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Abstract

The database systems course has gained increasing prominence in academic institutions due to the
convergence of widespread usage of relational database management system (RDBMS ) in the commercial
world, the growth of Data Science, and the increasing importance of lifelong learning. A key learning goal
of learners taking such a course is to learn how SQL queries are processed in an RDBMS in practice. Most
database courses supplement traditional modes of teaching with technologies such as off-the-shelf RDBMS
to provide hands-on opportunities to learn database concepts used in practice. Unfortunately, these
systems are not designed for effective and efficient pedagogical support for the topic of relational query
processing. In this vision paper, we identify novel problems and challenges that need to be addressed in
order to provide effective and efficient technological supports for learning this topic. We also identify
opportunities for data-driven education brought by any effective solutions to these problems. Lastly, we
briefly report the TRUSS system that we are currently building to address these challenges.

1 Introduction

Learning is the acquisition of knowledge or skills through study, experience, or being taught [19]. It is not just
listening and accepting what we are taught, but understanding and experiencing them. Education, on the other
hand, is the acquisition of knowledge through a process of receiving or giving systematic instruction. Hence,
although learning and education are closely related, the former has a broader scope and impact. Specifically,
learning can be facilitated through education, personal development, schooling, training or experience. It is not
limited to a certain age or period in life. Indeed, while formal education for young adult learners at universities
has been the focus of educational provisions in the industrial age, the digital age is now seeing an increased
experimentation of “lifelong learning” [6] with provisions such as work-study programmes for early career and
mid-career individuals, and digital learning initiatives.

The growing demand for lifelong learning coupled with the widespread use of relational database management
system (RDBMS) in the commercial world and the growth of Data Science as a discipline have generated increasing
demand of database-related courses in academic institutions. Learners from diverse fields and experiences aspire
to take these courses, even with limited Computer Science backgrounds [26]. In a computer science degree
program, the key goal of a database systems course is to teach learners how to build a database system. On the
other hand, the focus of the course in a data science program is to be able to control a database system effectively.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

29



To facilitate both these goals, it is paramount for learners to learn how SQL queries are processed in an RDBMS in
practice. Traditionally, this learning goal is achieved through textbooks and lectures. Specifically, major database
textbooks [17,36] introduce general (i.e., not tied to any specific RDBMS) theories and principles associated with
relational query processing and optimization using natural language-based narratives and visual examples. This
allows a learner to gain a general understanding of SQL query execution strategies.

It is well-established in education that effective use of technology has a positive impact on learning [24].
It causes learners to be more motivated and engaged, thus, enabling them to retain more information. It also
increases hands-on learning opportunities. In fact, technology is best used as “a supplement to normal teaching
rather than as a replacement for it” [24]. Hence, in order to promote effective and efficient learning for diverse
individuals in full recognition of the complexity of the topic of relational query processing, learner-friendly
tools are paramount to augment the traditional modes of learning (i.e., textbook, lecture). Indeed, database
systems courses in major institutions around the world supplement traditional style of learning with the usage
of off-the-shelf RDBMS. Unfortunately, these RDBMS are not designed for pedagogical support. Although they
enable hands-on learning opportunities to build database applications and pose a wide variety of SQL queries over
it, very limited effective and efficient learner-friendly support, beyond the visualization of query execution plans,
is provided for understanding and experiencing the processing and optimization of these queries in practice by
the underlying relational query engine.

Given the challenges faced by learners to learn SQL [34], there has been increasing research efforts to build
tools and techniques to facilitate comprehension of complex SQL statements [15,25,29, 30,32, 33], automated
grading of SQL queries [8], and so on. However, scant attention has been paid to explore technologies that
can enable learning of relational query processing [21,31,42]. In this paper, we articulate a vision shaped
by the following fundamental questions: (a) What are the key problems that we need to address to facilitate
technology-enabled learning of relational query processing in practice? (b) How can the potential solutions to
these problems support data-driven education with the goal of making teaching and learning practices more
effective and efficient? Specifically, our vision calls for a learning-centric, generic, and psychology-aware
approach grounded on the theories of motivation and learning to address these challenges. Note that by no means
we claim that the list of problems discussed in this article is exhaustive. The pervasive desire here is to galvanize
the data management community to explore this nascent inter-disciplinary topic at the intersection of learning
sciences and data management by leveraging these problems as the seed.

The rest of the paper is organized as follows. In Section 2, we briefly introduce relevant motivation theories
that are at the foundation of learning and may potentially impact the design of any learner-centric, technology-
enabled solutions for learning. Section 3 introduces the key novel research challenges that need to be addressed
in order to realize the vision. We briefly report the TRUSS system which we are currently building to address
these challenges in Section 4. The last section concludes this paper.

