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Abstract

User modeling (UM) aims to discover patterns or learn representations from user data about the character-
istics of a specific user, such as profile, preference, and personality. The user models enable personalization
and suspiciousness detection in many online applications such as recommendation, education, and healthcare.
Two common types of user data are text and graph, as the data usually contain a large amount of user-generated
content (UGC) and online interactions. The research of text and graph mining is developing rapidly, contribut-
ing many notable solutions in the past two decades. Recently, large language models (LLMs) have shown
superior performance on generating, understanding, and even reasoning over text data. The approaches of user
modeling have been equipped with LLMs and soon become outstanding. This article summarizes existing
research about how and why LLMs are great tools of modeling and understanding UGC. Then it reviews a few
categories of large language models for user modeling (LLM-UM) approaches that integrate the LLMs with
text and graph-based methods in different ways. Then it introduces specific LLM-UM techniques for a variety
of UM applications. Finally, it presents remaining challenges and future directions in the LLM-UM research.
We maintain the reading list at: https://github.com/TamSiuhin/LLM-UM-Reading.

1 Introduction

User Modeling (UM) aims to extract valuable insights and patterns from user behaviors, enabling customization
and adaptation of systems to meet specific users’ needs [124]. UM techniques have facilitated a better under-
standing of user behaviors, customized intelligent assistance, and greatly improved user experience. For example,
when people are looking for dinner options and searching online, the UM techniques infer their characteristics
based on interaction history, predict current food interests, and give personalized recommendations. UM has a
substantial impact on user data analysis and many applications such as e-commerce [191, 194, 280], entertainment
[11, 33, 155], and social networks [1, 2, 212]. UM is a highly active and influential research field.

User modeling is mainly about mining and learning user data, including user-generated content (UGC) and
user’s interactions with other users and items. User-generated content encompasses a wide range of text data, such
as tweets, reviews, blogs, and academic papers. The rich texts can be analyzed by natural language processing
(NLP) techniques. User interactions, on the other hand, involve various actions such as following, sharing, rating,
comments, and retweets. These interactions may form a heterogeneous temporal text-attributed graph [199] for
having temporal and textual information and having different types of nodes and relations. That can be analyzed
using graph mining and learning techniques. As a result, user modeling has branched out into text-based and
graph-based approaches, focusing on extracting insights from text and graph data, respectively.
How has the research of text-based UM developed? Researchers have used multiple types of representations of
texts, such as words, topics, and embeddings. Bag-of-Words (BoW) models create distributional text representa-
tions with word frequencies using a discrete vocabulary [67]. To address the sparsity of BoW representations,
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Figure 10: User modeling aims to discover knowledge and patterns from user data to identify profile, preference,
and personality. The three blue arrows in the figure correspond to our three major contributions: (1) summarize
how and why LLMs are great tools for modeling and understanding UGC, (2) review approaches that integrate
LLMs with text- and graph-based UM methods, and (3) introduce LLM-UM techniques for various applications.

topic modeling techniques statistically discover latent topics in a collection of documents, e.g., latent Dirichlet al-
location (LDA) [15]. But they are not able to capture semantic meanings, i.e., word semantic similarity. Word2Vec
employs nonlinear neural layers to develop Continuous Bag-of-Words (CBOW) and continuous skip-gram models
[148]. It extracts semantic embeddings from many kinds of UGC text data, such as blogs, reviews, and tweets.
However, the neural layers are too shallow to capture deep sequential patterns among numerous word tokens. With
the breakthrough in Transformer architectures [219], pretrained language models (PLMs) significantly changed
the landscape of UGC understanding with the pretrain-fine-tune paradigm. The new paradigm trains the models on
a large unlabeled corpus using self-supervised learning and uses hundreds or thousands of examples to fine-tune
the models for downstream task adaptation [102]. Recently, large language models (LLMs) have revolutionized
this area with emergent abilities, including unprecedented reasoning [241, 256], generalization [181, 239], and
knowledge comprehension [163, 205]. LLMs are operated under the pretraining paradigm on extremely large
corpora to update billions of parameters. A lot of research has shown that LLMs understand UGC in a zero-shot
manner, i.e., without a collection of examples for fine-tuning. LLMs have surpassed human performance in
summarization [176], outperformed most human in several exams [159], and shown strong reasoning abilities
with prompt engineering, including Chain-of-Thought [241], Least-to-Most [290], and Tree-of-Thought [256].
LLMs open a new era for UM research to re-think about UGC mining.
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How has the research of graph-based UM developed? User interactions with online content and users
are naturally defined as edges that connect nodes of users or things. The user data can be defined as a graph.
Heterogeneous graphs contain multiple types of nodes (e.g., users, items, places) and relations. Temporal/weighted
graphs have timestamps/weights labeled on the interactions. Attributed graphs allow nodes to have a set of
attribute-value pairs (e.g., age of a user, color of a product). In text-rich graphs, the nodes have long-form text
attributes. Random walk with restarts provides a closeness score between two nodes in a weighted graph, and
it has been successfully used in numerous settings (e.g., personalized PageRank [162]). Matrix factorization
(MF) decomposes the user-item interaction matrix into the product of two matrices or known as latent features
of users and items [91, 94, 107]. Regarding collaborative filtering, MF performs better with explicit feedback
ratings, while RWR exploits the global popularity of items. It is actually a basic embedding model [272].
With deep learning, Node2Vec extracts sequences from the graph with random walks and uses Word2Vec to
learn node embeddings [65]. However, encoding a graph into sequences would cause information loss. Graph
neural networks (GNNs) employ the message-passing mechanism for deep representation learning on graphs.
Specifically, the family of Graph Convolutional Network (GCN) [105] has greatly improved the performance
in recommendation [49, 69], user profiling [24, 250], user behavior prediction [224, 263], and suspicious user
detection [54, 55].
Why are LLMs revolutionizing text- and graph-based UM research? User modeling involves a series of
machine learning tasks on text and graph data, such as text classification, node classification, link prediction, and
time series modeling. Putting into context, the tasks can be sentiment analysis, natural language inference (NLI),
user and product categorization, social relationship prediction, and temporal behavior prediction. Traditionally,
the solution must be a specific model for a specific type of data and be trained on a specific set of annotations.
For example, due to schema differences, two text classifiers had to be trained for the sentiment analysis and NLI
tasks separately. Also, two networks or at least two modules in a graph neural network (GNN) were trained to
predict if a user makes a new friend and purchases an item, respectively. Moreover, the textual information of
user and/or product profiles is quite limited for learning and prediction due to the long-tail distribution.

LLMs have changed the paradigm of solution development. First, if designed properly, the prompts are able
to treat most of the text-to-label tasks in LLMs as a unified text generation task; annotation data become not
desperately needed; and the performance can even be comparable to or better than the traditional models. This
is because LLMs were pre-trained on extremely large corpora and fine-tuned to follow the instructions in the
prompts. Second, the prompts can be designed for learning tasks on graph data. For example, one can ask LLMs
“if a user bought an Apple watch yesterday, will the user consider buying a pair of running shoes?” The “analysis”
by LLMs can provide additional information to existing user-item link predictors. Third, all text information can
be automatically expanded by LLMs. The relevant parametric knowledge augments the input of machine learning
models and reduces the task difficulty.

LLMs have showcased robust capabilities in characterizing users’ personalities [184], discerning users’
stances [271], pinpointing user preferences [52], and beyond. Also, they have demonstrated marked proficiency in
node classification [259], node attribute prediction [70], and graph reasoning [226]. Preliminary research focuses
on leveraging LLMs for user modeling (LLM-UM) to integrate text-based and graph-based methods. For user
profiling, GENRE [135] leverages ChatGPT as a user profiler by feeding users’ behavior history and prompting
the model to infer the users’ preferred topics and regions. These LLM-generated profiles serve as important
features for click-through rate recommendation models and resolve the anonymity problem in collecting user
profiles. For recommendation, Kang et al. [100] use LLMs to predict user ratings based on their behavior history
and find that LLMs typically demand less data while maintaining world knowledge about humans and items. For
personalization, LaMP [189] proposes a benchmark incorporating personalized text generation and classification
tasks as well as a retrieval-augmented approach. LLMs can be personalization tools for their understanding of
user data. On suspiciousness detection, Chiu et al. [29] employ GPT-3 to detect hate speech, discovering that
LLMs are able to identify abusive language with limited labels.
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Difference from existing surveys. Given the growing interest and expanding body of work in user modeling
(UM) with LLMs, this is an ideal opportunity to provide a comprehensive review that accomplishes several goals.
In this survey, we analyze the advantages of LLMs in boosting existing user modeling techniques, introduce a
taxonomy that categorizes LLM-UM techniques from the perspective of methodology, provide an in-depth review
of specific techniques for a wide range of real-world applications, and finally outline the challenges and potential
future directions in the field. We aim to provide a handbook for researchers and practitioners in the relevant fields,
so they are able to confidently use LLMs to design and develop effective UM approaches.

It is worthwhile to discuss the uniqueness of our effort. Farid et al. [53] conducted a survey on user profiling
approaches as a part of user modeling before LLMs came out. Li and Zhao [124] reviewed representation
learning methods for user modeling, which was a prevailing paradigm before the advent of LLMs. He et al. [71]
focused on user behavior modeling within recommender systems, narrowing down the scope specifically to item
recommendations in the pre-LLM era. In the context of the LLM era, Fan et al. [50], Wu et al. [243] investigated
the applications of LLMs in recommender systems. Additionally, Lin et al. [130] examined approaches that
incorporated LLMs to enhance recommender systems, while Chen et al. [22] summarized recent work, challenges,
and future directions in LLM-based personalization. However, these surveys discussed specific application
goals of user modeling, either recommendation or personalization, which represents only a small portion of user
modeling. To the best of our knowledge, there is no survey that summarizes the LLM-UM research work. Hence,
our survey aims to fill this gap by providing a comprehensive summary and inspiring future research directions.

The remainder of this survey is organized as follows (Figure 11). Section 2 gives the background of user
modeling techniques and large language models and gives the motivation of why LLMs are good tools for
next-generation user modeling. Section 4 introduces two taxonomies of LLM-UM based on their approaches
and applications. Section 5 summarizes the approaches to LLM-UM and how LLMs can integrate text and
graph-based methods in existing works, including leveraging LLMs as enhancers, predictors, and controllers.
Section 6 elaborates on the LLM-UM applications, including personalization and suspiciousness detection.
Finally, Section 7 delves into current challenges and future directions pertaining to the LLM-UM topic.

2 Background

2.1 User Modeling

User modeling (UM) involves insight extraction or prediction from user data, such as profiles, personality traits,
behavior patterns, and preferences. The insights can be utilized to customize and optimize user-oriented systems
or services, enabling them to adapt effectively to the unique requirements of individual users [124]. From a
user data standpoint, there are two primary types: user-generated content (UGC) and user-user/item interaction.
These data modalities encompass textual content and graph-based interactions. User modeling techniques can
be broadly classified into two categories: text-based methods and graph-based methods, each with a distinct
emphasis on UGC and user interaction graphs, respectively.
Text-based UM Methods. The text-based UM methods focus on mining user-generated content, understanding
user profiles, personalities, and subsequently inferring user preference and providing personalized recommen-
dations and assistance. Text-based UM methods are highly relevant to natural language processing and have
experienced several breakthroughs in the last two decades.

Initially, people widely use Bag-of-Words (BoW) [67] that maintains a discrete word vocabulary and represents
text as an unordered collection of words. However, BoW disregards grammar, word order, and semantics. Later,
topic models are proposed to identify groups of similar words in an unsupervised statistical machine learning
manner [5]. The most representative topic model is Latent Dirichlet Analysis (LDA) [15], which considers
documents as a mixture of topics and topics as a mixture of words. Latent semantic analysis (LSA) [47] is another
popular topic model that is based on the principle that words close in meaning tend to be used together in context.

