained GNN to be explained (base model)

Y s ∈ {0, 1, · · · , |Y|} the original label of s, where s can be a node or a graph
Yf (s) ∈ {0, 1, · · · , |Y|} the predicted label of s by f
Y ∗ ∈ {0, 1, · · · , |Y|} the predicted label during the explanation stage
Pf (s) ∈ [0, 1]|Y| the output probability vector of s by f
f(s) ∈ R|Y| the output logit vector of s by f
gθ(·) : G → Ge an explanation generator with parameters θ

p(·|G) the distribution of the explanation graphs for a given G

Table 1: Summary of the notations

Definition 2.3 (Model-level Explanation Graph) Given a set of graph G = {G1, · · · , GM}, where each Gj ∈
G has the same label c predicted by the well-trained GNN f , a model-level explanation graph Gcm is a distinctive
subgraph pattern that commonly appears in G, and is predicted as the same label c, i.e.Y ∗ = Yf (G

c
m) = c.

2.2 General Explanation for Graph Neural Network

Given a graph G and the corresponding label Y ∗ in specific explanation scenarios, generating explanation graphs
can be formulated as an optimization problem that maximizes the mutual information between the generated
graph and the target label Y ∗ with the following objective:

G∗
e = argmax

Ge

MI(Y ∗, Ge) = argmax
Ge

H(Y ∗)−H(Y ∗|Ge)

= argmin
Ge

H(Y ∗|Ge) = argmin
Ge

−EY ∗|Ge
logP (Y ∗|Ge),

(8)

where MI(·, ·) denotes the mutual information function, H(·) denotes the entropy function, P (Y ∗|Ge) measures
the probability that Ge is predicted as the label Y ∗.
Instance-dependent Explainers. Early efforts develop explanation frameworks for GNNs that optimize an
explanation for each individual instance. For example, the Gradient-based methods [6, 32] evaluate the node
and edge importance with the gradient norm of prediction node and edge features. Nodes and edges with higher
gradient norms are considered more important and are included in the explanation subgraph of the final prediction.
Other methods utilize more advanced frameworks such as mask optimization [48], surrogate model [39], and
Monte Carlo Tree Search [52] to search the explanation subgraphs for each individual instance.

64



Although instance-dependent explainers partly reveal the behavior of GNNs, there are several limitations.
Since these methods optimize explanations for individual graphs, they require significant computation and lack
holistic knowledge about how the GNN model behaves across the entire dataset. Furthermore, the learning
modules in instance-dependent explainers cannot be generalized to explain the predictions for unseen instances,
since the parameters are specific for individual instances.

3 Generative Framework for Graph Explanations

3.1 Unified Optimization Objective

To overcome the aforementioned limitations, recent research has develop approaches that leverage deep generative
methods to explain GNNs. Instead of optimizing an explanation for individual instances, the generative methods
aim to generate explanations for new graphs by learning a strategy to search for the most explanatory subgraphs
across the whole dataset. Formally, given a set of input graphs G, the generative explainer learns the distribution
of the underlying explanation graphs p(Ge|G) using a parameterized subgraph generator gθ : G → Ge. After
training, the subgraph generator is capable of identifying the explanation subgraphs that are most important to the
desired graph labels:

θ∗ = argmax
θ

logPY ∗(Ge|θ,G), (9)

where PY ∗(Ge|θ,G) is the probability that the generated Ge = gθ(G) is a valid explanation for the desired label
Y ∗. In addition to the validity requirement, an ideal explanation graph should be sparse and compact compared
with the given graph. Directly optimizing Eq. 9 leads to a trivial solution where Ge = G, as the input graph is
most informative for the graph label. To obtain a compact explanation, we impose an information constraint
LINFO(Ge, G) that restricts the amount of information contained in the generated explanation subgraph, thereby
ensuring the conciseness and brevity of the explanations. The overall objective of generative explanation is

min
θ
− logPY ∗(Ge|θ,G) + LINFO(Ge, G) := LATTR(Ge, Y

∗) + LINFO(Ge, G). (10)

We name the first term in Eq. 10 the attribution loss LATTR(Ge, Y
∗), which measures whether Ge captures the

most important substructures for the desired label Y ∗. LATTR is typically the cross-entropy loss for categorical
Y ∗ and mean squared loss for continuous Y ∗.
Connection With Variational Auto-encoder. LINFO in Eq. 10 can be set as the variational constraint,
i.e.LINFO(G,Ge) := DKL (qθ(Ge|G)∥Q(Ge)), where DKL denotes Kullback–Leibler divergence, Q(Ge) is
the prior distribution of the generated explanation graph Ge, and qθ(Ge|G) is the variational approximation
to gθ(Ge|G), variational constraint drives the posterior distribution of Ge generated by gθ(·|G) to its prior
distribution, thus restricting the information contained in Ge in the process. The overall objective is

L = EG − logPY ∗(Ge|θ,G) + DKL (qθ(Ge|G)∥Q(Ge)) , (11)

In this case, the objective of generative explanation shares similar spirits with the Variational Auto-encoder
(VAE) [20]. Recall the optimization objective of VAE is

LVAE = Ez∼qϕ(z|G) − log (pφ(G|z)) + DKL (qϕ(z|G)∥q(z)) , (12)

where qϕ is the encoder that maps graph G into a latent space, then the decoder pφ recovers the original graph G
based on the latent representation z. q(z) is the prior distribution of the latent representation, which is usually
a Gaussian distribution. Notably, the generative explanation approach with the variational constraint as LINFO
(Eq. 11) is a variant of Variational Auto-encoder (VAE) (Eq. 12), albeit with two fundamental distinctions.
Firstly, VAE aims to learn the distribution of the original graph, whereas generative explanation focuses on
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learning the underlying distribution of explanatory structures. Secondly, VAE constrains the distribution of latent
representation z, while the generative explanation constrains the posterior distribution of Ge. These distinctions
highlight the methodologies for generalizing generative models to the task of GNN explainability.

3.2 Taxonomies of Generative Models

In this section, we will discuss several taxonomies of generative models that have been employed in the field
of GNN explainability. These models aim to learn the probability distribution of the underlying explanatory
substructures by training across the entire graph dataset.

Mask Generation (MG) [27, 49, 29, 43] The mask generation method is to optimize a mask generator gθ to
generate the edge mask M for the input graph G. The elements of the mask represent the importance score of
the corresponding edges, which is further employed to select the important substructures of the input graph as
explanations. The mask generator is usually a graph encoder followed by a multi-layer perception (MLP), which
first embeds edge representations hei for each edge and then generates the sampling probability pi for edge ei.
The mask mi ∈ {0, 1} of ei is sampled from the Bernoulli distribution Bern(pi). Since the sampling process is
non-differentiable, the Gumbel-Softmax trick is usually employed for continuous relaxation as follows:

mi = σ((log ϵ− log (1− ϵ) + log(pi)− log(1− pi))/τ), ϵ ∼ Uniform(0, 1) (13)

where τ is the temperature, σ is the sigmoid function. When τ goes to zero, mi is close to the discrete
Bernoulli distribution. The explanation Ge is obtained by applying the edge mask M to the input graph G,
i.e.Ge =M ⊙G = gθ(G)⊙G, where ⊙ is element-wise multiplication. Given an input graph G and the desired
label Y ∗, the parameter θ of the mask generator gθ is optimized by minimizing the following attribution loss:

LATTR = −EG logPY ∗(Ge|G, θ) with Ge = gθ(G)⊙G, (14)

which is equivalent to the cross entropy between the output probability Pf (Ge) made by the base GNN f and the
desired label Y ∗.

Variational Graph Autoencoder (VGAE) [25, 28, 26] Variational Graph Autoencoder (VGAE) [20] is a
variational autoencoder for graph-structured data, where the encoder qϕ(·) and the decoder pθ(·) are typically pa-
rameterized by graph neural networks. VGAE can be used to learn the distribution of the underlying explanations
and thus generate explanation graphs for unseen instances. The encoder maps an input graph G to a probability
distribution over a latent space. The decoder then samples from the latent space and recovers an explanation
graph by Ge = pθ(z). The attribution loss of VGAE for generating explanation graphs is

LATTR = Ez∼qϕ(z|G) − logPY ∗(Ge|θ, z,G) + DKL(qϕ(z|G)∥q(z)). (15)

The standard VGAE shown in Eq. 12 aims to generate realistic graphs. On the contrary, the VGAE-based
explainer maximizes the likelihood of the valid explanation graph Ge for the desired label Y ∗. The former term
in Eq. 15 evaluates whether the explanation graph Ge captures the most important structures for Y ∗. It can be
replaced by the cross entropy between the output probabilities Pf (Ge) and Y ∗ as CLEAR [28], or the cross
entropy between the generated graph Ge and ground-truth explanations as GEM [25]. The second term of KL
divergence is a model-specific constraint that drives the posterior distribution qϕ(z|G) to the prior distribution
q(z), which is usually a Gaussian distribution.
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Generative Adversarial Networks (GAN) [24] Generative Adversarial Network (GAN) is a type of generative
model that does not include an explicit encoder component. Instead, GANs consist of a generator gθ that creates
an explanation graph Ge = gθ(z) for z sampled from a prior distribution q(z), and a discriminator dϕ that
distinguishes between the input graph G and the generated explanation graph Ge. The objective function of a
GAN is a min-max game in which the generator gθ tries to minimize the function while the discriminator dϕ tries
to maximize it.

LATTR = −Ez∼q(z) logPY ∗(Ge|θ, z,G) + log dϕ(G) + Ez∼q(z) log(1− dϕ(gθ(z))), (16)

where the first term can be the cross entropy between Pf (gθ(z)) and the desired label Y ∗. dθ(·) denotes the
probability that the discriminator predicts that the input is an explanation. GAN-based Explainer [24] was recently
proposed with the first term replaced with the square of the difference between the output logit of f for G and Ge,
i.e.Ez∼q(z) (f(G)− f(gθ(z)))2. Once the GAN is well-trained, the generator gθ can be employed to generate
valid explanation graphs for any unseen instances, given a point in the prior distribution q(z).

Diffusion [17, 4, 38] The Diffusion model is a class of generative models that have been used in graph generation
tasks to generate realistic graphs, which contains two key components: the forward diffusion process, and the
reverse denoising network. Given an original graph G0, the forward diffusion process progressively generates
a sequence of noisy graphs {G0, G1, · · · , GT } with increasing levels of noise, and GT becomes pure noise.
Let At = [aijt ]ij denote the one-hot version of the adjacency matrix of Gt at timestep t, where aijt ∈ {0, 1}2
is a 2-dimensional one-hot encoding of the ij-element. The discrete forward diffusion process is defined as
q(aijt |aijt−1) = Cat(aijt ;P = aijt−1Qt), where Cat(x,P ) is a categorical distribution over the one-hot vector
x with probability vector P and Qt ∈ [0, 1]2×2 is a symmetric transition matrix at timestamp t. The forward
diffusion is a Markov process that independently performs over all edges in the full adjacency matrix. Therefore,
the graph-level diffusion process is q(Gt|Gt−1) =

∏
ij q(a

ij
t |aijt−1) and q(GT |G0) =

∏T
t=1 q(Gt|Gt−1). The

reverse denoising network gθ learns to remove the noise and recover the target explanation graph by Ge = gθ(Gt)
for t = 1, 2, · · · , T . Since an ideal Ge is a compact subgraph of the original graph G, it is equivalent to ensuring
that the complementary subgraph G − Ge is close to G. Therefore, instead of using the generated graph to
reconstruct the original graph in the standard diffusion model, we make G−Ge approximate G and take Ge as
the output explanation graph for G. The loss function is as follows,

L = −Et∈[0,T ]EGt∼q(Gt|G0) logPY ∗(Ge|θ,Gt, G0) + Et∈[0,T ]EGt∼q(Gt|G0)LCE(G0 − gθ(Gt), G0). (17)

The second term denotes the binary cross entropy loss across all elements in the adjacency matrices of (G0−gθ(Gt)
and G0. Notably, the diffusion-based explainer naturally involves the Information constraint into the optimization
objective, as LCE plays a role of LINFO that restricts the size of generated explanation graph Ge.

Reinforcement Learning Approaches Reinforcement Learning (RL) can be used to learn the distribution
of underlying explanation graphs by framing the process of generating an explanation graph as a trajectory of
step-wise states. Let τ = (s0, · · ·, sK) ∈ T denote a trajectory τ that consists of states s0, · · · , sK and T is a set
of all possible trajectories. At the k-th step, the state sk refers to a subgraph of the given graph, denoted as Gk.
G0 is a starting node from the given graph and GK is the terminal explanation graph. Let ak denote the action
from sk−1 to sk, which is usually adding a neighboring edge to the current subgraph Gk−1. Instead of learning
the distribution of the holistic explanation graphs Ge, reinforcement learning approaches learn the distribution of
the state transition, i.e.the distribution of the selected edge to be added given the current state. The objective of
these approaches is to learn a generative agent (policy network) gθ(Gk−1) with parameters θ that determines the
next action by ak ∼ gθ(Gk−1). The reward function is a crucial component of reinforcement learning to address
the non-differentiability issue of the sampling process within the generative agent. In the explanation task, the
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reward function measures the quality of the subgraph Gk for the desired label Y ∗ given the current subgraph
Gk−1. RCExplainer [42] proposes to take the individual causal effect (ICE) [14] of the action ak as the reward.
GFlowExplainer [22] involves the output probability Pf (Gk) over the desired label Y ∗ into the reward design.
Reinforcement learning is used in conjunction with another probabilistic model to represent the distribution over
the states, e.g.Markov Decision Process (MDP), Direct Acyclic Graph (DAG), etc.

• Markov Decision Process (MDP) [50, 42]. The trajectories of states can be framed as a Markov Decision
Process. The generative agent gθ(Gk−1) captures the sequential effect of each edge in the generating process
toward a target explanation graph. The attribution loss function is as follows,

LATTR = −Ek[R(Gk−1, ak)] logP (ak|θ,Gk−1), (18)

where R(Gk−1, ak) is the reward for the action ak at state Gk−1 and P (ak|θ,Gk−1) is the probability of
yielding ak from the distribution gθ(Gk−1). This loss function encourages the generative agent to attach higher
probabilities to the edges that bring larger rewards, thus leading to an ideal explanation.

• Direct Acyclic Graph (DAG) [22]. GflowNet [8] frames the trajectories of the states as a direct acyclic
graph and aims to train a generative policy network where the distribution over the states is proportional to
a pre-defined reward function. A concept of flow is introduced to measure the probability flow along the
trajectories. Let F (τ) denote the flow of the trajectory τ and F (s) denote the flow of the state s, which is
the sum of all trajectory flows passing through that state. It satisfies that the inflows of a state sk equals the
outflows of sk. The attribution loss is as follows,

LATTR(τ) =
∑

sk+1∈τ

 ∑
(sk,ak)→sk+1

F (sk, ak)− 1sk+1=sKR(sK)− 1sk+1 ̸=sK
∑
ak+1

F (sk+1, ak+1)

2

, (19)

where
∑

(sk,ak)→sk+1
F (sk, ak) and

∑
ak+1

F (sk+1, ak+1) denote the inflows and outflows of a state sk+1,
respectively. 1 is used to check whether sk+1 is the terminal state sK . R(sK) is the reward of the graph GK
corresponding to the terminal state sK . It is provable that the distribution of the terminal states generated by
the agent P (sK |θ) trained with Eq. 19 is proportional to their rewards.

Typically, reinforcement learning approaches do not rely on an explicit LINFO to constrain the sparsity of the
generated explanation graph. One common strategy is that we create trajectories τ = (s0, · · · , sK) by iteratively
sampling ak ∼ gθ(Gk−1) and stop this process once the stopping criteria are attained, e.g.K achieves the
pre-defined size of explanation graphs.

3.3 Taxonomies of Information Constraint

Only maximizing the likelihood of the explanatory subgraph with Eq. 9 typically leads to a trivial solution of the
whole input graph, which is unsatisfactory. An ideal explanatory subgraph is supposed to have a small portion of
the original graph information as well as be faithful for the prediction. Hence, existing methods [29, 49] introduce
an additional information constraint LINFO as a regularization term to restrict the information of the generated
explanation apart from the attribution loss LATTR. The information constraint LINFO can be categorized as Size
Constraint, Mutual Information Constraint, and Variational Constraint.

Size Constraints [48] The size constraint is a straightforward approach to restricting subgraph information.
Given an input graph G and the size tolerance K ∈ (0, |G|), the size constraint is |Ge| ≤ K. Here, | · | denotes
the volume of a graph, and K is an integer hyperparameter to constrain the volume of explanatory subgraphs.
This constraint is first introduced in GNNExplainer [48]. Since applying the same size constraint to different
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graph sizes is problematic, some work employs the sparsity constraint k ∈ (0, 1) and constrains the volume of
explanatory subgraph with |Ge| ≤ k · |G|. Recent works [28, 26] further utilize a soft version of size constraint,
i.e.LINFO = d(G,Ge), where d(G,Ge) is the element-wise distance between the adjacency matrices of G and
Ge.

Although the size constraint is intuitive, it has several limitations. Firstly, the topological size is insufficient
in measuring the subgraph information as they ignore the information within node and edge features. Secondly,
one has to choose different sparsity tolerance k to achieve the best explanation performance, which is difficult
due to the trade-off between the sparsity and validity of the explanations.

Mutual Information Constraint [49] The mutual information constraint restricts the subgraph information by
reducing the relevance between the original graphs and the explanatory subgraphs. Given the graph G and the
explanatory subgraph Ge, the mutual information constraint is formulated as:

LINFO =MI(G,Ge) = Ep(G)Ep(Ge|G) log
p(Ge|G)
p(Ge)

. (20)

Here MI(x, y) is the mutual information of two random variables. Minimizing Eq. 20 reduces the relevance
between G and Ge. Thus, the explanation generator tends to leverage limited input graph information to
generate the explanation subgraph. Compared with the size constraints, the mutual information constraint is more
fundamental in information measurement and flexible to different graph sizes. However, mutual information is
intractable to compute, making the constraint impractical to use. One solution is resorting to computationally
expensive estimation techniques, such as the Donsker-Varadhan representation of mutual information [7, 49].

Variational Constraint [29] Since the mutual information constraint is intractable, the variational constraint is
proposed by deriving a tractable variational upper bound of the mutual information constraint. One can plug a
prior distribution q(Ge) into MI(G,Ge) as the variational approximation to p(Ge|G):

MI(G,Ge) = Ep(G)Ep(Ge|G) log
p(Ge|G)
p(Ge)

= Ep(G)Ep(Ge|G) log
p(Ge|G)
q(Ge)

−DKL(q(Ge)∥p(Ge))

≤ Ep(G)Ep(Ge|G) log
p(Ge|G)
q(Ge)

:= LVC.

(21)

Here, the inequality is due to the non-negative nature of the Kullback–Leibler (KL) divergence. The posterior
distribution p(Ge|G) =

∏N
i=1 p(ei|θ) is factorized into the multiplication of the marginal distributions of edge

sampling p(ei|θ), which is parameterized with the generative explanation network θ. The prior distribution
q(Ge) =

∏N
i=1 q(ei) is factorized into the prior distributions of edge sampling q(ei). N is the total edge number.

In practice, q(ei) is usually chosen as the Bernoulli distribution or Gaussian distribution. Thus, the variational
constraint is an upper bound of the mutual information MI(G,Ge) that can be simplified as

LINFO = LVC =

N∑
i=1

DKL(p(ei|θ)∥q(ei)). (22)

3.4 Extension of Explanation Scenarios

Counterfactual Explanation Most explanation methods focus on discovering the prediction-relevant subgraph
to explain GNNs based on Eq. 9. Although these methods can highlight the important substructures for the
predictions, they cannot answer the counterfactual problem such as: "Will the removal of certain substructure
lead to prediction change of GNNs?" Counterfactual explanations provide insightful information on how the
model prediction would change if some event had occurred differently, which is crucial in some real-world
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scenarios, e.g.drug design and molecular modification [30, 18, 45]. Given an input graph G, the goal of the
generative counterfactual explanation is to train a subgraph generator gθ to generate a minimal substructure of the
input. If the substructure is removed, the prediction of GNNs will change the most. Formally, the objective for
counterfactual explanations is:

LCF = − logPY ∗(Gce|θ,G) + LINFO(G,Gce) (23)

Here,Gce denotes the generated substructure, which is also the modification applied toG to obtain a counterfactual
explanation Gce = G−Gce. LINFO is a regularization term that constrains the information amount contained in
Gce to be minimal compared with the input graph G.
Connection to Graph Adversarial Attack. The counterfactual explanation methods can capture the vulnerability
of GNN’s prediction since the counterfactual explanation subgraph leads to the prediction change. This problem
setting is similar to graph adversarial attacks as they both aim to alter the prediction behavior of the pre-trained
GNN by modifying testing graphs. Recall that graph adversarial attacks modify the node features or graph
structures to decrease the average performance of a pre-trained GNN. However, the explanation methods change
the prediction of each testing sample by instance-level subgraph deletion instead of decreasing the overall testing
performance after a one-time graph modification [2].
Connection to Graph Out-of-distribution Generalization. Deep learning models have been found to rely
on spurious patterns in the input to make predictions. These patterns are often unstable under distribution
shifts, leading to a drop in performance when testing on out-of-distribution (OOD) data. To address this issue,
counterfactual augmentation has been proposed as an effective method for improving the OOD generalization
ability of deep learning models. This technique involves minimally modifying the training data to change
their labels and training the model with both the original and counterfactually augmented data. For graphs,
counterfactually augmented subgraphs can be generated by removing subgraphs to create the complementary
subgraph, which is a natural form of counterfactual augmentation. However, this approach has received less
attention in the context of graph neural networks, presenting an avenue for future research.

Model-level Explanation The goal of model-level explanation in the context of GNNs is to identify important
graph patterns that contribute to the decision boundaries of the model. Unlike instance-level explanation,
model-level explanation provides insights into the general behavior of the model across a range of input graphs
with the same predicted label. A brute-force approach to finding these patterns is to mine the subgraphs that
commonly appear in graphs with the same predicted label. However, this is computationally expensive due to
the exponentially large search space. Recently, generative methods have been proposed to generate model-level
explanations, such as reinforcement learning [50] and probabilistic generative models [43].

In these approaches, a generator function gθ(·) is used to generate the model-level explanation Gm for a given
predicted label Y ∗ based on a set of graphs G via Gm ∼ gθ(G, Y ∗). The optimization objective for the generator
function is to minimize the negative log-likelihood of the explanation given the graphs, while also ensuring that
the generated explanation is a compact and recurrent substructure in the set of input graphs:

L = − logPY ∗(Gm|θ,G) + LINFO(Gm,G). (24)

The first term in Eq. 24 measures whether Gm captures the most determinant graph patterns for the prediction
of Y ∗. The generator gθ(·) can be modeled by other applicable generative models discussed in Sec. 3.2.
LINFO(Gm,G) ensures that Gm is a compact substructure that commonly appears in G.

4 Method Taxonomy

The information constraints LINFO in Sec. 3.3 and the attribution constraints LATTRin Sec. 3.2 can be combined
to construct an overall optimization objective for GNN explainability. We provide a comprehensive comparison
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Table 2: A comprehensive summary of existing generative explanation methods for Graph Neural Networks.
RL-MDP denotes the reinforcement learning approach based on Markov Decision Process and RL-DAG denotes
the reinforcement learning approach based on Direct Acyclic Graph.

Method Generator Information Constraint Level Scenario Output

PGExplainer [27] Mask Generation size instance factual E
GIB [49] Mask Generation mutual information instance factual N
GSAT [29] Mask Generation variational instance factual E
GNNInterpreter [43] Mask Generation size model factual N / E / NF
GEM [25] VGAE size instance factual E
CLEAR [28] VGAE size instance counterfactual E / NF
OrphicX [26] VGAE variational & size instance factual E
D4Explainer Diffusion size instance & model counterfactual E
GANExplainer [24] GAN - instance factual E
RCExplainer [42] RL-MDP size instance factual SUBGRAPH

XGNN [50] RL-MDP size model factual SUBGRAPH

GFlowExplainer [22] RL-DAG size instance factual SUBGRAPH

and summary of existing generative explanation methods and their corresponding generators and information
constraints in Table 2. Most existing approaches focus on instance-level factual explanations, while CLEAR [28]
focuses on counterfactual explanation and D4Explainer is applicable for both counterfactual and model-level
explanations. GIB [49] proposes to deploy mutual information between the generated explanation graph and
the original graph as the information constraint, while GSAT [29] utilizes the variational constraint. We further
compare the outputs of these approaches (the last column in Table 2), where E denotes outputting edge importance
with continuous values, N denotes node importance with continuous values, NF denotes the importance of node
features and SUBGRAPH denotes hard masks for discrete explanatory subgraphs.

5 Evaluation

5.1 Experimental setting

Datasets We evaluate the explainability methods on both synthetic and real-world datasets in different domains,
including MUTAG, BBBP, MNIST, BA-2Motifs and BA-MultiShapes. BA-2Motifs [27] is a synthetic dataset
with binary graph labels. The house motif and the cycle motif give class labels and thus are regarded as
ground-truth explanations for the two classes. BA-MultiShapes [5] is a more complicated synthetic dataset with
multiple motifs. Class 0 indicates that the instance is a plain BA graph or a BA graph with a house, a grid, a
wheel, or the three motifs together. On the contrary, Class 1 denotes BA graphs with two of these three motifs.
MUTAG is a collection of ∼3000 nitroaromatic compounds and it includes binary labels on their mutagenicity on
Salmonella typhimurium. The chemical fragments -NO2 and -NH2 in mutagen graphs are labeled as ground-truth
explanations [27]. The Blood–brain barrier penetration BBBP dataset includes binary labels for over 2000
compounds on their permeability properties. In molecular datasets, node features encode the atom type and edge
features encode the type of bonds that connect atoms. MNIST75sp contains graphs that are converted from
images in MNIST [21] using superpixels. In these graphs, the nodes represent the superpixels, and the edges are
determined by the spatial proximity between the superpixels. The coordinates and intensity of the corresponding
superpixel construct the node features. Dataset statistics are summarized in Table 3.

GNN models For each dataset, we first train a GNN model. We have tested four GNN models: GCN [19],
GIN[15], GAT [37], and GraphTransformer [35]. We only display results for the GraphTransformer model for
the real-world datasets and the GIN model for the synthetic datasets since they give the highest accuracy scores
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MUTAG BBBP MNIST75sp BA-2Motifs BA-MultiShapes
# graphs 2,951 2,039 70,000 1,000 1,000
# node features 14 9 5 1 10
# edge features 1 3 1 1 1
Avg # nodes 30 24 67 25 40
Avg # edges 61 52 541 51 87
Avg degree 2.0 2.1 7.9 2.0 2.2
# classes 2 2 10 2 2
GNN performance 0.94 0.92 0.96 1.00 0.71

Table 3: Dataset statistics and accuracy performance of the GNN model on the test set

on the test sets respectively. GraphTransformer and GIN give high accuracy on the real-world and synthetic
datasets respectively, with a reasonable training time and fast convergence. Unlike GCN, GraphTransformer and
GIN have also the advantage of taking edge features, extending their use to more complex graph datasets. The
network structure of the GNN model for graph classification is a series of 3 layers with ReLU activation, followed
by a max pooling layer to get graph representations before the final fully connected layer. We adopt the Adam
optimizer with an initial learning rate of 0.001. We split train/validation/test with 80/10/10% for all datasets.
Each model is trained for 200 epochs with an early stop. The accuracy performances of GNN models are shown
in Table 3. The results show that the designed GNN models are sufficiently powerful for graph classifications on
both synthetic and real-life datasets.

Explainability methods We compare non-generative methods: Saliency [6], Integrated Gradient [36], Oc-
clusion [53], Grad-CAM [32], GNNExplainer [48], PGMExplainer [39], and SubgraphX [52], with generative
ones: PGExplainer [27], GSAT [29], GraphCFE (CLEAR) [28], D4Explainer and RCExplainer [42]. Following
GraphFramEx [3], we define an explanation as an edge mask on the existing edges in the initial graph to be
explained. First, this constraint facilitates the comparison of very diverse explainability methods. Moreover, in
the context of our study, all datasets are expected to be explained by some entities that already exist in the initial
graphs, i.e.motifs in synthetic datasets and groups of atoms in molecular datasets. We follow the original setting
to train PGExplainer, GSAT, and RCExplainer. We implement the diffusion-based explainer as introduced in
Sec. 3.2, and name it D4Explainer. D4Explainer generates an explanatory graph that can contain additional edges
that are not in the initial graph. To keep consistent, we retrieve the common edges with the initial graph to evaluate
D4Explainer in this work. GraphCFE is a simplified version of CLEAR [28] without the causality component,
which is an explainability method for counterfactual explanations. Indeed, the causal models introduced in [28]
are constructed from simulations because it is hard to get the ground-truth causal model from datasets. Since we
ignore the existence of any causal model in our datasets, we decide not to focus on the causality and use only
the CLEAR-VAE backbone, i.e.GraphCFE, in this work. We retrieve the important edges by subtracting the
counterfactual explanation generated by GraphCFE from the initial graph. The remaining edges have weights of
1, while the rest have weights of 0.