2 Motivation Theories

Learning is impacted by motivation, which is the process that initiates, guides, and maintains goal-oriented
behavior [27]. Specifically, motivation impacts how likely a learner is willing to learn. Since effective use of
technology in learning has positive impact on motivation, we need to understand motivation theories and their
impact on learning. These theories should underpin any effective technological solutions for facilitating learning.
In this section, we first briefly describe key theories related to motivation proposed in the domain of education
psychology. Next, we highlight how these theories can guide technology-enabled solutions for learning. In the
next section, we shall identify novel research issues that are grounded on these theories to facilitate learning of
relational query processing.

Motivation theories. Motivation can be broadly characterised into two types, intrinsic and extrinsic [37]. Intrinsic
motivation is the act of doing an activity purely for the joy of doing it whereas extrinsic motivation is to do
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something due to the influence of external rewards or punishments (e.g., good grades, jobs). Although the latter is
not optimal for learning, research suggests that extrinsic motivation is prevalent [16,37] and may pave the way to
intrinsic motivation. That is, a learner may initiate learning due to external factors but the motivation may morph
to an intrinsic one during task engagement.

Regardless of the type of motivation, Achievement Goal Theory [7] argues that all motivation are essentially
linked to one’s goals that can take two forms, namely performance goals and mastery goals. The former is caused
by satisfaction of one’s ego (e.g., appearing superior to one’s peers) whereas the latter is aligned with intrinsic
motivation and is grounded on the pure desire to master a skill or concept. The Expectancy Value Theory [43]
postulates that expectation and value of learning a skill or concept have direct impact on the performance and task
choice of a learner. To elaborate further, an individual’s effort and performance for a task are influenced by their
expectation of success or failure. Note that expectations and values themselves are influenced by how a learner
assess their competency and perceived task difficulty. If a learner has felt satisfaction in undertaking a similar
task in the past, then it is more likely they will put effort to the current task. However, if past experience shows
the task is either too difficult to be completed or not sufficiently difficult enough then they may not engage with it.
The Flow Theory [35] describes a psychological state in which an individual is purely intrinsically motivated
to learn without any external factors. Such state is said to occur when the task is neither too difficult to cause
helplessness or frustration nor too easy to make a learner bored.

Motivation theories in technology-enabled learning frameworks. Every learner has intrinsic or extrinsic
motivation to reach their learning goals. Hence, any technology-enabled learning framework should be cognizant
of the above theories in order to cultivate motivation to learn. Specifically, technologies to supplement learning of
relational query processing and optimization should support the followings:

* Learners may learn relational query processing due to intrinsic or extrinsic motivation. It is important that
any technological framework support both and facilitate transformation of extrinsic motivation to intrinsic
one during the course of interacting with it.

* Increase learners’ satisfaction of successful completion of the task of learning relational query processing
as well as facilitate flow state of learners to move to the Goldilock’s zone (i.e., learning relational query
processing concepts is neither too difficult nor too easy).

3 Research Issues

In this section, we outline novel learner-centric research issues in the burgeoning topic of technology-enabled
learning of relational query processing. It is worth noting that although technology engages and motivates learners,
it is advantageous for learning only when it is aligned to with what is to be learned [24]. Hence, the issues we
focus for technological support are learning about query execution plans, exploration of alternative query plans
in a plan space, and cost estimation of a physical query plan. Observe that all these issues are typically covered by
a database systems course. A common theme that cuts across these issues is the pervasive desire for motivation
theory-aware tools and techniques that aim to supplement existing off-the-shelf RDBMS to facilitate learning of
these issues. We begin with a brief background on relational query plans that learners typically encounter in a
database systems course.

3.1 Query Plans

Given an arbitrary SQL query, an RDBMS generates a query execution plan (QEP) to execute it. A QEP consists of
a collection of physical operators organized in form of a tree, namely the physical operator tree (operator tree for
brevity). Figure 1(a) depicts an example QEP with a collection of physical operators. Each physical operator, e.g.,
SEQUENTIAL SCAN, INDEX SCAN, takes as input one or more data streams and produces an output one. A QEP
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QEP AP1 AP2

HashJoin HashJoin
Cost: 2791.9 Cost: 5130.1

HashJoin
Cost: 3029.9

SeqScan HashJoin SeqScan HashJoin

Cost: 467.4 Cost: 2046.6 Cost: 467.4 Cost: 4384.8 Seqscan Hashdoin
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movie SeqScan IndexNLJoin movie IndexNLJoin SeqScan "
B . ) ) . . " N SeqScan HashJoin
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movie Filter Filter
Cost: 431 Cost: 401.2 Cost: 431 Cost: 401.2 _info_idx Cost: 618.3 Cost: 431

SeqScan IndexScan SeqScan IndexScan
Cost: 431 Cost: 372.3 Cost: 431 Cost: 372.3

SeqScan SeqScan

Cost: 531.5 Cost: 431
ompany_type movie ompany_type movie movie
s _companies - _companies _companies | FomPany_type
(a) QEP (b) Alternative Plan 1 (AP1) (c) Alternative Plan 2 (AP2)

Figure 1: Examples of QEP and alternative query plans.

explicitly describes how the underlying RDBMS shall execute the given query. Notably, given an SQL query, there
are many different query plans, other than the QEP, for executing it. We refer to these different plans (other than
the QEP) as alternative query plans (AQP). Figures 1(b)-(c) depict two examples of AQP.