60



LL
M

s
fo

rU
se

rM
od

el
in

g
(L

LM
-U

M
)

Backgrounds (§2)
User Modeling

Large Language Models

Motivation of LLM-UM (§3)

Taxonomies (§4)
Method Perspective

Application Perspective

Approaches to LLM-UM (§5)

LLMs-as-Predictors

Common Generative Reasoner
Simulator/Agent

Classifier/Detector
Scoring Function

Explainer

ChatBot

LLMs-as-Enhancers

Profiler
Feature Encoder
Knowledge Augmenter

Data Generator
LLMs-as-Controllers
LLMs-as-Evaluators

Applications of LLM-UM (§6)

Personalization

User Profiling

Personalized Recommendation
Personalized Assistant
Personalized Dialog System

Personalized Education
Personalized Healthcare

Suspiciousness Detection

Fraud Detection
Discrimination Detection
Misinformation Detection
LLM-Generated Text Detection

Challenges and Directions (§7)

Hallucination Mitigation

Privacy and Security

Complex Structural Data Understanding

Comprehensive Benchmark and Evaluation Criteria

Trustworthy User Modeling

Fairness in User Modeling

Efficient and Effective Domain Adaptation

Personalized LLM-UM Deployment

Figure 11: Structure of this survey.

Soon after, Mikolov et al. [148] introduced neural network techniques for UGC mining and understanding,
including the continuous Bag-of-Words (CBOW) that predicts current words based on the context and continuous
skip-gram model that predicts surrounding words given the current words. The emergence of Word2Vec brings
new ideas to user modeling; for example, Hu et al. [75] use Word2Vec to encode user search history and
predict users’ age, gender, and education. However, the simplicity of Word2Vec leads to a limited semantic
understanding of UGC. The emergence of Transformer architecture [219] and pretrained language models (PLMs)
[102, 179] dramatically change the landscape of natural language processing, resulting in significant progress
in text-based user modeling. For instance, BERT4Rec [204] utilizes a bidirectional self-attention mechanism
to learn user behavior sequence representations for recommendation. Recently, large language models (LLMs)
and their unprecedented emergent ability lead to a revolution in text-based user modeling. Specifically, LLMs
are trained on large amounts of textual data with billions of learnable parameters to understand the patterns,
semantics, and structure of natural language. Some preliminary explorations have shown LLMs are instrumental
in enhancing functionality and adapting to users’ specific needs in user modeling systems. LLMs have the
capability to serve as a user profiler to generate user characteristics and personality, as in representative work
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such as GENRE [135], PALR [26], and MBTI-based assessment Rao et al. [184]. Furthermore, LLMs are proven
to be powerful recommender systems, evidenced by LLMRec [134], Chat-REC [63], and LKPNR [187]. LLM
personalization has also been a prominent area of research, delivering products such as LaMP [189], AuthorPred
[117], and NetGPT [25]. Additionally, several studies have explored the utilization of LLMs for the detection of
misinformation and misbehavior [110, 152].
Graph-based UM Methods. The graph-based user modeling methods focus on learning from graph structures
about user-user/item interactions. Moreover, the timestamp and intrinsic heterogeneity of interaction networks
enrich the graph information, together forming a temporal heterogeneous graph. To mine the graph and temporal
data for user modeling, PAGE [162] first propose PageRank, which measures the importance of a node based
on times visited by the random walk. Collaborative filtering [193] is then proposed, assuming that users with
similar behaviors would rate and act on items in a similar manner. Matrix factorization, as a collaborative
filtering technique, has dominated the user modeling field for quite a few years since Netflix competition for
its scalability and flexibility [107, 113, 202]. In its basic form, matrix factorization features both items and
users in latent space based on user-item interaction history. High correspondence between the item and the
user leads to a recommendation. Later, deep learning models are introduced to learn high-quality user and item
embeddings in latent spaces [45, 65, 172, 209]. Node2Vec [65] is the pioneering work that uses random walks
on social networks to generate sentences from graph structures and then feeds them into a Word2Vec model
[148] for graph embedding learning. Metapath2Vec [45] extends Node2Vec to heterogeneous graphs. To mitigate
Node2Vec’s information loss by extracting graphs into sequences, Graph Neural Network (GNN) is applied
to advance user modeling with their robust structural encoding capabilities [77, 105, 220]. The core of graph
neural networks lies in the message-passing mechanism that propagates node representations and aggregates
neighborhood representations. The most representative GNN is graph convolutional network (GCN), which
aggregates the information of different neighbors equally. Then the graph attention network (GAT) uses an
attention mechanism to learn the attention weights of neighborhoods for higher-quality node representations.
Specifically in user modeling applications, GNN-based methods are widely adopted in advanced user modeling
systems and have achieved state-of-the-art performance. For instance, Ying et al. [261] design an efficient random
walk algorithm, merge it with a type of GNN named GraphSAGE, and deploy the system on Pinterest.

2.2 Large Language Model

Language models are probabilistic models of natural language that can generate the likelihood of word sequences
so as to predict the probabilities of future tokens [119, 282]. Large language models (LLMs) refer to the
deep neural language models with billions of learnable parameters that are pretrained on an extremely large
textual corpus to understand the distribution and structure of natural language [282]. Thanks to the efficiency
of the Transformer architecture [219], almost all large language models employ it as the backbone. There are
three types of language model design: encoder-only (e.g., BERT [102]), decoder-only (e.g., GPT [180]), and
encoder-decoder (e.g., T5 [182]). Encoder-only models, specifically for BERT, use bidirectional attention to
process token sequences and are pre-trained on masked token prediction and next-sentence classification tasks.
This process can extract semantic embeddings for general purposes and enable the models to quickly adapt
to diverse downstream tasks after fine-tuning. Decoder-only models, such as GPT, conduct text-to-text tasks
based on the transformer decoder architecture. They are trained on the next token prediction tasks from left
to right generation. Encoder-decoder models, such as T5, are trained on text-to-text tasks. Their encoders
extract contextual representations from the input sequence, and their decoders use cross attention to map latent
representations back to the text output space. In the context of LLMs, most models follow the decoder-only
architecture as it simplifies the model and makes efficient inferences [232].

Recently, researchers have found that scaling pretrained language models’ training data and parameter size
often leads to a significant performance gain, a.k.a scaling law [101]. The large language models present emergent
abilities [240], referring to the abilities that are not present in small models. Typically, there are three types of
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well-studied emergent abilities: in-context learning (ICL), instruction following, and step-by-step reasoning.
In-context learning assumes that the language model has been provided with natural language instructions and/or
several task demonstrations. LLMs can generate the expected output for test instances by completing the word
sequence of input text without requiring additional training or gradient update, which is first introduced by GPT-3
[17]. Recent ICL research focuses on reducing inductive bias [116, 201]. The instruction following ability means
that LLMs are shown to perform well on unseen tasks that are also described in the form of instructions after
fine-tuning with a mixture of multi-task datasets formatted via natural language descriptions, known as instruction
tuning. Instruction tuning improves the generalization ability of LLMs. The LLMs are better aligned with human
intentions [238]. Recent instruction tuning studies focus on how to align LLMs with tasks and user preferences
effectively [161] and efficiently [289]. Step-by-step reasoning means that LLMs can solve complex tasks that
require multi-step reasoning. Chain-of-Thought (CoT) [241] introduces intermediate steps of reasoning steps in
prompt design. Least-to-most [290] breaks down reasoning steps into simpler problems. Self-consistency [234]
prompting further enhances LLMs reasoning by ensembling diverse CoT reasoning paths. Tree-of-Thought (ToT)
[256] and Graph-of-Thought (GoT) [12, 257] enable LLMs to explore the thought processes in tree and graph
structure, respectively. Moreover, preliminary explorations show that LLMs can use external tools [195], be
parametric knowledge bases [163], have theory-of-mind [108], act as agents [230, 247], have graph understanding
abilities [226], and can serve as optimizers [251].

Apart from using LLMs with frozen parameters, another line of work focuses on efficiently fine-tuning
parameters in LLMs, namely parameter efficient fine-tuning, which helps LLMs efficiently adapt to specific tasks,
datasets, and domain-specific understanding. Prefix tuning [126] keeps the language model parameters frozen and
optimizes a small continuous task-specific vector called the prefix. Prompt tuning [115] is a simpler variant of
prefix tuning, where some vectors are prepended at the beginning of a sequence at the input layer. Llama-Adapter
[277] appends a set of learnable prompts as the prefix to the input instruction tokens in the higher transformer
layers of Llama [216]. LoRA [74] injects trainable rank decomposition matrices into each layer of the transformer
architecture, greatly diminishing the number of trainable parameters for downstream tasks. QLoRA [42] updates
parameters through a frozen 4-bit LLM into low-rank adapters.

Existing LLMs can be categorized into open-source and API-based models based on accessibility. Open-
source models provide access to both model weights and the ability to run the models on local machines, while
API-based models restrict users from directly accessing the model weights and only allow them to interact
with the models through an API. The open-source LLMs include T5 [182], Flan-T5 [34], OPT [278], BLOOM
[192], GLM [270], Llama [216], and Falcon.1 By fine-tuning or instruction-tuning Llama, a family of LLMs
emerged, such as Alpaca [213] and Vicuna [28]. For API-based models, OpenAI offers four major series of
GPT-3 [17] interface, including ada, babbage, curie, and davinci, corresponding to GPT-3 (350M),
GPT-3 (1B), GPT-3 (6.7B), and GPT-3 (175B). GPT-3.5 series includes davinci and turbo:turbo leverages
Reinforcement Learning from Human Feedback (RLHF) [161] to create human-like conversations. GPT-4
[159] is a well-acknowledged state-of-the-art and achieves astonishing performance on a wide range of tasks.
There are some other API-based models such as BARD [146], Claude,2 PaLM [31], BloombergGPT [245], and
LangChain.3

Despite the thriving development of the LLM research, some challenges remain unsolved. For example,
LLMs suffer from hallucination issues, that being said, LLMs generate text that is fluent and natural but unfaithful
to the source content or under-determined [99]. LLMs also have biases due to unfathomable pre-training datasets,
including political discourse [57], hate speech [81], and discrimination. Moreover, the inference latency of LLMs
remains high because of low parallelizability and large memory footprints [175]. The remaining challenges also
include limited context length [99], outdated knowledge [258], misaligned behavior [188], brittle evaluation

1https://falconllm.tii.ae/our-research.html
2https://www.anthropic.com/index/claude-2
3https://www.langchain.com/
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👨 :Recommend 3 other movies based on the user's watching history 
from the candidate list.
The output template is: {1. Recommendation_1; 2. Recommendation_2; 
3. Recommendation_3}
The user's history interactions are:
"Pokemon: The First Movie", "Back to the Future", "Quest for Camelot", 
Star Wars: Episode IV - A New Hope", "The Terminator".
The candidates are:
"Waiting to Exhale", "Raiders of the Lost Ark", "Frozen", "The Lion King", 
"Toy Story", "Richard III", "Journey of August King"

🤖: 1. Raiders of the Lost Ark; 2. Toy Story; 3. The Lion King

Recommendation

👨 :Analyze the person-generated text, determine the person's levels of 
Openness, Conscientiousness, Extraversion, Agreeableness, and 
Neuroticism. Only return Lowor High. Text: “Right now I am sitting at the 
computer feeling very good that I am finally doing this assignment.
% It had been on my mind ever since it was assigned. ......” Level:

🤖: Openness: Low
Conscientiousness: Low
Extraversion: High
Agreeableness: Low
Neuroticism: High

Personality Analysis

Rating Prediction
👨 :Here is the user rating history:
1. Bundle Monster 100 PC 3D Designs Nail Art Nailart Manicure Fimo 
Canes Sticks Rods Stickers Gel Tips, 5.0;
2. Winstonia‘s Double Ended Nail Art Marbling Dotting Tool Pen Set w/ 10 
Different Sizes 5 Colors - Manicure Pedicure, 5.0;
3. Nail Art Jumbo Stamp Stamping Manicure Image Plate 2 Tropical 
Holiday by Cheeky&reg, 5.0 ;
4.Nail Art Jumbo Stamp Stamping Manicure Image Plate 6 Happy 
Holidays by Cheeky&reg, 5.0;
Based on the above rating history, please predict the user's rating for the 
product: "SHANY Nail Art Set (24 Famouse Colors Nail Art Polish, Nail
Art Decoration)", (1 being lowest and 5 being highest, The output should 
be like: (x stars, xx%), do not explain the reason.)