Metrics To evaluate the explainability methods, we use the systematic evaluation framework GraphFramEx [3].
We evaluate the methods on the faithfulness measure fidelity−acc, which is defined as

fidelity−acc =
1

N

N∑
i=1

∣∣∣1(Ŷf (Gi) = Y i)− 1(Ŷf (Gie) = Y i)
∣∣∣ ,

where Gi and Gie denote the initial graph and the explanatory graph, respectively. fidelity−acc measures if the
generated explanatory subgraph is faithful to the initial graph, i.e.leads to the same GNN prediction.
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5.2 Instance-level explanations

Faithfulness We conducted a comprehensive comparison of the faithfulness between generative and non-
generative methods using three real-world datasets (BBBP, MUTAG, and MNIST) and two synthetic datasets
(BA-2Motifs and BA-MultiShapes). The results, depicted in Figure 1, indicate that generative methods are
generally performing the same or better than non-generative methods. Specifically, for MNIST, generative
methods outperform non-generative methods across the board. In the cases of MUTAG and BA-2Motifs, the
generative methods RCExplainer, GraphCFE, and GSAT closely follow Grad-CAM and Occlusion in terms of
faithfulness. Regarding BBBP and BA-MultiShapes, both generative and non-generative methods exhibit similar
results. Consequently, generative methods achieve state-of-the-art performance on benchmark graph datasets.
Furthermore, we demonstrate that generative methods possess additional desirable properties, such as efficiency
and generalization capacity, which make them more appealing than non-generative methods.
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Figure 1: Faithfulness of explainability methods. On the y-axis, we report the faithfulness computed as 1 −
fidelity−acc. On the x-axis, generative methods are always on the left-hand side of the methods (the bars). If
the score is close to 1, the explanation is very faithful. The score is averaged over all explanations with less than
20 edges to enforce sparse and human-intelligible explanations.

Efficiency To measure the efficiency of explainability methods, we report the computation time to produce
an explanation for a new instance in Figure 2. Comparing generative methods with other learnable methods
(e.g.GNNExplainer, PGMExplainer) in Figure 2, we observe that once the model is trained, generative explain-
ability methods require shorter inference time than non-generative ones in general. The time is reported in
logarithmic scale and generative methods always have inference times of the order of 100 or less, except for the
case of RCExplainer for MNIST. The advantage of shorter inference time is especially pronounced on large-scale
datasets, e.g.MNIST. We also report the time required to train a generative model from scratch in Table 4.
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Figure 2: Inference time of explainability methods to explain one single graph. The computation time is averaged
over 100 explanations over 5 seeds and reported in logarithmic scale.

Generalization To compare generative and non-generative explainability methods on their generalization
capacity, we split the datasets into seen and unseen data. The split ratio is 90/10%. We further split the seen data
into training, validation, and test set. The GNN model and the generative explainability methods are trained on
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D4Explainer GraphCFE GSAT PGExplainer RCExplainer
BA-2Motifs 475.3 320.9 23.1 11.6 194.0
BA-MultiShapes 309.3 211.8 20.0 17.2 251.0
BBBP 385.6 1350.0 - 26.0 303.4
MNIST 934.6 929.5 41.4 28.6 3271.0
MUTAG 253.1 - 79.8 27.7 434.6
Mean 471.6 703.1 41.1 22.2 890.8

Table 4: Training times (s) of the generative methods with 1 GPU (Nvidia GeForce RTX 2080)
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Figure 3: Generalization capacity of explainability methods is computed by subtracting the performance on data
seen during training and the performance on unseen data. The lower the discrepancy reported on the y-axis, the
better the method can generalize to unseen data. GNNExplainer indicates the explanations at only edge-level and
GNNExplainer(E,NF) represents the explanations for both edges and node features.

the seen data. For non-generative methods, we explain 100 graphs from the seen dataset. Then, we test the trained
methods on the unseen data. In Figure 3, we report the scores discrepancies between the test set of the seen data
and the 10% unseen data for each explainability method. We also visualize the standard error on the five random
seeds in Figure 3. Methods with higher absolute score discrepancies cannot generalize well to unseen data, while
the ones with lower score discrepancies have a powerful generalization capacity. We can observe from Figure 3
that generative explainability methods have lower scores than non-generative methods across three datasets in
general, which demonstrates the better generalization capacity.

6 Conclusion

In this paper, we present a comprehensive review of explanation methods for Graph Neural Networks (GNNs)
from the perspective of graph generation. By proposing a unified optimization objective for generative explanation
methods, encompassing Attribution and Information constraints, we provide a framework to analyze and compare
existing approaches. Our study reveals shared characteristics and distinctions among current methods, laying
the foundation for future advancements in the field. Moreover, we highlight the advantages and limitations of
different approaches in terms of explanation performance, efficiency, and generalizability through empirical
results. Notably, generative-based approaches demonstrate enhanced efficiency and generalizability compared to
instance-dependent methods. Overall, our work contributes to the advancement of transparent and trustworthy
graph-based models, paving the way for improved outcomes in various applications through better feature
extraction and understanding of complex graph-structured data.
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Abstract

Graph Contrastive Learning (GCL), an uprising regime of learning representations of graph-structured
data, has gained significant attention in recent years. At its core, GCL leverages the idea of comparing
different views of a graph to learn representations that capture desirable characteristics of the graph structures.
GCL has been applied to a wide range of graph-structured data, including attributed graphs, multi-relational
graphs, temporal graphs, hierarchical graphs, heterogeneous graphs, and hypergraphs. The learned graph
representations yield predictive performance that generalizes well in various downstream tasks at the node,
link, and graph levels, and can scale up to graphs with millions of nodes. In this paper, we present a review
of representative GCL approaches with a major emphasis on our own recent efforts. Beginning with the
original GCL approach with ad-hoc view generation and simple homogeneous graphs, we demonstrate how
the framework can be further extended to more complex heterogeneous graphs and hypergraphs, as well as
improved via principled view generation towards generalizability, fairness, interpretability, and other aspects.
Theoretical explorations are covered at the end. In conclusion, we discuss the future prospects and ongoing
challenges in the field of GCL.

1 Introduction

Graph-structured data are ubiquitous in various real-world applications, including social networks, biological
networks, transportation systems, and recommender systems [25, 17, 57]. The analysis and learning from graph
data have gained increasing importance as they can unveil hidden patterns and relationships, thereby enhancing
decision-making in practical scenarios. In recent years, graph contrastive learning (GCL) has emerged as a
promising approach for graph representation learning. GCL has demonstrated remarkable success in capturing
the underlying structural properties of graphs and achieving generalized predictive performance.
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The key concept behind GCL, inspired by image representation learning [5], is simple yet effective: comparing
different views of a graph to learn representations that encapsulate its desirable structural properties, which can
scale up to large graphs. However, determining what and how to contrast presents a non-trivial challenge when
it comes to graph data. Unlike images, graph data exhibit high heterogeneity across applications in terms of
both semantics and graph types (e.g., social networks versus molecular scaffolds). Consequently, achieving a
universally beneficial design is exceedingly difficult.

In this paper, we present a comprehensive review of various GCL approaches, with a particular focus on our
recent contributions. We start from introducing the vanilla GCL approach, known as vanilla GCL, which involves
the utilization of ad-hoc view generation and primarily targets simple homogeneous graphs. Subsequently, we
systematically explore the extensions of the GCL framework to accommodate more intricate heterogeneous
graphs and hypergraphs. This involves the integration of principled view generation techniques to enhance
generalizability, fairness, interpretability, and other important aspects. We in addition cover the preliminary but
critical investigations of the theoretical aspects, providing valuable insights into the underlying mechanisms and
potential limitations of GCL. We conclude the paper by discussing future prospects and open challenges in the
GCL field, including potential directions for further research and development in this area.

2 GCL Approaches and Graph Types

2.1 Homogeneous Graphs

A homogeneous graph, denoted as G = {V, E} ∈ G, is characterized by a set of vertices V = {v1, ..., v|V|}
and a set of edges E = {(vi, vj)|vi, vj ∈ V}. In different contexts, each vertex and edge can be associated with
specific attributes for feature representation. For example, in social networks [36], vertices may correspond to
user side-information and edges to connections, while in molecular graphs [7], vertices may represent atoms and
edges may represent bond types. These attributes can be mapped to vectorial representations of dimension D
using graph neural networks (GNNs) [24, 48, 64]. Thus, GNNs can be represented as fθ : G → RD, where θ
denotes the parameters of the GNN, enabling downstream utility.

In the supervised learning setting, the annotated dataset Dlab = {(G1,Y1), ...} is provided, where machine
learning models, such as GNNs, can be trained to make predictions on new, unseen data. However, the
effectiveness of supervised learning is hindered by the challenge of limited graph labels [37]. One dominant
solution to address the challenge is to employ self-supervised learning, where models are pre-trained on large-scale
unlabeled data [5, 9]. The rationale behind this approach is well-appropriate principled objectives could enhance
their generalizability. Fortunately, accessing unlabeled datasets Dunlab = {G1, ...} for graphs is often viable. A
key question then arises: how can self-supervised objectives be designed specifically for graph-structured data?

Among the various self-supervised tasks for graphs (for a more comprehensive review, please refer to
[62, 34]), graph contrastive learning (GCL) [68, 50, 79, 20, 43, 40] stands out due to its consistently generalizable
performance across diverse applications. The fundamental concept of GCL is to compare different views of a
graph to learn representations that capture the desired structural properties of the graph (refer to Figure 1 for the
overall pipeline). In GCL, prior knowledge is explicitly incorporated into graph neural networks (GNNs) through
the construction of graph views. Consequently, the primary focus of GCL research is to investigate effective
methods for constructing graph views that incorporate appropriate inductive biases. The training of GCL with a
batch of graph samples {G1, ...,GN} is then formulated using the NT-Xent loss [5] as follows:

min
θ,ϕ
LGCL(θ, ϕ) = min

θ,ϕ
− 1

N

N∑
n=1

log
exp

(
sim

(
gϕ ◦ fθ(G̃n,1), gϕ ◦ fθ(G̃n,2)

)
/τ

)
∑N

n′=1,n′ ̸=n exp
(
sim

(
gϕ ◦ fθ(G̃n,1), gϕ ◦ fθ(G̃n′,2)

)
/τ

) (25)

where gϕ(·) represents the projection head implemented as a multi-layer perceptron [5], G̃n,i = hi(Gn) denotes
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Figure 1: The generic pipeline of homogeneous GCL.

the contrastive view of Gn, G′n is treated as the negative sample, sim(·, ·) is the similarity function (typically
implemented using cosine similarity sim(z1, z2) = zT1 z2/∥z1∥∥z2∥), and τ ∈ R>0 is the temperature parameter.

Table 1: Four generic augmentation strategies (in the spatial domain)
with the corresponding underlying inductive bias.

Data Augmentation Type Underlying Prior

Node dropping Nodes, edges Vertex missing does not alter semantics.
Edge perturbation Edges Semantic robustness against connectivity variations.
Attribute masking Nodes Semantic robustness against partial attribute loss.

Subgraph Nodes, edges Local structure can provide hints to full semantics.

Graph data augmentations for view con-
struction. A well-established approach
to construct contrastive views is through
graph data augmentations [68, 80, 10, 76,
77, 35], which effectively introduce induc-
tive biases specific to the target applica-
tions. For example, in one of the earliest
works [68], four generic graph augmenta-
tions are designed, as shown in Table 1, each with an underlying prior incorporated. These augmentations
operate in the spatial domain and include node dropping, edge perturbation, attribute masking, and subgraph
transformations, the resulting views of which capture different aspects of the graph’s semantics.

In addition to augmentations in the spatial domain, spectral augmentations have been proposed for graph data,
leveraging the graph spectrum where the semantic information is more accessible [16, 72, 31]. Furthermore, some
works explore augmentations in the latent space implicitly learned by the model [61, 26, 51], which is believed
to better capture the underlying semantics. Other approaches focus on augmenting specific graph model-based
parameters, such as graphons [18, 41] or contextual stochastic block models (CSBMs) [55], based on the explicit
downstream data generation assumptions.

Overall, the choice of graph data augmentations plays a crucial role in constructing effective contrastive views
and capturing the desired inductive biases for the specific graph-structured data. In certain designated applications,
augmentations can be specifically designed to cater to the unique characteristics of the data. For example, small
molecules have been shown to benefit from motif-based [54, 13] or energy-guided [33] perturbations. Similarly,
protein structures can be augmented through cropping while preserving consecutive amino-acid sequences
[73, 71]. The construction of effective graph views for contrastive learning, which are robust across diverse
domains or exhibit strong generalizability in specific applications, remains an active area of research.

2.2 Heterogeneous Graphs

A heterogeneous graph is defined as G = {V, E , TV , TE} ∈ G, where V = {v1, ..., v|V|} represents the set of
vertices, E = {(vi, vj)|vi, vj ∈ V} denotes the set of edges, TV denotes the set of different vertex types, and TE
represents the set of different edge types. In various contexts, each vertex and edge in a heterogeneous graph
may be associated with specific attributes (e.g., user profiles and relationships in social networks [44], or gene
expressions and regulatory interactions in biological networks [39]), which serve as features for graph learning.

Differing from homogeneous graphs, the complicated relations in heterogeneous graphs are more effec-
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Figure 2: HGCL framework: (a) Overview: Anchor node u and positive example node v in a heterogeneous graph
G are processed with a GNN backbone and projection head using a contrastive loss. (b) Sk (knowledge-driven):
Pre-defined meta-paths guide positive example node vk generation. (c) Sd (data-driven): GNN-based encoder
with attention module generates positive example node vd.

tively captured by meta-paths. A meta-path [45, 11] P is a path that connects multiple nodes in the form of

A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1 (abbreviated as A1A2 . . . Al+1). It describes a composition of different relations

R1, R2, . . . , Rl that link objects A1 and Al+1. For example, in the heterogeneous graph shown in Figure 2(a),
there are two different meta-paths: Movie-Director-Movie (MDM), which represents the co-director relation
between two movies, and Movie-Actor-Movie (MAM), which represents the co-actor relation between two
movies. Different meta-paths reveal diverse semantics and guide the connection of even distant objects based on
their semantic similarities. Utilizing meta-paths as prior knowledge in positive sampling ensures that the selected
candidates are semantically related to some extent.

Heterogeneous graph contrastive learning (HGCL) has witnessed significant progress through various methods.
HeCo [53] utilizes meta-path-based random walks for self-supervised learning, while STENCIL [78] employs
structural templates to encode neighborhood information. HGCLR [4] learns embeddings by contrasting multiple
meta-path-derived views, and CPT-HG [23] captures node relations through pairwise contrastive learning.
MVSE [75] combines intra-view and inter-view contrastive learning tasks using different meta-path-based views.
Generally, contrastive learning methods can be classified into two categories: knowledge-driven and data-driven,
with a primary focus on generating positive views.

Knowledge-driven views. As illustrated in Figure 2(b), the framework leverages meta-paths to drop nodes or
perturb edges, resulting in related views. This strategy shares similarities with homogeneous graphs, with the key
difference being that the augmentation in heterogeneous graphs depends on meta-paths.

Data-driven views. As demonstrated in Figure 2(c), data-driven methods rely on attention mechanisms
employed in graph neural networks [52, 49, 15]. The attention score, eij , of node j’s embedding to node i serves
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Figure 3: Three major lines of HyperGCL pipelines: (i) clique-expansion contrast, (ii) contrasting on augmented
hypergraph views, and (iii) contrasting across scales of augmented hypergraph features.

for the learnable sampling distribution as:

eij = LeakyReLU(a(Whi||Whj)), αij = softmaxj(eij) =
exp(eij)∑

k∈N i exp(eik)
(26)

To ensure differentiability in selecting the positive example v+, the Gumbel-Softmax trick [22] is introduced,
using the softmax function as a continuous, differentiable approximation (Gumbel-Softmax trick), facilitating joint
updates of the learned sampling distribution pd during training, resulting in a dynamic and adaptive contrastive
learning framework:

v+j =
exp((log(αij) + gj)/τ)∑k

m=1,m ̸=i exp(log(αim) + gm)/τ)
, for j = 1, · · · , �i, · · · , k (27)

2.3 Hypergraphs

Table 2: Five generic augmenta-
tion operations for HyperGCL.

Hypergraph Augmentations

Naïve Hyperedge Perturbation
Generalized Hyperedge Perturbation

Vertex Dropping
Attribute Masking

Subgraph
Generative Augmentation

Hypergraphs extend the concept of homogeneous and heterogeneous graphs
by allowing many-body interactions across nodes, represented by hyperedges.
They have attracted significant attention in the research community [14, 65, 6].
A hypergraph is denoted asH = {V, E} ∈ H, where V = {v1, ..., v|V|} is the
set of vertices and E = {e1, ..., e|E|} is the set of hyperedges. Each hyperedge
en = {v1, ..., v|en|} represents a higher-order interaction among a set of
vertices. Hypergraph neural networks (HyperGNNs) [14, 65, 6] have been
proposed as state-of-the-art approaches to encode such complex structures,
mapping the hypergraph to a D-dimensional latent space via f : H→ RD
using higher-order message passing. For contrastive learning, a projection
head h(·) is applied to f(·). Currently, most hypergraph contrastive learning
(HyperGCL) methods focus on node-level applications.

When dealing with complex relationships in hypergraphs, the challenge is how to construct contrastive views
for hypergraphs. However, building effective hypergraph views is non-trivial due to the overly complicated
topology of hypergraphs. Unlike graphs, where there are

(
N
2

)
possibilities for one edge with N vertices,

hyperedges in hypergraphs can have 2N possibilities. To address this challenge, three lines of methods have
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emerged in HyperGCL research, which focus on (i) clique-expansion contrast, (ii) hypergraph view generation,
and (iii) hypergraph objective augmentation, as summarized in Figure 3.

Clique-expansion contrast. The first line of HyperGCL methods contrasts the representations of hypergraphs
with clique-expansion views [59, 3]. This method is intuitive but computationally expensive in terms of time
and memory, as it requires optimizing multiple neural networks of different modalities. Additionally, contrasting
between clique expansion poses the risk of losing higher-order awareness by bringing the representations of
hypergraphs and graphs closer together [56].

Contrasting on augmented hypergraph views. The second line of methods explores the structure of
hypergraphs itself to construct contrastive views [56]. They assess whether generic augmentations are suitable for
HyperGCL. Since hypergraphs are composed of hyperedges and vertices, they propose two strategies to augment
hyperedges: direct perturbation on hyperedges and perturbation on the “edges” between hyperedges and vertices in
the converted bipartite graph. To augment vertices, they adopt three schemes: vertex dropping, attribute masking,
and subgraph, which are borrowed from graph-structured data augmentations [68]. Their findings show that while
vertex augmentations benefit graphs more, hypergraphs mostly benefit from hyperedge augmentations, revealing
that higher-order information encoded in hyperedges is usually more downstream-relevant than information in
vertices.

Contrasting across scales of augmented hypergraph features. The last line of methods [29, 42] focuses on
contrasting augmented features beyond the node-level. The main idea is to perform multi-level contrast, aiming to
maximize the agreement between the same node, the node members of the same hyperedge, and each hyperedge
and its node members in two augmented views. This approach expects that complementary information can be
captured from different views to enhance HyperGCL.

2.4 Principled Graph Views for Contrastive Learning

The construction of appropriate contrastive views is crucial in GCL, but it often relies on empirical rules of thumb,
which can vary significantly depending on the nature of the graph dataset. Therefore, the question arises: could
we develop principled ways to construct graph views for contrastive learning? The answer lies in two folds:
defining the space of GCL views and formulating principles to search within that space (Figure 4).

Input Graph

Contrastive Views

Adversarial
Principle

InfoBN
Principle GCL

Optimization

... Space of Graph
View Constructors

Figure 4: Two indispensable steps for principled graph view con-
struction: defining view space and formulating search principles.

Space of graph contrastive views.
Defining a good search space is essential
for well-behaved search algorithms. The
view constructor can be represented by a
mapping function hψ : G → G̃, where
G̃ = hψ(G) and ψ represents the parame-
ters of the mapping function. The search
space is defined on this family of func-
tions, specifically on the parameters ψ. Var-
ious approaches have been proposed to
construct the function space, such as us-
ing learnable sampling distributions com-
bined with prefabricated graph augmenta-
tion functions [67], masking operators on
topology or node features [80, 46], and training graph generative models to define the augmentation space in
a data-driven manner [69, 66]. While the construction of search spaces is domain-agnostic, there is a need for
further research to explore how to construct search spaces tailored to specific applications, e.g., in molecular
graph analysis, chemical knowledge can be incorporated to define the graph augmentation functions. Future
research can focus on customizing the search space construction to the characteristics of the target application.

Principles for view searching. The choice of graph contrastive views can be sensitive to different datasets in
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GCL. However, evidence shows that views derived from certain principles, conditioned on the dataset, provide
more robust benefits. View searching can be formulated as a bi-level optimization problem, where the upper-level
optimization aims to minimize the GCL loss with respect to the parameters θ and ϕ, while the lower-level
optimization finds the optimal parameters ψ∗ that minimize a principled objective LPrinciple. Various principles
have been proposed for view construction. For example, adversarial training can enforce GCL to optimize on
“difficult” views [67], leveraging graph properties can guide the view construction [80], and the information
bottleneck principle can eliminate superficial features from raw graph data [69, 46, 63]. Future research can
focus on unifying different principles and understanding the relationships among them. Additionally, theoretical
analysis to bridge principled view construction and downstream performance is needed for further development.

2.5 Principled View towards Interpretability and Fairness

While graph contrastive learning has shown success in various tasks, fairness and interpretability are important
aspects that have received less attention in this area. In this section, we discuss the principled view for fairness
and interpretability in graph contrastive learning, highlighting recent studies.

Fairness. Fairness in graph representation learning is crucial to prevent biased results, especially towards
underrepresented groups. Graph contrastive learning methods can benefit from incorporating fairness-aware data
augmentations to promote fair and unbiased representations. Studies such as Graphair [32], as well as other
approaches [28, 27], propose fairness-aware data augmentations that are learned from data. These augmentations,
which can be integrated into graph contrastive learning frameworks, aim to mitigate sensitive information while
preserving other useful information. By doing so, they improve the fairness-accuracy trade-off performance in
various node classification datasets, leading to more equitable graph contrastive learning outcomes.

Interpretability. Interpretability is another important aspect of graph contrastive learning, as it helps users
understand and trust the decisions made by graph neural networks (GNNs). Task-Agnostic GNN Explainer
(TAGE) [60] is a self-supervised, task-independent explanation approach that can be applied to GNNs used in
graph contrastive learning. TAGE enables the explanation of GNN embedding models with unseen downstream
tasks and allows efficient explanation of multitask models. Integrating TAGE into graph contrastive learning
frameworks can significantly enhance their explanation efficiency while achieving similar or better explanation
quality than existing state-of-the-art GNN explanation methods.

Another approach to improve the interpretability of GNNs in graph contrastive learning is to focus on their
reasoning capabilities. Existing neural reasoners often struggle with out-of-distribution (OOD) test data featuring
larger input sizes. A recent study [1] proposes data augmentation procedures that leverage causal frameworks to
develop self-supervised objectives, which can also be applied to graph contrastive learning. By incorporating
these data augmentation procedures into graph contrastive learning, the OOD generalization capabilities of the
reasoner can be improved, resulting in better performance on OOD test data.

In summary, enhancing fairness and interpretability in graph contrastive learning is crucial for developing
trustworthy and unbiased node representations. By incorporating fairness-aware data augmentations, self-
supervised objectives, and interpretable explanation methods, we can create more robust and equitable graph
contrastive learning frameworks that remain interpretable and generalizable across various application domains.

2.6 Theoretical Exploration

Although numerous algorithms and principles have been developed for GCL pretraining, the explicit theoretical
connection between pretraining and downstream fine-tuning performance still lags behind. The gap between
pretraining and fine-tuning performance can be attributed to several factors, including the misalignment between
the optimization objectives of pretraining and fine-tuning, the discrepancy between the data distributions used in
pretraining and fine-tuning, and the inductive biases encoded in neural networks. While the latter two factors have
been more heavily studied in graph out-of-distribution generation [2, 70], little work has been done to analyze

84



the sources of error arising from the misalignment between pretraining and fine-tuning optimization objectives,
especially in the context of GCL.

One major challenge in analyzing the misalignment between pretraining and fine-tuning in GCL is the
diverse range of downstream applications for graph-structured data. Unlike Euclidean data, which has more
standardized downstream tasks such as image classification [12, 19], graph-structured data is used in a wide range
of applications, from molecule generation to social network analysis. This diversity makes it difficult to establish
appropriate assumptions about downstream data distributions for analysis.

In a recent study, Trivedi et al. [47] attempted to bridge the gap between pretraining and fine-tuning in
GCL by assuming a highly generic “label-preserving” behavior of graph views. They justified this assumption
through the use of graph edit distances between contrastive views and label-preserved samples, which measure
the similarity between two graphs based on the number of operations required to transform one into the other.
While this approach provides a starting point for analyzing the misalignment between pretraining and fine-tuning
in GCL, more fine-grained analyses are needed to fully understand the relationship between these two processes.

3 Applications and Benchmarks

3.1 Graph Types

The benchmarks and datasets used to evaluate graph contrastive learning methods come from a variety of domains
and cover a range of graph types and tasks. These graph types include bioinformatics, social networks, molecules,
computer vision, and synthetic graphs. Each of these types is characterized by unique properties that affect the
tasks they are suited for and the evaluation metrics used to assess contrastive learning methods.

TUDataset. TUDataset [38] is extensively used in the evaluation of graph contrastive learning methods. It
contains a diverse set of graph data from various domains, including small molecules and proteins, computer
vision, and social networks. The datasets within TUDataset cover different types of relational networks, including
graphs with discrete or continuous node and edge attributes. The small molecules datasets contain class labels
representing toxicity or biological activity, with the graphs representing molecules and nodes representing atoms,
while edges represent chemical bonds. The bioinformatics datasets in TUDataset represent macromolecules such
as proteins and use a graph model where nodes represent secondary structure elements, annotated by their type,
and several physical and chemical information, with edges connecting neighboring nodes. The computer vision
datasets contain graphs representing various tasks such as image processing, fingerprint recognition, and letter
recognition. Finally, the social network datasets within TUDataset include Reddit discussion threads, scientific
collaboration networks, actor collaborations, and GitHub users, each with different tasks, such as distinguishing
between discussion-based and question-answer-based subreddits, predicting the research field of researchers,
predicting the genre of actor collaborations, and identifying GitHub users who starred popular repositories.

Pokec-z and Pokec-n. Pokec-z and Pokec-n [8] are two social graphs sampled from a larger Facebook-like
social network in Slovakia called Pokec. The nodes in these graphs correspond to users living in two major
regions, with the region information being used as the sensitive attribute. The Recidivism graph is built upon the
information of defendants who got released on bail at the US state courts, where the edges are created based on the
similarity of past criminal records and demographics. The sensitive attribute for this graph is race, where the node
classification task is built upon classifying defendants into bail or no bail. Similarly, the Credit defaulter graph is
generated by creating links between people based on the similarity of their spending and payment patterns, with
labels for node classification corresponding to whether a person will handle the credit card payment or not, and
age being used as the sensitive attribute.

MoleculeNet. MoleculeNet [58] is a collection of molecular graph datasets used for the prediction of different
molecule properties. Each atom in the molecule is considered a node in the graph, with each bond considered
an edge. The prediction of molecule properties is a graph-level task, and three graph classification tasks from
MoleculeNet are used in the evaluation of contrastive learning methods.
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PPI. The Protein-Protein Interaction (PPI) [81] dataset documents the physical interactions between proteins
in 24 different human tissues. In PPI graphs, each protein is considered as a node with its motif and immunological
features, and there is an edge between two proteins if they interact with each other. The prediction of each protein
function is considered an individual task instead of a multi-class classification, and hence typical approaches
require individual explainers for the 121 tasks.

ACM. The ACM [74] heterogeneous graph dataset comprises academic papers divided into three classes based
on research areas. Each paper is associated with multiple attributes, such as authors, subjects, and publication
venues. With an average of 3.33 authors per paper and one subject, the ACM dataset captures the collaboration
and knowledge-sharing dynamics among researchers in various disciplines.