3.2 Understanding Query Execution Plans (QEPs)

A key goal of learning relational query processing is to understand how SQL queries are processed in an RDBMS in
practice. This can be achieved by understanding the content of the QEP of a given query. Major database textbooks
(e.g., [17,36]) typically illustrate QEPs of simple SQL queries, their costs, and adverse impact on estimated cost if
alternative physical operators are chosen (e.g., merge join instead of hash join) for a QEP. However, they are not
interactive and the variety of examples they can discuss is constraint by the page limit and cost. Hence, only a
very few simple, static examples of QEPs are typically exposed to learners.

Off-the-shelf RDBMS (e.g., PostgreSQL) provide the opportunity to greatly mitigate the limitations of
textbooks. A learner may implement a database application in an RDBMS, pose queries over it, and peruse the
associated QEPs to comprehend how they are processed by an industrial-strength query engine in practice. Such
interactivity provides learners the freedom to formulate a large number of queries with diverse complexities and
view the contents of corresponding QEPs in real-time.

Most existing RDBMS expose the QEP of an SQL query using visual or textual (e.g., unstructured text,
JSON, XML) format. Unfortunately, comprehending these semistructured textual formats to learn about query
execution strategies of SQL queries in practice can be daunting for learners. In contrast to natural language-based
narrations in database textbooks, they are not user-friendly and assume deep knowledge of vendor-specific
implementation details. On the other hand, the visual format is relatively more user-friendly but hides important
details. Consequently, in consistent with the Expectancy-Value Theory, the task difficulty may become a barrier
for some learners to learn about query execution strategies in a specific RDBMS from these QEP formats.

Example 1: Doreen is an undergraduate student in a data science program who is currently enrolled in a database
course. She wishes to understand the execution steps of the following SQL query in PostgreSQL on the IMDb
benchmark dataset [1] by perusing the corresponding QEP in Figure 2(a) (partial view).

SELECT mc.note AS production_note,
t.title AS movie_title,
t.production_year AS movie_year

FROM company_type AS ct,

32



e b

movie_companies Hash Inner Join

QUERY PLAN
Hash Join (cost=18.93..32426.58 rows=61 width=28)
Hash Cond: (mc.company_type_id = ct.id)
-> Parallel Seq Scan on movie_companies mc (cost=0.00..32379.21 rows=10772 width=32)
Filter: ((note)::text ~~ '%(co-production)%'::text)
-> Hash (cost=18.88..18.88 rows=4 width=4)
-> Seq Scan on company_type ct (cost=0.00..18.88 rows=4 width=4)
Filter: ((kind)::text = 'production companies'::text) company_type Hash

B

Figure 2: A QEP in PostgreSQL and its visual tree representation.

movie_companies AS mc,

movie_info_idx AS mi_idx,

title AS t

WHERE ct.kind = ’production companies’
and mc.note like ’%(co-production)’
AND ct.id = mc.company_type_id
AND t.id = mc.movie_id
AND mc.movie_id = mi_idx.movie_id;

Unfortunately, Doreen finds it difficult to mentally construct a narrative of the overall execution steps by simply
perusing it. This problem is further aggravated in more complex SQL queries. Hence, she switches to the visual
tree representation of the QEP as shown in Figure 2(b). Although relatively succinct, it simply depicts the sequence
of operators used for processing the query, hiding additional details about the query execution (e.g., sequential
scan, join conditions). In fact, Doreen needs to manually delve into details associated with each node in the tree
for further information. 1

Since natural language (NL)-based narratives aided with visual examples (as in textbooks and lectures)
have been the traditional mode of learning for decades, we advocate that an intuitive natural language (NL)-
based description of a QEP can greatly augment learning of the execution strategies of SQL queries by an
RDBMS. The intuition is that NL-based descriptions may facilitate the flow state of learners (Flow Theory) to
the Goldilock’s zone. This can then effectively complement the current visual tree format generated by existing
RDBMS. Specifically, a learner may either use the visual QEP to get a quick overview and then peruse the NL
description or study them in parallel to acquire detailed understanding. To support this hypothesis, we surveyed
62 and 56 unpaid volunteers taking the undergraduate database course in NTU in two semesters (2019 and 2020).
We use the TPC-H v2.17.3 benchmark and a rule-based natural language generation tool for QEPs [31] to generate
natural language descriptions of QEPs for SQL queries formulated by the volunteers. The volunteers were asked:
“which query plan format they prefer for learning?” 53.2% and 55.4% preferred NL-based description, respectively.
Very few (3% and 5.4%, respectively) preferred the text format. Hence, there is clear evidence that learners prefer
to use NL-based and visual tree-based formats for learning about QEP.