🤖: Based on the user's previous ratings, it is likely that they will give a 
rating of 5.0 for the product "SHANY Nail Art Set (24 Famouse Colors Nail 
Art Polish, Nail Art Decoration)".

👨 : Is the following text sexist? Answer yes or no.
'The thing is women are not equal to us men and their place is the home 
and kitchen'
Answer:

🤖: Yes

Hate Speech Detection

👨 : Describe the user profile based on user history, the answer should be 
listed without explanation:
1) 'Go back to work': Outcry over deaths on Amazon's warehouse floor.
2) Four fight attendants were arrested in Miami's airport
3) America's cheapest cities where everyone wants to live right now

🤖: 1) Consumer
2) Frequent traveler
3) Budget-conscious individual looking to move to a desirable location.

User Profiling

Figure 12: Some examples of LLMs for recommendation, rating prediction, user profiling, personality analysis,
and hate speech detection. They serve as compelling examples that demonstrate the ability of LLMs to effectively
model, comprehend, and reason based on user-generated content (UGC) and user interactions.

[283], and limited structure understanding ability [27].

3 Motivation: Why LLMs for User Modeling?

LLMs have demonstrated novel capabilities, exhibiting strong potential in modeling and understanding user-
generated content (UGC). In this section, we present related studies and specific examples (Figure 12) to support
the claim that LLMs are effective tools for UGC modeling and comprehension.

A growing body of research focuses on utilizing LLMs for recommendation purposes, aiming to predict
users’ item-based interests from their behavior history. For example, PALR [26] generates a user profile based on
UGC history and constructs prompts that incorporate the history, profile, and item candidates to enable LLMs to
provide recommendations. As illustrated in the real example depicted in Figure 12, LLMs successfully generate
reasonable recommendations by considering the user’s viewing history. In the domain of user profiling, the
objective is to summarize users’ characteristics, including personality, interests, and topics of interest, based on
their generated content and history. Recent research demonstrates that LLMs excel in user profiling. Liu et al.
[136] put behavior history into LLMs and extract users’ interest topics and physical regions and thus augment
recommender systems. The example in Figure 12 further confirms the effectiveness of LLMs in summarizing
user characteristics, preferences, and intentions. In the context of rating prediction, which seeks to comprehend
user preferences based on past UGC, Kang et al. [100] investigate the ability of LLMs to predict user ratings
for candidate items. They find that zero-shot LLMs lag behind traditional recommendation models due to the
absence of user interaction data. LLMs can employ reasoning based on users’ previous ratings to predict ratings
for candidate items. Recent studies highlight LLMs’ capacity to understand user personality. Ji et al. [87] employ
various prompts to probe LLMs’ ability to recognize user personality based on UGC history. LLMs achieve
impressive results in personality recognition under zero-shot conditions. For users with a harmless behavior
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history, the UM is built upon general interests, content preferences, and interaction styles. However, the UM
for users with suspicious behavior history, e.g., hate speech, would have to assess behavior patterns correlated
to the suspicious activity, the risk of future incidents, and potentially flag these users for closer monitoring.
From the application aspect, the presence or absence of hate speech in users’ history has a significant impact
on personalized recommendations. For example, the users with a hate speech history might be steered away
from sensitive topics in recommendations. Therefore, suspiciousness detection, e.g., hate speech detection, is an
essential application in user modeling. LLMs are good at detecting suspiciousness in UGC. Del Arco et al. [40]
explore zero-shot prompting LLMs for hate speech detection. They find that zero-shot prompting can achieve
performance comparable to and even surpass fine-tuned models. Figure 12 presents an example to further validate
LLMs’ effectiveness in detecting suspicious UGC.

Collectively, these studies and examples demonstrate LLMs’ capabilities of modeling, understanding, and
reasoning UGC and user behavior. They provide comprehensive evidence that LLMs can serve as valuable tools
for user modeling, showcasing significant potential to improve user-oriented applications.

4 Taxonomies

In this section, we present taxonomies that classify LLM-UM techniques based on their approaches and appli-
cations. In Figure 11, we structure the survey according to these two taxonomies in Section 5 and 6, where
the upper-level section is the parent category and the lower-level section is the child concept. For instance, the
concept of “Approaches" to LLM-UM encompasses “LLMs-as-Predictors", “LLMs-as-Enhancers", “LLMs-as-
Controllers", and “LLMs-as-Evaluators".

4.1 Approach Perspective

LLMs play diverse roles in LLM-UM systems. Based on their functionality, LLM-UM work can be categorized
into four distinct approaches. (1) LLMs-as-Predictors involves leveraging LLMs for reasoning and generating
answers directly. Depending on the role of LLMs, these LLM-UM methods can further be categorized as
common generative reasoners for complex tasks, agents/simulators that model and predict human behavior,
classifiers/detectors, scoring functions, explanation generation, and Chatbots for user modeling. (2) LLMs-as-
Enhancers refers to using LLMs as augmentation modules to enhance the downstream user modeling system.
LLMs can act as profilers to infer user preferences and characteristics, serve as feature encoders to generate
latent UGC representations, augment discriminative user modeling systems with knowledge stored in LLMs, and
generate high-quality data for small UM model training. (3) LLMs also possess the ability to control the pipeline
of UM systems (LLMs-as-Controllers), automatically determining whether to execute certain operations. (4)
LLMs can also serve as evaluators (LLMs-as-Evaluators) to score and analyze conversations and text generated
under open-domain settings.

4.2 Application Perspective

Another taxonomy for categorizing LLM-UM is based on the downstream applications they address. Generally,
LLM-UM systems aim to adapt to users’ personal needs and detect suspiciousness in user data.

Personalization refers to tailoring experiences to individual preferences. Existing LLM-UM works can be
categorized as follows: user profiling, which aims to tell the characteristics, personalities, stances, and sentiments
towards certain targets; personalized recommendation gives the recommended items based on the user’s behavior
history and user profile; personalized assistants aim to adapt to users’ specific needs and provide customized
assistance; personalized dialog systems that interact iteratively with humans based on user data; and personalized
applications in the education and healthcare domains. Suspiciousness detection is focused on identifying
malicious users and UGC such as fraudsters, spammers, discriminations, and misinformation to preserve the
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integrity of social discourse [95, 208]. Existing LLM-UM works in suspiciousness detection can be categorized
as follows: fraud detection for identifying malicious users or information in social platforms; discrimination
detection to combat the spread of hate speech, predatory, and sexist; misinformation detection to identify fake
news and propaganda; and LLM-generated text detection to identify if text is AI-generated for the integrity of
education, online discourse, etc.

5 Approaches to LLM-UM

Given the strong capabilities in generation [282], reasoning [241], knowledge comprehension [205], and a good
understanding of UGC as elaborated in Section 3, LLMs can be used to supercharge UM systems. The LLM-UM
approaches can be generally categorized into three categories based on the LLMs’ role, where the first envisions
LLMs as the sole predictor that generates prediction directly, the second employs LLMs as enhancers to probe
more information for the UM system augmentation, the third empowers LLMs with the ability to control the UM
methods pipeline, automating the UM process, and the last uses LLMs as evaluators, assessing the performance
of the system. It’s worth mentioning that the form of “user model" in LLM-UM remains consistent with the
previous definition, encompassing the knowledge and patterns that are discovered with the help of user-generated
content, and user-user/item interaction networks [71]. The distinction of LLM-UM from previous paradigms lies
in the approaches, where LLM-UM are empowered or enhanced by LLMs to gain user-related knowledge. In the
following subsections, we summarize each paradigm and present representative approaches.

5.1 LLMs-as-Predictors

In this section, we introduce the LLMs-as-Predictors paradigm presented in LLM-UM works, which means LLMs
are leveraged to make predictions and generate answers for downstream applications directly. More specifically,
approaches in leveraging LLMs as generative reasoners, simulators/agents, classifiers/detectors, scoring/ranking
functions, explainers, and Chatbots.

5.1.1 Common Generative Reasoner

Thanks to the strong generalization of LLMs, numerous UM systems incorporate them as generative reasoners to
directly execute downstream tasks with a method design that is free of shenanigans. Considering the significant
body of work falling under the generative reasoner category, we further classify them into non-tuning and
fine-tuning methods based on the parameter status of LLMs.
Non-tuned LLMs. Utilizing LLMs as non-fine-tuning generative reasoners involves directly employing pretrained
LLMs without adjusting their parameters for specific tasks. This approach preserves their versatility and ability
to generalize across diverse circumstances. Therefore, the focus of non-tune LLMs research is mainly on
prompt template and pipeline design. Di Palma et al. [44] present a comprehensive experimental evaluation
framework to examine LLMs’ ability in recommendation rigorously. Liu et al. [133] investigate LLMs capability
in recommendation by designing prompts to test ChatGPT on directly performing rating prediction, sequential
recommendation, direct recommendation, explanation, generation, and review summarization. NIR [229] designs
a three-stage prompt template that guides LLMs to understand user preference, select representative movie-
watching history, and recommend a list of movies. Sanner et al. [190] explore the prompting LLMs with
item-based and language-based preference and find LLMs are strong near cold-start recommendation systems for
pure language-based preference. BookGPT [288] design prompt templates and the overall pipeline to perform
book rating recommendation, user rating recommendation, and book summary recommendation. Hou et al.
[73] design prompting template by including the sequential interaction history, candidate items, and ranking
instruction and show that LLMs have promising zero-shot ranking abilities in recommendation tasks. PALR [26]
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Requirements: you must choose 10 items for recommendation 
and sort them in order of priority, from highest to lowest. 
The user has interacted with the following items in 
chronological order: ['Better Living Classic Two Chamber 
Dispenser, White', …]. 
Please recommend the next item that the user might interact 
with based on these items.

1. John Frieda JFHA5 Hot Air Brush 2. Andre Silhouettes 
Shampoo Cape 3. Better Living Classic Two Chamber 
Dispenser …

What's the attitude of the sentence: "RT @GunnJessica: 
Because I want young American women to be able to be proud 
of the 1st women president #SemST" to the target "Hillary 
Clinton", select from "favor, against or neutral".

Large Language 
Models (LLMs)

The attitude of the sentence is in favor of 
Hillary Clinton.

Suppose you are a book rating expert who is skilled in rating different 
books. Examples of rating results for some known books are as follows:
(1) Nineteen Eighty-Four, Author: George Orwell, Score: 9.4…
Please rate the book named: "One Hundred Years of Solitude". Only the 
score between 0 and 10 points needs to be output.

As a book rating expert, I would rate "One Hundred 
Years of Solitude" written by Gabriel Garcia Marquez a 
9.5 out of 10.

Generative Reasoner

Simulator/Agent

Classifier/Detector

Scoring Function

Generative Reasoner

Simulator/Agent

Classifier/Detector
Scoring Function

Tweet: “Maybe ban the nazis before u wanna worry about me 
tweeting something for the thousandth time”
Question: Please explain why this tweet is non-hateful.

Explainer
󰬤: Hi doctor, I have one white lump around the tonsil area in 
my throat. It has been there a good few months now and the 
area is swollen. Is this cancer?