DBLP. In DBLP [15] heterogeneous graph dataset, the target nodes represent authors classified into four
research areas. The dataset captures the relationships between authors, their publications, and the venues in which
they are published. With an average of 4.84 papers per author, the DBLP dataset offers insights into the academic
productivity and research contributions of authors across different fields.

Freebase. The Freebase [30] heterogeneous graph dataset contains information about movies, which are
categorized into three genres. The dataset captures various relationships, such as the ones between movies, actors,
directors, and writers. With an average of 18.7 actors, 1.07 directors, and 1.83 writers per movie, the Freebase
dataset provides a comprehensive view of the complex interactions among entities in the film industry.

AMiner. The AMiner dataset [21] is a heterogeneous graph that focuses on academic papers extracted from
a subset of the original dataset, divided into four research areas. In addition to capturing relationships between
papers, authors, and references, the dataset includes an average of 2.74 authors and 8.96 references per paper.
This comprehensive dataset offers valuable insights into the citation patterns, research trends, and collaborations
in the academic world.

3.2 Special Tasks

In addition to the normal evaluation setting, GCL methods are evaluated in various special learning settings
[68, 67, 69, 56, 28, 27, 32, 60], including semi-supervised learning, unsupervised representation learning, transfer
learning, adversarial robustness, and the accuracy-fairness trade-off. These settings are important because
they reflect real-world scenarios and challenges that GCL methods may encounter in practical applications,
such as limited labeled data, unsupervised learning, transferability, robustness, and fairness. By evaluating the
performance of GCL methods in these special settings, we can gain a better understanding of their strengths and
limitations and improve their applicability and robustness in real-world scenarios.

Semi-supervised learning. Semi-supervised learning addresses the issue of limited labeled data in graph
classification. Existing works on graph contrastive learning evaluate their models in this setting using small social
network benchmarks and large-scale graph datasets. They compare their models’ performance against conven-
tional pre-training schemes such as adjacency information reconstruction and local and global representation
consistency enforcement.

Unsupervised learning. Unsupervised learning is another important setting for graph contrastive learning
because it allows for the learning of representations without any labeled data, which is useful for many applications
where labeled data is scarce. Existing works on graph contrastive learning evaluate their models in unsupervised
learning tasks using graph embeddings generated by unsupervised methods, which are then fed into a downstream
SVM classifier.

Transfer learning. Transfer learning enables the evaluation of a model’s transferability across different
datasets, tasks, and domains. Existing works on graph contrastive learning evaluate their models in transfer
learning tasks on molecular property prediction in chemistry and protein function prediction in biology. They
pre-train and fine-tune their models on different datasets and evaluate the transferability of their pre-training
schemes.

Adversarial robustness. Adversarial robustness is an important setting for graph contrastive learning because
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it addresses the issue of adversarial attacks on graph data, which are becoming increasingly common in many
applications. Existing works on graph contrastive learning evaluate their models’ robustness on synthetic data to
classify the component number in graphs, facing the RandSampling, GradArgmax, and RL-S2V attacks. They
show that graph contrastive learning boosts GNN robustness compared to training from scratch under these
evasion attacks.

Accuracy and fairness trade-off. The trade-off between accuracy and fairness is a crucial setting for graph
contrastive learning because it enables the evaluation of a model’s performance with respect to both accuracy
and fairness metrics. Existing works on graph contrastive learning compare the accuracy-fairness trade-off
performance of their models with several baselines using demographic parity as the fairness metric. They show
that their model achieves the best ACC-DP trade-off compared to all fairness-aware baselines on three datasets.

4 Conclusion

The paper provides an overview of GCL, an emerging pipeline for generating generalizable graph representations
that are crucial in real-world graph applications. The paper first introduces the vanilla formulations of GCL
on various graph types and then discusses advanced variants guided by different principles, such as robustness,
interpretability, and fairness. The paper also covers routine assessment and datasets commonly used for evaluating
GCL methods. Based on the reviewed foundations, the paper summarizes several future perspectives and open
challenges in the field of GCL.

Tailored pipeline for focused applications. While the reviewed methods are generally designed to be
task-agnostic, real-world applications often require more focused approaches that leverage domain-specific
knowledge. Designing tailored GCL pipelines that address domain-specific problems can leverage algorithmic
advancements and incorporate domain priors. Examples of such tailored pipelines include applications in the
fields of molecules and proteins. It is expected that more sophisticated and effective designs will be developed in
the future.

Explicit theoretical bridge between pre-training and downstream. A notable phenomenon in graph
pre-training is negative transfer, where inappropriate pre-training strategies can lead to performance degradation.
This is due to the heterogeneous nature of graph data and the absence of a universal good prior for downstream
tasks. In addition to being guided by implicit principles, there is a need for an explicit understanding of the
relationship between GCL pre-training and downstream performance in theory. This will help answer questions
about why and when to use pre-trained graph representations.

Handling more complicated and composed graph structures. With the rise of artificial general intelligence
and digital medicine, the field of graph learning is entering an era of multi-modality learning, where in-silico
models serve as proxies for real-world intelligent and biological systems. In this context, data structures are
becoming more complex, with multi-modal graphs that are heterogeneous and contain multi-body relations. This
presents a new frontier for graph learning, particularly in the area of generalizable representation learning that
can handle extremely complex and composed graph data structures.

Unifying graph pre-training strategies under the umbrella of GCL. One advantage of the GCL pipeline
is its simplicity and flexibility, allowing for the incorporation of various strategies into a unified framework.
A future ambition is to further unify different lines of graph pre-training strategies, including both predictive
and generative approaches, within this framework. This will provide a better understanding of the theoretical
underpinnings and the optimal approach for specific applications by exploring the full space of graph pre-training
methods within the GCL framework.
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Limitations of low dimensional graph embeddings

C. Seshadhri*

Abstract

The learning of graph representations, also called graph embeddings, is a fundamental technique in
machine learning (ML). The aim is to represent the vertices of a graph by low-dimensional real-valued vectors,
which can be used for a variety of downstream ML tasks. The popular technique of Graph Neural Networks
(GNNs) can be thought of a type of graph representation learning method. This article surveys some recent
work on the limitations of graph embedding methods. These results provide mathematical theorems proving
that low-dimensional embeddings cannot recreate “community-like" structure, through commonly used kernels.
These theorems are supported by empirical results, showing that many classic graph embedding methods
actually perform poorly on important machine learning tasks. Low-dimensional representations often lose
much of the fine-grained community structure of real-world data. The results surveyed in this article provide
an interesting counterpoint to the popularity of graph embeddings and GNNs for machine learning.

1 Introduction

Capturing the rich structure of graph is central for many machine learning tasks. The heterogenous, non-local,
and massive structure of modern graphs are a problem for many basic machine learning tasks, such as ranking,
link prediction, and classification [14]. Graph representation learning provides a convenient solution to this
problem. Each vertex of a graph is represented as a vector in low-dimensional space. These vectors form the
(low-dimensional) embedding of the graph. The vectors can be used for a plethora of downstream machine
learning tasks. The aim is to have these vectors combine the graph structure with vertex features into a compact
geometric representation.

The study of low-dimensional graph embeddings is an incredibly popular research area, and has generated
many exciting results over the past few years (see surveys [19, 8] and a Chapter 23 in [27]). The most successful
methods for graph embeddings often use Deep Learning techniques, together with classic approaches like matrix
factorization [29, 16, 28, 30, 31, 24]. Graph Neural Networks (GNNs) can be thought of as specific class of graph
embeddings algorithms [18, 37, 40]. Despite the large variety of algorithms used for graph representation learning
(and specifically GNNs), their output has a simple, consistent structure. Given a graph G on n vertices, these
methods map each vertex to a vector in Rd, where d≪ n. In a typical applications, n is the order of millions or
more, while d is in the hundreds.

Much of the advances in this field are primarily empirical; there are numerous papers in major machine learn-
ing conferences on more complex GNN architectures or more involved graph embedding methods. Nonetheless,
there is limited principled understanding of the power of low-dimensional graph embeddings. Small changes
in training or input data can lead to major differences in the output [17]. Much of the research on graph em-
beddings and GNNs, for example, report significant success in prediction tasks on graphs [16, 18, 31]. On the
other hand, some papers suggest that low-dimensional graph embeddings can be beaten by simpler hand-tuned
methods [17, 22]. It is useful to have a rigorous mathematical framework to understand graph embeddings.
Specially, we wish to address the following questions.
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• To what extent can relevant graph structure be captured by low-dimensional graph embeddings?
• How does low-dimensional geometry relate to downstream ML tasks on graphs?
• How does the choice of kernel functions (for prediction tasks) affect the task?

Contrary to most research in this area, our approach to investigating these questions is through limitations or
lower bounds. Our aim is develop a theoretical framework that is agnostic to the specific algorithm performing
the embedding. We first describe some basic terminology and central concepts.

The importance of matrix factorizations: A low-dimensional matrix factorization approximates gives an
algorithm-independent view of how low-dimensional embeddings represent graphs. We think of M as an
adjacency matrix, or any matrix representation of our graphG. In many Deep Learning methods,M is constructed
by long walks with appropriate vertex-centric aggregation functions [29, 16, 30]. The matrix V is the collection
of embeddings, where each column vector corresponds to a vertex. Recent work has shown the many different
graph embedding methods can be cast as matrix factorizations, with different choices of matrices M , and different
notions of approximations [31]. Indeed, the simplest low-dimensional embedding is obtained by a low-rank SVD
of the adjacency matrix, arguably the most basic of matrix factorizations.

The importance of dot products: Regardless of how the graph embedding vectors are obtained, the general
strategy is to use “nearness" in geometric space as a proxy for the similarity of the corresponding vectors. Thus,
the downstream ML tasks treat vertices i and j as similar if their corresponding vectors v⃗i and v⃗j are similar.
Arguably, the most important measure of similarity is the dot product v⃗i · v⃗j or cosine similarity (which is a
normalized dot product). This has special significance for matrix factorizations, since V TV is precisely the
matrix of all pairs of dot products.

Even when the embedding vectors are not obtained by matrix factorizations, the Gram matrix V TV is
commonly used for downstream prediction tasks. A natural strategy for any prediction task is to use nearest
neighbor (k-NN) search according to the dot product/cosine similarity. There are many open course packages for
k-NN, making it the default choice in industrial applications of graph embeddings [2].

We now can formalize our initial questions in matrix language. Observe how there is no reference to any
embedding method or GNN; we directly analyze the behavior of the output representation.

Can a Gram matrix V TV for V ∈ Rd×n (d≪ n) capture the structure of either real-world networks or the
properties of prediction matrices arising from downstream ML tasks (on graphs)?

This framework captures the vast majority of graph embedding constructions and applications.

1.1 Limitations of graph embeddings

This article presents two results on the limitations of low-dimensional graph embeddings for prediction and
machine learning on real-world graphs [34, 36]. The underlying theoretical results are algorithm agnostic, and
the limitations hold for any graph embedding algorithm. These results come with empirical backing, performed
on classic and important graph embedding methods.

Inability to recreate triangle structure [34]: This result focuses on the fundamental premise of low-dimensional
embeddings, rather than a specific ML task. Algorithms to construct (or predict from) low-dimensional embed-
dings implicitly pose a low-dimensional graph/matrix model. This model represents a distribution of graphs that
are created from a set of real vectors (where each vector represents a vertex). The embedding is constructed by
fitting this model to an input graph, typically using dot product as a proximity measure.
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This result mathematically proves that no low-dimensional model (using a dot product kernel) can simultane-
ously recreate two central properties of real-world graphs: sparsity and triangle density. It is well-known from the
early days of network science that real-world graphs are sparse but have high clustering coefficients [39, 32, 33, 13].
Hence, typical models used to construct low-dimensional embeddings cannot generate realistic graphs. They
miss the (crucial) triangle structure of real data.

The theory is supported with empirical results. These empirical results are demonstrated on other kernels
beyond the dot product, thus suggesting that the limitations are fundamental. We discuss these results in §2.

There are notable counterpoints to these results. Firstly, Chanpuriya et al show that asymmetric embeddings
avoid the rank lower bounds discussed above [9]. Another result of Chanpuriya et al shows that graphs can
sometimes be reconstructed from their embeddings. In some cases, the community structure of the reconstruction
is actually enhanced [10]. We give more detail in §2.

Weak performance on community labeling tasks [36]: This result takes a complementary angle, and focuses
on a downstream ML task. Community labeling is a binary prediction problem, where we wish to predict if two
vertices belong to a community. This work sets up a community labeling problem for both real and synthetic data
sets. First, the authors create a simple benchmark algorithm using logistic regression on classic graph features
(like Personalized PageRank and short path counts). This benchmark has fairly good performance, as measured
by distributions of local precision. On the other hand, many well-established graph embedding methods have
surprisingly poor performance on the same task.

These observations are backed up with theoretical proofs. The prediction matrices based on low-dimensional
embeddings provably do not have the typical community structure of real data. This work also investigates
alternate kernels, like the normalized softmax (used in results like DeepWalk and node2vec [29, 16]). These
kernels have other limitations in that slight noise can destroy community structure in the corresponding prediction
matrices.

These results are discussed in §3.

1.2 Broader context

A reader may ask: how are the limitations stated in this article consistent with large body of work on the
effectiveness of graph embeddings and GNNs? Our answer is two-fold, backed up by [17, 22]. First, most
research on graph embeddings compare various representation learning methods with each other, and do not
consider alternative baselines. Secondly, we believe that many graph embeddings methods do not have good
predictions with respect to other metrics. For example, almost all these result use the AUC metric to measure link
prediction performance. On the other hand, AUC is a bad measure for sparse ground truth [20, 25]. Indeed, in §3,
we show poor prediction performance (for graph embedding methods) on a local precision metric.

There has been compelling empirical work showing that GNNs and embeddings can be outperformed by
simpler methods. We mention two results in detail because they highlight empirical weaknesses in graph
embeddings, and reinforce the previous points.

Gurukar et al, the lack of good experimental design [17]: Gurukar et al do a detailed comparison of
twelve different graph representation learning methods on a variety of ML tasks. They focus on two of the most
important tasks of link prediction and node classification. Despite there being many newer methods, they observe
that the M-NMF algorithm is best for link prediction [38] and NetMF algorithm [31] is best for node classification.
No graph representation method outperforms on both metrics. This paper does an exceptional job of clearly
specifying the experimental design and thoroughly investigating previous work.

Along the lines of the current article, simple task specific baselines are competitive with graph embedding
methods. These baselines are formed by a simple model that uses basic graph features (like Common Neighbors,
Adamic-Adar index [4], Jaccard similarity, etc.). These results are analogous to what we observe in [36].
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Gurukar et al point out a major problem with evaluations in graph embedding papers. Quoting from there:
“. . . a new method almost always compares its performance against a subset of other methods [and] datasets
previously evaluated. While great care is taken to tune the new method, the same care is often not taken when
evaluating baselines."

Huang et al, easier methods beat GNNs [22]: Huang et al devise an alternate graph learning algorithm
called Correct and Smooth (C&S). Consider the problem of node classification. This method starts with a “base
predictor" that ignores the graph structure. Using only node features, one can train a basic model for classification.
Then, the graph is introduced a post-processing step to “correct and smooth" the errors. The idea is that the errors
should be correlated along edges. So this method tries to find a smooth error estimation on the graph, which is
computed using standard label propagation methods. This smoothed error estimate is used to correct the base
predictor.

The C&S method is shown to outperform GNNs on node classification tasks on the OGB leaderboard [1]. In
some cases, a state-of-the-art GNN has slightly better performance, but the GNNs always have many orders of
magnitude more parameters. Hence, it is much more expensive to train them than C&S.

We also mention another line of weaknesses, specific to message passing GNN architectures. These results
show that certain graph-theoretic properties cannot be learned by common GNN architectures [40, 26, 15]. There
are formal limits on what GNN-based representations can learn. Some of these results show that message passing
GNNs are no more powerful than the classic Weisfeiler-Lehman (WL) isomorphism test [40].

The work presented in the current article is different from these results because of the (algorithm agnostic)
focus on the geometry of graph representations.

2 Impossibility of capturing sparse, triangle-rich structure

The first result we present argues that low-dimensional embeddings with dot product geometries are not good
representation of real-world graphs. Seshadhri, Sharma, Stolman, and Goel demonstrate mathematically and
empirically that they lose local cluster structure, a central aspect of graphs that arise from real data [34].

Graph embeddings are often generated by assuming that the embeddings vectors lie in a hidden, latent space.
We assume a model that generates graphs from these vectors, which can be thought of as the model parameters.
The embeddings are constructed by optimizing for these parameters, given the input graph.

Consider the graph embedding vectors v⃗1, v⃗2, . . . , v⃗n ∈ Rd (denoted by the d × n matrix V ). Let GV
denote the following distribution of graphs over the vertex set [n]. For each index pair i, j, independently insert
(undirected) edge (i, j) with probability max(0,min(v⃗i · v⃗j , 1)). (If v⃗i · v⃗j is negative, (i, j) is never inserted. If
v⃗i · v⃗j ≥ 1, (i, j) is always inserted.) This model subsumes the classic Stochastic Block Model [21] and Random
Dot Product Model [42, 6]. Many graph embedding methods, including GNNs, effectively optimize over such a
model to generate the embedding vectors.

Two hallmarks of real-world graphs are: (i) Sparsity: average degree is constant with respect to n, and (ii)
Triangle density: there are many triangles incident to low degree vertices [39, 32, 33, 13]. The large number of
triangles is an important aspect of community structure.

Definition 2.1: For parameters c > 1 and ∆ > 0, a graph G with n vertices has a (c,∆)-triangle foundation if
there are at least ∆n triangles contained among vertices of degree at most c.

Typically, we think of both c and ∆ as constants. We emphasize that n is the total number of vertices in G,
not the number of vertices in S. In Figure 1, we plot the value of c vs ∆ as the thick blue line. (Specifically, the
y axis is the number of triangles divided by n.) Observe that for all graphs, for c ∈ [10, 50], we get a value of
∆ > 1 (in many cases ∆ > 10). As mentioned earlier, there is much work in network science showing that there
are often a linear number of triangles among low degree vertices [33, 13].
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Figure 1: Plots of degree c vs ∆: We plot results for a variety of real-world graphs: (i) ca-HepPh, a High Energy Physics
coauthorship network (ii) Facebook, a small snapshot of a Facebook social network, (iii) String_hs, a Protein-protein
interaction network. We plot c versus the total number of triangles only involving vertices of degree at most c. We divide the
latter by the total number of vertices n, so it corresponds to ∆, as in Definition 2.1. We plot these both for the original graph
(in thick blue), and for a variety of embeddings and kernel functions. For each embedding, we plot the maximum ∆ in a set
of 100 samples from a 100-dimensional embedding. The embedding analyzed by Theorem 2.1 (TDP) is given in thick red.
Observe how the embeddings generate graphs with very few triangles among low degree vertices. The gap in ∆ for low
degree is 2-3 orders of magnitude. The other lines correspond to alternate embeddings, using the NODE2VEC vectors and/or
different functions of the dot product.

Our main result is that any embedding of graphs that generates graphs with (c,∆)-triangle foundations, with
constant c,∆, must have near linear rank. This contradicts the belief that low-dimensional embeddings capture
the structure of real-world complex networks.

Theorem 2.1: Fix constant c > 4,∆ > 0. Suppose the expected number of triangles in G ∼ GV that only
involve vertices of expected degree c is at least ∆n. Then, the rank of V is at least Ω(n/ lg2 n).

Equivalently, graphs generated from low-dimensional embeddings cannot contain many triangles only on
low-degree vertices. In all applications, d is thought of as a constant, or at least much smaller than n. On the
contrary, Theorem 2.1 implies that d must be Ω(n/ lg2 n) to accurately model the low-degree triangle behavior.
This lower bound holds regardless of how the vectors are constructed.

2.1 Empirical validation

We empirically validate the theory on a collection of complex networks. For each real-world graph, we compute
a 100-dimensional embedding through SVD and an important Deep Learning method, node2vec [16]. We
generate 100 samples of graphs from these embeddings, and compute their c vs ∆ plot. This is plotted with the
true c vs ∆ plot. (To account for statistical variation, we plot the maximum value of ∆ observed in the samples,
over all graphs. The variation observed was negligible.) Fig. 1 shows such a plot for three different real-world
networks.

In all cases, this plot is significantly off the mark at low degrees for the embedding. Around the lowest degree,
the value of ∆ (for the graphs generated by the embedding) is 2-3 orders of magnitude smaller than the original
value. The local triangle structure is destroyed around low degree vertices. The total number of triangles is
preserved well, as shown towards the right side of each plot. A nuanced view of the triangle distribution, as given
in Definition 2.1, is required to see the shortcomings of low dimensional embeddings.

We note that several other functions of dot product have been proposed in the literature, such as the softmax
function [29, 16] and linear models of the dot product [18]. Theorem 2.1 does not have direct implications for
such models, but our empirical validation holds for them as well. The embedding in Theorem 2.1 uses the
truncated dot product (TDP) function max(0,min(v⃗i · v⃗j , 1)) to model edge probabilities. We construct other
embeddings that compute edge probabilities using machine learning models with the dot product and Hadamard
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product as features. This subsumes linear models as given in [18]. We also consider (scaled) softmax functions,
as in [29], and standard machine learning models (LRDP, LRHP).

For each of these models, we perform the same experiment described above. Fig. 1 also shows the plots for
these other models. Observe that none of them capture the low-degree triangle structure, and their ∆ values are
all 2-3 orders of magnitude lower than the original. Chanpuriya et al also validate these results on various other
embedding methods [9].

2.2 Counterpoints

We discuss two important results of Chanpuriya, Musco, Sotiropoulos, and Tsourakakis [9, 10]. The first result
show that the rank lower bound of Theorem 2.1 can be circumvented with an asymmetric embedding. They prove
that one can construct two matrices U, V ∈ Rd×n such that the graph distribution from UV T can generate realistic
triangle structure. They show that any bounded degree graph can be embedded in this method with at most
max-degree dimensions. This introduces a new technique for graph embeddings. We note, however, that such
asymmetric embeddings lose the geometric structure of the standard embeddings. One wants geometric proximity
of vectors to represent structural closeness. For vertices i and j, an asymmetric embedding approximates the edge
probability by u⃗i · v⃗j , but the similarity of i and j would be measured by looking at (say) u⃗i and u⃗j . It would be
interesting to incorporate similarity in asymmetric embeddings.

Another result shows that, in some cases, community structure can be reconstructed from DeepWalk
embeddings [10]. This shows that some structure is being retained by the embeddings. We note that these results
mostly focus on SBMs with a constant (at most 5) blocks, or only the largest few communities in real data.
Theorem 2.1 and the other results in this article focus on cases where the number of blocks/communities is large.
We believe that low-dimensional embeddings can recover the top few communities, but fail to capture the rich
structure of many small communities. In the next section, we discuss this point further.

3 Challenges for community labeling using graph embeddings

One central promise of unsupervised graph embedding methods is to preserve network structure in the geometry.
To what extent do embedding methods capture graph structure relevant to downstream ML tasks?

This section is based on the paper of Stolman, Levy, Seshadhri, and Sharma [36]. We begin this discussion
with the empirical results, because they highlight the core observation. After that, we will go into the mathematical
explanations that relate to low-dimensional embeddings and factorization.

Consider the following well-defined pairwise community labeling problem. Given two vertices i and j,
the binary classification task is to determine whether they belong to the same community. We note that this
community labeling problem is an instance of a broad range of community detection problems that have a long
history of study in the graph mining literature [23].

3.1 Empirical setup

We use a set of real-world datasets with ground truth community labels, an Amazon co-purchase graph of products
and a DBLP citation network [41]. We also create a synthetic Stochastic Block model, with 100K vertices, and
small blocks of size 20 each. There is a dense graph within each block, and a random sparse graph connecting all
the blocks.

As explained earlier, the prediction task is to determine if an input pair i, j of vertices belong to a community.
(They may belong to multiple communities; to make the problem simpler, we do not require any community
labels to be determined.)
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Figure 2: Each point, (x, y), on the curve represents the approximate fraction of vertices, y, for which the
given method produces a precision@10 score of at least x. LR-Structural is plotted against the two best
performing embedding methods. 1000 vertices are sampled and for each vertex v sampled, the vertices of the graph
u1, . . . , un, are ordered by decreasing score assigned by the given classifier. The precision@10 is the fraction
of u1, . . . , u10 which share a community with v. Across all instances, the simple baseline LR-Structural
handily outperforms more complex graph embedding methods.

The setup for graph embeddings: We experiment with a set of important graph embedding methods based
on factorizations and Deep Learning (GraRep, DeepWalk, node2vec, NetMF [29, 7, 28, 16, 31]). We
note that the NetMF method was reported to be one of the best embedding methods for node classification [17].
Given the embedding for each vertex, we need to construct pairwise features for pairs in (i, j) ∈ V × V , for the
community prediction task. The standard approach is to either take the dot product v⃗i · v⃗j or the Hadamard product
v⃗i ◦ v⃗j . (Recall that the Hadamard product is a d-dimensional vector whose rth coordinate is the product of the
rth coordinates of v⃗i and v⃗j .) We finally train a logistic regression model on these features for the prediction
problem. This is the standard pipeline used in prior work [11, 16, 8].

A simple baseline: We compute four basic structural graph features for pairs of vertices (i, j). We look at
the cosine similarity and cut size between neighborhoods, and the Personalized PageRank values. These are
well-known classic features used in the literature [35, 5]. We train a simple logistic regression model on these
four features; the model is denoted LR-Structural .

Performance metric: For both real and simulated data, the ground truth is sparse, i.e. the vast majority of node
pairs do not belong to the same community. We do not use AUC because of its problems in measuring sparse
data [20, 25]. Instead, it is appropriate to measure the prediction performance using precision-recall curves for
this highly imbalanced label distribution [12].

The methods are evaluated by comparing the “precision@10" distributions. We sample 1000 random vertices.
For each of 1000 vertices sampled, v, we order the other vertices of the graph, u1, . . . , un, in decreasing order of
their prediction score. (The model predictors based on logistic regression on the embedding vectors or structural
features assign a score in [0, 1].) We compute the precision, per vertex, of the classifier among the top 10 scores,
with respect to the ground truth. When the predictor is based on dot product, this is simply the top 10 neighbors in
geometric space. In other words, we sample a vertex at random and report the fraction of its ten nearest neighbors
with which it shares a community.

We represent the distribution of values of precision@10 scores as a reliability curve. This is the curve (x, y)
such that at least a y fraction of vertices sampled had a precision@10 score score of at least x. Higher y values
for a given x indicate better performance. Fig. 2 contains the curves for the best methods against the baseline (we
leave out methods with poorer performance).
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Main observation: Across all instances, the baseline LR-Structural method heavily outperforms the more
complex graph embedding methods. The performance gap for the simple Stochastic Block Model instance is
striking. The graph is practically learnable (just a collection of dense blocks with sparse connections), but the
embedding methods fail to accurately predict pairs within blocks. For the LR-Structural method, in all
instances, at least 90% of the vertices have a precision@10 of at least 0.5. This means, for at least 90% of the
vertices, at least five of the top 10 scores are in the same community. By contrast, for the embedding methods,
this fraction is less than 75%. When looking for a precision of more than 0.8, the embeddings methods have less
than 20% of vertices achieving high scores. Overall, we observe that the embeddings methods do not perform the
community labeling task well, despite the simple LR-Structural baseline having good precision values.

3.2 Theoretical explanation of limitations

As explained earlier, a large variety of graph embedding methods (including those using Deep Learning) implicitly
factorize a matrix M as V TV . Here, M denotes some matrix representing the input graph data or the final
prediction, and V ∈ Rd×n is the matrix of graph embeddings. Broadly speaking, we can classify these methods
into two categories:

• Direct factorizations: Here, we set V as
argminV ∥V TV −M∥2, where M is typically (some power of) the graph adjacency matrix. Methods such as
Graph Factorization, GraRep [7], and HOPE [28] would fall under this category.

• Softmax factorizations: These methods factorize a stochastic matrix, such as (powers of) the random walk
matrix. (A stochastic matrix has row sums equal to one.) Since V TV is not necessarily stochastic, these methods
apply the softmax to generate a stochastic matrix. Notable examples are such methods are DeepWalk [29] and
Node2vec [16]. Formally, consider the normalized softmax matrix nsm(V ) given by

nsm(V )ij =
exp(v⃗i · v⃗j)∑
k exp(v⃗i · v⃗k)

(28)

Note that nsm(V ) is stochastic by construction.
The NetMF [31] method interpolates between these categories and shows that a number of existing methods

can be expressed as factorization methods, especially of the above forms.

The notion of community pairs: We start with an abstraction of community structure from a matrix standpoint:
many dense blocks in an overall sparse matrix. We quantify “how much" community structure can be present in
a matrix V TV or nsm(V ), for any matrix V ∈ Rd×n (for d≪ n). This formulation captures the fundamental
notion of a low-dimensional embedding, without referring to any specific method to compute it.