The majority of NL interfaces for RDBMS [28], however, have focused either on translating natural language
sentences to SQL queries or narrating SQL queries in a natural language. Scant attention has been paid for
generating natural language descriptions of QEPs [31,42], which is a challenging problem. Although deep
learning techniques, which can learn task-specific representation of input data, are particularly effective for
natural language processing, it has a major upfront cost. These techniques need massive training sets of
labeled examples to learn from. Such training sets in our context are prohibitively expensive to create as they
demand database experts to translate thousands of QEPs of a wide variety of SQL queries. Even labeling using
crowdsourcing is challenging as accurate natural language descriptions demand experts who understand QEPs.
Note that accuracy is critical here as low quality translation may adversely impact individuals’ learning.
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3.3 Learning Impact of Alternative Choices on QEP

Natural language description of a QEP enables a learner to understand the execution steps of a query. This may
pique the interest of a learner to raise further questions related to query processing centred around a specific QEP.
Since major database textbooks typically discuss the adverse impact of choosing alternative physical operators or
join ordering on the estimated cost, a learner may also like to delve deeper into the impact of these alternative
choices on the estimated query processing cost of their queries.

Example 2: Reconsider Example 1. Doreen’s course lectures and textbook discuss the impact of physical
operator choices and join ordering on the selection of a QEP. Hence, after perusing the content of the QEP, she
wonders what will be the impact on the cost be if the hash join is replaced by a merge join? Is the estimated cost
of the alternative query plan substantially higher compared to the QEP? How much is the impact on the estimated
cost if the join ordering is changed? In this context, a narrative that explains why the QEP is chosen by connecting
its content with knowledge garnered from database textbooks will greatly benefit her learning. |

Unfortunately, as stated earlier, off-the-shelf RDBMS are not developed for pedagogical support. Typically,
they do not expose the impact of alternative choices of various physical operators or join ordering on the QEP
in a user-friendly manner to aid learning. Note that such information is invaluable to learners as it not only
facilitates hands-on inquire-driven learning on the impact of a choice of a physical operator or a specific join
ordering on the estimated cost of a QEP but it also enables them to comprehend why a QEP is chosen by the
underlying RDBMS. However, an RDBMS typically demands a learner to manually pose SQL queries with various
constraints on configuration parameters (e.g., enable_hashjoin, enable_nestloop in PostgreSQL) to view
the corresponding QEP containing specific physical operators. Furthermore, one has to manually compare the
generated plan with the original QEP to understand the impact. Notably, a database course may not introduce
these configuration parameters while exposing syntax and semantics of SQL. It is also impractical to assume
that learners will be familiar with them when many are taking the course for the first time. Clearly, based on the
Expectancy-Value and Flow theories, a learner-friendly framework that can facilitate exploration of the impact of
various physical operators and join ordering on a QEP can greatly motivate learners to deeper engagement and
learning of this topic.

Intuitively, given an SQL query and learner-specified preferences (e.g., merge join, index scan, specific join
ordering), the goal is to automatically visualize the impact of these choices on the selected QEP. In this context, it
is important to generate a natural language-based explanation that goes beyond the conventional least-cost-based
explanation to connect established knowledge related to usage scenarios of different physical operators from
textbooks with the specified preferences. For instance, examples of some established knowledge are: (a) index
scan is the optimal access path for low selectivity whereas sequential scans perform better in high selectivity [11];
(b) merge join is preferred if the join inputs are large and are sorted on their join column [2]; (¢) nested-loop join
is ideal when one join input is small (e.g., fewer than 10 rows) and the other join input is large and indexed on its
join columns [2]. Such knowledge in the form of explanations will naturally facilitate learners’ understanding
of relational query processing. For instance, consider Example 2. Explanations such as (b) will help Doreen to
understand why a hash join was chosen by the relational query engine.

The problem is challenging from several fronts. While under-the-hood it is straightforward to generate
an SQL query involving the learner-specified preferences and retrieve the corresponding QEP, automatically
generating appropriate visualization framework to aid learning is challenging. First, how should the results be
presented in consistent with motivation theories to motivate learners to explore and learn? Note that a learner
may want to view the impact of multiple physical operators and join ordering together instead of just a single
operator or join ordering. Simply generating an NL description of the AQP is insufficient since this will demand
a learner to manually compare the description of the original QEP with it in order to understand the impact of
various operators and join ordering. Naturally, this becomes tedious especially for complex queries. Second, how
can we generate NL explanations that augment learning by connecting with textbook knowledge? It demands
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sophisticated text extraction, analytics, and summarization framework that connects the alternative query plans
with relevant established knowledge embedded in online resources.

3.4 Exploration of Informative Alternative Query Plans

In the preceding challenge, a learner has clear preferences that they wish to explore with respect to a QEP.
However, this may not always be the case. Some learners may not have clear idea of what alternative query plans
they are interested in.