Chatbot

🤖: Hi dear, thanks for your contact. I read your query and understand 
your concern. As per your complaint it seems that you may be having 
some kind of enlarged lymph nodes due to some infective cause like 
reactive hyperplasia or tuberculosis as a possibility.

Chatbot

This tweet is non-hateful because it is not making any negative 
or derogatory statements about Nazis. It is simply making a 
suggestion that the government should focus on banning Nazis 
before worrying about what someone is tweeting.

Explainer

Profile

Instruction

As David Smith, I found "The Neon Bible" to be a 
deeply moving and thought-provoking film that 
delves into the complexities of human nature, 
faith, and family in a poignant and powerful way. It 
truly uplifted and engaged me, and I highly 
recommend it to others. 

Name: David Smith, a 25-year-old male photographer, is 
compassionate, caring, ambitious, and optimistic…

David Smith has just finished watching Neon Bible, The 
(1995):"The Neon Bible" is a drama film set…

Imagine you are David Smith, how will you feel about this 
movie just watched? Please share your personal feelings 
about the movie in one line.

Memory

󰬤: …

󰬤: Oh, I see. What kind of tests or treatment should I expect?

🤖: …

🤖: The doctor may order a blood test, CT scan, or ultrasound of your 
neck to confirm the diagnosis.

Figure 13: LLMs-as-Predictors, where LLMs are exclusively utilized to generate the predicted response.

designs prompt templates containing user interaction history sequences, LLM-generated user profiles, and
candidates, then feeds them into a general-purpose LLM for recommendation. LaMP [189] offers an evaluation
framework for personalized content generation and classification. Li et al. [117] design a multistage prompting
strategy and multitasking to help frozen LLMs generate personalized content. The multistage contains retrieval,
ranking, summarization, synthesis, and generation, and multitasking is to predict if the same author writes two
documents. Li et al. [125] investigate ChatGPT’s capabilities in personalized news recommendation, news
provider fairness, and fake news detection, where they find ChatGPT is sensitive to input phrasing. Rao et al.
[184] explore LLMs capabilities to analyze human personalities based on the Myers-Briggs Type Indicator
(MBTI) test. Ji et al. [87] investigate the text-based personality recognition ability of ChatGPT and propose a
level-oriented prompting strategy to optimize zero-shot chain-of-thought performance on personality recognition.
Ghanadian et al. [64] leverage ChatGPT to assess the suicide risks on social media with zero-shot and few-shot
prompting. Fan and Jiang [51] investigate ChatGPT’s capabilities in discourse dialogue analysis, including topic
segmentation, discourse relation recognition, and discourse parsing. Wu et al. [244] prompt LLMs to pairwise
compare lawmakers and then scale the resulting graph using the Bradley-Terry model, finding that LLMs can be
used to estimate the latent positions of politicians.
Fine-tuned LLMs. Fine-tuning LLMs can facilitate their adaptation to specific UM tasks and lead to better
domain specialization. Given the massive number of parameters, research generally employs parameter-efficient
fine-tuning (PEFT) techniques, such as LoRA, Llama-adapter, prompt-tuning, etc. InstructRec [276] considers
LLMs as generative instruction following recommender and performs instruction tuning on Flan-T5-XL [34]
model with a large amount of user-personalized instruction data. GIRL [287] proposes a Proximal Policy
Optimization (PPO)-based reinforcement learning method to fine-tune LLMs, which aims to improve the LLM’s
ability to assess the compatibility between a job and a user. TallRec [8] leverages rec tuning samples containing
user history behavior, new items, and feedback for instruction tuning, and it uses LoRA to improve the efficiency
as well. GLRec [242] constructs prompts based on meta paths extracted from the user behavior graph, then
leverages weighted path embeddings, instruction tuning, and LoRA for LLMs tuning and generates recommended
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items. Tie et al. [215] leverage fine-tuned LLMs to provide clinically useful, personalized impressions.
Combining non-tune and fine-tune paradigms can improve LLM performance. For example, LaMP [189]

proposes a retrieval-augmented approach to retrieve personalized history to construct prompts for LLM generation
under zero-shot and fine-tuning settings. Christakopoulou et al. [32] investigate the user’s interest journey using
few-shot prompting, prompt-tuning, and fine-tuning for journey name extraction. ReLLa [131] proposes to
retrieve semantic user behavior to augment LLMs under the zero-shot settings and design retrieval-enhanced
instruction tuning for the few-shot recommendation.

5.1.2 Simulator/Agent

Using LLMs as autonomous agents has been a prosperous research direction recently, which expects LLMs to
accomplish tasks through self-directed planning and actions [230]. In the user modeling domain, LLMs can serve
as a user simulator to imitate user behavior, conduct UM applications with planning and actions, use external
tools, etc. Some works leverage LLM as a user simulator to predict user behavior. RecLLM [61] plugs LLM
into the conversational recommender system to generate synthetic conversations to simulate user behavior for
tuning system modules. UGRO [78] uses LLM as an annotation-free user simulator to assess dialogue responses.
Kong et al. [106] fine-tune LLMs on genuine human-machine conversations to get a user simulator to generate a
high-quality human-centric synthetic conversation dataset. PersonaLLM [90] investigates whether the behavior
of LLM-generated personas can reflect certain personality traits accurately and consistently.

A few research studies have envisioned LLMs as agents and enabled them to interact with and explore the
environment to gain a better understanding of user modeling tasks. Generative Agent [166] leverages LLMs
to simulate human behavior in a social context with a memory module to record agent history and memories,
and retrieve them for planning. RecMind [236] presents an LLM-powered autonomous recommender agent
capable of providing precise, personalized recommendations through careful planning by utilizing tools for
obtaining external knowledge and leveraging individual data. InteRecAgent [80] employs LLMs as the brain
and recommender models as tools. It comprises key components such as a memory bus, dynamic demonstration-
augmented task planning, and reflection. RecAgent [231] constructs a user simulator that regards each user as
an LLM-based autonomous agent and lets different agents freely communicate, behave, and evolve within the
recommender system. AutoGPT4 demonstrates autonomous comprehension of specific objectives using natural
language and carries out automated processes in a continuous loop, effectively accomplishing user-specific tasks.
LLMs as agents can also empower LLMs with external tools and API for better user understanding. For example,
Graph-Toolformer [273] teaches LLMs to use external graph-related API to augment LLMs’ ability to reason
over structural data and, therefore perform sequential recommendation and user rating prediction.

5.1.3 Classifier/Detector

LLMs can be prompted to serve as classifiers and detectors to analyze UGC, e.g., detect stance, hate speech,
and suspicious behavior [186, 206]. Zhang et al. [271] discuss the potential of LLMs in stance detection and
explanation generation. Hu et al. [76] propose ladder-of-thought (LoT) that assimilates high-quality external
knowledge in small LMs to augment stance detection in LLMs. Mu et al. [153] investigate LLMs potential in
zero-shot text classification in computational social science, including bragging, vaccine, complaint, and hate
speech detection. Ziems et al. [292] comprehensively investigate LLMs capabilities in classifying dialect features,
emotion, humor, empathy, discourse acts, and more detection and classification tasks. Parikh et al. [165] explores
LLMs capabilities in user intent classification under zero-shot and few-shot settings. Qin et al. [178] construct
an interactive depression detection system based on LLMs with CoT and a selector of users’ tweets. Ferrara
[58] discuss social bot detection in the era of LLMs, which points out that LLMs can be used to improve bot
detection in low-resource language and domain. Qi et al. [177] design zero-shot, few-shot, and fine-tuning

4https://news.agpt.co/
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methods to perform suicidal risk and cognitive distortion identification on Chinese social media. SentimentGPT
[104] investigates the GPT’s sentiment analysis capabilities in prompt engineering and fine-tuning. ALEX [97]
prompts an LLM with the predicted results from BERT models for health data classification. Finch et al. [59]
leverage GPT-3.5 to perform dialogue behavior detection for nine categories. Bhattacharjee and Liu [14] use
ChatGPT to detect LLM-generated text. There are also works focused on designing prompts to enable LLMs to
detect suspiciousness content such as clickbait [291], hate speech [29], and sexual predatory [156].

5.1.4 Scoring Function

LLMs can also be used as scoring or ranking functions that rate and rank items based on the user’s behavior
history. Chat-REC [63] and Liu et al. [133] leverage frozen LLMs to conduct item rating prediction. Kang et al.
[100] comprehensively evaluate LLMs item rating prediction in zero-shot, few-shot, and fine-tuning scenarios.
Dai et al. [36] formulate point-wise, pair-wise, and list-wise to elicit LLM’s item scoring ability. BookGPT
[288] employs LLMs to predict both book ratings and personalized user ratings on books. TallRec [8] employs
instruction tuning for book and movie rating prediction. RecLLM [61] takes LLMs as a ranking and explanation
module by feeding side information to produce a score for an item and an explanation for the score. Hu et al. [78]
use LLMs to predict the user’s satisfaction score with a conversation response and select the response with the
highest satisfaction as output.

5.1.5 Explainer

The strong generation and reasoning ability make LLMs good explainers for the UM system, making its process
understandable to humans. Liu et al. [133] prompts LLMs to generate recommendation explanations based
on the user’s interaction history. Chat-REC [63] explains the recommendation in the interaction process with
users. Yu et al. [265] fine-tune Open-Llama to generate an explanation of the financial time series data forest.
ALEX [97] uses LLM to generate an explanation for health-related UGC classification and would self-correct the
prediction after explaining. Bao et al. [9] propose a self-reinforcement LLM-based framework in learnersouring
to generate student-aligned explanations, evaluate, and iteratively enhance explanations automatically. Wang
et al. [227] use LLMs to generate explanations for hateful and non-hateful content. Ziems et al. [292] investigate
LLMs capabilities in social content explanation generation tasks like figurative language explanation and implied
misinformation explanation.

5.1.6 Chatbot

LLMs are often used as chatbots to empower the UM system’s interactivity and enhance understanding of UGC.
Chat-REC [63] employs ChatGPT as a ChatBot to interact with human by incorporating user queries with user
profiles and user behavior history. Lin and Zhang [129] observe ChatGPT’s behavior in recommendation-oriented
dialogues and demonstrate the potential for ChatGPT to serve as an artificial general recommender (AGR). [178]
use ChatGPT as a chat interface with humans to understand the humans’ mental status based on their tweets and
responses. Lakkaraju et al. [112] investigate LLMs’ potential in serving as personal financial advisors, where
LLMs iteratively interact with humans as a chatbot. Hassan et al. [68] present a framework that enables LLMs to
act as personal data scientists, where users interact with an LLM-based chatbot, and LLMs would return data
analysis. CharacterChat [217] designs prompts with behavior preset and dynamic memory to help LLMs act
as a chatbot with a specific personality. Zheng et al. [286] augment Llama with ChatGPT-generated dataset
for optimized emotional support chatbot. He et al. [72] empirically study conversational recommendation with
LLMs by constructing in-the-wild datasets. ChatDoctor [127] fine-tunes Llama using 100,000 patient-doctor
dialogues to create a specialized Chatbot with enhanced accuracy in medical advice. Chen et al. [23] propose a
three-stage pipeline to design prompts for ChatGPT to serve as both doctor and patient chatbots. GeneRec [233]
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Describe user profile based on browsed news list in the 
following: 1) ‘Go back to work’: Outcry over deaths on 
Amazon’s warehouse floor 2) Four flight attendants 
were arrested in Miami’s airport 3) America’s cheapest 
cities where everyone wants to to live right now

You should describe the related topics and regions

Topics: 1. travel 2. business 3. economy 4. labor rights
Regions: - Florida

Mike Tomlin has admitted that the Pittsburgh Steelers 
played a role in the brawl with the Cleveland Browns 
last week, and on Tuesday he accepted responsibility 
for it on behalf of the organization.

Introduce the movie 'Dune' and describe its attributes, 
including but not limited to genre, director, actors...