Let us start with an n × n matrix M that represents the “similarity" or likelihood of connection between
vertices. This is the final prediction matrix for community labeling. For convenience, let us normalize so that the
∀i ∈ [n],

∑
j≤nMi,j ≤ 1. (So the sum of similarities of a vertex is at most 1.) A communities is essentially a

dense block of entries, which motivates the following definition. We use ε to denote a parameter for the threshold
of community strength. One should think of ε as a small constant, or something slowly decreasing in n (like
1/poly(log n)).

Definition 3.1: A pair of vertices (i, j) is a potential community pair if both Mij and Mji are at least ε.

Note that we do not expect all such pairs (i, j) to truly be together in a community. Hence, we only consider
such a pair a potential candidate. We expect community relationships to be mutual, even if the matrix M is not.
A community can be thought of as a submatrix where at least a constant fraction of pairs are potential community
pairs. It is natural to expect that Θ(n) pairs are community pairs; indeed, most vertices should participate in
communities, and will have at least a constant number of community neighbors. Our mathematical analyses
shows that direct and softmax factorizations cannot produce these many potential community pairs.
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Lower bound for direct factorizations: We prove that the number of potential community pairs in V TV is
linear in the rank, and thus, a low-dimensional factorization cannot capture community structure. The proof uses
the rotational invariance of Frobenius norms.

Theorem 3.1: Consider any matrix V ∈ Rd×n such that row sums in V TV have absolute value at most 1. Then
V has at most d/2ε2 potential community pairs.

Proof: Since V TV has row sums of absolute value at most 1, the largest absolute value of eigenvalue is also at
most 1 (a consequence of the Gershgorin circle theorem [3].). The rank of V TV is at most d, so V TV has at
most d non-zero eigenvalues. We can express the Frobenius norm squared, ∥V TV ∥22, by the sums of squares of
eigenvalues. By the arguments above, ∥V TV ∥22 ≤ d.

But the Frobenius norm squared ∥V TV ∥22 is also the sums of squares of entries. Each potential community
pair contributes at least 2ε2 to this sum. Hence, there can be at most d/2ε2 potential community pairs.

The instability of softmax factorizations: The properties of softmax factorizations are more nuanced. Firstly,
we can prove that softmax factorizations can represent community structure quite effectively.

Theorem 3.2: For d = O(log n), there exists V ∈ Rd×n such that nsm(V )ij exhibits community structure.
Specifically, for any natural number b ≤ n, there exists V ∈ Rd×n such that nsm(V ) has n/b blocks of size b,
such that all entries within blocks are at least 1/2b.

Indeed, this covers the various SBM settings we study, and demonstrates the superiority of softmax factoriza-
tions for modeling community structure. We note that a similar theorem, for assymmetric factorizations, was
proved in [9].

On the other hand, these factorizations are highly unstable to small perturbations. Indeed, with a tiny amount
of noise, any community pair can be destroyed with high probability. The noise model scales each vector with
small (1± δ) Gaussian noise to get the matrix nsm(Ṽ (δ)). (The formal definition is given in [36].)

Theorem 3.3: Let c denote some absolute positive constant. Consider any V ∈ Rd×n. For any δ > c ln(1/ε)/ lnn,
the following holds in nsm(Ṽ (δ)) (this is the matrix formed by nsm(V ) with δ Gaussian noise). For at least
0.98n vertices i, for any pair (i, j), the pair is not a potential community pair with probability at least 0.99.

Thus, with overwhelming probability, any community structure in nsm(V ) is destroyed by adding o(1)
(asymptotic) noise. This is strong evidence that either noise in the input or numerical precision in the final
optimization lead to destruction of community structure. These theorems give an explanation of the poor
performance of the embeddings.

4 Conclusion

Instead of interpreting these limitations pessimistically, we reiterate the need for rigorous, foundational work
in graph embeddings and GNNs. The work in this article merely scratches the surface. The limitations given
in [34, 36] might not hold for all low-dimensional embedding methods, but they cover a large class of them. The
limitations certainly hold for the most popular methods used, and is reinforced by the empirical results. The
counterpoints of [9, 10] lead to a more nuanced picture for specialized embedding methods. We need a deeper
understanding of how limitations can be avoided and how they relate to the downstream ML tasks.

The limitations question a purely empirical approach of designing better and better embedding methods and
GNNs. As [17] correctly point out, each method comes with many hyperparameters, so it might be possible to
tune one method to beat another and vice versa. Small improvements on some test datasets might not reveal the
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complete picture. The theoretical and mathematical framework discussed in this article provide a more rigorous
basis for research. If there are fundamental limitations from low-dimensional geometry for certain methods, we
should not try to “tune" the problems away by experimenting with hyperparameters.

Overall, we believe that the work surveyed in this article provide an exciting new research perspective for
graph embeddings and GNNs.
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Abstract

Recently, Graph Neural Networks (GNNs) have greatly advanced the task of graph classification. Typically,
we first build a unified GNN model with graphs in a given training set and then use this unified model to
predict labels of all the unseen graphs in the test set. However, graphs in the same dataset often have
dramatically distinct structures, which indicates that a unified model may be sub-optimal given an individual
graph. Therefore, in this paper, we aim to develop customized graph neural networks for graph classification.
Specifically, we propose a novel customized graph neural network framework, i.e., Customized-GNN. Given a
graph sample, Customized-GNN can generate a sample-specific model for this graph based on its structure.
Meanwhile, the proposed framework is very general that can be applied to numerous existing graph neural
network models. Comprehensive experiments on various graph classification benchmarks demonstrate the
effectiveness of the proposed framework.

1 Introduction

Graphs are natural representations for many real-world data such as social networks [1, 2, 3, 4], biological
networks [5, 6] and chemical molecules [7, 8]. A crucial step to perform downstream tasks on graph data is
to learn better representations. Deep neural networks have demonstrated great capabilities in representation
learning for Euclidean data and thus have advanced numerous fields including speech recognition [9], computer
vision [10] and natural language processing [11]. However, they cannot be directly applied to graph-structured
data since graphs have complex topological structures. Recently, graph neural networks (GNNs) have generalized
deep neural networks to graph data. GNNs typically update node representations by transforming, propagating
and aggregating node features across the graph. They have boosted the performance of many graph related tasks
such as node classification [3, 2], link prediction [12, 13, 14], and graph classification [15, 16, 17, 18].

Graph classification is one of the most important and prevalent graph related tasks [19], and in this work,
we aim to advance graph neural networks for the graph classification task. There are numerous real-world
applications for graph classification. For example, proteins can be denoted as graphs [20] and the task to infer
whether a protein functions as an enzyme or not can be regarded as a graph classification task; and it can also be
applied to forecast Alzheimer’s disease progression in which individual brains are represented as graphs [21].
Unlike data samples in classification tasks in other domains such as computer vision [22] and natural language
processing [23], graph samples in the graph classification task are described not only by the input (node) features
but their graph structures. Both the input node features and the graph structures play crucial roles in the graph
classification tasks [15, 16, 18].

In reality, graphs in the same data set can present significantly different structural properties. Figure 1a
demonstrates the distribution of graph size (i.e., the number of nodes) for protein graphs in the D&D dataset [20],
where the graph size varies dramatically from 30 to 5, 748. We further illustrate two graphs sampled from the
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(a) Node size distribution (b) A graph with 31 nodes

(c) A graph with 302 nodes (d) Classification accuracy

Figure 1: An illustrative example of varied structural information and its impact on the performance of graph
neural network based graph classification. (a) demonstrates the distribution of graph size (i.e., the number of
nodes) for protein graphs in the D&D dataset, where the graph size varies dramatically from 30 to 5, 748. ; (b)
and (c) show two graphs sampled from the D&D dataset, which present very different structural properties; (d)
shows classification performance of three models trained on training sets with various graph sizes.
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D&D dataset in Figures 1b and 1c, respectively. These two graphs present very different structural properties
such as the number of nodes, graph shapes, and diameters.

The above investigations indicate that graphs in the same data set could have dramatically distinct structural
properties. It naturally raises the question – whether we should treat these graphs differently? To investigate this
question, we take the graph size as the representative structure-property and demonstrate how it affects the graph
classification performance. Specifically, we divide graphs from D&D into two groups based on their graph size –
one for graphs with a small number of nodes and the other for graphs with a large number of nodes. Then, we
split each group into a training set and a test set. Next, we train three GNN models 1 based on three training sets –
the small one, the large one and the overall (a combination of the small and large one), separately. Then, we test
their performance on the two test sets. The results are shown in the Figure 1d. In the test set with small/large
graph sizes, the model trained on the training set with the same graph size can significantly outperform the other
two models.

Investigations and consistent observations on more settings can be found in the Section “Preliminary Data
Analysis". These investigations suggest that a unified model is not optimal for graphs with diverse structure
properties and efforts are desired to consider the structure-property difference among graphs. Hence, in this paper,
we aim to learn “customized models” for graphs with different structural properties. A natural way is to divide
the dataset into different splits according to structure properties and train a model for each split. However, we
face enormous challenges to achieve this goal in practice. First, there are potentially several structure properties
(graph size, density, and etc.) affecting the performance, and we have no explicit knowledge about how the graphs
should be split according to these properties. Second, dividing the dataset leads to small training sets for the
splits, which may not be sufficient to train satisfactory models. To address these challenges, we propose a novel
graph neural network framework, Customized-GNN, for graph classification. The Customized-GNN framework
is trained on all graphs in the given training set (without splitting) and able to produce customized GNN models
for each individual graph. Specifically, we design an adaptor, which is able to smoothly adjust a general GNN
model to a specific one according to the structural properties of a given graph. The general GNN model and the
adaptor are learned during the training stage simultaneously utilizing all graphs.

Our major contributions are listed as follows: 1) We empirically observed that graphs in a given dataset could
have dramatically distinct structural properties. Furthermore, it is not optimal to train a unified model for graphs
with various structure properties for a graph classification task; 2) We propose a framework, Customized-GNN,
which is able to generate a customized GNN model for each graph sample based on its structural properties. The
proposed framework is general and can be directly applied to many existing graph neural network models; 3) We
designed and conducted comprehensive experiments on numerous graph datasets from various domains to verify
the effectiveness of the proposed framework.

2 Related Work

Graph Neural Networks have recently drawn great interest due to its strong representation capacity in graph-
structured data in many real-world applications. Generally, graph neural networks can be divided into two
categories: the spectral approaches and the non-spectral approaches. The spectral methods aim at defining
the parameterized filters based on graph spectral theory by using graph Fourier transform and graph Laplacian
[31, 32, 33, 34], and the non-spectral methods aim at defining parameterized filters based on nodes’ spatial
relations by aggregating information from neighboring nodes directly [2, 35].

Graph neural networks have advanced a wide variety of tasks including node classification [3, 2], link predic-
tion [36, 12, 13] and graph classification [15, 16]. In the task of graph classification, one of the most important
step is to get a good graph-level representation. A straight-forward way is to directly summarize the graph
representation by globally combining the node representations [37]. Recently, there are some works investigating

1The GNN model for graph classification uses GCN [3] as the filtering operation and maxpooling as the pooling operation.
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learning hierarchical graph representations by leveraging deterministic graph clustering algorithms [32, 38].
There also exist end-to-end models aiming at learning hierarchical graph representations, such as DiffPool [15].
MuchGNN [39] proposed to learn a set of graph channels at each layer to shrink the graph hierarchically.
Furthermore, some methods [13, 40, 41] propose principles to select the most important k nodes to form a
coarsened graph in each network layer. EigenPooling [16] is based on graph Fourier transform and is able to
capture the local structural information. In [26], conditional random fields (CRF) are used to design the pooling
operation.

3 Preliminary Data Analysis

Table 1: Graph classification accuracy on different node-size sets

D&D ENZ PROT RE-BI

Accuracy (%) S-test L-test S-test L-test S-test L-test S-test L-test

S-training 66.2 55.7 45.0 20.0 76.5 51.4 88.6 46.6
L-training 47.2 77.8 27.0 39.0 45.6 78.6 29.3 83.1

Table 2: The classification accuracy of the models trained from four training sets in D&D dataset and Statistics
for four training sets.

Training set Node size range #Graphs
Accuracy

test 1 test 2 test 3 test

training 1 [0,200] 369 76.1 41.2 26.7 50.9
training 2 [200,400] 392 43.5 75.3 82.2 62.4
training 3 [400,2000] 180 23.9 75.3 88.9 56.8
training [0,2000] 941 64.1 61.9 75.6 66.2

In Figure 1, we have demonstrated that graphs in D&D have varied properties, which affected the performance
of GNNs for graph classification. In this section, we aim to further investigate this phenomenon by answering
the following two questions – (1) can the observations on D&D be extended to other datasets? and (2) whether
incorporating these properties into the models can facilitate the performance?

We choose four representative graph datasets from different domains for this study including D&D [20],
ENZ [6], PROT [5] and RE-BI [1]. We checked the properties such as node size and edge size. Similar to D&D,
graphs in all datasets present very diverse properties. More details about these datasets can be found in Section 5.
Following the same setting as D&D, we divide each data into two groups according to the node size, i.e., large
training and test (denoted as “L-training" and “L-test") and small training and test (indicated as “S-training" and
“S-test"). The results are demonstrated in Table 1. From the table, we make consistent observations with these in
D&D – models trained on one property group (e.g., L-training) cannot perform well on the other property group
(e.g., S-test).

To answer the second question, we divide D&D into several subsets based on the node size, and then divide
each subset into a sub-training set (80%) and a sub-test set (20%). We train models on different sub-training sets
separately, and then test their performance on all the sub-test sets. Specifically, we have trained four models on
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four different training sets from D&D, which are training 1, training 2, training 3 containing graph samples with
node sizes from different ranges, and training which is the combination of training 1, 2 and 3. Then, we test four
models on four test sets, i.e., test 1, test 2, test 3 and test which is the combination of test 1, 2 and 3. Statistics
about these training sets are summarized in Table 2.

The performance of four models on the test sets are illustrated in Table 2. We note that the model trained on a
specific training set performs much better on the corresponding test set that shares the same node size range than
the other test sets. This suggests the potential to incorporate the structure properties into the model training. In
addition, though training 1, training 2 and training 3 have much fewer training samples, the models trained on
specific training sets can achieve better performance on the corresponding test sets compared to these trained
from the entire training set (or training). This indicates that a unified graph neural network that is trained from
the entire training set is not optimal for graphs with various structure properties in the test set.

Discussion. Via the preliminary data analysis, we have established: (1) graphs in real-world data present
distinct structure properties that tend to impact the graph classification performance of GNNs; and (2) incorpo-
rating the difference has the potential to boost the graph classification performance. These observations lay the
foundations of the model design in the next section.

4 The Proposed Framework

In this section, we introduce the proposed framework Customized-GNN that has been designed for graphs with
inherently distinct structure properties.

4.1 The Overall Design

As mentioned in earlier sections, graphs in real-world data inherently present distinct structural properties. Thus,
we are desired to build distinct GNN models for them. To achieve this goal, we face tremendous challenges. First,
we have no explicit knowledge about how the graph structure properties will influence graph neural network
models. Second, if we separately train different models for graphs with different structure properties, we have to
split the training sets for each model; as a consequence, the training data for each model could be very limited.
For example, in the extreme case where each graph has unique graph structural properties, we only have one
training sample for the corresponding model. Third, even if we can well train distinct GNN models for different
graphs, during the test stage, for an unlabelled graph with unseen structural property, it is hard to decide which
trained model we should adopt to make the prediction. In this work, we propose a customized graph neural
network framework, i.e., Customized-GNN, which can tackle the aforementioned challenges simultaneously.

An overview of the architecture of Customized-GNN is demonstrated in Figure 2. The basic idea of
Customized-GNN is – it generates customized adaptor parameters for each graph sample gi via an adaptor
network with the graph structure properties as input. These generated adaptor parameters are used to adapt a
shared GNN model denoted as GNN (this could be any GNN model that works for the graph classification task)
to a model specific for the graph sample gi. The adapted model GNNi incorporates the structure information of
graph gi, and thus, is customized for the graph sample gi.

With the proposed Customized-GNN framework, the first challenge is handled, since the influence is implicitly
modeled by the adaptor networks, which can customize the shared GNN model to a graph sample specific one.
Furthermore, Customized-GNN can be trained on the entire training set without splitting it according to graphs’
structure properties. This not only solves the second challenge but also ensures that the trained model can preserve
common knowledge from the entire training set. The third challenge is also automatically addressed by the
Customized-GNN framework. Given an unseen graph gj , the Customized-GNN framework first takes its graph
structure information as input and generates adaptor parameters. Then, these generated adaptor parameters can be
used to customize the general GNN model to a customized one GNNj to predict the label of gj .
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Figure 2: An overview of the proposed customized graph neural networks. Given a set of graph samples, the
adaptor networks take their structure properties as input, and generate corresponding adaptor parameters, which
are used to adapt a shared GNN model (this could be any GNN model that works for the graph classification task)
to a model specific for each graph sample. Each adapted model incorporates the structure information a graph,
and thus, is customized for this graph sample to make label prediction. With the predicted label and the ground
truth label, we can calculate the overall loss, which is used to guide the optimization of the adaptor networks and
the shared GNN model.

4.2 The Adapted Graph Neural Network

Next, we introduce details about the adaptor network, the process of adapting a shared model to a specific one for
a given graph, and the time complexity analysis of the proposed framework.

4.3 The Adaptor Network

The goal of the adaptor network is to generate the adaptor parameters for a given graph. From the preliminary data
analysis, we have the intuition that the customized GNN model for a specific graph sample should be correlated to
its structural properties. However, there is no explicit knowledge about how these structural properties influence
graph neural network models. To model this implicit mapping function, we propose to utilize a powerful neural
network to generate the model adaptor parameters from the observed structure information of a given sample.

In addition, graph neural networks often consist of several subsequent filtering and pooling layers, which can
be viewed as different GNN blocks. For example, K GNN blocks are shown in Figure 3. The graph structure
properties of a given sample may have different influences on different GNN blocks. Hence, for each GNN block,
we introduce one adaptor network to generate adaptor parameters for each block.

Specifically, we first extract a vector si to denote the structure information of a given graph gi. We will
discuss more details about si in the experiment section. As shown in the Figure 3, the adaptor networks take the
structure information si as input and generate the adaptation parameters for each block. In the case where there
are K blocks in the graph neural network, we have K independent adaptor networks corresponding to the K
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Figure 3: An overview of the GNN adaptation process. Given a specific graph sample gi, the adaptor networks
consisting of K blocks take its graph structure properties si as input, and generate corresponding adaptor
parameters to adapt each shared GNN block to get a customized GNN for gi. This customized GNN is then used
to make prediction for gi.

blocks. Note that these adaptor networks share the same input si while their outputs are different. Specifically,
the adaptor network for the j-th block can be expressed as follows:

ϕij = hj(si; Ωj), j = 1, . . . ,K, (29)

where Ωj denotes the parameters of the j-th adaptor network and ϕij denotes its output, which will be used to
adapt the j-th learning block. The adaptor network hj can be modeled using any functions. In this work, we
utilize feed-forward neural networks due to their strong capability. According to the universal approximation
theorem [24], a feed-forward neural network can approximate any nonlinear functions. For convenience, we
summarize the process of the K adaptor networks with si as input below:

Φi = H(si;ΩH), (30)

where Φi contains the generated adaptation parameters of all the GNN blocks for graph gi and ΩH denotes the
parameters of the K adaptor networks.

Any existing graph neural network model can be adapted by the Customized-GNN framework to generate
sample-specific models based on the structure information. Therefore, we first generally introduce the GNN
model for graph classification and describe how to adapt it given a specific sample. Then, we illustrate how to
adapt specific GNN models.

4.3.1 A General Adapted Framework

A typical GNN framework for graph classification contains two types of layers, i.e., the filtering layer and the
pooling layer. The filtering layer takes the graph structure and node representations as input and generates refined
node representations as output. The pooling layer takes graph structure and node representations as input to
produce a coarsened graph with a new graph and new node representations. A general GNN framework for graph
classification contains Kp pooling layers, each of which follows Kf stacking filtering layers. Hence, there are
K = Kp ∗Kf learning blocks in the GNN framework. A graph-level representation can be obtained from these
layers that can be further utilized to perform the prediction. Given a graph sample gj , we need to adapt each of
the K layers according to its adaptor parameters generated from the adaptor network. Via this process, we can
generate a GNN model GNNj specific to gj .
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Without loss of generality, when introducing a filtering layer or a pooling layer, we use an adjacency matrix
A ∈ Rn×n and node representations X ∈ Rn×d to denote the input of these layers where n is the number of
nodes and d is the dimension of node features. Then, the operation of a filtering layer can be described as follows:

Xnew = f(A,X; θf ) (31)

where θf denotes the parameters in the filtering layer and Xnew ∈ Rn×dnew denotes the refined node representa-
tions with dimension dnew generated by the filtering layer. Assuming ϕf is the corresponding adaptor parameters
for this filtering layer, we adapt the model parameter θf of this filtering layer as follows:

θmf = θf ⋄ ϕf , (32)

where θmf is the adapted model parameter that has the same dimension as the original model parameter θf ; and ⋄
is the adaptation operator. The adaption operator can have various designs, which can be determined according
to the specific GNN model. We will provide the details of the adaptation operator when we introduce concrete
examples in the following subsections. Then, with the adapted model parameters, we can define the adapted
filtering layer as follows:

Xnew = f(A,X; θf ⋄ ϕf ). (33)

On the other hand, the process of a pooling layer can be described as follows:

Anew,Xnew = p(A,X; θp), (34)

where θp denotes the parameters of the pooling layer, Anew ∈ Rnnew×nnew with nnew < n is the adjacency
matrix for the newly generated coarsened graph and Xnew ∈ Rnnew×dnew is the learned node representations for
the coarsened graph. Similarly, we adapt the model parameters of the pooling layer as follows:

θmp = θp ⋄ ϕp, (35)

which leads to the following adapted pooling layer:

Anew,Xnew = p(A,X; θp ⋄ ϕp), (36)

where ϕp is the adaptation parameters generated by the adaptor network for this pooling layer.
For convenience, we summarize a general GNN model as GNN(· | ΘGNN ), where ΘGNN is the parameters

in all GNN blocks(i.e., θf , θp in all filtering and pooling layers). Then, for a graph sample gi, we can adapt the
GNN model GNN(· | ΘGNN ) to a customized model for gi denoted as GNN(· | ΘGNN♢Φi). Note that, as
shown in Eq. equation 30, Φi contains adaptation parameters of all GNN blocks for a graph sample gi. The
adaptation operations in all GNN blocks (including filtering and pooling layers) are summarized in ΘGNN♢Φi.
There are numerous GNN models designed for graph classification [13, 25, 16, 26]. The proposed framework
can be applied to the majority of these models, i.e., these models all can serve as the GNN(· | ΘGNN ) model
mentioned above. In this work, we focus on three representative GNN models including GCN [3], DiffPool [15]
and gPool [13]. We would like to leave the investigations of other GNN models as one future work. Next, we will
give details on how to adapt GCN and DiffPool since gPool follows a similar adaptation process.

4.3.2 Adapted GCN: Customized-GCN

Graph Convolutional Network (GCN) [3] is originally proposed for semi-supervised node classification task. The
filtering layer in GCN is defined as follows:

Xnew = f(A,X; θf ) = σ(D̃− 1
2 ÃD̃− 1

2XW), (37)
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where Ã = A+ I represents the adjacency matrix with self-loops, D̃ =
∑

j Ãij is the diagonal degree matrix
of Ã and W ∈ Rd×dnew denotes the trainable weight matrix in filtering layer and σ(·) is a nonlinear activation
function. With the adaptation parameter ϕf for this corresponding filtering layer, the adapted filtering layer can
be represented as follows:

Xnew = f(A,X; θf ⋄ ϕf ) = σ(D̃− 1
2 ÃD̃− 1

2X(W ⋄ ϕf )). (38)

Specifically, we adopt FiLM [27] as the adaption operator. In this case, the dimension of the adaptor parameter is
2d, i.e., ϕf ∈ R2d. We split ϕf into two parts γf ∈ Rd and βf ∈ Rd and then the adaptation operation can be
expressed as follows:

W ⋄ ϕf = (W ⊙ br(γf , dnew)) + br(βf , dnew), (39)

where br(a, k) is a broadcasting function that repeats k times for the vector a; hence, br(γf , dnew) ∈ Rd×dnew

and br(βf , dnew) ∈ Rd×dnew have the same shape as W and ⊙ denotes the element-wise multiplication between
two matrices.

To utilize GCN for graph classification, we introduce a node-wise max pooling layer to generate graph
representation from the node representations as follows:

xG = p(A,X; θp) = max(X), (40)

where xG ∈ R1×dnew denotes the graph-level representation and max() takes the maximum over all the nodes.
Note that the max-pooling operation does not involve learnable parameters and thus no adaptation is needed for it.
We refer to an adapted GCN framework as Customized-GCN.

4.3.3 Adapted diffpool: Customized-DiffPool

DiffPool is a hierarchical graph level representation learning method for graph classification [15]. The filtering
layer in DiffPool is the same as Eq. equation 37 and its corresponding adapted version is shown in Eq. equation 38.
Its pooling layer is defined as follows:

S = softmax(fa(A,X; θfa)), (41)

Xnew = STZ, (42)

Anew = STAS, (43)

where fa is a filtering layer embedded in the pooling layer, S ∈ Rn×nnew is a soft-assignment matrix, which
softly assigns each node into a supernode to generate a coarsened graph. Specifically, the structure and the
node representations for the coarsened graph are generated by Eq. equation 43 and Eq. equation 42 respectively,
where Z ∈ Rn×dnew is the output of the filtering layers. To adapt the pooling layer, we only need to adapt
Eq. equation 41, which follows the same way as introduced in Eq. equation 38 as it is also a filtering layer. We
refer to the adapted diffpool model as Customized-DiffPool.

4.4 Training and Test via the Customized Framework

Given a graph sample gi with the adjacency matrix Ai, and the feature matrix Xi, the Customized-GNN
framework performs the classification task as follows:

ỹi = GNN(Ai,Xi;ΘGNN♢H(si;ΩH)). (44)
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During the training, we are given a set G = {gi, yi} of N graphs as training samples, where each graph gi is
associated with a ground truth label yi. Then, the objective function of Customized-GNN can be represented as
follows:

min
ΩH ,θGNN

N∑
i=1

L(yi, GNN(Ai,Xi;ΘGNN♢H(si;ΩH))), (45)

where N is the number of training samples and L is a loss function. In this work, we use Cross-Entropy as the
loss function and adopt ADAM [28] to optimize the objective.

During the test phase, the label of a given sample gℓ can be inferred using equation 44. Specifically, the graph
structure information sℓ of the sample is first utilized as the input of the adaptor network H(·;Ω) to identify
its distribution information, which is then utilized to adapt the shared model parameter ΘGNN to generate a
sample-specific model GNN ℓ. This sample-specific model finally performs the classification for this sample.

Table 3: The statistics of seven datasets. #Graphs denotes the number of graphs. #Class is the number of graph
classes. Node size indicates range, average and standard deviation of the number of nodes among the graphs.
Edge size represents range, average and standard deviation of the number of edges among the graphs.

Dataset #Graphs #Class Node size Edge size
range mean std range mean std

COLLAB 5000 3 [32, 492] 74.5 62.3 [60, 40120] 2457.8 6439.0
ENZ 600 6 [2, 125] 32.6 14.9 [1, 149] 62.14 25.5

PROT 1113 2 [4, 620] 39.1 45.7 [5, 1049] 72.82 84.6
D&D 1178 2 [30, 5748] 284.3 272.0 [63, 14267] 715.65 693.9

RE-BI 2000 2 [63, 782] 429.6 554.0 [4, 4071] 497.8 623.0
RE-5K 4999 5 [22, 3648] 508.5 452.6 [21, 4783] 594.9 566.8
NCI109 4127 2 [4, 111] 29.6 13.6 [3, 119] 32.1 15.0

4.5 Time Complexity Analysis

In this subsection, we analyze the additional time required to calculate the adaptation parameters and perform
the adaptation. Specifically, we use the FiLM adaptation operator, as an example for the adaptor network. For
convenience, the dimension of the output node features in all layers is assumed to be the same d. The dimension
of the output of the adaptation network ϕf is 2d. Furthermore, we assume that the input of the adaptation network,
i.e., the graph property information si is with dimension s. Then, the time complexity to generate the adaptation
parameters for a single block using Eq. equation 29 is O(2d · s) = O(d · s). Furthermore, the time required to
adapt the parameters for a single block with Eq. equation 39 is O(d2). Hence, for graph neural networks with
K learning blocks, the time complexity to calculate the adaptation parameters and perform the adaptation for
all learning blocks is O(K · d · s +K · d2). Note that, the time complexity of a single filtering operation in
Eq. equation 37 is O(m · d + n · d2) where m denotes the number of edges while n is the number of nodes.
Therefore, the total time complexity for K learning blocks without adaptation is O(K · m · d + K · n · d2).
Furthermore, s is typically small (much smaller than m); hence, the additional time complexity introduced by the
adaptation operation is rather small.