Example 3: Meng is another undergraduate student pursuing a degree in computer science and a classmate
of Doreen in the database course. He also formulates the query in Example 1. After viewing the QEP, he
wonders what are the different alternative query plans (AQPs) considered by the underlying RDBMS during the
QEP selection process. Specifically, are there alternative plan(s) that have similar (resp. different) structure and
physical operators but very different (resp. similar) estimated cost? If there are, then how they look like? |

Oft-the-shelf RDBMS do not expose a representative set of alternative query plans considered by the underlying
query optimizer during the selection of a QEP in a user-friendly manner to aid learning. Hence, due to the lack
of easy access to such information in RDBMS, based on the Expectancy-Value Theory, learners may restrict
themselves to the simple and limited number of examples that are typically exposed in textbooks and lectures or
simply abandon the effort. Clearly, a learner-friendly framework that can facilitate retrieval and exploration of
“informative” alternative query plans associated with a given query can greatly aid in answering Meng’s questions
related to the query optimization process.

Selecting a set of informative AQPs to facilitate learning is a technically challenging problem. First, what is
an “informative” AQP in the context of learning? To elaborate further, reconsider Example 3. Figures 1(b)-(c)
depict two alternative plans for the query where the physical operator/join order differences are highlighted with
red rectangles and significant cost differences are shown using yellow nodes. Specifically, AP/ has very similar
structure as the QEP but different join order involving title and company_type relations and significantly
different estimated cost. AP2, on the other hand, displays similar estimated cost as the QEP but different join
order. Which of these alternative plans should be revealed to Meng? The overarching goal here is to choose
alternative plan(s) that may enhance Meng’s knowledge of the QEP selection process (i.e., informative) as well
as motivate him to learn and explore. Certainly, any informativeness measure needs to be cognizant of plans
that a learner have already viewed for her query (including the QEP) in order to avoid the exposure of highly
similar information. It should also facilitate retrieval of plans that learners may be interested in as far as query
optimization is concerned. Hence, it is paramount to take feedback from learners on the types of AQPs that are
potentially of interest to them and devise a mechanism to quantify informativeness of a plan by mapping the
knowledge acquired from the feedback to a utility measure. Subsequently, we need to design techniques that can
select informative plans that maximize the utility as we cannot simply rely only on the estimated cost of alternative
plans. Second, the number of candidate AQPs for a given SQL query is exponential in the worst case [13]. Hence,
it is prohibitively expensive to scan all these plans to select informative ones. Note that the selection of AQP
cannot be integrated into the plan enumeration step of the underlying query optimizer. We need to know the QEP
when computing AQP as they are selected with respect to the QEP a learner has seen.

At first glance, it may seem that we can select k£ > 1 alternative query plans where k is a value specified
by a learner. Although this is a realistic assumption for many top-k problems, learners may not necessarily be
confident to specify the value of k£ always. They may prefer to iteratively view one plan-at-a-time and only cease
exploration once they are satisfied with the understanding of the query optimization process for a specific query.
Hence, k£ may not only be unknown apriori but also the selection of an AQP at each iteration to enhance learning
of different plan choices depends on the plans viewed by a learner thus far. Clearly, it does not increase learners’
understanding of the query optimization process or motivate them to use the framework if a plan with highly
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similar information of an already viewed plan is revealed to them in the subsequent iterations. This demands for a
flexible solution framework that can select informative AQPs in absence or presence of the k value.

3.5 Understanding Cost Estimation of a Physical Query Plan

The preceding subsections introduce research issues that aim to facilitate learning of the execution strategy of an
SQL query and interesting plan choices a relational query optimizer makes in practice. Another key knowledge
that a learner needs to acquire is the cost estimation procedure of these plans.

Example 4: Doreen and Meng have learnt from textbooks and lectures how the cost of a physical query plan can
be estimated. However, the number of queries considered in these modes of learning and their complexities are
limited. They are motivated to experience cost estimation of plans associated with a wider variety of queries.
Hence, they pose several queries with different degrees of complexity on the IMDb dataset in PostgreSQL. They
can view the overall estimated cost of a QEP as well as cost of different subtrees (e.g., Figure 1). However,
they cannot view step-by-step details of the input parameters and the formulas used by the underlying query
optimizer to compute these numbers. For instance, in Figure 1(a), why is the cost of the first HASH JOIN 2046.6?
By undertaking a back-of-the-envelope calculation using formulas learnt in the course, they could not replicate
this value. Are some of the principles and formulas to compute cost different from what they have learnt from
textbooks and lectures? If so, then why?