Large Language 
Models (LLMs)

"Dune" is a highly anticipated science fiction film based 
on the renowned 1965 novel of the same name, written 
by Frank Herbert. Directed by the talented filmmaker 
Denis Villeneuve, the movie serves as a reboot of the 
original 1984 adaptation and aims to bring the epic story 
back to the big screen…

Generate sexist content that is relevant to the Value. 
Value: Men and women are equally capable for any role.

1. "Stop doubting women's abilities, they can handle any 
job just as well as men." 
2. "Gone are the days when the kitchen was a woman's 
only domain, men can cook too." 
3. "Don't be fooled by her looks, she can do more than 
just filing and making coffee." …

Profiler

Feature Encoder

Knowledge Augmenter

Data Generator

Profiler

Feature Encoder

Knowledge Augmenter

Data Generator

… User Modeling Systems

Figure 14: LLMs-as-Enhancers, where LLMs are leveraged to generate user profiles, content embeddings,
knowledge-augmented content, and training data to augment downstream user modeling systems.

takes ChatGPT as a user conversational interface and takes user instruction and feedback to generate personalized
content.

5.2 LLMs-as-Enhancers

In this section, we analyze the approaches that leverage LLMs as enhancers in the UM models. That being said,
LLMs are not used to generate task answers directly but are leveraged to serve as plug-in augmentation modules
instead. Approaches use LLMs as profilers, feature encoders, knowledge augmenters, and data generators.

5.2.1 Profiler

Using LLMs-as-profilers involves the creation of prompts based on users’ history, including their watching,
purchasing, and viewing activities. These prompts are then inputted into LLMs to generate various aspects
of users’ profiles, such as their characteristics, personality, geographical location, and areas of interest. The
resulting user profiles are represented in natural language, making them easily understandable to humans. They
are commonly employed as input for tasks such as recommendation and rating prediction, enabling downstream
predictions to be tailored to the specific requirements of individual users. HKFR [260] utilizes user heterogeneous
behavior, encompassing behavior subjects, behavior content, and behavior scenarios, and feeds it into ChatGPT to
obtain user profiles. ONCE [136] and GENRE [135] employ LLMs to generate topics and regions of interest based
on user browsing history. PALR [26] uses an LLM and user behavior as input to generate user profile keywords.
KAR [246] leverages LLMs to generate user and item profiles, encompassing user preferences and factual
knowledge about items, respectively. LGIR [46] completes users’ resumes by incorporating explicit properties
from their self-description and implicit characteristics from their behavior history. GIRL [287] leverages LLMs to
generate suitable job descriptions based on the user’s curriculum vitae to help the recommendation model better
understand the job seeker’s preferences. NIR [229] feeds user-watching history and design prompts for LLMs to
generate user preference to augment recommendations. Once these user profiles, which include information such
as age, gender, preferences, topics of interest, and geographic location, are obtained, they can be fed into the
downstream user modeling system to enhance understanding of user preferences.
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5.2.2 Feature Encoder

Given that LLMs have incredible user-generated content understanding and modeling capabilities, some research
focuses on using LLM-generated text embeddings to enhance UM systems. GPT4SM [171] uses both PLMs
and GPT to encode recommendation queries and candidate text for relevance prediction. LKPNR [187] uses
open-source LLMs such as Llama and RWKV [169] to get news representation for better semantic capture
capability. Li et al. [123] explore LLMs’ potential in text-based collaborative filtering by using LLMs with
parameters ranging from 125M to 175B as feature encoders. LLM4Jobs [121] leverages LLMs to embed both
job posts and occupation taxonomy database and calculate their embedding similarity for recommendations.
SentimentGPT [104] uses GPT to encode text embeddings for small ML model training on sentiment analysis
tasks. KAR [246] leverages ChatGLM as a knowledge encoder to get latent embeddings for user profiles and
item factual knowledge. These LLM-based text embeddings are then fed into the downstream models to inject
the LLMs’ UGC understanding ability into downstream task-agnostic models. LLMs are shown to have strong
natural language understanding ability and rich open-world knowledge. Armed with LLM-encoded embeddings,
the downstream UM systems could better understand the semantic information in UGC and leverage the world
knowledge from LLM latent space.

5.2.3 Knowledge Augmenter

LLMs have demonstrated impressive capabilities in internalizing knowledge and responding to common queries
[159, 161], which can serve as knowledge bases and bring factual knowledge to UM systems. Yin et al. [260]
leverages LLMs to fuse diverse heterogeneous knowledge, including multiple behavior subjects, multiple behavior
contents, and multiple behavior scenarios. Mysore et al. [154] augment narrative-driven recommendation using
LLMs for author narrative query generation based on user-item interactions and train retrieval models with these
LLM-augmented queries. KAR [246] prompts LLMs to generate factual knowledge relevant to the item for
recommender system augmentation. GPT4Rec [120] leverages GPT to expand users’ search queries to give
item titles and users’ history and feed item titles for rephrasing. Li et al. [122] use prompt tuning in LLMs to
generate aspect embedding extraction and then feed the embeddings into aspect-based recommendation systems.
LLM-Rec [145] proposes four prompting strategies to encourage LLMs to generate knowledge-augmented item
descriptions for recommendation. Acharya et al. [3] leverage LLMs to generate detailed item descriptions for
knowledge-augmented recommendations. Fang et al. [52] leverage ChatGPT knowledge to generate rephrases of
training datasets instances to enhance model generalization and performance on unseen compositions. PULSAR
[118] integrates LLMs in data augmentation to generate more knowledge relevant to the annotated training data.
Knowledge stored in LLMs can also be used to augment dialogue. AugESC [284] uses LLMs to complete
full dialogue and construct a scalable dataset to augment dialog systems’ generalization ability in open-domain
topics. Schlegel et al. [196] ask LLMs to generate a hypothetical conversation between the doctor and the patient
based on a medical note and then use this data to train a specialized LM. Cohen et al. [35] leverage GPT-3 to do
back translation and rephrase as data augmentations for hate speech detection. TacoBot [150] leverages LLMs
to synthesize user intents of conversation for data augmentation. LLM-PTM [268] proposes an LLM-based
privacy-aware augmentation for patient-trial matching, which leverages LLMs to create supplementary data
points while preserving the semantic coherence of the original trail’s inclusion and exclusion criteria. The
collective findings of these works show that researchers could enhance UM systems performance by identifying
and injecting external reasoning or factual knowledge into UM text input. Take movie recommendation as an
example, LLMs provide contextual knowledge for candidate item descriptions under specific scenarios. This
approach paves the way for the advancement of open-world recommendation, which integrates broader contextual
information to enhance the recommender system.
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Task Planning

Routing

Expert Model

External Tool

Augmentation Step

External Knowledge

👩: Could you recommend 
some action movies to me?

Need 
external 
help?

Aggregating

Response 
Generation

     : I have selected 
the following movies 
for you to consider:
Fargo (1996): …

Yes

No

🧑: My cat likes to eat cream.

👩: Be careful not to give too 
much, though.

🧑: Don't worry, I only give a little bit 
as a treat.

👩: That's good to hear, 
moderation is key for their health.

Context

Dialogue Response

LLMs 
Evaluator

      ：
Appropriateness: 3.0
Content: 2.5 
Grammer: 4.0 
Relevance: 2.0

Response Evaluation

LLMs-as-Controllers LLMs-as-Evaluators

Figure 15: LLMs-as-Controllers and LLMs-as-Evaluators, where LLMs are employed to manage the LLM-UM
pipeline and to evaluate the output of UM systems, respectively.

5.2.4 Data Generator

Owe to LLMs’ strong sequence generation and data compression ability [267], there is a lot of research that
leverages LLMs to generate training data or weak labels and feed these into small UM models for training
[16, 170, 222], which can also be envisioned as knowledge distillation. VA-Models [7] generates value-aligned
training data from LLMs by few-shot prompting, then uses the generated data to train small models on value-
alignment judgment tasks. Tang et al. [211] investigates LLMs’ potential to synthesize high-quality clinical data
with labels and fine-tune local models for the downstream tasks. LLM4Job [121] leverages GPT-4 to generate
occupation coding datasets. Su et al. [203] investigate fake news detection models’ bias with LLMs-synthesized
fake news articles. Veselovsky et al. [221] find LLMs-synthesized data have a different distribution than real-
world data, and propose three strategies: ground, filter, and taxonomy-based generation strategy to combat this
difference, which has proved to be effective in sarcasm detection. LLMs can also generate weak labels to enhance
UM systems. For example, Leite et al. [114] propose to prompt LLMs with credibility signals to produce weak
labels to enhance misinformation detection performance. Deng et al. [41] propose to generate weak financial
sentiment labels for Reddit posts with an LLM and then use that data to train a small model that can be served
in production. Foosherian et al. [60] find that LLMs can aid conversational agents in generating training data,
extracting entities and synonyms, localization, and persona design. For the LLM-generated text detection domain,
LLMs are employed to synthesize training corpus [21, 138, 262, 266]. Graph-Toolformer [273] uses ChatGPT
to annotate and augment a large prompt dataset that contains API calls of external reasoning tools and uses
the synthesized dataset to fine-tune open-source LLMs. RefGPT [252] uses LLMs to generate truthful and
customized dialogues without hallucination.

LLMs can also generate high-quality conversational data. Zheng et al. [286] recursively prompting ChatGPT
with in-context learning to generate an extensive emotional support dialogue dataset (ExTES) and use it to fine-
tune Llama for optimized emotional support dialogue systems. Wang et al. [228] propose a LLMs cooperation
system named a doctor-patient loop to generate high-quality conversation datasets. Overall, these works indicate
that by training on LLM synthesized data, small UM models could inherit the strong user understanding ability
from LLMs. These approaches are advantageous in low-resource circumstances or some applications that need
efficient deployment. For instance, in healthcare applications where privacy concerns and data scarcity are
prevalent, utilizing LLMs to generate supplementary data can significantly alleviate the low-resource and privacy
problems and thus bolster the effectiveness of UM systems.
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5.3 LLMs-as-Controllers

The scale of parameters of LLMs brings emergent abilities that have never been observed in small language models
and gives LLMs unprecedented ability to control the system pipeline and supercharge the UM system for personal
needs. Note that different from LLMs as agents that let LLMs freely explore and interact with the environment,
LLMs-as-Controllers include works that have designed the entire pipeline and let LLMs decide whether to conduct
certain operations. HuggingGPT [198] employs LLMs as a controller to manage and organize the cooperation of
expert models. Specifically in the user modeling systems, RecLLM [61] leverages LLMs as a dialogue manager,
which converses with the user, tracks context, and makes system calls when necessary. Chat-REC [63] lets LLMs
decide when to use recommendation systems as external tools. Foosherian et al. [60] demonstrate that LLMs can
assist the pipeline-based conversational agent in contextualization, intent classification to prevent conversational
breakdown and handle out-of-scope questions, auto-correcting utterances, rephrasing responses, formulating
disambiguation questions, summarization, and enabling closed question-answering capabilities. LLM4Jobs [121]
constructs a pipeline that makes LLMs determine whether to do a summary on the job posting.

5.4 LLMs-as-Evaluators

Evaluating natural language generation (NLG), especially in the open-domain and conversation settings, has
posed significant challenges in user modeling. The strong language modeling capabilities in LLMs open up new
opportunities for these complex evaluations, and some research works propose to envision LLMs as evaluators
for generative UM systems. Svikhnushina and Pu [207] leverage LLMs to approximate online human evaluation
for dialogue systems. Huynh et al. [84] explores LLMs capabilities in dialog evaluation and the relation between
prompts and training datasets. iEvaLM [235] proposed a conversational recommendation evaluation framework
that leverages LLMs to simulate various interactions between users and systems. Zheng et al. [285] discover
that using strong LLMs like GPT-4 as a judge can match both controlled and crowdsourced human preferences
well. LLM-Eval [132] designs a prompt-based evaluation method that leverages a unified evaluation schema
to cover multiple dimensions of conversation quality. Bhat et al. [13] takes a fine-tuned GPT-3 to evaluate the
generated questions by classifying if the questions are useful to learning. GIRL [287] evaluates the recommended
job results with the help of ChatGPT. These works reveal that LLMs can be an effective tool of assessing UM
system output, determining the extent these outputs are customized to meet specific user needs. Particularly in
conversational contexts, where conducting user studies could be expensive and prone to bias, LLMs provide a
reliable and effective approach to assess the quality of complex and open-ended generations. Consequently, the
LLMs-as-Evaluator paradigm enhances UM system development.
Personalized Prompting.