5 Experiments

In this section, we conducted comprehensive experiments to verify the effectiveness of the proposed Customized-
GNN framework. We first describe the experimental settings. Then, we evaluate the performance of the
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framework by comparing original GCN, DiffPool and gPool with the adapted GCN, DiffPool, gPool models
by the Customized-GNN framework. Next, we analyze the importance of different components in the adaptor
operator. Finally, we conduct case studies to further facilitate our understanding of the proposed method.

5.1 Experimental Settings

We carried out graph classification tasks on seven datasets. Some key statistics of these datasets used in our
experiments are shown in Table 3, and more details of them are introduced as follows:

• COLLAB [1] is a dataset of scientific collaboration networks, which describes collaboration pattern of
researchers from three different research fields.

• ENZ [6] is a dataset of protein tertiary structures of six classes of enzymes.

• PROT [5] is a dataset of protein structures, where each graph represents a protein and each node represents
a secondary structure element (SSE) in the protein.

• D&D [20] is a dataset of protein structures. Each protein is represented as a graph, where each node
in a graph represents an amino aid and each edge between two nodes denotes that they are less than 6
Ångstroms apart.

• RE-BI and RE-5K [1] are two datasets of online discussion threads crawled from different subreddits in
Reddit, where each node represents an user and each edge between two users represents their interaction.

• NCI109 [6] is a dataset of chemical compounds screened for activity against non-small cell lung cancer
and ovarian cancer cell lines, which are provided by Natinal Cancer Institue (NCI).

Next, we describe the baselines. In the Section “The Proposed Framework" , we apply the proposed framework
to adapt three graph neural networks models: a basic graph convolutional network (GCN) [3], and two SOTA
graph classification models DiffPool [15] and gPool [13], respectively. The corresponding adapted versions are
Customized-GCN, Customized-DiffPool and Customized-gPool, respectively. Our evaluation purpose is if the
proposed framework can boost the performance of existing models by adapting them to their corresponding
customized versions. Thus, (1) to validate the effectiveness of the proposed model, we compare Customized-GCN,
Customized-DiffPool, Customized-gPool with GCN, DiffPool and gPool; and (2) we have not chosen models
in [25, 16, 26] as baselines here but the proposed framework can be directly applied to adapt them as well.
Note that in this work, we construct a set of simple structural features si of gi such as the number of nodes, the
number of edges and the graph density; however, it is flexible to include other complex features by the proposed
framework. Furthermore, we create baselines to directly concatenate the graph structure properties si to the
output graph embedding of the GCN, DiffPool and gPool model. Correspondingly, we call these three methods as
Concat-GCN, Concat-Diff and Concat-gPool. In addition, we develop baseline methods, Multi-GCN, Multi-Diff
and Multi-gPool. They learn multiple graph convolutional networks for graph samples with different structural
information. More details of these baselines are as follows:

• GCN [3] is originally proposed for semi-supervised node classification. It consists of a stack of GCN layers,
where a new representation of each node is computed via transforming and aggregating node representations
of its neighbouring nodes. Finally, a graph representation is generated from node representations in the last
GCN layer via a global max-pooling layer, and then used for graph classification.

• Diffpool [15] is a recently proposed method which has achieved state-of-the-art performance on the
graph classification task. It proposes a differentiable graph pooling approach to hierarchically generate a
graph-level representation by coarsening the input graph level by level.
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Figure 4: The framework of Multi-GCN with 3 clusters. we group training samples into 3 clusters, and train
a GCN model for each cluster. Given a test sample gi, we measure the distance between this sample and the
centroids of the three clusters and utilize the corresponding model of the closest cluster to perform the prediction
for this sample.

• gpool [13] is a newly proposed pooling method that has achieved state-of-the-art performance on the graph
classification task. It develops a U-Net-like architecture for graph dat, consisting of graph pooling operation
and unpooling operation based on node importance value.

• Concat-GCN (or Concat-Diff, Concat-gpool ) is baseline method that directly concatenates the graph
structure properties si to the output graph embedding of the GCN, DiffPool and gPool model.

• Multi-GCN (or Multi-Diff, Multi-gpool ) consists of several GCN (or Diffpool, gpool) models trained
from different subsets of the training datset. As shown in Figure 4, we first cluster data samples from
training set into different training subsets via K-means method based on the graph structural information.
Note that in this work, the structural information si of gi includes the number of nodes, the number
of edges and the graph density. Then train different models are trained from different training subsets.
During the test phase, given a test graph sample, we first compute the euclidean distance between its graph
structural properties and the centroids of different training subsets. Then, the model trained on the closest
training subset is selected to do label prediction for this graph sample. In this experiment, we set the
number of clusters to 2 and 3, and denote the corresponding frameworks as Multi-GCN-2 (or Multi-Diff-2,
Multi-gpool-2 ) and Multi-GCN-3 (or Multi-Diff-3, Multi-gpool-3).

5.2 Graph Classification Performance Comparison

In this subsection, we first perform the comparison following the traditional setting. To further demonstrate
the advantage of the proposed frameworks, we show their adaptability when the properties of test graphs are
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Table 4: Comparisons of graph classification performance in terms of accuracy.

Accuracy (%) Datasets
COLLAB ENZ PROT DD RE-BI RE-5K NCI109

GCN 67.9±1.4 50.4±3.0 77.0±2.3 79.3±5.3 82.6±4.9 50.7±1.3 74.9±2.7
Concat-GCN 68.4±1.4 52.5±5.1 78.4±1.9 77.6±3.2 80.7±3.5 50.7±1.0 75.6±1.2
Multi-GCN-2 68.3±1.4 47.0±1.8 79.5±1.3 77.1±2.4 80.6±3.5 50.3±1.9 74.2±1.9
Multi-GCN-3 67.0±1.4 44.6±5.4 79.9±2.2 76.7±3.5 77.5±7.3 48.5±2.1 75.8 ±1.5
Customized-GCN 71.3±1.0 55.4±4.6 78.8±3.2 79.6±3.9 91.5±1.6 53.3±1.3 76.7±1.1

DiffPool 70.6±1.2 57.9±2.5 78.6±2.5 81.5±4.1 89.6±1.1 56.2±1.1 77.5±0.7
Concat-Diff 70.7±0.7 60.0±1.7 77.7±2.5 81.3±2.9 91.1±1.7 54.9±1.4 78.0±0.5
Multi-Diff-2 70.7±0.6 56.3±1.3 80.0±1.2 79.3±2.9 89.9±2.5 53.7±0.6 76.8±0.7
Multi-Diff-3 70.8±1.1 52.5±0.8 80.9±1.7 80.6±2.3 88.8±0.7 53.4±2.4 78.5±1.2
Customized-DiffPool 73.6±0.5 57.9±7.2 78.6±2.9 80.6±2.6 95.1±1.6 55.8±1.1 78.2±0.9

gPool 69.4±2.2 53.8±3.2 77.3±3.0 78.9±5.5 88.9±1.6 51.3±0.6 77.1±1.2
Concat-gPool 69.7±0.5 57.1±1.8 79.1±2.2 78.0±2.6 88.5±1.3 50.9±2.2 76.3±0.7
Multi-gPool-2 69.0±1.9 50.8±5.1 79.7±1.0 79.5±2.7 84.0±3.2 49.3±2.3 73.5±2.1
Multi-gPool-3 68.9±1.6 46.2±3.2 80.6±0.8 80.0±3.6 83.1±4.5 48.9±1.8 75.2±1.9
Customized-gPool 72.3±1.0 62.9±3.6 80.6±1.6 80.0±3.1 91.1±0.7 53.3±1.4 76.5±1.9

different from these of training graphs. Following the setting in [15], for each graph dataset, we randomly shuffle
the dataset and then split 90% of the data as the training set and the remaining 10% as test set. We train all the
models on the training set and evaluate their performance on the test set with accuracy as the measure. We repeat
this process with different data shuffling and initialization seeds for 4 times and report the average performance
and standard variance. In terms of the implementation details, the GCN/Customized-GCN model consists of 3
filtering layers and a single max-poling layer; the hidden dimension of each filtering layer is 20; and ReLU [29]
activation is applied after each filtering layer. For DiffPool/Customized-DiffPool and gPool/Customized-gPool,
we set Kp = 2, Kf = 3 and the dimension of hidden filtering layer 20. We adopt fully-connected networks to
implement the adaptor networks in the Customized-GNN frameworks. Its input dimension is the same as the
dimension of the graph structural information.

The results are shown in Table 4. We notice that the Concat- and the Multi- version of the GNN models can,
in some cases, achieve comparable or even better performance than their corresponding original versions. This
indicates that utilizing the graph structure properties has the potential to help improve the model performance.
However, the performance of these variants is not so stable across different datasets, which means that these simple
methods are not suitable for all datasets. For example, the Concat- versions may work well on datasets where
the label is directly related with the graph structure properties but fail on those datasets where graph structure
properties have more implicit impact on the labels. On the other hand, the performance of the Multi-version of
the GNN models is heavily dependent on how the data is split into different groups. It is not practical to find good
splits manually. Furthermore, simply training different models for different graphs can lead to unsatisfactory
performance because less training data is available for each model. In contrast, our proposed Customized models
learn sample-wise adaptation, which automatically finds suitable models for different data samples according
to their graph structure properties. Compared with the original GCN, DiffPool and gPool, the corresponding
Customized models achieve better performance in most of the datasets. This demonstrates that the sample-wise
adaptation performed by the Customized-GNN framework can boost the performance of GNN frameworks.

Adaptability Study. To further show the adaptability of the proposed framework to new graphs with different
structures, we order graphs according to their node sizes in non-decreasing order. Then, we use the first 80%
of the data as training set and the remaining 20% as test set. The purpose of this setting is to simulate the case
where structures of graphs in the test set are different from those in the training set. We only show the results on
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Table 5: Adaptability study. (Note here Cust-X denotes Customized-X)

Accuracy(%) Methods
Cust-GCN GCN Cust-DiffPool DiffPool Cust-gPool gPool

ENZ 22.2 20.5 25.6 22.2 35.0 24.8
RE-BI 70.2 50.4 78.6 52.7 80.0 59.9

the ENZ and RE-BI datasets in Table 5, since observation from other datasets are consistent. We note that (1)
GCN, DiffPool and gPool cannot work properly in this setting; and (2) the customized frameworks perform much
better under this setting. These results demonstrate the ability of the learned Customized-GNNs to adapt GNNs
to graphs with new properties.

5.3 Ablation Study

In this subsection, we investigate the effectiveness of different components in the adaptor operator in Eq. equa-
tion 39 used in our model. Specifically, we want to investigate whether γf and βf play important roles in the
adaptor operator by defining the variants of Customized-GCN – Customized-GCNγ : It is a variant of the adaptor
operator with only element-wise multiplication operation where instead of Eq. equation 39, the adaptation process
is now expressed as: W ⋄ ϕf = (W ⊙ br(γf , dnew)); and Customized-GCNβ: It is a variant of the adaptor
operator with only element-wise addition operation where instead of Eq. equation 39, the adaptation process is
now: W ⋄ ϕf = W + br(βf , dnew).

Table 6: Ablation study.

Accuracy (%) Datasets

COLLAB ENZ PROT DD RE-BI RE-5K NCI109

GCN 69.9 51.8 76.6 77.2 81.9 50.4 75.7
Customized-GCNγ 70.8 52.3 77.6 78.1 85.2 51.7 76.0
Customized-GCNβ 71.2 54.0 77.9 78.0 88.8 51.9 77.1

Customized-GCN 73.2 55.9 77.9 79.3 90.4 52.9 77.1

Following the previous experimental setting, we compared Customized-GCN with its variants. The results
are presented in Table 6. We observe that both Customized-GCNγ and Customized-GCNβ can outperform the
original GCN model. It indicates that both terms with γ and β are effective for the adaptation and utilizing either
one of them can already adapt the original model in a reasonable manner. We also note that the Customized-GCN
model outperforms both Customized-GCNγ and Customized-GCNβ on most of the datasets. It demonstrates
that the adaption effects of the term with γ and β are complementary to each other and combining them together
can further enhance the performance.

5.4 Case Study

To further illustrate the effectiveness of the proposed framework, we conducted case studies on D&D. First,
we visualize the distribution of embeddings of sample-specific model parameters for different graph samples
with various node sizes, edge sized and densities. Specifically, we take the parameters of the first filtering layer
of each sample-specific Customized-GCN framework and then utilize t-sne [30] to project these parameters to
3-dimensional embeddings. We visualize these 3-d embeddings in the form of scatter plot as shown in Figure 5a,
5b and 5c. Note that in these figures, the red triangle denotes the embedding of the parameters (i.e. W) of the
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Figure 5: Case Study. (a) depicts the model embeddings and (b) demonstrates model embeddings for graphs that
are mistakenly classified by GCN, but correctly classified by Customized GCN; and (c) and (d) illustrate the
embeddings for graphs extracted by GCN and Customized-GCN, respectively;

original GCN model (the one before adaptation). For each point in these figures, we use color to represent the
scale of values in terms of node size (or edge size, density). Specifically, a deeper red color indicates a larger
value, while a deeper blue color indicates a smaller value. We make some observations from Figure 5a, 5b and 5c.
First, the proposed Customized-GCN framework indeed generates distinct models for different graph samples that
are different from the original model. Second, the points with similar colors stay closely with each other, which
means that graphs with similar structural information share similar models. In addition, in Figure 5d, we illustrate
the sample-specific model parameters for seven samples with different number of nodes. They are mis-classified
by the original GCN model but correctly classified by the proposed Customized-GCN framework. It is obvious
that Customized-GCN has generated seven different GCN models for these graph samples, each of which can
successfully predict the label for the corresponding sample. We further visualize the graph embeddings before the
classification layer, extracted by the model GCN and Customized-GCN. These embeddings from the two models
are then projected to a 2-dimensional space via PCA and shown in Figure 6a and 6b, respectively. We observe
that the embeddings from different categories are better separated by Customized-GCN. This demonstrates that,
compared to the original GCN, the proposed framework can get more distinct embeddings, and thus can achieve
better classification performance.
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(a) GCN (b) Customized-GCN

Figure 6: Embedding Visualization.

6 Conclusion

In this paper, we propose a general graph neural network framework, Customized-GNN, to deal with graphs that
have various graph structure properties. Comprehensive experiments demonstrated that the Customized-GNN
framework can effectively adapt both flat and hierarchical GNNs to enhance their performance. Future research
directions include better modeling the adaptor networks, considering more complex properties, and adapting
more existing graph neural networks models.
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Abstract

Knowledge graphs (KGs) serve as the backbone of many applications such as recommendation systems
and question answering. All these applications require reasoning about the relevance of facts in a KG to
downstream applications. In this work, we describe our efforts in building a solution to reason about the
importance of facts over continuously updated industry-scale KGs. We focus on the problem of fact ranking
and evaluate to what extent modern knowledge graph embedding (KGE) models provide a representation
for addressing this problem. To this end, we discuss unique challenges associated with solving this task in
industrial settings and evaluate how accurately different KGE models and text-based embedding models can
solve the problem of fact ranking.

1 Introduction

Knowledge graphs (KGs) are the backbone of applications such as question answering in virtual assistants and
recommendation systems in. These applications require a broad range of knowledge that is continuously updated
with recent facts from disparate data sources [13, 20]. Reasoning about the importance of facts in an industry-scale
KG with billions of entities and facts across diverse domains is a challenging problem. An automated and scalable
solution scalable across entity types and domains in a KG has obvious benefits.

Here, we focus on the problem of fact ranking. Fact ranking provides an importance-based ranking over
facts for a given real-world entity. For example, given the question “What is the occupation of LeBron James?”,
the answer “basketball player” should be ranked higher than “television actor” or “screenwriter” despite the fact
that these two are also LeBron James’s occupations. Fact ranking generalizes the problem of recommendation
generation [3] over KGs. We are interested in facts that cannot be ranked using a simple importance or popu-
larity score. For example, ranking occupation of entities as described earlier. Another example is to generate
recommendation for entities that are relevant within users’ search context. For example, for the user query “How
tall is LeBron James”, we want to recommend a ranked list of top KG entities that are related to the query entity
“LeBron James” and are aligned with users’ search intent, i.e., they are “Person” entities with a “height” attribute.
Fact ranking is important during rendering these enriching entity-centric experiences in intelligent assistants.

In this paper, we propose a solution to fact ranking based on modern Knowledge Graph Embedding (KGE)
models and present an experimental evaluation in large-scale settings. Our solution adopts state-of-the-art
multi-hop reasoning models. Specifically, we build on the recent Query2Box model [24] and demonstrate how

†work done during an internship at Apple.
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the embeddings obtained by this model can address fact ranking over large-scale KGs. A major challenge in
employing KGE models for fact ranking in real-world applications is to reason about the importance score and
the rank of a facts obtained by an embedding model. We address this challenge by proposing a new metric for
measuring the stability of embedding models across different rounds, namely, an adaptive version of Kendall’s
Tau that also takes into account the importance scores obtained by the embedding models. In this way, we can
better measure the effects of the learned embeddings on the downstream use cases. Our approach is in contrast to
using the standard forms of Kendall’s Tau or Rank-based Overlap metrics, which measure the consistency across
two ranked lists by considering only the number of discordant pairs/swaps between the two lists. We demonstrate
that the reasoning-based Query2Box model leads to significantly more stable embeddings compared to one-hop
embedding models such as DistMult [37]. We also propose a new indexing scheme and apply multi-query
optimization for efficient search over the generated embedding vectors for supporting use-cases such as vector
similarity-based related entity search.

Finally, we compare Query2Box against modern generative natural language (NL) models [18] and demon-
strate that NL models require significant fine-tuning of the prompt to obtain similar fact ranking results as the
Query2Box model.

2 Preliminaries

We now review background relevant to our study. Our discussion focuses on knowledge graph representation
models and aims to highlight the differences between shallow KG embedding models such as the popular
DistMult [37], TransE [2], and RotatE [27] models and more recent reasoning-based embedding models [24, 25].

2.1 Shallow Knowledge Graph Embeddings

A knowledge graph (KG) G = (V, E ,R) consists of a set of nodes V , a set of edges E . G also defines a set of
relationsR, and each edge e ∈ E represents a triple (vs, r, vo) where r ∈ R and vs, vo ∈ V . Here, vs corresponds
to the vector representation of the subject of the fact that corresponds to the edge and vo to the object of
the fact. Finally, r corresponds to the vector representation of the predicate associated with the triple.

Shallow KG embeddings [2, 37, 27, 31] learn an embedding function fθ that maps all the entities and relations
on the graph to latent space in order to preserve the structure of graph. Most KG embeddings implement the
embedding function fθ as a matrix lookup. Specifically, the parameters include an entity embedding matrix
Vθ ∈ R|V|×d and a relation embedding matrix Rθ ∈ R|R|×d, where d is the latent space dimension.
Training Shallow KG Embeddings: In order to train the two embedding matrices, these methods optimize
a contrastive objective, which is to minimize a predefined distance function Dist of existing edges e =
(vs, r, vo) ∈ E while maximize that of non-existing edges e′ = (vs, r, v

′
o) /∈ E . Different shallow KG embeddings

have different definitions of the distance function Dist, the detail is listed in Table 1. In previous KG embedding
works [27, 39], the loss function in the contrastive objective is defined as:

L = − log σ (γ − Dist(vs, r, vo))−
k∑
j=1

1

k
log σ

(
Dist(vs, r, v′oj )− γ

)
, (46)

where σ is the sigmoid function, γ is the margin. We optimize over the loss function using stochastic training for
several iterations. In each iteration, these methods sample a batch of existing edges from the graph and construct
non-existing edges by keeping the subject vs and the type of the edge r fixed while perturbing the object vo.
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Table 1: The distance function of shallow KG embeddings and KG reasoning embeddings.

Model Embedding Space Distance
TransE [2] fθ(vs), fθ(vo) ∈ Rd, fθ(r) ∈ Rd ∥fθ(vs) + fθ(r)− fθ(vo)∥
RotatE [27] fθ(vs), fθ(vo) ∈ Cd,fθ(r) ∈ Cd ∥fθ(vs) ◦ fθ(r)− fθ(vo)∥

DistMult [37] fθ(vs), fθ(vo) ∈ Rd,fθ(r) ∈ Rd − < fθ(vs), fθ(r), fθ(vo) >

ComplEx [31] fθ(vs), fθ(vo) ∈ Cd, fθ(r) ∈ Cd −Re(< fθ(vs), fθ(r), fθ(vo) >)
Q2B [24] fθ(vs), fθ(vo) ∈ Rd, fθ(r) ∈ R2d Distout + αDistin

2.2 KG Reasoning Embeddings

KG reasoning embedding methods generalize the shallow KG embeddings to more complex reasoning tasks. KG
reasoning embeddings also consider multi-hop reasoning over the KG, i.e., answering complex logical queries
with logical/set operators including conjunction, disjunction and negation, e.g., “Predict drugs that might target
proteins that are associated with a given disease, and do not have a given side effect” [10]. In order to answer
such complex queries, one may need to perform multiple reasoning steps and graph traversal – first find all the
proteins associated with the disease, and predict drugs D1 ⊂ V that bind with the proteins, at the same time find
the drugs D2 ⊂ V that have the side effect and take complement of the set D2, and finally take the intersection of
the two sets D1 ∩D2 to achieve the answers to the query. One of the main challenges of the above graph traversal
method is that it suffers from missing and noisy information on the graph. The key insight of KG reasoning
embedding methods is to embed these complex queries in the same latent space as the entity embeddings so that
all the reasoning steps can be done in the embedding space instead of symbolic graph traversal. In detail, we
follow the logical queries defined in (author?) [25].

Definition 2.1 (First-order logic queries) A first-order logic query q consists of a non-variable anchor entity
set Vq ⊆ V , existentially quantified bound variables V1, . . . , Vk and a single target variable V?, which provides
the query answer. The disjunctive normal form of a logical query q is a disjunction of one or more conjunctions.

q[V?] = V? . ∃V1, . . . , Vk : c1 ∨ c2 ∨ ... ∨ cn

1. Each c represents a conjunctive query with one or more literals e. ci = ei1 ∧ ei2 ∧ · · · ∧ eim.

2. e represents an atomic formula or its negation. eij = r(va, V ) or ¬ r(va, V ) or r(V ′, V ) or ¬ r(V ′, V ),
where va ∈ Vq, V ∈ {V?, V1, . . . , Vk}, V ′ ∈ {V1, . . . , Vk}, V ̸= V ′, r ∈ R.

In order to reason over and embed such queries, one needs to consider the following operations. KG reasoning
methods design neural logical operators that simulate their real counterparts. We refer the readers to [24] for
more details.

1. Relation Projection: Given a set of entities S ⊆ V and relation type r ∈ R, compute adjacent entities
∪v∈SAr(v) related to S via r: Ar(v) ≡ {v′ ∈ V : (v, r, v′) ∈ E}.

2. Intersection: Given sets of entities {S1, S2, . . . , Sn}, compute their intersection ∩ni=1Si.

3. Complement/Negation: Given a set of entities S ⊆ V , compute its complement S ≡ V \ S.

4. Union: Given sets of entities {S1, S2, . . . , Sn}, compute their union ∪ni=1Si.

Capturing Relational Context: While KG reasoning queries have been traditionally proposed to answer complex
queries in the presence of incomplete KGs, here, we utilize them to learn vector representations of the entities
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Figure 1: Types of queries we consider to train Query2box.

that are not biased towards one-hop relationships but take into account a richer relational context. We use a set
of query templates (see Figure 1) to generate a sample workload of queries that can be answered over the input
KG and use that payload to learn robust entity representations as we discuss next. We experimentally show (see
Section 6) that this relational bias in the training process leads to entity representations that are more robust and
lead to more stable representations (see Section 6).
Training KG Reasoning Embeddings: For a KG, G = (V, E ,R), and a query q, we need to learn an embedding
function fθ that maps from a computation graph of a query to its embedding with the parameterized neural logical
operators. Together with the entity and relation embedding matrices (same as the shallow KG embeddings), fθ
also embeds all the nodes on the graph by embedding lookup. In order to measure the similarity/distance between
a query q and an entity v ∈ V , a distance function Dist(·, ·) is defined that takes as input the query embedding
fθ(q) and the entity embedding fθ(v) and outputs the distance. The distance function Dist(·, ·) is tailored to
different embedding space and model design fθ as in Table 1.

During training, we are given a data sampler D, each sample in D is a tuple (q,Aq,Nq), which represents
a query q, its answers Aq ⊆ V and the negative samples Nq ⊆ Aq. The training objective is to minimize the
distance between the query embedding and its answers Dist(q, v), v ∈ Aq while maximizing the distance
between the query embedding and the negative samples Dist(q, v′), v′ ∈ Nq, optimizing a contrastive loss term
similar to the shallow KG embeddings. As used in most previous KG reasoning embedding works [25, 24], the
loss is defined as:

L = − log σ (γ − Dist(q, v))−
k∑
j=1

1

k
log σ

(
Dist(q, v′j)− γ

)
, (47)

where γ is a margin hyperparameter and σ is the sigmoid function.

3 Fact Ranking

Here we introduce the task of fact ranking and its corresponding applications that power critical user experiences
over KGs. We define a fact on KG as a triple (vs, r, vo), where vs and vo are entities and r is a relation type from
the KG. User queries we target (such as the “What is the occupation of LeBron James?”) correspond to queries
of the form q = (vs, r, ?) .

3.1 Problem Description

Intelligent assistants rely on entity-centric experiences to answer user queries. For many of these experiences,
facts or answers to queries are of different importance/accuracy/uncertainty to users. Besides providing all the
answers, one key aspect of service quality is to display relevant facts in a sorted way according to the importance
or uncertainty score. For example, the answer to a query “What is the occupation of Selena Gomez?” includes
singer and child actor, but for the majority of users, we know the answer singer should rank higher than child
actor. The goal of fact ranking is to rank all the answers to a given set of queries that aligns well with user
expectation. Fact ranking is ubiquitous in intelligent assistants and the key to improving the user experience.
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We define fact ranking as follows: Given a query q = (vs, r, ?) for a subject vs and a predicate r we see
to find answers Aq (achieved by graph traversal as discussed in Section 2) for the missing object. The goal of
fact ranking is to find a function Rank(a) which can be used to obtain an importance ranking for each answer
a ∈ Aq and generate the ranking list [Rank(a1), . . . ,Rank(an)], a1, . . . , an ∈ Aq. We focus on queries that
target facts that cannot be ranked using simple popularity scores, e.g., occupations, genres etc., (an occupation is
not necessarily more important than the other).

Unsupervised machine learning (ML) mechanisms are needed to learn a function Rank(·). It is typical
that KGs do not associate any importance scores and weights to their edges, which applies to many large KGs
including FreeBase [1] and WikiData [32]. Consequently, it is not possible to use simple traversal mechanisms
to implement the ranking functions for fact ranking and different mechanisms need to be considered. Such a
mechanism may correspond to PageRank-based algorithms which can be used to assign an importance score
for each answer a (or fact (q, a) with personalized PageRank), however, they are often not effective on such
large-scale heterogeneous graphs where multiple edge types exist [12]. To alleviate these challenges, we consider
a setting (see Section 3.2) where unsupervised representation learning is used to learn Function Rank(·).

3.2 A Solution with KG Embeddings

We obtain a solution to the fact ranking problem by leveraging graph embedding models. This solution applies to
both shallow KG embeddings and KG reasoning embeddings. The idea is to first train the entity embeddings,
relation embeddings, and neural logical operators on the KG using standard training protocols [37, 24] (see
Section 2.2). Then, given a fact (vs, r, vo), we can use the pre-trained embeddings to efficiently calculate the
distance Dist(vs, r, vo). The distance plays a crucial role for solving the fact ranking problem since it represents
a proxy of plausibility of a fact. This solution is inspired by our prior work on error detection, missing value
imputation, and data repairs which showed that all problems correspond to inference tasks over a pre-trained
model that learns how to reconstruct the input data [6]. Nonetheless, using the distance obtained by different KG
embedding models raises two critical considerations for industrial settings.

For fact ranking, the distance obtained by the KG embedding model can be applied to rank the candidate
objects for a specific subject and object configuration. However, different models can learn significantly different
geometries and in most cases the distances in these spaces can lead to significant variations in the obtained
rankings. In the settings we consider, it is critical that the rankings obtained are stable (i.e., we do not have
significant variations in the order of different objects) across training iterations of the embedding model. To this
end, we use a post-processing step that verifies the stability of KG embedding models before deployment. This
post-processing step utilizes a consistency metric that extends standard ranking comparison methods such as
Kendall’s Tau to also consider the distance value associated with each query (see Section 4).