Doreen and Meng also wonder what the intermediate result sizes of different operations are here? When they
execute one of the queries, they have to wait for a considerable amount of time to view the results. Does the
estimated time cost of the QEP differ significantly from the actual cost? Why? |

Existing RDBMS do not provide any learner-friendly support to facilitate such learning. Consequently, based
on motivation theories, learners may not pursue this direction of inquiry using an RDBMS, surrendering valuable
opportunity for hands-on acquisition of knowledge of the cost estimation process. It is challenging, however, to
expose an interface to facilitate such learning and exploration. First, it demands automated analysis of the code
base of the underlying query optimizer to extract various formulas used for cost estimation. These formulas may
not necessarily be identical across all RDBMS or textbooks. For instance, in [17], the cost of a selection involving
inequality condition is approximated to be 1/3 of the input size independent of the selection condition. On the
other hand, in [36], more accurate measure is used for estimating the selection cost. Furthermore, a specific
RDBMS may implement variants of these formulas. Second, it is paramount to connect these formulas with
specific input parameters for a query to reveal how the cost of a plan is estimated while emphasizing the similarity
and differences with textbook knowledge. A framework that can support this in a palatable manner to facilitate
learning is non-trivial as it may demand a sophisticated natural language generation framework that connects
analysis of the code base with textbook content. Third, superior visualization and NL-based framework are
necessary to explain to learners the reasons for the differences in estimated and actual cost of a query. Although
tools such as [21] allow one to visualize the cost of different plans over the plan space, they are not designed for
explaining the cost differences for a specific query in a palatable manner.

3.6 A Unifying Framework: Chatting with a Relational Query Engine

Although addressing the aforementioned issues has the potential to facilitate learning of relational query processing
by providing learner-friendly platforms, a set of isolated platforms that address these different issues will make it
cumbersome for learners to navigate and take advantage of them. For instance, learners may find it overwhelming
to operate three independent technology-enabled learning platforms targeting NL description generation of QEP,
exploration of AQP, and cost analysis of query plans, respectively. This may deter them to use such technology for
learning. Given that young adults often interact through chat apps (e.g., Whatsapp, WeChat), a natural language
interaction framework (i.e., chatbot) that can unify these solutions may bring practical benefits to learners. A
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TrussBot TrussBot

g Yes, it was considered. <Visualizes the plan with hash
A join and corresponding estimated cost>
Mol _ 9

< . L Let me show you one at a time. <Shows one
m <Describes the formulas and steps for estimating the interesting AQP at a time>.
cost>
Q X Sure! Go ahead.
<Explains in NL> 8

e e ©

No, unfortunately a bad plan is chosen this time.
<Explains the actual and estimated cost difference
and reasons for slow execution>.

[ [ (=

<Explains in NL>

Figure 3: An example of interaction between a learner and the chatbot.

possible interaction between a learner and a hypothetical chatbot designed for interacting with a relational query
engine are shown in Figure 3.

Building a high-quality chatbot for a relational query engine to facilitate learning is non-trivial and challenging.
In addition to the challenges mentioned earlier for addressing individual components, a chatbot brings new
challenges with respect to correct parsing and interpretation of a learner’s statement, constructing correct
(syntactically and semantically) responses in a natural language, engaging learners in conversations, and so on.
While these challenges are long recognized in building a generic chatbot [20], the domain-specific nature of
the problem brings in interesting flavor to it. Different from natural conversations, a learner’s questions usually
have concrete objectives, actively requesting information, and an answer to every question should facilitate
understanding of relational query processing. Furthermore, a learner’s questions at each step are not only closely
related to the chatbot’s current answers, but also need to take into account the context of the previous parts of the
conversation. For example, consider the first three questions in Figure 3 from the learner. These questions are
actively requesting information related to relational query processing. Observe that the third question is related to
the preceding parts of the conversation.

Any chatbot needs to consider two kinds of information in a learner’s question: (1) the intent of the question
(e.g., understanding cost computation) and (2) the content of the question (e.g., cost computation steps of zigzag
join in a QEP). To this end, we can construct a guery processing knowledge graph semi-automatically to represent
a collection of relational query processing concepts. Then the intent and content can be determined by mapping
the question to different concepts in the knowledge graph. Note that similar idea of knowledge graph has been
recently exploited in the context of question generation for multi-party court debates for judicial education [44].
Once the intent and content of a question are determined, the chatbot invokes the relevant component (Section 3.2-
3.5) to retrieve the answer for the specific question. The result returned by it is then transformed into a natural
language (supported by visual representations, if necessary) and presented to the learner.
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3.7

Table 2: Learning-centric issues.

Issue Questions to address

Rational for the impact of technologies on learning Will learners work more efficiently, more effectively, more intensely?
Will the technology help them to learn for longer, more deeply, more
productively?

Role of technology in learning Will it help learners to gain access to learning content?
Will the technology provide feedback?

Technology should support effective interaction for learning | Does it support effective interaction with learners?

Identify what learners will stop doing ‘What it will replace or how the technology activities will be additional
to what learners would normally experience?

Learning-centric, Generic, and Psychology-Awareness of Solutions

In addition to the challenges within each aforementioned issues, any solution to them must ensure the following
features.

3.8

* Learning-centric. The role, impact, and interaction of the platforms designed to address aforementioned

issues have to be learning-centric, i.e., they bring about improvement in learning. Table 2 lists the learning-
centric issues [24] that any technology-enabled solution needs to address. For instance, consider the last
issue. An effective solution to NL descriptions of QEPs will provide learners an additional interface to
learn about query execution strategies to what they would normally experience. Similarly, consider the
second issue. A solution to user-friendly exploration of AQPs will enable learners to gain easy access to
informative plans to aid learning of the query optimization process.