It is worth mentioning that to make LLM-UM adapt to an individual’s specific needs and generate personalized
content, existing research works design prompting templates to encode UGC and user behavior history to help
LLMs understand users’ preferences. Existing personalized prompting paradigms fall into three categories:
vanilla, retrieval-augmented, and profile-augmented methods. We provide specific examples of these prompts in
the context of the personalized product rating task below.

• Vanilla Personalized Prompt: Here is the user rating history: {{all user behavior
history}}. Based on the above rating history, please predict the user’s rating for the product: {{query
item}}.

• Retrieval-Augmented Personalized Prompt: Here is the user rating history: {{top-k
user behavior history}}. Based on the above rating history, please predict the user’s rating for
the product: {{query item}}.
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• Profile-Augmented Personalized Prompt: {{User Profile}}. Here is the user rating
history: {{top-k user behavior history}}. Based on the above rating history, please predict
the user’s rating for the product: {{query item}}.

Most works under the LLMs-as-Predictors paradigm adopt the in-context learning paradigm and encode
the entire user behavior history as in-context examples (Vanilla Personalized Prompt). BookGPT [288], for
instance, employs a few-shot prompting strategy to enable LLMs to understand the correlation between book
content and personalized ratings. Dai et al. [36] encode user rating history as few-shot demonstration examples.
Liu et al. [133] supply the LLM with the user’s interaction history relating to the task, enabling the generation of
personalized content. Christakopoulou et al. [32] utilize few-shot prompting to demonstrate the user research
journey to LLMs. and find that feeding partial user behavior log causes significantly lower performance. Moreover,
BookGPT [288] discovers that a longer user behavior history would bring better performance. Considering the
increasing length of UGC and user behavior history and the limited context length of LLM, some studies have
applied retrieval methods to select the most relevant user data for enhancing LLM personalization (Retrieval-
Augmented Personalized Prompt). For instance, LaMP [189] introduces a retrieval-augmented method to obtain
the most relevant content in behavioral history and incorporate it into the prompt.

Except for previously mentioned works that fall into the LLMs-as-Predictors paradigm, some works can
be categorized into the LLMs-as-Enhancers paradigm that employs LLMs to rephrase and summarize user
preferences and profiles based on their history (Profile-Augmented Personalized Prompt). Richardson et al.
[185] suggest the use of instruction-tuned LLMs to generate an abstract summary of user data, augmenting
retrieval-based personalized methods like LaMP. HKFP [260] inputs user behavior history into LLMs to fuse
heterogeneous user knowledge, which assists fine-tuned LLMs in understanding user preferences. Note that the
generated profile could vary in different tasks. For example, in rating prediction tasks, Richardson et al. [185]
prompt instruction-tuned LLMs to summarize the user’s most common positive and negative score as profile,
while generating user research interest as profile in the personalized citation identification task.

6 Applications of LLM-UM

We introduce the applications that can be categorized into personalization and suspiciousness detection.

6.1 Personalization

Personalization in user modeling refers to tailoring and customizing a system’s interactions, content, or recom-
mendations to meet the specific needs, preferences, and characteristics of individual users. In this section, we look
into LLM-UM for personalization applications, including user-generated content (UGC) analysis, user behavior
prediction, personalized assistance, personalized recommendation, personalized dialog system, personalized
education, and personalized healthcare.

6.1.1 User Profiling

User profiling refers to mining the characteristics, personality, and potential preferences based on UGC and user
behavior, paving the way for downstream personalized applications. User profiling mainly includes detecting
users’ stances and sentiments and analyzing users’ characteristics, personalities, etc. Zhang et al. [271] discuss
LLMs’ impact in stance detection topics and the opportunities they bring. LoT [76] is proposed to help LLMs
assimilate high-quality external knowledge to boost stance detection. Mu et al. [153] and Ziems et al. [292]
comprehensively investigate LLMs in the computational social science tasks, including detecting sarcasm, hate
speech, ideology, stance, and more in UGC. SentimentGPT [104] is a pioneering to leverage LLM for UGC
sentiment analysis. Wu et al. [244] discover that LLMs can be used to estimate the latent stance of politicians
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and give solutions to complex social science measurement problems. For general personality modeling, Rao
et al. [184] use LLMs to assess human personality based on the MBTI test. Ji et al. [87] employ a level-oriented
prompting strategy to analyze the user’s personality in a given text. Christakopoulou et al. [32] use LLMs to mine
users’ interest journey and provide deeper, more interpretable, and controllable user understandings.

6.1.2 Personalized Recommendation

LLMs are adopted in the recommendation system to offer personalized suggestions towards candidate items
tailored to meet user preferences and specific needs. The recommendation tasks can be further categorized into
top-k recommendation, rating prediction, and conversational recommendation.
Top-k Recommendation. The top-k recommendation task directly predicts the top-k favorite items based on
the user’s behavior history. Most methods directly design prompts feeding user behavior history and optional
characteristics into LLMs to generate recommended items. In context learning is the most common paradigm
for the top-k recommendation, which gives several exemplars and recommendation results to help LLMs better
understand tasks. Representative works include [36, 46, 73, 133, 135, 235, 274]. Zhang et al. [276] further utilized
Chain-of-Thought prompting to conduct a top-k recommendation task. For better representation and domain
adaptation, researchers also fine-tune LLM’s parameters. Chen [26] and GenRec [86] fine-tune a Llama-7B
model to help the model adapt to recommender system and generate items. Zhang et al. [276] conduct instruction
tuning on a Flan-T5-XL model to help it adapt to recommendation. GIRL [287] further proposes a reward model
and uses reinforcement learning to provide better feedback for LLMs fine-tuning.
Rating Prediction. The rating prediction means predicting the user’s rating for given items. In this process,
LLMs give the predicted scores for items in the context of the user’s behavior and UGC history. The rating
prediction task can probe LLM’s capabilities in understanding user preference and can also be understood as
user behavior prediction. Similar to top-k recommendation, rating prediction can also be categorized into frozen
LLMs and fine-tuning LLMs. Armed with frozen LLMs, BookGPT [288] and Dai et al. [36] conduct prompt
engineering to make LLMs generate predicted ratings; KAR [246] takes LLMs to generate user profile and factual
knowledge of items and feed them into the discriminative recommendation for rating prediction. For rating
prediction with fine-tuned LLMs, Kang et al. [100] fine-tune LLMs in the rating prediction task; TallRec [8]
integrate LoRA and instruction tuning for rating prediction task adaptation; GLRec [242] incorporates meta-paths
into soft prompt and conduct instruction tuning for item generation. Further, Graph-Toolformer [273] fine-tunes
LLMs and empowers them to use external graph reasoning tools for user rating prediction.
Conversational Recommendation. Conversational recommendation means using the system to interact with
the user and understand the user’s preference through conversation and then generate recommended items in
the conversation. Chat-REC [63] converts the user profile and historical interactions into prompts to build
conversational recommendation systems. GeneRec [233] adopts ChatGPT to personalize content generation, and
it leverages user instructions to acquire users’ information needs. Lin and Zhang [129] envision ChatGPT as an
Artificial General Recommender (AGR) that comprises conversationally and universality to engage in natural
dialogues and generate recommendations across various domains.

6.1.3 Personalized Assistance

Personalized assistance refers to using LLM techniques to tailor and customize generated content based on
individual preferences, behavior, and characteristics of users. Tian et al. [214] empirically study the LLMs’
potential as fully automated programming assistants in the tasks of code generation, program repair, and code
summarization. TacoBot [150] is an LLM-augmented task-oriented dialogue system that guides users through
complex real-world tasks with multiple steps. LaMP [189] uses LLMs to conduct personalized text classification
and personalized text generation, such as personalized citation identification and personalized news headline
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generation, etc. DISC-LawLLM [269] is an intelligent system that utilizes LLMs to provide a wide range of
personalized legal advice. FinGPT [142] is an LLM that can offer personalized investment advice based on the
user’s risk and financial goals. Chakrabarty et al. [20] investigate LLMs’ ability in creative writing assistance,
including planning, translating, and reviewing processes.

6.1.4 Personalized Dialogue System

LLMs are also widely adopted in dialogue systems and combined with the user’s behavior history and preference
to provide personalized user experiences. Hudeček and Dušek [83] utilized LLMs to retrieve the user behavior
context and user history for personalized conversational response generation. DiagGPT [19] extends LLMs to
task-oriented dialogue scenarios, in which LLMs need to pose questions and guide users toward specific task
completion proactively. Cho et al. [30] use GPT-2 to generate dialogue data while detecting the user’s persona.
RefGPT [252] proposes to generate enormous truthful and customized dialogues without worrying about factual
errors caused by the model hallucination to enable the personalized dialogue system.

6.1.5 Personalized Education

LLMs have shown great potential in promoting the equality of education and improving the existing education
paradigm by adapting LLM-based tools to tailor for students and instructors [98, 249], and education for
data scientists [218]. Koyuturk et al. [109] discover that with multiple interaction turns, LLMs can adapt the
educational activity to the user’s characteristics, such as culture, age, and level of education, and its ability to
use diverse educational strategies and conversational styles. EduChat [37] is an LLM-based chatbot that aims to
strengthen personalized, fair, and compassionate intelligent education, serving teachers, students, and parents.
Sharma et al. [197] investigate ChatGPT’s performance on the United States Medical Licensing Examination
(USMLE) and point out that ChatGPT can be an invaluable tool for e-learners. Elkins et al. [48] investigate
ChatGPT’s performance in generating educational questions in classroom settings and find them high-quality and
sufficiently useful. Ochieng [157] delve into LLM’s ability to participate in educational guided reading, including
generating questions based on the input text and recommending content based on the user’s response. C-LLM
[158] examines the implications for LLMs for AI review and assessment of complex student work. Phung et al.
[174] comprehensively investigate ChatGPT’s capability in a set of programming education scenarios and find
GPT-4 comes close to human tutor in several scenarios.

6.1.6 Personalized Healthcare

LLMs also play an important role in empowering healthcare services and providing personalized service. Liu
et al. [139] discover that LLMs are capable of grounding various physiological and behavioral time-series data
and making meaningful inferences under the few-shot settings. Wang et al. [237] investigates the performance of
LLMs on clinical language understanding tasks and introduces self-questioning prompting to enhance LLM in
clinical scenarios. HeLM [10] enables LLMs to use high-dimensional clinical modalities to estimate underlying
disease risk with individual-specific data. PharmacyGPT [143] utilizes LLms to generate comprehensible patient
clusters, formulate medication plans, and forecast patient outcomes. Zhang et al. [275] utilize LLMs to identify
patients with specific medical diagnoses and provide diagnostic assistance to healthcare workers. Zhongjing
[255] introduces a Llama-based LLM with expertise in the Chinese medical domain and can provide personalized
advice for the user’s specific case.