4 Consistency in Fact Ranking

We consider different ways to measure the stability of ranking across different training runs. Given a query
(vs, r, ?) and its answers Aq = {a1, . . . , an}, we calculate: di = Dist(vs, r, ai), ∀i = 1, . . . , n, and create a
distance list DistList = [d1, . . . , dn], di ∈ R and a ranking list of the answers by the distance RankList =
[Rank(a1), . . . ,Rank(an)],Rank(ai) ∈ {1, 2, . . . , n}. We consider training KG embeddings multiple times,
and obtain multiple DistList and RankList. Our goal is to measure the stability/consistency of the lists
across different runs. We assume the KG stays unchanged across different runs/training of the embedding models,
hence the items in the list of a query also remain the same.

To measure the stability of ranking, i.e., compare whether two RankList from two runs are consistent, we
consider several metrics, including 1) the Kendall rank correlation coefficient, 2) a weighted version of Kendall’s
Tau, 3) set-based overlap, and 4) rank-biased overlap. Given two distance lists DistList1 = [x1, . . . , xn] and
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Algorithm 1: AdaptiveCluster
Input :A list of distance of answers DistList = [x1, . . . , xn], a scalar threshold δ′ (hyperparameter).
Output :A list of cluster IDs ClusterList.

DiffList = [];
for i← 1 to n do

DiffList.append(xi − xi−1);

µ = DiffList.mean(), σ = DiffList.std();
Threshold δ = min(µ− 0.2σ, δ′);
ClusterList = [0], clusterid = 0;
for i← 0 to n− 1 do

if DiffList[i] > δ then
clusterid++;

ClusterList.append(clusterid);

return ClusterList;

Algorithm 2: Adaptive Tau
Input :Two lists of distance of answers DistList1, DistList2, a scalar threshold δ′ (hyperparameter).
Output :Kendall’s Tau coefficient.

ClusterList1 = AdaptiveCluster(DistList1, δ
′);

ClusterList2 = AdaptiveCluster(DistList2, δ
′);

return KendallTau(ClusterList1, ClusterList2);

DistList2 = [y1, . . . , yn], the four metrics are calculated as:

1. Kendall’s Tau: mc−md

(m2 )
, wheremc is the number of concordant pairs between DistList1 and DistList2,

and md is the number of discordant pairs. A pair of (i, j) is concordant if the sort order of (xi, xj) and
(yi, yj) is the same, otherwise the pair is discordant. Kendall’s Tau ranges from -1 to 1.

2. Weighted Tau: It is an extension of Kendall’s Tau where each pair also has a weight that is inverse-
proportional to the rank, i.e., low ranking objects are not as important as the top ranking objects.

3. Rank-biased overlap (RBO): (1− p)∑n
i=1 p

i−1 ·Ai, where i is the depth of the ranking being examined.
With ArgSort function, let ASList = ArgSort(DistList), we define Ai =

|ASList1[:i]∩ASList2[:i]|
i .

The idea of RBO is to compare the overlap of the two rankings at incrementally increasing depths. It is a
weighted metric, which means that the top rank items get higher weights.

However, the downside of the above metrics is that they do not explicitly consider the absolute value
of items in DistList. One observation is that when two answers have similar distance with the query
embedding, a swap in the ranking of the two answers from two runs should not matter as much as a swap
in the ranking when the two answers have different distance to the query embedding. Consider the follow-
ing two scenarios, assume in both scenarios, the length of the DistList is 3. In Scenario #1 we have
DistList1 : [0.20, 0.30, 0.33] DistList2 : [0.45, 0.61, 0.60] and in Scenario #2 we have DistList1 :
[0.20, 0.30, 0.63] DistList2 : [0.45, 0.61, 0.50].

Although in both scenarios, there exists one discordant pair (the second and third item), yet in Scenario #1,
the two items have extremely close distance compared with Scenario #2. So an ideal metric would output a higher
consistency score for Scenario #1 than Scenario #2. However, all above metrics give the same results.

To address the above shortcoming, we use an evaluation metric that adaptively considers the margins of
different items when measuring the consistency of two DistList. In order to identify the items with close
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Figure 2: An overview of using Knowledge Graph Embedding models for large-scale fact ranking.

values, we sort the DistList, calculate the difference between neighbor items, and measure the average and
variance, which we use to set as a threshold. Then, we loop over all the items and aim to cluster the item by
checking whether the difference between the current item and the previous item is larger than the threshold. For
items in the same cluster, we assign the same value to them such that they will have the same ranking. Finally,
we run Kendall’s Tau metric over this updated list. The details are shown in Algorithms 1 and 2. We refer to
this method as Adaptive Tau since it considers the absolute value of the discordant pairs using clustering with an
adaptive threshold. An experimental analysis of the different metrics is shown in Section 6. We find that Adaptive
Tau provides a more precise description of the stability and utility of the rankings obtained by embedding models.

5 Scaling to Large KGs

We discuss systems considerations when using KG reasoning embedding models over large-scale KGs. Beyond
scalable training, we also require that inference over Query2Box models is scalable and incremental. This
requirement is important to enable practical deployments over dynamic billion-scale KGs. We next discuss the
main components of the architecture we adopt (see Figure 2).

The multi-hop nature of embedding models such as Query2Box poses unique challenges when training
these models over billion-scale KGs. In the case of shallow KG embedding models, graph partitioning is a
common method for scaling training [40, 17]. Unfortunately, these methods are not applicable in the case of
reasoning-based embeddings. When using Query2Box it is important that we can generate training samples by
performing multi-hop traversals of the graph. Such traversals can span multiple partitions. At the same time, it is
not always practical to pre-compute such samples in advance. To alleviate this issue, we opt for a single-machine
multi-GPU deployment during training and leverage the recently introduced SMORE engine [23] to perform
training. SMORE provides a mixed GPU-CPU solution that leverages both the main memory and GPU memory
to scale training. In addition, training examples are generated on the fly thus avoiding unnecessary pre-compution.
Indicative throughput measurements and scaling of SMORE is shown in Figure 3. A requirement here is that
the machine have sufficient main and on-device memory to store the entire graph and thus avoid partitioning.
While this requirement is satisfied by modern hardware configurations it is a cost-hungry option. We believe
disk-based or distributed training of reasoning-based KG embeddings is an exciting research direction. Once
training is complete, the embedding models are archived and then used for inference.

At inference time, we opt for a batch inference setting. We first compute a series of candidate queries that
correspond to the set of facts that we want to enable ranking over. We leverage a computation graph engine
to materialize all candidate queries (i.e., (subject, predicate, object triples) and use the learned
Query2Box model to obtain a score for each query. The number of candidate facts can exceed the size of the
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Figure 4: Fact ranking using Query2Box vs. RoBERTa and Query2Box vs. DistMult.

original KG as we consider multiple subject, object configurations that may not appear in the original graph.
To deal with the volume of generated queries we opt for a scatter gather-based multi-GPU inference across
multiple machines in a GPU cluster. The trained model is loaded in the executor allocated to each machine and
the candidate facts are partitioned across machines. The corresponding inference results are gathered into a single
relational store and then used for downstream processing. Given the stability of the Query2Box representations
(see Section 6), we maintain the fact ranking results via periodic retraining of the Query2Box models followed by
batch inference. Inference results for fact ranking are versioned across different training and batch inference runs.

6 Experiments

We evaluate reasoning-based KG embeddings for fact ranking. We focus on fact ranking tasks that align with use
cases in industrial deployments. We evaluate the following aspects of our proposed framework: (1) the utility to
end users when using KG embeddings for fact ranking, (2) the stability of KG embedding models and hence to
what extent they satisfy deployment requirements.
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Table 2: Average user preference (based on results in Figures 4) for Q2Box vs other methods for different tasks.
For RoBERTa models, (H): high finetuning, (A): average finetuning, (N): no finetuning.

Query2Box DistMult RoBERTa (N) RoBERTa (A) RoBERTa (H)
1- TV Actor 1- Film Actor 1- Singer 1- Film Producer 1- Actor

2- Film Actor 2- Singer 2- Film Producer 2- Film Director 2- Singer
3- Film Director 3- Film Director 3- Film Director 3- Film Actor 3- Film Producer

4- Actor 4- Film Producer 4- Film Actor 4- TV Actor 4- Film Director
5- Film producer 5- Actor 5- Actor 5- Actor 5- Film Actor

6- Singer 6- TV Actor 6- TV Actor 6- Singer 6- TV Actor

Table 3: Average user preference (based on results in Figure 4) for Q2Box vs other methods for different tasks.
For RoBERTa models, (H): high finetuning, (A): average finetuning, (N): no finetuning.

Comparison Task Competitor Competitor Avg. Percentage Q2Box Avg. Percentage
DistMult / Q2Box DistMult 12% 88%
RoBERTa (H) / Q2Box RoBERTa (H) 70% 30%
RoBERTa (A) / Q2Box RoBERTa (A) 57% 43%
RoBERTa (N) / Q2Box RoBERTa (N) 7% 93%

Table 4: Stability results of fact ranking. Query2box consistently achieves better performance than DistMult.

Kendall
Weighted
Kendall

Set-based
Overlap

Rank-biased
Overlap

AdaptiveTau
δ′ = 0.02

AdaptiveTau
δ′ = 0.05

AdaptiveTau
δ′ = 0.1

DistMult 0.380 0.384 0.962 0.990 0.460 0.498 0.484
Query2Box 0.854 0.868 0.990 0.997 0.877 0.917 0.943

6.1 Experiment Setup

Queries and Facts We focus on queries of the format “What is the occupation of [Celeb_Name]?” which
captures the ranking task. We rank possible object completions for the structured query (vs,OccupationOf, ?),
where vs is the entity of interest. Our dataset contains several million queries obtained by real intelligent assistant
user queries.
Knowledge Graph We consider the entire Wikidata KG [32] to validate the proposed framework. The version of
Wikidata that we use contains 1,754,058,566 facts defined over 91,900,599 entities and 35,446 relation types.
We train our framework on this KG and obtain the answers to the aforementioned set of user queries by finding
entities in this KG.
Baselines We evaluate a diverse array of methods, including KG reasoning embeddings Query2box [24], shallow
KG embeddings DistMult [37], and masked language models (MLMs) RoBERTa [18].

For KG embedding based methods, both DistMult and Query2box fit in our unified framework. We adopt the
standard training procedures for these models (see Section 2). For DistMult, we sample existing edges as positive
samples and non-existing edges as negative samples to train the DistMult model with the objective defined in
equation 46, where the distance and residue functions are defined in Section 2. For Query2box, similar to [24]
and as discussed in Section 2.2, we sample multi-hop queries (Figure 1), and their answers and non-answers to
optimize the contrastive objective in equation 47. Besides the entity and relation embedding matrices, we use the
neural logic operators in Query2box to embed the complex queries and optimize the query embeddings such that
they are close to the answer embedding and pushed far away from the embedding of the sampled non-answers.
We use the distance function of the original Query2box model and design the residue function as described in
Section 2.
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For both DistMult and Query2Box, we use SMORE [23] for training. We train both for 100k iterations with
the Adam optimizer [16]. We anneal the learning rate from 0.001 to 0.0001, and adopt a batch size of 8,192
queries with 1,024 negative answers for each query in the batch. We score each candidate answer using the
distance functions defined for both models.

For MLMs, we use the RoBERTa model. Given a triple-format query (vs,OccupationOf, ?), we provide
three templates and convert the query into a natural language question. These templates include (1) “vo is a
[mask].”, (2) “The occupation of vo is [mask].”, and (3) prompting [34] in which the template is “Barack
Obama is a politician, LeBron James is a basketball player, vo is a [mask].”. For different query types, we
need to provide different prompts in order to make predictions more effective. As we show later, fine-tuning of
the prompt is necessary to obtain competitive results and hence, MLMs are not a universal solution to our task.
Given vo, we score the candidate answer by calculating the likelihood score of vo in replacement of the [mask]
in each of the three templates.

6.2 Fact Ranking Evaluation

Utility We first evaluate the utility of our framework on the fact ranking task. To assess the quality of Query2Box
and compare it against other methods, we consider eleven celebrities and their occupations as listed in WikiData.
We present our users with four different questionnaires. Each of these questionnaires compares Query2box
ranking vs. another baseline ranking obtained using one of the methods we mentioned earlier. Each questionnaire
contains eleven questions where each asks users to choose between two different rankings (Query2Box vs. a
baseline) of a celebrity occupation.

Figure 4 shows the summary of user preferences between DistMult/RoBERTa and Query2box rankings. In
Figure 4, Query2box has outperformed DistMult and Query No. 3 (occupations of Jennifer Lawrence) shows
the tightest competition. Table 2 shows the ranking derived from these methods. Jennifer Lawrence is mostly
known as a Film Actor which is correctly predicted by DistMult. Some users have focused on the first occupation
and hence voted for DistMult while other users have considered other occupations and voted for Query2box. In
addition, we can notice the flipping of user preferences based on the amount of fine-tuning for RoBERTa models
(see also Table 3). As shown in Table 3 which represents the average user preference, Query2Box outperforms
DistMult and RoBERTa requires significant fine-tuning of the prompt to outperform the Query2box model.
Stability We now measure the stability of different systems using the metrics we introduced in Section 3.2. We
take all triples with OccupationOf as the relation type from the massive KG. Overall the dataset involves
6,566,224 queries of structure (vo,OccupationOf, ?) for which we measure the stability and consistency
of rankings. Here we mainly consider two methods Query2box and DistMult, but not the MLMs due to their
necessity of contexts for better ranking utility as discussed. We train both models 5 times and measure the
stability of both models using the metrics introduced in Section 4. As shown in Table 4, we find Query2box is
more stable and consistent than DistMult since Query2box is trained on more complex multi-hop queries, which
better captures the neighborhood structure for each fact. For set-based overlap and rank-biased overlap, both
methods achieve extremely high values. This is expected since the occupations of a celebrity are fixed across
runs, and the overlap will always be 1 at the last step as we gradually compare the intersection of two sets starting
from top-ranking items to the low-ranking ones. Among evaluation metrics, our adaptive method can better
characterize a more meaningful measurement of ranking stability than the vanilla Kendall’s Tau and rank-biased
overlap. As shown in Table 4, Query2box achieves higher performance in AdaptiveTau than the other two metrics.
We argue such an adaptive metric is crucial in evaluating ranking stability in production.
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7 Use-case: Ranking for Related Entity Search

Recommendation generation is a key component of question answering in entity-centric user experiences, and the
task of providing a ranked list of KG entities related to that of users’ query can be performed via fact ranking with
KGE models. Specifically, given a user query q = (vs, r, ?), the goal of related entity search is to find a ranking
function Rank(vr) over a subset KG of entities vr ∈ R ⊆ V such that the query qr = (vr, r, ?) is relevant to
the original query, and Rank(vr) provides a ranking of each entity vr based on relatedness to the original query.
We leverage the KGE models described in the previous sections for embedding a KG into a vector space and
define relatedness between two entities in a KG to be the similarity between their vector representations. Thus,
we can use similarity search over KG embeddings to find related entities for a given KG entity. Depending on
the specific application of related entity search, we can use different embedding models. As an example, if
we are interested in relatedness in the ontology space of a KG, Poincaré embeddings [41] is a suitable model.
Otherwise, if we care about relatedness in the whole graph we can use either a shallow (e.g., DistMult [37]) or
reasoning-based embedding model.

In addition to the use of KGE-based fact ranking for similarity based relatedness, the task of finding a ranked
list of related KG entities for a query requires evaluating additional constraints for aligning answers with users’
search intent. For instance, for the query “How tall is LeBron James”, the goal is to find other “Person” entities
that are related to “Lebron James” and have the corresponding fact for the same predicate “height”. Consequently,
related entity search use-case goes beyond the traditional vector similarity search and requires batch processing of
hybrid queries [42]. Hybrid queries are two part queries consisting of: (i) vector similarity search for retrieving
the most similar entities in the embedding space; and (ii) evaluation of conjunction of relational constraints for
ensuring the returned results are relevant to search context (e.g., only include “Person” entities). In addition to
hybrid query processing, the task of related entity search exhibits following characteristics: (i) hybrid queries
are evaluated in a batch setting over past user queries, (ii) and relational predicates in industrial KG workloads
exhibit filter commonality and filter stability [28], allowing us to customize the system design based on available
prior workload characteristics. To this end, we employ HQI [42] hybrid vector similarity search system for
batch inference over KG embeddings and adopt the following suite of optimizations for high-throughput batch
processing of hybrid queries:

Workload-aware vector index: Specialized vector indexes that either partition the data or form multi-level
indexes over centroids are commonly used in vector databases to speed-up vector similarity search [33]. HQI
utilizes the past workload information to guide the partitioning of the vectors in the underlying index in a way that
hybrid queries can be answered by accessing as few partitions as possible. By extending the concept of query-data
routing trees (qd-trees) [36] to vector databases, HQI considers both vectors and relational predicates from a
hybrid query workload when generating physical data layout at data loading time. The resulting data layout
partitions the vectors using the distribution of the attributes associated with vectors, the attribute constraints, and
similarity of vectors present in the hybrid query workload. We then use the resulting partitioning scheme to
generate an index layout that enables processing a batch workload of hybrid queries by accessing vectors from as
few partitions as possible.

Batch query optimization: Second, we use HQI’s a multi-query optimization technique that (i) batches
queries with similar attribute and vector similarity constraints; and (ii) performs batch vector distance computation
against a posting list of vectors obtained from a clustering-based index over the vectors. This optimization is
motivated by the fact that the set of candidate queries are computed from past user queries and evaluated in a
batch setting, which enables computation sharing across queries. Note that this optimization is orthogonal to the
workload-aware vector index and is applicable to any clustering-based vector index.

We evaluate the performance improvements of these optimizations for related entity search over KG. We use
a subset of KG entity embedding vectors, and we focus on ranking related entities for queries of the format “What
is the [Predicate] of [Entity_Name]?”, similar to Section 6. Table 5 compares the performance of our
solution against available existing hybrid query processing strategies (see [42] for more details) using a randomly
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Table 5: Slowdown for related entity search compared to HQI @ Recall >= .8

HQI PreFilter PostFilter Range
Slowdown 1× 31× 136× NA

sampled and aggregated query workload from anonymized, historical queries. HQI and its optimizations provide
orders of magnitude performance improvements over best performing baselines for the related entity search task.

8 Conclusion

In this work, we studied fact ranking over large-scale knowledge graphs. We evaluated to what extent modern
knowledge graph embedding (KGE) models provide a solution for addressing the problem of fact ranking. We
highlighted unique challenges associated with solving this task in industrial settings and evaluated different KGE
and text-based embedding models. Our work demonstrated that, in contrast to neural language models or shallow
KGE models, multi-hop reasoning models such as Query2Box can better meet user satisfaction.

References
[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for

structuring human knowledge. SIGMOD, 2008.
[2] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko. Translating Embeddings for Modeling

Multi-Relational Data. Neural Information Processing Systems, 2787—2795, 2013.
[3] S. Bouraga, I. Jurerta, S. Faulkner, and C. Herssens. Knowledge-based recommendation systems: a survey.

International Journal of Intelligent Information Technologies, 10(2):1–19, 2014.
[4] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Re, and K. Murphy. Machine learning on graphs: A model and comprehensive

taxonomy. arXiv preprint, arXiv:2005.03675, 2020.
[5] W. Cohen. TensorLog: A Differentiable Deductive Database. arXiv preprint, arXiv:1605.06523, 2016.
[6] C. De Sa, I. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas. A formal framework for probabilistic unclean databases.

arXiv preprint, arXiv:1801.06750, 2018.
[7] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowl-

edge vault: A web-scale approach to probabilistic knowledge fusion. ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 601–610, 2014.

[8] D. Xin, and T. Rekatsinas. Data Integration and Machine Learning: A Natural Synergy. ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[9] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang. From Data Fusion to Knowledge
Fusion. VLDB, 7(10):881–892, 2014.

[10] W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Embedding Logical Queries on Knowledge Graphs.
Neural Information Processing Systems, 2018.

[11] A. Heidari, G. Michalopoulos, S. Kushagra, I. Ilyas, and T. Rekatsinas. Record fusion: A learning approach. arXiv
preprint, arXiv:2006.10208, 2020.

[12] H. Huang, L. Sun, B. Du, C. Liu, W. Lv, and H. Xiong. Representation Learning on Knowledge Graphs for Node
Importance Estimation. ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 646-655, 2021.

[13] I. Ilyas, T. Rekatsinas, V. Konda, J. Pound, X. Qi, and M. Soliman. Saga: A Platform for Continuous Construction and
Serving of Knowledge At Scale. ACM SIGMOD International Conference on Management of data, 2022.

[14] I. Ilyas, and X. Chu. Data Cleaning. Morgan & Claypool, 2019.
[15] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S.Y. Philip. A survey on knowledge graphs: Representation, acquisition,

and applications. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[16] D. Kingma, and J. Ba. Adam: A method for stochastic optimization. International Conference on Learning

Representations (ICLR), 2015.

135



[17] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich. Pytorch-biggraph: A large-scale
graph embedding system. Conference on Machine Learning and Systems (MLSys), 2019.

[18] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint, arXiv:1907.11692, 2019.

[19] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, S. Venkataraman. Marius: Learning Massive Graph Embeddings on a
Single Machine. USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2021.

[20] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-Scale Knowledge Graphs: Lessons and
Challenges. Queue, 17(2):48–75, 2019.

[21] J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge graph identification. International semantic web conference,
542-557, 2013.

[22] T. Rekatsinas, X. Chu, I. Ilyas, and C. Ré. HoloClean: Holistic Data Repairs with Probabilistic Inference. VLDB
Endowment, 10(11):1190–1201, 2017.

[23] H. Ren, H. Dai, B. Dai, X. Chen, D. Zhou, J. Leskovec, and D. Schuurmans. SMORE: Knowledge Graph Completion
and Multi-hop Reasoning in Massive Knowledge Graphs. arXiv preprint, arXiv:2110.14890, 2021.

[24] H. Ren, W. Hu, and J. Leskovec. Query2box: Reasoning over Knowledge Graphs in Vector Space using Box
Embeddings. International Conference on Learning Representations (ICLR), 2020.

[25] H. Ren, and J. Leskovec. Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs. Neural
Information Processing Systems (NeurIPS), 2020.

[26] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, P. Merialdo. Knowledge graph embedding for link prediction: A
comparative analysis. ACM Transactions on Knowledge Discovery from Data, 15(2)1–49, 2021.

[27] Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex space.
International Conference on Learning Representations (ICLR), 2019.

[28] L. Sun, M.J. Franklin, S. Krishnan, and R.S. Xin. Fine-grained partitioning for aggressive data skipping, ACM
SIGMOD International Conference on Management of Data, 1115-1126, 2014

[29] Z. Sun, S. Vashishth, S. Sanyal, P. Talukdar, and Y. Yang. A re-evaluation of knowledge graph completion methods.
arXiv preprint, arXiv:1911.03903, 2019.

[30] P. Tabacof and L. Costabello. Probability Calibration for Knowledge Graph Embedding Models. International
Conference on Learning Representations (ICLR), 2020.

[31] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard. Complex embeddings for simple link prediction.
International Conference on Machine Learning (ICML), 2016.
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Abstract

Data augmentation has recently seen increased interest in graph machine learning given its demonstrated
ability to improve model performance and generalization by added training data. Despite this recent surge,
the area is still relatively under-explored, due to the challenges brought by complex, non-Euclidean structure
of graph data, which limits the direct analogizing of traditional augmentation operations on other types of
image, video, or text data. Our work aims to give a necessary and timely overview of existing graph data
augmentation methods; notably, we present a comprehensive and systematic survey of graph data augmentation
approaches, summarizing the literature in a structured manner. We first introduce three different taxonomies
for categorizing graph data augmentation methods from the data, task, and learning perspectives, respectively.
Next, we introduce recent advances in graph data augmentation, differentiated by their methodologies and
applications. We conclude by outlining currently unsolved challenges and directions for future research.
Overall, our work aims to clarify the landscape of existing literature in graph data augmentation and motivates
additional work in this area, providing a helpful resource for researchers and practitioners in the broader
graph machine learning domain. Additionally, we provide a continuously updated reading list at https:
//github.com/zhao-tong/graph-data-augmentation-papers.

1 Introduction

Data driven inference has received a significant boost in generalization capability and performance improvement
in recent years from data augmentation (DA) techniques. DA techniques increase the amount of training data
by creating plausible variations of existing data without additional ground-truth labeling efforts, and have seen
widespread adoption in fields such as computer vision (CV) [15] and natural language processing (NLP) [26].
These techniques allow machine learning models to learn to generalize across those variations and attend to signal
over noise. In recent years, with the rapid development of graph machine learning (GML) methods such as graph
neural networks (GNNs) [57, 38], studies have shown that the effectiveness of GML approaches also largely
depends on the data quality. Given the dependent nature of graph data and the message-passing design of most
GNNs, GML faces unique challenges such as: structural data sparsity brought by power-law degree distributions
in most graphs, noisy and even erroneous topology brought by imperfect construction of the graph structure from
raw data under other formats, low quality and incomplete node attributes, adversarial attacks on structure and
attributes, lack of labelled data due to costly human annotations, and over-smoothing caused by the message
passing design in GNNs. As DA allows researchers to alleviate such challenges from a data perspective, there
has been increased interest and demand for such techniques on graph data [140], and there has been a growing
number of works on graph data augmentation (GDA).
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With the irregular and non-Euclidean structure of graph data, it is non-trivial to directly analogize DA
techniques from CV and NLP to the graph domain, except for the most basic operations such as random
masking/dropping/cropping. To better promote the effectiveness of GML approaches and alleviate the unique
challenges in GML, recent literature designed graph-specific augmentation techniques following methodologies
such as graph structure learning, graph adversarial training, graph rationalization, etc. Creating a unified taxonomy
for all GDA techniques is not intuitive as they can be categorized under different facets. For example, taking the
data modelity that the augmentation methods work on, they can be separated into structure augmentations, feature
augmentations, and label augmentations. On the other hand, the focusing downstream tasks (i.e., node-level,
edge-level, and graph-level tasks) can also categorize the GDA techniques. Moreover, the GDA methods can also
be separated by whether the methods involves learning during the augmentation process. That is, whether they
are rule-based approaches or learned approaches.

This paper aims to sensitize the GML community towards this growing area of work, as DA has already
drawn much attention in CV and NLP [15, 26]. As interest and work on this topic continue to increase, this
is an opportune time for a comprehensive work to (i) introduce background and motivation of GDA, (ii) give
a bird’s-eye view of existing GDA techniques under different taxonomies, (iii) introduce representative GDA
techniques with their usage and applications, and (iv) identify key challenges to effectively motivate and orient
interest in this area. We hope this survey can serve as a guide for researchers and practitioners who are new to or
interested in studying this topic, and also inspire future research in this area.

The text is structured as follows: Section 2 gives background and motivation on GNNs and GDA. It defines
GDA and motivates its use in GML tasks. Section 3 categorizes GDA techniques based on three different
taxonomies: the operated graph data, the downstream tasks, and whether the method involves learning. Section 4
describes rule-based GDA techniques for GML – which we partition into Data Removal (Section 4.1), Data
Addition (Section 4.2), and Data Manipulation (Section 4.3) focuses. Similarly, Section 5 introduces learned
GDA techniques, which are further categorized by their methodologies: Graph Structure Learning (Section 5.1),
Graph Adversarial Training (Section 5.2), Graph Rationalization (Section 5.3), and Automated Augmentation
(Section 5.4). Section 6 introduces GDA techniques that are used under three different self-supervised learning
objectives: Contrastive Learning (Section 6.1), Non-contrastive Learning (Section 6.2), and Consistency Training
(Section 6.3). Finally, Section 7 discusses challenges and future directions for GDA.

2 Preliminaries

2.1 Notations

Let G = (V, E) be a graph of N nodes, where V = {v1, v2, . . . , vN} is the set of N nodes and E ⊆ V × V is the
set of links. We denote the adjacency matrix as A ∈ {0, 1}N×N , where Ai,j = 1 indicates nodes vi and vj are
connected and vice versa. We denote the node feature matrix as X ∈ RN×F , where F is the number of raw node
features and xi indicates the feature vector of node vi (the i-th row of X). We use y to denote the label each
sample, which can be node, edge, or graph depending on the task. We use symbol with tilde to denote the data
generated by GDA methods. For example, Ã for the augmented adjacency matrix, x̃i for the augmented feature
vector of node vi, etc.