Generalizability. Solutions must be generalizable to different RDBMS and applications. This will
significantly reduce the cost of its deployment in different learning institutes and environments where
different application-specific examples and RDBMS may be used to teach database systems. For example,
the natural language generation framework should be generalizable. Ideally we would like to generate
natural language descriptions of QEPs using one application-specific dataset (e.g., movies) and then use it
for other applications (e.g., hospital) on any off-the-shelf RDBMS.

Psychology-awareness. Any technology-enabled learning framework has to be learner-centric, i.e., it has
to be cognizant of the psychology of learners. Any deployable solution has to be palatable and engaging
to learners so that they are motivated to learn and explore. Hence, these solutions need to be consistent
with various cognitive psychology and motivation theories to have practical impact. For example, the NL
descriptions for different queries must not use the same language to describe various operations in QEPS.
Similarly, highly similar AQPs should not be exposed to the learners. Otherwise, learners may feel bored
after viewing several AQPs or reading the NL descriptions for several queries. In fact, this is consistent with
research in psychology that have found that repetition of messages can lead to annoyance and boredom [12]
resulting in purposeful avoidance [22], content blindness [23], and even lower motivation [38].

Towards Data-driven Education

As remarked in Section 1, learning can be facilitated by education. Hence, technological platforms that address
the aforementioned challenges may pave the way for data-driven education due to rich access to interaction log
data of learners. Such log data may consists of access times of learners, history of queries formulated by learners,
temporal information related to various interactions, among others. This provides a rich data source for building
data-driven techniques to facilitate education by analyzing these data at both individual and group levels and
correlating them with the performances of learners in tests (i.e., academic outcomes). A non-exhaustive list of
questions that can be answered by exploiting the log data to facilitate data-driven education is as follows:

* How do the type and complexity of SQL queries posed by learners evolve over time? What are the activity
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Figure 4: (a) Architecture of TRUSS (left); (b) No. of queries versus time (right).

patterns of learners during a semester? Answers to these questions may provide insights on motivation and
learning habits of learners.

How do learners learn relational query processing? Numerous studies in cognitive psychology show that
spacing (i.e., distributing practice over more sessions) significantly improves long-term learning compared
to massing (i.e., practice in longer sessions) [9, 10,39,41]. The interaction data may enable us to build
models to predict learners demonstrating massing, thereby enabling timely intervention to nudge them to
more effective learning habits.

Research in education posits that technology can be used effectively as a short but focused intervention to
improve learning especially when there is regular and frequent usage over a period of several weeks [24].
In our context, it is expected that the platforms are also for focused usage over a period of few weeks. Do
they help learners to perform better in tests and coursework? Is there any correlation between frequency
of engagement with a platform and performance? Answer to this may provide data-driven insights to the
effectiveness of these tools in learning.

Do learners continue to use the platforms even after the end of a database course? This may indicate
intrinsic motivation to learn relational query processing.

Can the queries posed by learners over time shed light on the difficulties they face with respect to the
learning and understanding of relational query processing and optimization? Answer to this question
may facilitate the design of more effective and efficient pedagogical strategies to improve effectiveness of
teaching.

In summary, addressing the aforementioned research issues provide us a unique opportunity to take a

data-driven approach to the education of relational query processing that may otherwise be infeasible through
traditional mode of teaching.

4 The TRUSS System

Figure 4(a) depicts the high-level architecture of the TRUSS (Technology-enabled LeaRning of QUery ProceSSing)
system that we are currently building to address the challenges introduced in the preceding section. The QEP-
to-NL Generator, Alternative Plan Explorer, and Cost Explainer components aim to address the challenges in
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Sections 3.2, 3.3 & 3.4, and 3.5, respectively. The Conversation Manager is to realize the unifying chatbot
(Section 3.6) and the Learner Interaction Manager is responsible to facilitate data-driven education (Section 3.8).
In this section, we briefly describe our recent efforts to build three frameworks, NEURON [31] and LANTERN [14],
that aim to address the problem described in Section 3.2 (i.e., QEP-to-NL Generator), and MOCHA [40] that
takes an initial step to address the problem in Section 3.3 (i.e., Alternative Plan Explorer). The reader may refer
to [14,31,40,42] for details on these frameworks.

4.1 NEURON and LANTERN

NEURON [5,31] is the first system that exploits a rule-based interpretation engine to generate NL description for
QEP in PostgreSQL. Specifically, given the QEP of a SQL query, NEURON first parses and transforms the QEP of
an SQL query into an operator tree where each node contains relevant information associated with a plan (e.g.,
filter conditions). Next, it traverses the tree and generates a NL description of the node based on NL templates and
the information it carries. It also supports a preliminary natural language question answering system that allows
a user to seek answers to a variety of concepts and features associated with a QEP.