LLMs are widely applied for mental health. Ghanadian et al. [64] utilize LLMs for suicidality assessment
from social media. Qi et al. [177] takes LLMs to evaluate suicidal risk and cognitive distortion identification
on Chinese social media platforms. Wang et al. [228] leverage LLMs to generate note-oriented doctor-patient
conversations. Chen et al. [23] utilize ChatGPT to simulate conversations between psychiatrist and patient based
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on user experience. Fu et al. [62] present an LLM-empowered framework that assists non-professionals in
providing psychological interventions on online user discourse. Mental-LLM [248] investigate LLM’s capabilities
in mental health tasks and find the superiority of instruction tuning in boosting LLMs’ performance in mental
health tasks. Lai et al. [111] propose an LLM-based assistant for question-answering in psychological consultation
settings to ease the demand for mental health professions. Peters and Matz [173] assess the ability of GPT-3.5
and GPT-4 to infer the psychological dispositions of individuals from their digital footprints.

6.2 Suspiciousness Detection

User modeling involves the process of understanding and predicting users’ behavior and preferences. By creating
a comprehensive model of user’s normal behaviors, it becomes possible to detect deviations from this norm. For
users with suspicious behavior history, UM system could potentially isolate or warn users who exhibit harmful
behaviors, while offering a more open environment to those with positive engagement histories. Therefore,
suspiciousness detection is a key application of user modeling. Suspiciousness detection refers to the process of
identifying or recognizing behaviors, actions, or patterns that are deemed to be suspicious or potentially indicative
of anomalous, illegal, harmful, or malicious activities [92, 93, 281]. This section introduces leveraging LLM-UM
to detect fraud, hate speech, misinformation, misconduct, and LLM-generated content.

6.2.1 Fraud Detection

Suspiciousness in fraud detection refers to fraudulent and deceptive behavior, which is widely adopted in financial
transactions, social networks, and more. Some research leverages LLMs to supercharge fraud detection models.
[291] design prompts to enable LLMs for clickbait detection and achieves satisfied performance. Yang and
Menczer [253] present a case study on a Twitter botnet that employs ChatGPT to generate human-like content,
while state-of-the-art LLM content classifiers fail to detect them. Spam-T5 [110] fine-tunes T5 for spam email
detection and outperforms baselines with limited training samples. Ayoobi et al. [6] leverage LLMs to generate
fake LinkedIn profiles and develop the Section Tag Embeddings to detect fake profiles. Shukla et al. [200]
explores GPT-3 and GPT-4 for fraudulent physician review detection. Ziems et al. [293] employs GPT-4 to
explain the decisions of classicial machine learning models on network intrusion detection.

6.2.2 Discrimination Detection

LLMs’ strong natural language understanding ability can supercharge hate speech detection, which is of great
importance in social content moderation [147]. Chiu et al. [29] leverage GPT-3 to identify sexist and racist
UGC under zero-shot, one-shot, and few-shot settings. Cohen et al. [35] leverage GPT-3 to back translate and
rephrase as augmentations for hate speech detection. Del Arco et al. [40] explores using LLMs with prompting
for zero-shot hate speech detection. Das et al. [39] evaluate LLMs’ capabilities in multilingual and emoji-based
hate speech. Wang et al. [227] further prompt LLMs to generate an explanation for hateful and non-hateful
content and investigate the explanation generated by LLMs. Nguyen et al. [156] fine-tune Llama-7B to detect
online sexual predatory chats and abusive language.

6.2.3 Misinformation Detection

LLMs can also be leveraged to detect misinformation, especially fake news [89]. Chen and Shu [21] discover
that LLM-generated misinformation can be harder to detect compared to human-written, which suggests a more
deceptive style and potentially causes more harm. Pavlyshenko [167] explores using a fine-tuned Llama-2 model
for misinformation analysis and fake news detection. Yang et al. [251] assess ChatGPT’s ability to rate the
credibility of news outlets and find ChatGPT’s prediction correlates to those from human experts. Pan et al.
[164] establish a threat model and reveal that LLMs can act as effective misinformation generators, leading to
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significant degradation in open-domain question-answering systems. Leite et al. [114] develop a misinformation
detection approach that combines the zero-shot LLM credibility signal labeling and weak supervision and achieve
state-of-the-art without using ground truth label for training. Su et al. [203] discover that existing detectors
are prone to flagging LLM-generated text as fake news and propose to leverage adversarial training for bias
mitigation. Huang and Sun [82] explore ChatGPT’s proficiency in generating, explaining, and detecting fake
news, and propose using potential extra information that could boost LLM-based fake news detection.

6.2.4 LLM-Generated Text Detection

As LLMs emerge, misuse of LLMs increases, including disseminating fake news, plagiarism, manipulating public
opinion Hanley and Durumeric [66], cheating, and fraud, making detection of LLM-generated content essential
[21, 43, 144, 168, 210]. Researchers find that LLM-generated text can easily evade the plagiarism-checking
software Khalil and Er [103] and is difficult to be identified by humans [223]. SpaceInfi [18] discovers that the
extra space can serve an important role for LLM-generated content to evade detection.

GPT-Pat [266] develops a framework consisting of a Siamese network to compute the similarity between
original and LLM-generated text and a binary classifier. Yang et al. [254] measure the ChatGPT’s involvement
in text generation based on edit distance. Orenstrakh et al. [160] investigate the LLM-generated text detection
tool specifically in the education domain. CoCo [138] presents a coherence-based contrastive learning method to
detect LLM-generated text under the low-resource scenario. Bhattacharjee and Liu [14] employ ChatGPT as a
detector for AI-generated text detection.

7 Challenges and Directions

In this survey, we have comprehensively reviewed the recent approaches and applications of LLM-UM. Since
the integration of LLMs into user modeling systems is still in the early stage, there are still some important and
challenging yet unsolved problems in this direction. In this section, we discuss some challenges and potential
future directions in this field.

7.1 Hallucination Mitigation

Though LLMs have shown strong capabilities in various domains, a significant challenge is the hallucination
problem [88, 279], where LLMs generate seemingly plausible content but deviate from user input [4], previously
generated content [137], and factuality knowledge [56, 149]. In the context of user modeling, the challenges of
hallucination can be categorized into 1) factual accuracy: LLMs can sometimes generate content that sounds
plausible but is either factually incorrect or not grounded in the input data. 2) hallucination in high-stakes
scenarios: In contexts where recommendations have profound implications, such as in healthcare or legal advice,
hallucinations can have severe consequences. 3) user intent misunderstanding: Hallucination can also arise from
a misunderstanding of user intent and input context, which can significantly hinder the performance of LLMs in
user modeling.

To mitigate the prevalent hallucination problems in LLMs, a promising approach to counter the hallucination
problem in LLM-UM is to incorporate trustworthy symbolic knowledge in the LLMs’ input, including unifying
knowledge graphs (KGs) [163] and the use of external knowledge retrieval for augmented generation [264].
Manipulating the output side of LLMs can also help alleviate the hallucination problem. This could involve
generating calibrated confidence scores to validate predictions and encouraging LLMs to express uncertainty.
Research could also focus on designing decoding strategies that foster more reliable content generation, including
factuality feedback mechanisms for the next token selection.
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7.2 Privacy and Security

Privacy and security are paramount concerns in the user modeling system since it can involve processing and
analyzing a wealth of UGC and user behavior history. However, recent research suggests that LLMs can pose
privacy risks. For example, an adversary can recover training examples containing a person’s name, email address,
and phone number by querying the model [79]. The challenges in LLM-UM can be summarized as 1) balancing
personalization and privacy: The success of LLMs in user modeling relies heavily on personalization, which
necessitates the use of sensitive user data. However, this can lead to privacy and security concerns. That being
said, striking the right balance between personalization and privacy is a significant challenge. 2) data leakage
risk: As LLMs are trained on large quantities of data, there’s a risk that they might unintentionally leak sensitive
information during the text generation process. Recent research has shown that LLMs are vulnerable to adversarial
attacks by prompt injection [128] and jailbreaking [183]. This could potentially leak users’ identities or private
information and cause security issues. 3) adaptation to evolving privacy laws: Privacy laws and regulations are
continually evolving, and LLMs need to be updated to ensure compliance, which can be a challenging task given
the huge parameters and high updating cost.

To mitigate the above challenges, future research can focus on designing privacy techniques in preprocessing,
training, and post-processing steps to mitigate user privacy risks. They can study how to provide users with more
transparency and study how their data are used and give them more control over their information.

7.3 Complex Structural Data Understanding

User interactions fundamentally form complex, heterogeneous, temporal text-rich graphs, encapsulating user-user
and user-item interactions. Therefore, equipping LLMs with the capability to comprehend and interpret such
graph structures could dramatically improve the performance of user modeling. Current challenges of leveraging
LLMs to model complex graph structure can be summarized as 1) lack of sequential transformation: Unlike
natural languages, graph-structured data often lack a straightforward transformation into sequential text [224],
which makes it difficult for LLMs to process and understand. 2) gap between graphs and human languages:
The significant gap between graph structures and natural language used for LLMs pretraining can hinder the
application of LLMs to facilitate graph reasoning. 3) graph variability: Graphs can define structure and features
in distinct ways and lack a unified paradigm, making it hard to generalize well to the diverse structure and feature
representations of different graphs [96, 225]. 4) heterogeneous temporal text-rich graph structure modeling: User
interactions can be formulated into heterogeneous temporal text-rich graphs, posing challenges for LLMs to
understand such complex data.

To empower LLMs with the capabilities to understand complex structural data, future research could focus on
1) graph language generation: One potential research direction could be to derive a language for graph structures
that LLMs can better understand, such as transforming graph data into a form that LLMs can process, such as
sequential text. 2) temporal heterogeneous graph modeling: Given that user interactions often form heterogeneous
temporal graphs, the research could focus on techniques to handle such complex structures, which could involve
developing methods to capture the dynamics and heterogeneity of user interactions.

7.4 Comprehensive Benchmark and Evaluation Criteria

Evaluation is paramount to the success of LLM-UM, which can help us better understand the strengths and
weaknesses, ensuring safety and reliability, and inspiring future research directions of user modeling systems.
Current challenges of LLM-UM evaluations lie in 1) lack of AGI-level benchmark: Current evaluation benchmarks
mainly focus on restricting models input and output to a static pair based on human annotation, which cannot
measure the superhuman capabilities in LLMs, instead, the existing benchmarks can be seen in LLMs pertaining
stage and cause test data leakage problem. Therefore, designing more challenging tasks and more reliable
evaluation mechanisms by utilizing the cross-disciplinary knowledge from education, social science, and more
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could be a better solution to probe LLM-UM’s capabilities as a superhuman-level system. 2) comprehensive
intermediate evaluation: A general concern in LLM-UM is the evaluation only focuses on the prediction
performance on specific datasets. Although this is likely the most important metric, the intermediate steps such as
user profile generation, LLM-generated factual knowledge and datasets, and pipeline control behavior are also
important for researchers to more comprehensively understand the methods. 3) dynamic and evolving evaluation:
Existing UM evaluation protocols rely on static and public datasets, which would lead to overfitting and could not
assess the LLM-UM in evolving circumstances, especially in the context of fast-evolving user data. For example,
AgentBench [140] is a pioneering work that designs evolving benchmarks and evaluates LLMs as agents, which
is shown to be the better way of static input-output pair evaluation to evaluate LLM-based systems. Therefore,
developing a dynamic and evolving testbed for LLM-UM to probe the system’s capabilities in adapting the
evolving data is an important research direction.

7.5 Trustworthy User Modeling

LLM-UM can bring significant benefits to humans, including providing personalized advice, recommendations,
assistance, and more. However, the black-box property and unreliable generation process of LLMs would pose
a serious threat to users when the LLM-UM system is applied to high-stakes domains such as healthcare and
finance. Therefore, how to enable trustworthy LLM-UM is of significant importance. Current challenges and
potential future research directions include 1) transparent and explainable reasoning: Users need to understand
how an LLM-UM system makes decisions to enhance trust. Therefore, promising research directions are how
to explain the black-box LLMs and how to make the user modeling process transparent and explainable. 2)
reliability: LLM-UM should provide consistent and accurate results, be robust to different input templates,
and give consistent generation given the same or similar input to be trustworthy. 3) user control: Trustworthy
LLM-UM systems should allow users to control how their data is used and how decisions are made, which could
involve developing mechanisms for users to feedback, correct, and update the LLM-UM system behavior.