2.2 Graph Neural Networks

Graph neural networks (GNNs) enjoy widespread use in modern graph-based machine learning due to their
flexibility to incorporate node features, custom aggregations, and inductive operation, unlike earlier works
which were based on embedding lookups [87, 34]. Following the initial idea of convolution based on spectral
graph theory [6], many spectral GNNs have since been developed and improved by [19, 57, 67, 59, 80]. As
spectral GNNs generally operate (expensively) on the full adjacency, spatial-based methods which perform
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graph convolution with neighborhood aggregation became prominent [38, 107], owing to their scalability and
flexibility [128, 121].

Generally, the generic formulation of message passing-based GNNs can be defined by an aggregation function
(AGGREGATE) and an update function (UPDATE). In each layer, AGGREGATE aggregates the embeddings from
previous layer for each node from all its neighbors, and UPDATE updates each node’s embedding by combining
its own previous embedding and the aggregated neighbor embeddings [38]. Specifically,

hlN (v) = AGGREGATE({hl−1
u |u ∈ N (v)}),

hlv = UPDATE(hl−1
v ,hlN (v)),

(48)

where hlv denotes the representation of node v at the l-th layer, and N (v) denotes the set of node v’s neighbors.
In implementation, GNNs can usually be implemented with (sparse) matrix multiplications. Without the loss

of generality, here we take the most commonly used Graph Convolutional Network (GCN) [57] as an example.
One layer of GCN is defined as

Hl = σ(D− 1
2AD− 1

2WlHl−1), (49)

where D is the diagonal degree matrix s.t. Di,i =
∑

j Ai,j (assuming A contains self-loops), σ(·) is the nonlinear
activation function such as ReLU, and Wl denotes the learnable weight matrix at the l-th GNN layer. Furthermore,
we use gΘ(·) to denote the mapping function of the whole GNN model parameterized by Θ.

2.3 Graph Data Augmentation

The DA area encompasses techniques of increasing/generating training data without directly collecting or labeling
more data. Most DA techniques either add slightly modified copies of existing data, or generate synthetic data
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based on existing data. The augmented data act as a regularizer and reduce overfitting when training data-driven
models [93]. DA techniques has been commonly used in CV [15] and NLP [26], where augmentation operations
such as cropping, flipping, and back-translation are usually used in machine learning model training.

In GML, in contrast to regular and Euclidean data such as grids (e.g., images) and sequences (e.g., sentences),
the graph structure is encoded by node connectivity, which is non-Euclidean and irregular. Most structured
augmentation operations used frequently in CV and NLP cannot be easily analogized to graph data. Therefore,
how to design effective augmentations of graph data is less obvious. For example, the data objects for node-level
and edge-level tasks are inter-connected and non-i.i.d, meaning that GDA techniques typically modify the entire
dataset (graph) instead of a specific data object (nodes or edge) in isolation. Generally, a GDA method can be
defined as a transformation function f : G→ G̃, where the the transformation function f can be either rule-based
or learnable, and the augmented graph G̃ contains the augmented adjacency matrix Ã and node feature matrix X̃
(and optionally augmented edge features, node or graph labels). Moreover, the augmentation function f is not
necessarily deterministic. That is, the same f may generate multiple different versions of the augmented graph G̃,
and the model may use one or multiple of these augmentations as required for training.

2.4 Motivation: Why Augment Graphs?

Graphs are often utilized to model or represent an underlying process of relationships or affinities; for example,
“which individuals are friends with one another?” or “which movies do individuals like?” In some cases, these
relationships are strictly defined and known, e.g. researchers jointly co-authoring articles, or atoms interacting
in a chemical compound. However, in many other cases, an “observed” graph may be misaligned with the true
process it intends to model for a variety of reasons [5]. In some cases, like in social interaction graphs, noise
may be inadvertently or adversarially introduced by spammers who pollute underlying data about authentic
interactions with inauthentic ones for nefarious purposes [90, 65]. In other cases, noise may be inherently created
by limited or partial observation (e.g. a movie recommendation system never recommending a certain genre of
movies to a group of users) caused by privacy reasons [14, 22], biased recommendation policies [55, 143], or
other reasons. Noise can also occur by measurement or thresholding errors (e.g. discretizing continuous signals
between brain voxels into discrete ones) [30], or human errors (e.g. a person forgetting to add a known contact to
their phone’s contact-book). All of these scenarios can introduce gaps between an intended and observed graph.
Moreover, even if all relationships a graph intends to capture are observed properly, there is no guarantee that the
graph is a particularly useful [5] for a particular downstream learning task, especially when utilized in a GML
context, e.g. a graph connecting individuals by similar heights may be unhelpful in regressing income.

GDA methods offer an attractive solution in denoising, imputing, and generally enhancing graph structure
to align better with an intended modeling processes, or objectives of a target learning task [140]. Adding or
removing nodes and edges can help connect or disconnect a graph to facilitate its use towards targeted objectives.
Moreover, utilizing heuristic graph modification strategies to increase model exposure in training may lead to
better generalizing, more robust and higher performance models [114, 62, 147]. Both learned and rule-based
DA techniques have shown immense potential in other domains like tabular ML (e.g. oversampling [2] and
SMOTE [7]), CV (e.g. rotations, flips and translations of images [93] and random erasure [146]) and NLP
(e.g. synonym replacement and random token additions/deletions [118] and back-translation [89]); however, as
aforementioned, these techniques usually lack clear analogs in the graph domain due to unclear correspondence
of their label-preserving transforms. This lack of clarity motivates work into understanding the limitations of
graphs, suitable designs for augmentation techniques, and their breadth of impact.
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3 Taxonomies

In this section, we introduce three different taxonomies that can be used to categorize GDA techniques. They
come from different perspectives of data, task, and learnability, respectively. As these taxonomies are orthogonal
to each other, and each of them can in some way categorize all GDA methods, we will only focus on one taxonomy
(rule-based vs. learned augmentation) for the later sections.

3.1 Operated Data Modality

As GDA methods all operate on graph data, they can naturally be categorized by the data modality that they aim
to manipulate. Therefore, one intuitive taxonomy for GDA methods would be classifying them into one or more
of three categories: structure, feature, and label augmentations.

Structure Augmentations are the GDA operations that modify the graph connectivity via adding/removing
edges or adding/removing nodes from the graph. The modifications can be either deterministic (e.g., GDC [60]
and GAug-M [140] both modify the graph structure and used the modifed graph for training/inferencing) or
stochastic (e.g., DropEdge[88] and DropNode [27] randomly drop edges/nodes from the observed training graph).
Feature Augmentations are the GDA operations that modify or create raw node features. For example, You et al.
[129] used Attribute Masking that randomly masked off node features; FLAG [62] augments node features with
gradient-based adversarial perturbations. It’s worth noting that stucture augmentations and feature augmentations
are also sometimes combined in some GDA methods. For example, MoCL [99] substitutes subgraphs in molecular
graphs with subgraphs of different functional groups. Label Augmentations are the GDA operations that involves
modifying the labels. For example, Mixup-based methods [39, 37] interpolate existing training examples and
assign new label for the generated example. Counterfactual data augmentation methods (e.g., CFLP [143])
generate counterfactual examples with corresponding new labels.

3.2 Downstream Tasks

Another straightforward taxonomy of categorizing GDA methods is by the downstream tasks that they tackle.
Generally, most GML methods can be categorized into three high-level task types: node-level, edge-level, and
graph-level tasks. Similarly, many GDA methods are designed toward one of these tasks, and cannot be easily
generalized to other tasks. For example, CFLP [143] generates counterfactual links as augmented data specifically
for training a neural link predictor, and these counterfactual links are useless to other tasks like node classification
as they are counterfactual labels on node pairs under specific treatments. Moreover, certain GDA methods that
are designed for molecular graphs (e.g., MoCL [99]) are not opeartable on the large graph datasets used in other
tasks as they rely on the domain specific substructures of molecular graphs, e.g., functional groups. Nonetheless,
the downside of categorizing by downstream tasks is that a fair number of GDA methods were designed more
generically for various tasks; for example, DropEdge [88] simply conducts random edge dropping during training,
and the method can naturally be applied on most GML methods.

3.3 Rule-based vs. Learned Augmentations

GDA methods can also be categorized by whether the augmentation process involved learning, namely rule-based
GDA approaches and learned GDA approaches. More specifically, rule-based GDA approaches refer to the non-
learnable methods that modify or manipulate the graph data following pre-defined rules, which can be stochastic,
deterministic, or mixture of both. A rule-based GDA method can be as simple as randomly removing a given
fraction of edges [88] or randomly cropping out part of the graph [129]; it can also be more complicated such
as counterfactual augmentation [143] based on similarity matching rules and graph diffusion methods [60] that
follows specific diffusion kernels. We also categorize Mixup-based augmentations [39] as rule-based approaches
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since they usually only contain one non-learnable parameter (sampled from pre-defined distributions) when
generating new data objects by interpolating two existing data objects.

On the other hand, learned GDA approaches refer to the augmentation methods that contains learnable
parameters in the process of generating augmented examples. The augmentation module can either be trained
independently or in an end-to-end style with the downstream classifier or regressor [140]. For example, graph
structure learning methods [152, 50, 140] often assume the observed graph data is noisy, incomplete, or entirely
missing, so they first try to learn the “clean” graph structure before using it in the training and inference of GNNs.
Graph rationalization methods [120, 71] learn subgraphs that are likely to be causally related with the graph
labels and use them for augmentation. Automated augmentation methods [144, 79] utilize reinforcement learning
agents to learn the optimal augmentation strategy for the given data automatically.

In Sections 4 and 5, we will introduce GDA approaches in more detail based on this separation as it provides
better differentiation of the methodologies and improved readability. Table 1 shows a summary of GDA techniques,
categorized following this taxonomy and the methods’ methodologies.

4 Rule-based Approaches for GDA

Owing to their simplicity and efficiency, rule-based graph data augmentation methods are the most commonly used
augmentation techniques in graph machine learning. The rule-based GDA approaches can generally categorized
into three categories, where the first category of methods would remove part of the data (e.g., Stochastic Masking)
to create new graph data, the second category of methods augments the graph data by generating new graphs
or adding components (e.g., Counterfactual Augmentation, Pseudo-labeling), and the third category includes
methods that manipulate the data following rules can involve both removing and adding operations (e.g., Diffusion,
etc.) In the following subsections, we summarize the representative approaches in each category and also discuss
their applications on different tasks and domains.

4.1 Data Removal

Edge Dropping. Edge dropping methods stochastically remove a certain fraction of edges from the graph data.
Aiming to alleviate the known over-smoothing problem of GNNs, Rong et al. [88] first proposed DropEdge which
randomly dropped a fixed fraction of edges in each training epoch, resembling Dropout [96]. More specifically, at
the beginning of each training epoch, the modified adjacency matrix Ã is defined by

Ã = M⊙A, (50)

where M ∈ {0, 1}N×N is a binary mask on the adjacency matrix s.t. Mi,j = Bernoulli(ε), ε ∈ (0, 1) is the
drop rate hyper-parameter, and ⊙ denotes the Hadamard product.

During GNN training, DropEdge adopts a newly sampled Ã instead of the original graph structure A for
message passing (e.g., Equation equation 49) in each training epoch. By showing the GNN models different
perturbations of the graph in each training epoch, DropEdge improves the model’s generalization and shows
significant performance improvements on deeper GNNs, indicating that the strategy mitigates over-smoothing.
Several other methods [129, 102, 144] also adopt random edge masking in other learning schemes such as
self-supervised learning, which conducts the same operation as DropEdge.

Node Dropping. Similar to edge dropping, node dropping methods stochastically remove nodes from the graph.
Node dropping is typically implemented in two ways: removing all features of the target nodes from the feature
matrix, or removing the target nodes along with all the edges connected with them from the graph structure.
Feng et al. [27] proposed DropNode, which follows the first schema. Concurrently, You et al. [129] proposed
NodeDropping following the latter.

143



Table 1: A summary of GDA techniques, categorized by whether they are learned augmentations and their
methodologies.

Methodology Representative Works Task Level Augmented Data
Node Graph Edge Structure Feature Label

Rule-based GDA

Stochastic Dropping/Masking

DropEdge [88] ✓ ✓
DropNode [27] ✓ ✓
NodeDropping [129] ✓ ✓
Feature Masking [102] ✓ ✓
Feature Shuffling [108] ✓ ✓
DropMessage [23] ✓ ✓ ✓
Subgraph Masking [129] ✓ ✓ ✓

Subgraph Cropping/Substituting
GraphCrop [113] ✓ ✓
M-Evolve [147] ✓ ✓
MoCL [99] ✓ ✓ ✓

Virtual Node Graphormer [127] ✓ ✓
GNN-CM+/CM [45] ✓ ✓

Mixup

Graph Mixup [117] ✓ ✓ ✓
ifMixup [37] ✓ ✓ ✓ ✓
Graph Transparent [86] ✓ ✓ ✓ ✓
G-Mixup [39] ✓ ✓ ✓ ✓

SMOTE
GraphSMOTE [142] ✓ ✓
GATSMOTE [76] ✓ ✓
GNN-CL [70] ✓ ✓ ✓

Diffusion GDA [60] ✓ ✓

Counterfactual Augmentation CFLP [143] ✓ ✓ ✓

Attribute Augmentation LA-GNN [75] ✓ ✓
SR+DR [94] ✓ ✓

Pseudo-labeling Label Propagation [149] ✓ ✓
PTA [21] ✓ ✓

Learned GDA

Graph Structure Learning

GAug [140] ✓ ✓
GLCN [47] ✓ ✓
LDS [28] ✓ ✓
ProGNN [50] ✓ ✓
Eland [141] ✓ ✓

Graph Adversarial Training

RobustTraining [125] ✓ ✓
AdvT [18] ✓ ✓ ✓
FLAG [63] ✓ ✓ ✓ ✓
GraphVAT [25] ✓ ✓

Graph Rationalization GREA [71] ✓ ✓ ✓
AdvCA [97] ✓ ✓ ✓

Automated Augmentation

AutoGDA [144] ✓ ✓ ✓
GraphAug [79] ✓ ✓ ✓
JOAO [130] ✓ ✓ ✓
MolCLE [116] ✓ ✓ ✓

Both DropNode [27] and NodeDropping [129] aim to randomly remove a fraction of the nodes from the
given graph, assuming that the missing nodes should not affect the semantic meanings of the remaining nodes, or
the whole graph G. Feng et al. [27] focused on semi-supervised node classification, where a consistency loss is
used on the predicted logits of different augmented versions of the graphs. On the other hand, You et al. [129]
focused on self-supervised graph representation learning with contrastive targets.

Feature Masking. Other than the graph structure, i.e., nodes and edges, multiple works also adopted masking
augmentations on the node features. For example, graph contrastive learning methods [102, 129, 130, 151]
commonly utilize stochastic feature masking as an efficient way of augmenting or corrupting the graph. On top
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of randomly masking feature values (i.e., random entries in X) or feature signals (i.e., random columns in X),
Velickovic et al. [108] utilized row swapping as an effective way of corrupting the graph. Specifically, Velickovic
et al. [108] randomly re-assigned the each node’s feature vector to another node in the graph, which can be
obtained by row-wise shuffling of X.

More recently, Fang et al. [23] proposed DropMessage, which masks the features aggregated by message
passing in GNNs. More specifically, denoting the aggregated neighbor feature of node v by the l-th layer as
hlN (v) (Equation equation 48), DropMessage randomly applies a binary mask on hlN (v) for each node v ∈ V in
every GNN layer. Similar to other dropping methods, the masks are sampled according to a Bernoulli distribution.

Subgraph Cropping. Another common data removal augmentation approach is cropping out part of the graph
data. Such subgraph cropping can usually be achieved by either sampling the remaining subgraph or the subgraph
that will be cropped out. For example, You et al. [129] first proposed the Subgraph augmentation, which samples
the remaining subgraph via random walk. The method later learns the graph representations by contrasting the
sampled subgraphs, with the assumption that the semantics of the whole graph can be preserved in part or its local
structure. On the other hand, GraphCrop [113] crops a contiguous subgraph from each of the given graph object.
GraphCrop adopts a graph diffusion-based node-centric strategy, performing graph diffusion on the randomly
selected seed nodes, to maintain the topology characteristics of original graphs after the cropping.

4.2 Data Addition

Opposite to data removal methods, data addition methods augments the graph data by adding components to
the existing/observed graph data or directly generating additional graphs. Note that although edge dropping is
one of the most common techniques in data removal, rule-based edge addition is rather uncommon due to the
huge search space for potential edge addition candidates (with a complexity of O(N2)). While graph diffusion
methods include adding edges, we discuss them later in Section 4.3 as they also include sparsification operations
after edge addition.

Virtual Node. For graph classification, creating a virtual node that connect to all nodes in the graph is a commonly
used GDA approach [31, 69, 46, 44, 127]. The idea of virtual node is to compute a graph representation in
parallel with the node representations during the aggregation process. Therefore, instead of using an additional
pooling layer, the virtual node’s representation can directly be used as the graph representation, in a way similar
to the [CLS] token in language modeling. Moreover, as the virtual node connects to all the nodes, it allows
feature aggregation between previously unreachable nodes without adding additional GNN layers. Ying et al.
[127] further show that it acts similar as self-attention in Transformers. Other than graph-level tasks, Hwang et al.
[45] also studied virtual nodes for link prediction. As the graph data for link prediction is usually much larger for
link prediction when compared with those in graph-level tasks, Hwang et al. [45] proposed to augment the graph
data multiple virtual nodes, each connecting with a subset of all nodes in the graph with assignment decided by
clustering methods.

Data Interpolation. With it’s simplicity and effectiveness, Mixup [135] has been commonly used in image and
language domains for augmenting new data samples. Specifically, Mixup constructs virtual training examples by
interpolating two labeled training samples:

x̃ = λxi + (1− λ)xj ,
ỹ = λyi + (1− λ)yj , (51)

where (xi,yi) and (xj ,yj) are two randomly selected labeled training examples, and λ ∈ [0, 1]. By linearly
interpolating the feature vectors and labels, Mixup incorporates the prior knowledge and extends the training
distribution. Similarly, Manifold Mixup [109] performs Mixup on latent intermediate representations instead of
raw features of the two training samples.
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The direct analog of Mixup on graphs is not obvious, given the inter-dependent and irregular nature of graph
data. Verma et al. [110] proposed GraphMix that augmented the training of a GNNs with a Fully-Connected
Network, which is trained by interpolating the hidden states and labels. As GraphMix is more of a regularization
method than the analog of Mixup on graphs, Wang et al. [117] proposed Graph Mixup, which analogized
Manifold Mixup with a two-branch graph convolution module. Given a pair of nodes, Graph Mixup mixes their
raw features, passes them into the two-branch GNN layer, and mixes the hidden representations of each layer.
Notably, mixing up the nodes on features and hidden states avoids re-assembling the local neighborhoods of the
two nodes. Graph Mixup also works for the task of graph classification. To avoid the node matching problem
when mixing up two independent graphs, Graph Mixup mixes the latent representations of the pair of graphs.

On the other hand, ifMixup [37] directly applies Mixup on the graph data instead of the latent space for graph-
level tasks. As the pair of graphs are irregular and the nodes from two graphs are not generally aligned, ifMixup
arbitrarily assigns indices to the nodes in each graph and matches the nodes according to the indices. Empirically,
ifMixup shows marginal performance improvements over Graph Mixup on the task of graph classification.
Following ifMixup, Graph Transplant [86] also mixes graph in data space , but uses substructures as mixing units
to preserve the local structural information. Graph Transplant employs the node saliency information to select
one meaningful substructure from each graph, where the saliency information is defined as the l2 norm of the
gradient of the classification loss.

Different from the above Mixup-based methods which operate on instance level, Han et al. [39] proposed
G-Mixup that performs Mixup on class-level. Instead of directly interpolating the individual graphs, G-Mixup
interpolates the graph generators (graphons) for each class. Specifically, G-Mixup first estimates a graphon for
each class of the training graphs, then mixes up the graphons of different classes, and finally generate synthetic
graphs with the mixed graphons. Denoting the graphons of classes a and b as Wa and Wb, respectively, G-Mixup
can be formulated as

x̃ ∼Wc, where Wc = λWa + (1− λ)Wb,
ỹ = λya + (1− λ)yb,

(52)

where ya and yb are corresponding labels for graphs in classes a and b, respectively.
Besides Mixup, SMOTE [7] is also a classical data augmentation method that interpolates data instances.

Different from Mixup which interpolates examples from different classes, SMOTE interpolates examples within
the minority classes. Hence, SMOTE is especially effective when dealing with imbalanced data. On graph data,
GraphSMOTE [142] augments the minority class by over-sampling synthetic nodes and then generating edges
for them. GATSMOTE [76] and GNN-CL [70] further utilize attention designs to improve the edge generating
process between the synthetic nodes and original nodes in the graph.

Counterfactual Augmentations. Counterfactual augmentation has been relatively under-explored in the field of
graph machine learning. Zhao et al. [143] first proposed a counterfactual data augmentation method CFLP for the
task of link prediction. To better understand the relationship between observed graph structure and link formation,
CFLP asks the counterfactual question of “would the link still exist if the graph structure became different from
observation?” To answer the question, Zhao et al. [143] proposed counterfactual links that approximates the
unobserved outcome in the question. CFLP then trains a link prediction model with both the given training
data and the generated counterfactual links (as augmented data). Similarly, CLBR Zhu et al. [148] proposed
counterfactual data augmentation for bundle recommendation. CLBR generates the counterfactual example by
answering the counterfactual question “what would a user interact with if the bundle-item affiliation relations
change?”.

Attribute Augmentation. Besides updating the graph topology, several works were also proposed to augment
the graph data by generating additional node attributes. For example, LA-GNN [75] enhances the locality of
node representations by generating node features based on the conditional distribution of the local structures
and neighbor features. LA-GNN learns the new features of each node by the conditional distribution of its local
neighborhood. The generated feature is directly used together with the raw node features as part of the input of

146



GNNs for both training and inference. Similarly, SR+DR [94] generates topology features with DeepWalk [87],
and uses a dual GNN model with topology regularization to jointly train with both raw and topology features.

Pseudo-labeling. The training data in graph tasks is often only partially labeled due to the generally high cost of
human labeling. With the large amount of unlabeled data, pseudo-labeling for the unlabeled data is often adopted
under semi-supervised learning settings. Label Propagation [150, 149, 21] is one of the most classical methods
for generating pseudo labels when only part of the nodes in the graph are labeled. Label propagation assumes
that the two nodes are more likely to have the same label if they are connected, so it iteratively propagates node
labels along the edges. With the propagated labels on the previously unlabeled nodes, the GNN model can then
be trained with more labeled data.

4.3 Data Manipulation

Other than only adding or removing graph data, several rule-based methods also augment the graph data by
combining both kind of operations. In order to separate them from the methods that purely conducts data removal
or data addition, we introduce such augmentation methods in this subsection.

Diffusion. Klicpera et al. [60] first proposed generalized graph diffusion that modeled a “future” state of the
graph where the signals were more spread out. Specifically, the generalized graph diffusion is formulated as

Ã =
∞∑
k=0

θkT
k, (53)

where θk denote the global-local coefficient and T ∈ RN×N represents the transition matrix derived from the
adjacency matrix A (e.g., AD−1 or D− 1

2AD− 1
2 ). θk is usually pre-defined by specific diffusion variants, e.g.,

heat kernel [61] (θk = e−t t
k

k! ) or Personalized PageRank (PPR) [84] (θk = α(1 − α)k), where α denotes the
teleport probability in a random walk and t is diffusion time. The analytical solution of the heat kernel and PPR
diffusions are defined as

Ãheat = e−(tT−t); ÃPPR = α(IN − (1− α)T)−1, (54)

where IN is the N by N identity matrix. As the obtained adjacency matrix after diffusion Ã is often too dense
as input for GNNs, graph sparsification is commonly conducted to filter out some trivial edges, e.g., setting a
threshold to cut-off edges with small weights.

For (semi-)supervised learning on graphs, Ã can be directly used for both training and inferencing with
GNNs [60]. While most message passing-based GNNs are only capable of aggregating one-hop information
in each layer, the augmented graph after diffusion allows GNNs to learn from multi-hop (global) information
without specifically re-designing the GNN models. In self-supervised graph representation learning, Ã is often
used as the augmented view for self-supervised learning objectives such as contrastive learning [40, 132].

Subgraph Substituting. Several methods also make use of special substructures such as motifs and functional
groups during subgraph augmentation. For example, M-Evolve [147] utilizes motifs to augment the graph data.
M-Evolve first finds and selects the target motif in the graph, then adds or removes edges within the selected
motifs based on a sampling weight calculated with Resource Allocation index. Similarly, MoCL [99] utilizes
biomedical domain knowledge to augment the molecular graphs on the substructures such as functional groups.
MoCL selects a substructure from each molecular graph and replaces it with another substructure.

4.4 Applications of Rule-based GDA

The rule-based augmentation techniques are mostly designed for improving general graph learning, and usually
does not have constrains on specific tasks or domains. For example, although Rong et al. [88] only evaluated
DropEdge for node classification task, the usage of it on other tasks is straightforward, and similar for most
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stochastic data removal methods discussed in Section 4.1. Nonetheless, some rule-based GDA methods are
more suitable for certain domains. For instance, subgraph substituting methods [147, 99] utilizes substructure
information or even biomedical domain knowledge to augment the graphs, which makes them naturally more
suitable for graph-level tasks on biomedical data. On the other hand, graph diffusion methods [60] are designed
based on the spread of information along the relations in the graph, which makes such methods for suitable for
larger graphs such as social networks or citation networks. Similarly, designed for exploring the formation of the
links, counterfactual augmentation methods [143, 148] are tailored for link prediction or recommendation on
larger graphs. We also specify the targeted tasks for each GDA method in Table 1.

Other than supervised graph representation learning schemes, the stochastic data removal methods (Sec-
tion 4.1) are also commonly used in self-supervised graph representation learning methods as an efficient way of
augmenting/corrupting graph data. For example, several methods [108, 129, 130, 102] use one or multiple of the
above-mentioned techniques as augmentation methods for generating the augmented views of graph data. We
further elaborate on the usage of data removing augmentations for self-supervised learning in Section 6.

5 Learned Approaches for GDA

In the previous section, we introduced rule-based GDA approaches where no learnable parameters are involved
during data augmentation. However, these approaches could sometimes be suboptimal since the augmentations
do not take advantage of the rich information from downstream tasks, especially in (semi-)supervised training.
Indeed, some prior works from the vision [15] and natural language [83] learning domains show the promise
of learned augmentation approaches. To address this concern, learned GDA approaches are proposed to learn
augmentation strategies in a data-driven manner. The existing methods can be categorized into the following
types: (1) structure learning, (2) adversarial training, (3) rationalization, and (4) automated augmentation.

5.1 Graph Structure Learning

In real-world scenarios, given graph structures are often incomplete [28], noisy [50, 78] or manipulated by
adversarial attacks [49, 36]. Simply applying rule-based GDA approaches for training (semi-)supervised models
on such graphs can lead to suboptimal performances, as they may not necessarily generate better graph structures
for downstream tasks. To tackle these issues, several works propose graph structure learning approaches
which aim to search for a better graph structure that augments the initial graph structure. Essentially, those
methods treat the graph structure as learnable parameters and iteratively refine it while learning the model
parameters [140, 50, 28, 12, 78, 145]. Numerous studies have demonstrated the effectiveness of graph structure
learning methods in improving model generalization [140, 12] and robustness [50, 145]. In the following, we
introduce several representative works that fall into the category of graph structure learning.

Improving Generalization. There are numerous methods for graph structure learning that target improving
the generalization performance. Overall, they can be divided into two categories based on the adjacency matrix
which they learn: learning continuous structure and learning discrete structure.

Although the original adjacency matrix is usually discrete (or binary), continuous structure methods do
not assume the learned adjacency matrix to be discrete, as modeling discrete structure requires additional
efforts in optimization. Typically, these methods either model the adjacency matrix as free parameters or use a
parameterized neural network to model the structure. For instance, GLCN [47] is an early work which proposes a
unified network architecture to learn an optimal graph structure and GNN. It incorporates the similarities of node
features to learn a sparse and continuous graph structure. Formally, it defines a graph learning loss LGL as:

LGL =
N∑

i,j=1

∥xi − xj∥22 Ãij + γ∥Ã∥2F + β∥Ã−A∥F , (55)
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where the first two terms control the smoothness and sparsity of the augmented graph, respectively; the third term
forces the augmented graph to be close to the original graph; γ and β are the hyper-parameters that balance the
three terms. By minimizing LGL together with the classification loss, GLCN is able to learn a graph structure
that best serves the downstream task. TO-GCN [126] also considers the feature similarity, but it further employs
label similarity to refine the graph topology. To handle the inductive learning setting, IDGL [12] casts the graph
structure learning problem as similarity metric learning which will be jointly trained with the prediction model
dedicated to a downstream task. To encourage learning graph structure invariant to task-irrelevant information,
Sun et al. [100] utilized the Information Bottleneck [103] principle to solve the graph structure learning problem.
Moreover, SLAPS [24] identifies a supervision starvation problem in previous structure learning approaches and
proposes to incorporate additional self-supervision by designing a feature denoising task.