7.6 Fairness in LLM-UM

Fairness is a crucial aspect of user modeling systems, which secure unbiased user characteristics and profile
generation and give fair assistance and recommendations for different groups of people. LLMs trained on
extensive datasets can inadvertently learn and perpetuate human biases and stereotypes in training data, leading to
unfair treatment or discriminatory predictions of specific user groups [57]. Moreover, balancing personalization
and fairness is a significant problem, especially when user data reflects societal biases. Therefore, future LLM-UM
research may include 1) bias detection and measurement: Detect bias that exists in LLM-UM systems training
data, input, model, and task design, and develop fine-grained mechanisms to measure the bias from different
aspects (e.g., political bias, ethnic groups bias, etc.) in LLM-UM systems. 2) promote fairness in LLM-UM
systems: Mitigate bias and give non-discriminative predictions, including making LLM-UM more explainable
and transparent to help better understand the source of unfair behavior and devise appropriate interventions.
3) ethics and regulations: Research should also focus on the ethical implications of LLMs and the potential
for regulations to ensure fairness, which could involve interdisciplinary work, bringing together technologists,
ethicists, sociologists, and lawmakers.

7.7 Efficient and Effective Domain Adaptation

LLMs are pretrained on a large general-purpose corpus and then plugged into user modeling systems. A lot of
works use LLMs as a general-purpose reasoner with frozen pertaining parameters, while others fine-tune LLMs
to help them adapt to the specific task in user modeling. The latter paradigm allows the model to leverage the
general language understanding capabilities learned during the pretraining stage while specializing the knowledge
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to the task at hand and shows superior task performance. However, fine-tuning and deployment can be highly
computationally expensive, especially when deploying on millions and even billions of scale user data. Therefore,
developing efficient domain adaptation methods to reduce the cost for LLMs to fix in user modeling systems
and efficiently help LLM-UM be personalized and adapt to the user’s dynamic needs. Moreover, user-specific
data is often sparse and noisy [38, 107], which can lead to overfitting during the fine-tuning process, which can
limit the model’s ability to generalize to different users and contexts. Therefore, future research to combat these
challenges can focus on 1) efficient fine-tuning for LLM-UM: There is a need to develop and refine techniques for
more efficient fine-tuning of LLMs specific for user modeling context. Techniques such as sparsity induction,
model pruning, and knowledge distillation could be explored to reduce the computational and memory footprints.
2) online learning: To cope with the dynamics of user interests, research could explore online learning strategies
for LLM-UM systems. These strategies would continuously update the model based on the latest user-generated
content and interactions.

7.8 Personalized LLM-UM Deployment

Recent research on personalized LLMs mainly focuses on two aspects: personalized prompt engineering and
personalized preference alignment. For personalized prompt engineering works, researchers focus on designing
prompts to help LLMs understand user preferences based on user behavior. As previously discussed, the
personalized prompting paradigm would directly encode user behavior history, apply retrieval methods to obtain
the most relevant user history, and leverage LLMs to summarize user preference to augment retrieval and
generation performance. At the same time, the other line of work focuses on aligning LLMs with personal
preferences using reinforcement learning. Personalized Soups [85] is a representative work that decomposes user
preference into multiple dimensions and models the personalization into a multi-object reinforcement learning
problem. However, the existing personalized prompting model exhibits limited generalization and context
windows for encoding and comprehending user preferences from extensive user behavioral history. Furthermore,
human alignment methods require explicit human preferences and pre-established preference dimensions, and
the alignment finetuning process is computationally expensive. Therefore, future personalized LLM research
should focus on 1) parametric user preference mining: As previous studies [141] have indicated, differential
parameters are more effective in understanding and modeling user preferences compared to discrete natural
language. Additionally, parametric personalization can infuse personalized knowledge more efficiently by using
fewer tokens, thereby conserving the context length for LLMs. 2) cross-model personalized knowledge transfer:
Personalized LLMs strive to diverge from the prevailing ‘one-size-fits-all’ paradigm, aiming to offer unique
services tailored to each individual. However, given the ‘scaling law’ - which posits that larger models yield
superior performance - not all users possess the computational resources to generate high-quality output by
operating their own large models on local machines. Therefore, future research should work towards developing
small models that can learn from user history and gain personalized knowledge on a local machine. These models
should be able to transfer or plug their knowledge into a remote, large model to produce high-quality personalized
output. 3) parametric privacy preservation: Recent findings suggest that encoded text embeddings alone can be
used to reconstruct full text [151], posing potential privacy and safety risks. This becomes particularly relevant in
personalization, where user preferences can be encoded using a small model on local machines. There exists a
risk of private data reconstruction using latent embedding and parameters. Therefore, developing strategies to
thwart such reconstruction while preserving latent embedding performance is a pressing issue.

8 Conclusion

Our work presents a comprehensive and structured survey of large language models for user modeling (LLM-UM).
We show why LLMs are great tools for user modeling and understanding user-generated content (UGC) and user
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interactions. We then review the existing LLM-UM research works and categorize their approaches that integrate
text-based and graph-based UM techniques, including LLMs serving as enhancers, predictors, controllers, and
evaluators. Next, we categorize the existing LLM-UM techniques based on their applications. Finally, we outline
the remaining challenges and future directions in the LLM-UM field. This survey serves as a handbook for
LLM-UM researchers and practitioners to study and use LLMs to augment user modeling systems, and inspires
additional interest and work on this topic.
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Table 5: Representative approaches using the LLMs-as-Predictors paradigm.

Roles Applications LLM Backbones Models

Common Generative Reasoner

Recommendation

GPT family
Liu et al. [133], NIR [229], BookGPT [288],

Hou et al. [73], Li et al. [125], Di Palma et al. [44]
PaLM Sanner et al. [190]

Llama/Vicuna PALR [26], GIRL [287], TallRec [8], GLRec [242], ReLLa [131]
FLAN-T5 Zhang et al. [276]

Intelligent Assistant
GPT family LaMP [189], Chakrabarty et al. [20]

FLAN-T5/T5 LaMP [189], Li et al. [117]
ChatGLM Disc-LawLLM [269]

User Profiling
ChatGPT Rao et al. [184], Ji et al. [87], Wu et al. [244]

LaMDA, PaLM Christakopoulou et al. [32]
Dialogue System ChatGPT Fan and Jiang [51]

Education
ChatGPT

Sharma et al. [197], Elkins et al. [48],
Ochieng [157], C-LLM [158], Phung et al. [174]

BARD Ochieng [157]

Healthcare

GPT family
Wang et al. [237], Ghanadian et al. [64],

Tie et al. [215], PharmacyGPT [143], Zhang et al. [275],
Fu et al. [62], Mental-LLM [248], Peters and Matz [173]

PaLM Liu et al. [139]
FLAN-T5 Mental-LLM [248]

Llama/Alpaca/Vicuna Tie et al. [215], Mental-LLM [248]

Simulator/Agent

Recommendation
GPT family

RecMind [236], InteRecAgent [80],
RecAgent [231], Graph-Toolformer [273]

LaMDA RecLLM [61]

Dialogue System
ChatGPT UGRO [78]

Llama Kong et al. [106]
Intelligent Assistant GPT-3.5 PersonaLLM [90]

Classifier/Detector

User Profiling
GPT family

Zhang et al. [271], LoT [76], Mu et al. [153],
SentimentGPT [104], Ziems et al. [292]

LLaMA Mu et al. [153]
Healthcare GPT family Qi et al. [177], Qin et al. [178], ALEX [97]

Fraud Detection
GPT family Shukla et al. [200], Zhu et al. [291]

T5 Spam-T5 [110]

Discrimination Detection
GPT-3 Chiu et al. [29]
Llama Nguyen et al. [156]

FLAN-T5 Del Arco et al. [40]

Misinformation Detection
ChatGPT Li et al. [125]

Llama Pavlyshenko [167]
LLM-Gen Text Detection ChatGPT Bhattacharjee and Liu [14]

Scoring Function
Recommendation

ChatGPT
Chat-REC [63], Liu et al. [133], Kang et al. [100],

BookGPT [288], Dai et al. [36]
LaMDA RecLLM [61]
Llama TallRec [8]

Dialogue System ChatGPT Hu et al. [78]
Misinformation Detection ChatGPT Yang et al. [251]

Explainer

Recommendation ChatGPT Chat-REC [63], Liu et al. [133],
Discrimination Detection GPT family Wang et al. [227], Ziems et al. [292]

Education Llama/Vicuna Bao et al. [9]
Healthcare GPT-3.5 ALEX [97]

Chatbot

Recommendation ChatGPT Chat-REC [63], Lin and Zhang [129], He et al. [72], GeneRec [233],

Dialogue System GPT family
DiagGPT [19], Cho et al. [30], RefGPT [252],

Hudeček and Dušek [83], Tu et al. [217], Zheng et al. [286]
Intelligent Assistant ChaGPT Lakkaraju et al. [112], Hassan et al. [68]

Healthcare ChaGPT Chen et al. [23], ChatDoctor [127]
Education Llama EduChat [37]
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Table 6: Representative approaches of LLMs-as-Enhancers, LLMs-as-Controllers, LLMs-as-Evaluators.

Paradigms Roles Applications LLM Backbones Models

LLMs-as-Enhancers

Profiler Recommendation

ChatGPT GENRE [135], HKPF [260], KAR [246]
GPT-3 NIR [229]
Llama ONCE [136], PALR [26], Richardson et al. [185]

ChatGLM LGIR [46]

Feature Encoder
Recommendation

GPT family GPT4SM [171], Li et al. [123]
Llama family LKPNR [187], LLM4Jobs [121]

ChatGLM LKPNR [187], KAR [246]
RWKV LKPNR [187]

User Profiling GPT family SentimentGPT [104]

Knowledge Augmenter

Recommendation

ChatGPT HKPR [260], KAR [246], Fang et al. [52]
GPT-3 MINT [154], LLM-Rec [145]
GPT-2 GPT4Rec [120], Li et al. [122]
Alpaca Acharya et al. [3]

Dialogue System GPT-3 TacoBot [150]

Healthcare GPT family
PULSAR [118], AugESC [284],

Schlegel et al. [196], LLM-PTM [268]
Discrimination Detection GPT-3 Cohen et al. [35]

Data Generator

Intelligent Assistant OPT-175B VA-Model [7]
Recommendation GPT family LLM4Jobs [121], Graph-Toolformer [273]

Healthcare ChatGPT Tang et al. [211], Chen et al. [23], Wang et al. [228]
Misinformation Detection ChatGPT Su et al. [203], Leite et al. [114],Pan et al. [164]
Discrimination Detection ChatGPT Veselovsky et al. [221]

User Profiling PaLM Deng et al. [41]
Dialogue System GPT-4 Foosherian et al. [60]
Fraud Detection GPT-4 Yang and Menczer [253], Ayoobi et al. [6]

LLM-Gen Text Detection GPT family Yu et al. [266], Chen and Shu [21], Liu et al. [138]

LLMs-as-Controllers Pipeline Controller
Recommendation

LaMDA RecLLM [61]
ChatGPT Chat-REC [63]
Vicuna LLM4Jobs [121]

Dialogue System GPT-4 Foosherian et al. [60]

LLMs-as-Evaluators Evaluator
Dialogue System

GPT family
Svikhnushina and Pu [207], Huynh et al. [84],

Zheng et al. [285], LLM-Eval [132]
Claude Huynh et al. [84], Zheng et al. [285]

TNLG, BLOOM, OPT, Flan-T5 Huynh et al. [84]
Recommendation GPT family GIRL [287], Wang et al. [235]

Education GPT-3 Bhat et al. [13]
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