Despite the appeal of the first type of methods, continuous structures typically deviate from the original,
sparse and discrete structure evident in many real-world graphs. To address this concern, some works focus on
sampling the graph structures from a targeted distribution. For instance, by taking advantage of neural edge
predictors like GAE [58], Zhao et al. [140] proposed GAug to generate plausible edge augmentations for an input
graph. The output of the edge predictor can be formulated as

M = σ0
(
ZZT

)
, with Z = Hl, (56)

where M is the edge probabilities matrix and σ0 is an element-wise sigmoid function. Based on the edge
probabilities matrix, two variants GAug-M and GAug-O are proposed to tackle augmentation in settings where
edge manipulation is and is not feasible at inference time, respectively. Specifically, GAug-M deterministically
adds edges with the highest edge probabilities to the graph at inference time; GAug-O optimizes the graph
structure by minimizing the downstream classification loss together with the edge prediction loss and samples the
adjacency matrix according to an element-wise Bernoulli distribution. Another representative work is LDS [28],
which aims at learning discrete structure between data points while learning GNN parameters. It models the
process as learning the edge probability matrix, which parameterizes the element-wise Bernoulli distribution from
which the discrete structure is sampled. Then it formulates the learning process as a bi-level problem and updates
the structure and model parameters in a differentiable way. Shang et al. [91] improves the efficiency of LDS
by converting the bi-level problem to a uni-level problem and extends it to multivariate time series. In addition
to Bernoulli distribution, recent studies have investigated other distributions to sample the discrete structure.
For example, to account for the underlying generation of graphs, GEN [111] hypothesizes that the estimated
graph is drawn from Stochastic Block Model (SBM) [42]. Similarly, BGCN [138] iteratively trains an assortative
mixed membership stochastic block model with predictions of GCN to produce multiple denoised graphs, and
ensembles results from multiple GCNs. To explicitly guarantee the strength and diversity of graph augmentation,
MH-Aug [85] draws augmented graphs from an explicit target distribution through the Metropolis-Hastings
algorithm, which can also be viewed as a graph structure learning process.

Instead of drawing discrete structures from targeted distributions, another line of works focus on drop-
ping/adding edges from the original graph which can also lead to a discrete adjacency matrix. For instance, to
improve the performance of GNNs under random noise, PTDNet [78] proposes to prune task-irrelevant edges by
penalizing the number of edges in the sparsified graph and imposing the low-rank constraint with parameterized
networks. Similarly, NeuralSparse [145] learns to drop task-irrelevant edges; it takes node/edge features as parts
of input and jointly optimizes graph sparsification from the supervision of downstream task. Moreover, Gao
et al. [29] proposed TADropEdge which leverages the graph spectrum to generate edge weights that represent the
edges’ criticality for the graph connectivity and drops edges by treating their weights as probabilities. Besides
node classification tasks, Spinelli et al. [95] proposed FairDrop for the task of fair graph representation learning,
which biasedly dropped edges with a sensitive attribute homophily mask to protect against unfairness. Later,
Chen et al. [8] proposed AdaEdge, which iteratively adds/removes edges according to the node classification
prediction. In each iteration, after the GNN model is sufficiently trained, AdaEdge adds edges between nodes
that are predicted to be in the same class with high confidence, and vice versa. AdaEdge iteratively performs
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GNN training and graph modification until convergence. Besides, Zhao et al. [141] proposed Eland for the task
of anomaly detection on time-stamped user-item bipartite graphs. Eland first transforms the user-item graph
into users’ action sequences and adopts seq2seq model for future action prediction. The predicted user actions
are added back into the graph to yield the augmented graph data. As the augmented graph contains richer user
behavior information, Eland enhances the anomaly detection performance and detects anomalies at an early
stage. It is worth mentioning that the aforementioned techniques are focused on one specific task such as node
classification. To make graph structure learning benefit various downstream tasks, Liu et al. [77] proposed an
unsupervised approach to learn graph structures with the aid of self-supervised contrastive learning [153].

While existing methods majorly focus on training-time augmentation, i.e., modifying the training graph
data, a new line of work (e.g., GTrans [54]) introduces test-time augmentation by transforming the test graph
through optimizing a self-supervised loss. It has been demonstrated to significantly improve the generalization
performance of GNNs on out-of-distribution data.

Improving Robustness. Recent studies have demonstrated the vulnerability of GNNs under adversarial attacks,
i.e., carefully-crafted small perturbation on the input graph leads GNNs into giving wrong predictions [157, 17,
154, 51]. A series of works are proposed to focus on enhancing the robustness of graph neural networks under
adversarial attacks by learning clean graph structure. Jin et al. [50] observed that adversarial attacks violate
important graph properties such as sparsity, low-rank, and feature smoothness; it then proposes the ProGNN
framework to robustify GNNs by alternatively updating the graph structure by preserving these graph properties by
adding penalizing regularization terms and training GNN parameters on the updated graph structure. Specifically,
it defines the following graph learning loss:

LGL = α∥Ã∥1 + β∥Ã∥∗ + λ tr
(
XT L̃X

)
+ ∥Ã−A∥2F , (57)

where ∥ · ∥1 is the ℓ1 norm, ∥ · ∥∗ is the nuclear norm, and L̃ is the normalized Laplacian matrix of Ã. The first
three terms in Equation equation 57 force the learned graph to preserve the properties of sparsity, low-rank, and
feature smoothness, respectively. Similar to GLCN [47], ProGNN also includes the downstream classification
loss in the graph learning process. Despite the robustness of ProGNN, it is computationally expensive with O(N3)
time complexity and O(N2) space complexity. To speed up ProGNN, LRGNN [124] decouples the adjacency
matrix into a low-rank component and a sparse one, and learns the graph structure by minimizing the rank of the
low-rank component and suppressing the sparse one. Furthermore, as robust GNNs tend to yield unsatisfying
performance when trained with limited labeled nodes, Dai et al. [16] took advantage of self-supervision and
uses node attributes to predict the links so as to boost robust performance, which also saves computational
cost from direct structure learning. Also using a link predictor, DefenseVAE [134] employs variational graph
autoencoder [58] to reconstruct graph structure that can reduce the effects of adversarial perturbations and boost
the performance of GNNs under adversarial attacks. In addition, utilizing information theory, CoGSL [74]
targets at learning the most compact structure relevant to downstream tasks in order to achieve a better balance
between robustness and accuracy. Instead of explicitly learning the graph structure, GNNGuard [137] mitigates
the negative effects of adversarial attacks by assigning higher weights to edges connecting similar nodes while
pruning edges between dissimilar nodes, which can also be considered as implicit graph structure learning. While
the aforementioned techniques have shown robustness in some specific settings, one recent work [82] revealed
that their robustness decreases significantly under proper evaluation (in particular the adaptive attacks). This
suggests that a more powerful and adaptive GSL method is needed for effective defense.

It is worth noting that there are some other graph structure learning works which aim at learning graphs to
improve the scalability of graph machine learning models [53, 52, 73]. They do not target improving model
performance or robustness of GNNs, and hence are not in the GDA scope tackled in this work.
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5.2 Graph Adversarial Training

Adversarial training is a widely used countermeasure for adversarial attacks on computer vision [32], and has also
been extended to graph domain [17, 25, 20, 43, 18, 10, 63]. Unlike graph structure learning, graph adversarial
training does not seek to find an optimal graph structure. Instead, it augments input graphs with adversarial
patterns during model training by perturbing node features or graph structure. The adversarially trained models
are expected to tolerate adversarial perturbations in graph data and yield better generalization and robustness
performance at test time. At the core of adversarial training is the injection of adversarial examples into the
training set, with which the trained model can predict the test adversarial examples properly. Thus, we can adopt
this strategy to enhance the robustness of GNNs as follows,

min
Θ

max
∆A∈PA
∆X∈PX

Ltrain (gΘ(A+∆A,X+∆X)) , (58)

where Ltrain denotes the training loss for the downstream task; ∆A and ∆X stand for the perturbation on
A,X, respectively; PA and PX denote the perturbation space. From the bi-level optimization problem in
Equation equation 58, we can observe that adversarial training generates perturbations that maximize the
prediction loss and updates model parameters to minimize the prediction loss. The process of generating
perturbations (i.e., A+∆A,X+∆X) can be viewed as adversarial data augmentation and we can leverage such
augmentations to improve the model robustness and generalization.

To augment the adjacency matrix, Dai et al. [17] proposed to randomly drop edges during adversarial training
without any optimization on the graph data. While this strategy does not bring significant improvement, such
cheap adversarial training still shows some improvement in robust classification accuracy. This finding is also in
line with that from Zügner and Günnemann [156]. Instead of randomly dropping edges, Xu et al. [125] leveraged
projected gradient descent (PGD) to optimize the bi-level problem and generate perturbations on the discrete
structure, which achieves significant improvement in robust performance. Similarly, Chen et al. [9] and Dai
et al. [18] also used existing adversarial attacks to modify the input graph structure during adversarial training,
designed for network embedding methods. Furthermore, Suresh et al. [101] proposed to generate adversarial
graph augmentation by learning to drop edges such that the augmentation can capture the minimal information
that is sufficient to classify each graph.

On the other hand, there are some works focusing on perturbing the input features to serve as adversarial exam-
ples. For instance, Feng et al. [25] proposed an adversarial training strategy with dynamic regularization, which
aims to reconstruct graph smoothness and constrains the divergence between the prediction of the target node
and its connected nodes. Deng et al. [20] proposed batch virtual adversarial training to promote the smoothness
of GNNs and thus defend against adversarial perturbations. Moreover, Kong et al. [63] proposed FLAG which
utilizes adversarial training to iteratively augment the node features with gradient-based adversarial perturbations
and improves the performances of GNNs on node classification, link prediction, and graph classification tasks.
In addition, Zügner and Günnemann [155] studied certifiable robustness of GNNs w.r.t. perturbations of node
attributes and propose a robust training scheme inspired by the certificates. Several other variants of adversarial
training on perturbing node features are introduced in [112, 43].

5.3 Rationalization

A rationale is defined as a subset of input features that best represent, guide and support model prediction [71]. In
the graph domain, rationales are subgraphs intrinsically learned by graph learning models. Rationales can be
viewed as a form of augmented graph data that provide intrinsic explanations to the graph models’ predictions,
as opposed to the post-hoc explanation methods. Rationalization is commonly applied to graph-level property
prediction or classification tasks [119, 71, 129, 13, 81, 68] for drug and material discovery on molecular and
polymer datasets, etc.
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Rationalization emerged in the graph domain as an approach to enhance both the interpretability and overall
performance of graph classification and regression. Yu et al. [131] found similarity to the Information Bottleneck
(IB) problem, and proposed the Graph Information bottleneck framework (GIB), which learns to generate the
maximally informative and compressed subgraph (IB-graph) by leveraging a bi-level optimization scheme and a
novel connectivity loss. Also rooted in the IB paradigm, Miao et al. [81] proposed GSAT to better learn and select
task-relevant subgraphs that improve interpretation and prediction by injecting stochasticity into the attention
weights in order to constrain information from task-irrelevant components. GREA, another rationalization work
proposed by Liu et al. [71], proposed a novel environment replacement augmentation method, which separates
the rationale and the environment subgraphs (the remaining and complementary subgraphs to the rationale ones)
and optimized the separation (rationalization identification) with data augmentation by replacing the original
environment subgraph with a different one in the latent space.

Rationalization models are also effective in addressing data bias and out-of-distribution (OOD) problems
for graph property prediction tasks since rationales are both interpretable and generalizable [81]. Wu et al.
[120] proposed DIR to generate distribution perturbation on training data with causal intervention. Based on
the idea that causal patterns are stable to distribution shift, they created a rationale generator that separates
causal and non-causal graphs, applies causal intervention to create perturbed distributions, and then jointly learn
both the causal and non-causal representation to minimize invariant risk. Similarly, Chen et al. [13] also took a
causal perspective to solve the OOD problem. They proposed CIGA to model the graph generation process and
the interactions between invariant and spurious features with Structural Causal Models (SCM). The resulting
subgraphs generated by CIGA maximally preserves the invariant intra-class information. Li et al. [68] also
proposed to separate invariant and variant graphs. In their framework GIL, they proposed a GNN based subgraph
generator to identify potentially invariant subgraphs, then infer latent environment labels for the variant subgraphs,
before jointly optimizing all modules. To address the limited environments and unstable causal features in data
augmentation methods for graph rationalization, AdvCA [97] was proposed to improve the generalization capacity
against covariate shift through adversarial causal augmentation.

5.4 Automated Augmentation

GDA techniques mentioned in Section 4 take rule-based approaches to augment graph data, applying the same
augmentation method to subgraphs and graphs which embody different attributes and characteristics like degree
distribution and homophily. To tackle this issue, Automated GDA techniques [98, 79, 144, 130, 64, 41, 153] were
recently explored to automatically learn tailored augmentations for different subgraphs or graphs. For example,
Sun et al. [98] proposed AutoGRL for the task of node classification. Through the training process, AutoGRL
learns the best combination of GDA operations, GNN architecture, and hyper-parameters. The searching space of
AutoGRL includes four GDA operations implemented by random masking and GAug-M [140]: drop features,
drop nodes, add edges, and remove edges.

Since automated GDA objectives are often complex to optimize, some recent works use reinforcement
learning approaches as a solution. Zhao et al. [144] framed the AutoGDA as a bi-level optimization problem,
aiming to find a different set of augmentation strategies for each community in the graph as they observed
various characteristics in each community. They employ an RL-agent to generalize the learning and find localize
augmentation strategies for node classification tasks. On graph classification tasks, Luo et al. [79] set out to learn
an automated augmentation model with GraphAug, to provide label-invariant augmentations for each graph in the
dataset. Applying reinforcement learning, they maximize the estimated label-invariance probability to learn the
augmentation category and transformation selection.

Another group of works on automated augmentation focus on graph contrastive learning. You et al. [130]
proposed to learn augmentations to replace ad hoc and handpicked augmentations for contrastive learning. They
design an augmentation-aware projection head to avoid complicated augmentations, and formulate a bi-level
optimization problem to learn both the augmentation strategy and graph representation. Hassani and Khasahmadi
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Table 2: Representative self-supervised graph learning works that utilized graph data augmentation techniques.
†Although the methods in this category are semi-supervised methods, they used GDA operations with only
self-supervised learning objectives (i.e, consistency loss). Therefore, we categorize their GDA techniques as
designed for self-supervised learning objectives.

Representative Works Task Level Augmented Data
Node Graph Edge Structure Feature Label

Contrastive Learning

DGI [108] ✓ ✓
GRACE [151] ✓ ✓ ✓
MVGRL [40] ✓ ✓
GraphCL [129] ✓ ✓ ✓
JOAO [130] ✓ ✓ ✓

Non-contrastive Learning

CCA-SSG [136] ✓ ✓ ✓
GBT [3] ✓ ✓ ✓
BGRL [102] ✓ ✓ ✓
T-BGRL [92] ✓ ✓ ✓

Consistency Training†
GRAND [27] ✓ ✓ ✓
NodeAug [114] ✓ ✓ ✓
MV-GCN [132] ✓ ✓
NASA [4] ✓ ✓

[41] learned a probabilistic policy that contains a set of distributions over different augmentation operations in
their method LG2AR, and samples an augmentation strategy from the policy in each training epoch. Zhu et al.
[153] proposed GCA, which proposes adaptive augmentations based on node centrality measures. Unlike the
aforementioned methods which find the best augmentation strategy for the dataset, GCA adaptively augments
different nodes according to their importance. Wang et al. [116] proposed to use a generative probabilistic model
and a learnable feature selector to automatically parameterize topological and attribute augmentations, which
can also provide explanations for underlying patterns in molecular graphs. Lastly, Kose and Shen [64] proposed
FairAug which utilizes adaptive augmentations for fair graph representation learning.

6 GDA for Self-supervised Learning

Other than directly using the augmented graph data in supervised learning, the most common use case for
GDA is under self-supervised learning (SSL) schemes, e.g. contrastive learning. Self-supervised objectives
learn representations that are robust to noise and perturbations by maximizing the (dis)agreements of learned
representations. Therefore, unlike most of the previously mentioned learned GDA techniques (Section 5) which
aim to enhance the task-relevant information in the data, most of the GDA techniques for self-supervised learning
are rule-based augmentations (Section 4) which aim to corrupt or perturb the given graph data. Moreover,
most self-supervised graph representation learning methods tend to use a combination of several simple GDA
operations. In this section, we introduce three commonly used self-supervised graph learning schemes as well as
the GDA approaches they utilize.

6.1 Contrastive Learning

In recent years, with the rapid development of contrastive learning in CV [11], many contrastive learning
methods [151, 129, 105, 122, 71, 56] have been proposed for applications on graph data. Typically, a graph
contrastive learning framework includes three main components: a GDA module that generates different views of
the given graph data, a GNN-based encoder to compute the representations, and a contrastive learning objective
to train the model. For each data example (nodes for node-level tasks and graphs for graph-level tasks), these
methods consider augmented views or variants of itself as associated positive samples and other data examples in
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the same batch as associated negative samples. Contrastive learning objectives then maximize the (dis)agreements
of the representations between each data example with their (negative) positive examples.

To efficiently generate different augmented data for graph contrastive learning, rule-based data removal
operations (Section 4.1) are the most commonly used GDA techniques, as they are fast and easy to apply. For
example, multiple methods (GRACE [151], GraphCL [129], etc.) adopt stochastic edge dropping and/or feature
masking due to their simplicity. DGI [108] adopts feature corruption by conducting a row-wise shuffling on the
raw node feature matrix X. In general, graph contrastive learning methods usually adopt a combination of multiple
augmentation techniques to generate different augmented views. GraphCL [129] and InfoGCL [123] adopt four
GDA operations: node dropping which randomly removes nodes along with its edges, edge perturbation which
randomly adds or drops edges, attribute masking which randomly masks off certain node attributes, and subgraph
sampling which samples connected subgraphs. SUBG-CON [48] utilizes a subgraph sampler to extract the
context subgraph as a proxy of data augmentation. GRACE [151] uses only the basic random edge dropping and
attribute masking for creating different views of the graph.

Other than data removal augmentations, graph diffusion is also commonly used in contrastive learning as it
can naturally create a “future view” of the given graph where the information are more spread out. MVGRL [40]
adopts the diffusion graph proposed by GDC [60] as the second view. Interestingly, Hassani and Khasahmadi
[40] showed that using three views (original graph, PPR diffusion graph and heat kernel diffusion graph) would
not result with better performance than using two views (original graph and one diffusion graph), and concluded
“increasing the number of views does not improve the performance.” However, Yuan et al. [132] later proposed
MV-CGC which adopted a similar contrastive learning framework with three views: the original graph, diffusion
graph, and a proposed feature similarity view. Empirically, the node representations learned by MV-CGC
outperformed those learned by MVGRL on node classification, suggesting that additional well-designed GDA
methods or views may be helpful to graph contrastive learning approaches.

More recently, several studies [101, 106, 72] pointed out that stochastic rule-based GDA operations may
suffer from failing to induce useful task-relevant invariance on common benchmark datasets. Specifically,
Trivedi et al. [106] analyzed that the generalization error of graph contrastive learning can be bounded under the
assumptions of invariance to relevant augmentations, recoverability, and separability, which refer to data-centric
properties, by instantiating rule-based GDA as a composition of graph edit operations. Such bound demonstrates
conditions with low separability and recoverability during the usage of rule-based GDA, which motivates the
necessity of inducing task-relevant invariance. Following the theoretical analysis, Zhang et al. [139] proposed a
covariance-preserving feature augmentation technique, in which the augmented feature has bounded variance.
Wang et al. [115] proposed to use different levels in hierarchical graphs as augmented views.

6.2 Non-contrastive Learning

While showing promising performance on various tasks, contrastive learning methods rely heavily on disagreement
between data examples and their associated negative examples to avoid model collapse [33]. As sampling high
quality negative examples is often costly, and random negative sampling usually requires large batch sizes,
several works [33, 133, 1] propose non-contrastive self-supervised learning methods to learn representations in
a self-supervised manner without needing negative examples. Instead of comparing across different samples,
non-contrastive self-supervised methods compare only between different views of the same sample and use
designs such as prediction heads and stop gradient to avoid model collapsing [33], or measure the cross-correlation
matrix between the representations learned form different views [133].

As the non-contrastive methods are designed for more efficient self-supervised learning than the contrastive
methods, the GDA techniques they adopt are all the most basic, stochastic ones (Section 4.1). Specifically, all the
non-contrastive self-supervised graph representation learning methods (CCA-SSG [136], GBT [3], BGRL [102],
and T-BGRL [92]) utilized only random edge dropping and node feature masking as the augmentation strategies.
While the first three methods generates two augmented views for comparison, to further improve the performance
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on link prediction under inductive settings, T-BGRL [92] also used the same augmentation strategies but with
higher masking probability as an efficient corruption to create an third “negative” view to mitigate collapse, which
is later used in a triplet loss.

6.3 Consistency Training

In real GML applications, semi-supervised learning usually plays an important role as only a small fraction of
training data are labeled in most of the cases [121]. Due to such label scarcity, consistency training is commonly
used to leverage the unlabeled data to improve the model quality. Similar to contrastive learning, consistency
training itself is a self-supervised learning objective that aims to maximizes the agreement of representations
learned from different views of the data. However, unlike (non-)contrastive learning that compares between
data objects, the consistency loss compares the distributions of a batch of representations via metrics like KL-
divergence. Therefore, the consistency loss is rarely used itself, but often used along with supervised losses in the
semi-supervised learning settings. The final learning objective is usually a linear combination of the supervised
loss (e.g., cross entropy for classification tasks) and the consistency loss.

NodeAug [114] uses three local structure-based augmentation operations: replacing attributes, removing and
adding edges. NodeAug minimizes the KL-divergence between the node representations learned from the original
graph and augmented graph. GRAND [27] creates multiple different augmented graphs with node dropping
and feature masking. The consistency loss then minimizes the distances of the representations learned from the
augmented graphs. NASA [4] proposes Neighbor Replace augmentation to randomly replace the 1-hop neighbors
with 2-hop neighbors, and then use a neighbor-constrained consistency regularization during training. To further
utilize the information given by different graph diffusions, MV-GCN [132] generates two complementary views
with PPR and heat kernel and learns from both created views and the original graph. Then, it feeds three views of
the graph into three GCNs, and uses a consistency regularization loss to reduce the distribution distance of the
representations learned across the views, and derives the final node representations as a combination of the three.

7 Challenges and Directions

Despite substantial progress has been achieved in graph data augmentation research, several open problems
remain to solve. In this section, we summarize several promising yet under-explored research directions.

7.1 Domain Adaptation and Regularization

Given the rapid development of GDA techniques in recent years, automated GDA methods have been proposed to
automatically tune the augmentation strategy for different datasets and tasks. Nonetheless, the existing automated
GDA methods for graph data (as introduced in Section 5.4) mainly focus on specific datasets and downstream
tasks. Ideally, automated augmentation solutions should be transferable. That is, domain adaptation is a desired
characteristic for automated GDA techniques. When the automated augmentation method trained on one dataset
could only be used on that dataset, the method may be equivalent to automating the hyperparameter tuning
process and lose the generalizability across datasets [144]. Therefore, for an ideal automated GDA method, it
should be able to be trained on one dataset and used for many, ideally cross domain or under OOD settings.
While OOD benchmarks are already available in the GML community [35], automated GDA methods that
can be transferable across domains are still missing in the literature. Moreover, on certain types of graph data
such as molecule graphs, most commonly used GDA operations would change the underlying semantics of
the graph. For example, dropping a carbon atom from the phenyl ring of aspirin breaks the aromatic system
and results in a alkene chain [66], which is an entirely different chemical compound. This motivates a need
for domain-based regularization methods for such tasks. So far, only Sun et al. [99] proposed MoCL that
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considers the semantic information brought by local substructures when augmenting the molecule graphs, leaving
domain-based regularization GDA methods rather under-explored.

7.2 Scalability for Large-Scale Graphs

GDA techniques add additional complexity on top of the existing GNNs, and many GDA techniques use global
information during the augmentation process, which might not be able to easily scale. For example, GAug-
M [140] involves selecting the top K out of O(N2) logits for node pairs when selecting edges to add. Such high
complexity operations can cause scalability issues in actual applications where the graph size can be very large,
e.g., at billion scale. While complex GDA techniques bring significant performance improvements, the scalability
of these methods are still worthy of attention. For example, in order to enable end-to-end training, GAug-O [140]
requires back-propagating on the entire learned adjacency matrix, creating massive memory overheads. To
improve the performance of DropEdge [88], TADropEdge [29] required the pre-calculation of a score for each
edge in the graph prior to the training of GNNs. Therefore, to be applicable in practical applications, efficiency
is also a necessity for GDA techniques. As mentioned in the previous subsections, automated solution which
combine the fast and simple augmentation operations may be a promising direction. Nonetheless, how to design a
scalable and efficient automated GDA framework is still an open line of research.

7.3 Comprehensive Evaluation Criteria and Standards

Similar to the DA research in other domains, a general concern for GDA research is that the evaluation only
focuses on the prediction performance on specific datasets. Although this is likely the most important metric,
other metrics such as additional time and resource consumption, transferability, or scalability are also important
for researchers to more comprehensively understand the methods. For example, as aforementioned, while
graph structure learning methods such as GAug [140] shows promising performances for node classification,
the method’s design inherently limits its ability to generalize on large-scale graphs. Furthermore, only few
works discuss the additional time and resource requirement needed for applying their proposed GDA methods,
especially for the learned augmentations which may require training of additional modules. Therefore, a set of
comprehensive evaluation criteria and standards is desired for better understanding the benefits and costs of the
newly proposed GDA methods. Ideally, such a benchmark could contain multiple datasets in different scales and
domains, enabling researchers to better evaluate transferability and scalability tradeoffs.

7.4 Theoretical Foundation

GDA is a powerful technology to improve the performance of data-driven inference on graphs without the need of
extra labeling effort or complex models. Empirically, GDA methods are also shown to improve the generalization
of GML methods and alleviate the over-smoothing problem encountered by GNNs. Yet, there is little rigorous
understanding of how and why GDA achieves those benefits, especially for (semi-)supervised learning. Although
several works [140, 8] have analyzed the relation between graph homophily and classification performance or
the over-smoothing problem, there is limited work showcasing rigorous proofs or theoretical bounds on these
relationships.

Recently, several works provided theoretical insights of DA in the CV domain. For example, Wu et al. [119]
theoretically analyzed the generalization effect of data augmentation on images. They interpreted the effect of
data augmentation from a bias-variance perspective, where data augmentation adds new information to model
training while also serving as a regularizer. Due to the irregular characteristics of graph data, these theoretical
analysis cannot be directly applied for the GDA context. Besides the generalization perspective, several recent
works have studied the certified robustness of GNNs [156]. Improved robustness bounds would be a desired
property of GDA techniques. Recent studies [104] on the topology bottleneck and over-squashing of GNNs
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provide theoretical guides for edge-based GDA techniques. Counterfactual augmentation methods on graphs such
as CFLP [143] can also bring insights for analyzing GDA from the perspective of causality.

7.5 Data Augmentation for Complex Graph Types

Existing GDA approaches are mainly designed for homogeneous graphs, while not all of them can be easily
generalized to other complex types of graphs such as heterogeneous graphs, dynamic graphs, hypergraphs,
etc. These complex graphs have broader applications with their ability of modeling more complex relationship,
nonetheless, the complexity of the data requires more sophisticated design of GDA methods. Taking heterogeneous
graphs as an example, even the simplest edge dropping would require a drop rate hyper-parameter for each
of the edge types in the graph, which could introduce significant computational overhead for hyper-parameter
searching. Additionally, beyond direct analogous of GDA methods for homogeneous graph for complex graph
types, specially designed GDA methods for different graph types could better utilize the rich information contained
in them. Therefore, a comprehensive evaluation of the existing GDA methods on complex graphs is needed by
the community to better understand the effectiveness of existing GDA methods and also better design principled
augmentation approaches for each graph types.

8 Conclusion

Our work presents a comprehensive and structured survey of data augmentation techniques for graph machine
learning (GML). We categorized existing graph data augmentation (GDA) techniques three taxonomies from
different perspectives, introduced recent GDA approaches based on their core methodology, and introduced their
applications in self-supervised learning. Finally, we outlined current challenges as well as directions for future
research explorations in the GDA domain. We hope this survey serves as a guide for GML researchers and
practitioners to study and use GDA techniques, and inspires additional interest and work on this topic.
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