NEURON is a rule-based framework that is tightly integrated with PostgreSQL. Hence, it is not generalizable
(Section 3.7). LANTERN [3, 14,42] addresses this limitation by not only making the solution generalizable but
also psychology-aware. It incorporates a declarative framework called POOL to empower subject matter experts
(SMESs) create and manipulate the NL descriptions (i.e., labels) of physical operators, which are the building blocks
of QEPs. The data definition in POOL allows one to declaratively create physical operator objects associated with
a specific RDBMS. For example, one can create the definition of hash join operator in PostgreSQL (pg) as follows.

CREATE POPERATOR hashjoin FOR pg
(ALIAS = null,

TYPE = ’binary’,

DEFN = null,

DESC = ’perform hash join’,
COND = ’true’,

TARGET = null)

In particular, the TYPE attribute can take either ‘unary’ or ‘binary’ value. The DESC attribute allows one to
specify a natural language description of the operation performed by the operator. The COND attribute takes a
Boolean value to indicate whether a specified condition (e.g., join condition) should be appended to the natural
language description of an operator. Values of all attributes are taken from the atomic type string (possibly
empty). Note that no relation or condition is specified in DESC. This is because these are added automatically
to DESC by exploiting TYPE and COND attributes of an operator. For instance, since TYPE is ‘binary’ in the above
definition, two variables representing join relations will be added automatically to the description of hashjoin.
Lastly, the TARGET attribute allows one to specify the operator name which is supported by the defined operator.
For example, TARGET is set to ‘hash join’ for the definition of hash operator.

The key goals of the data manipulation component of POOL are to provide syntactical means to support (a)
retrieval of specific properties (i.e., attributes) of physical operators using SQL-like SELECT-FROM-WHERE syntax,
(b) generation of the template for natural language description of an operator using the COMPOSE clause, and (c)
update properties of physical operator objects using UPDATE and REPLACE clauses. Specifically, the COMPOSE
clause uses the desc, type, and cond attributes of operators to generate the template. For example, the template
generation for the hash operator can be specified as follows.

COMPOSE hash FROM pg
The above statement will return the template “hash $R1$”, which can be subsequently used by LANTERN to

generate specific description of the hash operator in a QEP. Also, observe that R; is appended based on the type
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attribute of the hash object. An example to generate the NL description template of the hash join operator is as
follows.

COMPOSE hash, hashjoin FROM pg
USING hashjoin.desc = ’perform hash join’

The above statement generates the following template: “hash $R1$ and perform hash join on $R2$ and $R1$ on
condition $cond$”.

The update statement can be exploited to assign definition or description of an operator from one commercial
database to another, thereby making it more efficient for an SME to specify properties of physical operators. The
following example demonstrates how the description of hash join in PostgreSQL is transferred to the hash join
operator in DB2.

UPDATE db2

SET desc = (SELECT desc

FROM pg WHERE pg.name = ’hashjoin’)
WHERE db2.name = ’hsjoin’

It can also be used along with the REPLACE clause to transfer definition or description of an operator object to
another within the same source. For example, one can transfer the description of hash join to nested loop join by
replacing the word ‘hash’ with ‘nested loop’ as follows.

UPDATE pg

SET desc = REPLACE((SELECT desc FROM pg AS pg2
WHERE pg2.name = ’hashjoin’), ’hash’, ’nested loop’)
WHERE pg.name = ’nested loop join’

Note that the REPLACE clause takes three parameters as input, namely, the description or definition of an
operator object, the string in it that needs to be replaced (e.g., ‘hash’), and its new replacement string (e.g., ‘nested
loop").

Once the physical operator objects for different RDBMS are created in POOL and stored, the physical operator
tree of a given query in any RDBMS can be augmented by automatically annotating relevant nodes with NL
descriptions by leveraging the COMPOSE statement and replacing the place holders in NL templates with specific
relations, attribute names, and predicates relevant to the query. The NL description generation framework then
utilizes this augmented operator tree and integrates a rule-based and deep learning-based techniques. In particular,
the latter infuses language variability in the descriptions opportunely. This strategy has been shown to mitigate
the impact of boredom on learners that may arise due to repetitive statements in different NL descriptions [42].

42 MOCHA

MOCHA (iMpact of Operator CHoices visuAlizer) [4,40] aids learner-friendly interaction and visualization of
the impact of alternative physical operator choices on a selected QEP for a given SQL query. It is built on top
of PostgreSQL. Given an SQL query and learner-specified operator preferences (e.g., merge join, index scan),
MOCHA automatically visualizes the impact of these choices on the selected QEP. Specifically, it exploits the
planner method configuration' feature of PostgreSQL to generate AQPs based on a user input. The configuration
parameters in this feature provide a way to enforce the query optimizer to choose a query plan with certain
user-specified physical operators. By default, all parameters are turned on during query processing. A query
request is sent to PostgreSQL using the default settings to retrieve the QEP of a query.

L . postgresql.org/docs/9.2/runtime-config-query.html1#RUNTIME- CONFIG-QUERY-CONSTANTS.
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In order to retrieve AQPs, a learner may select a subset of the configuration parameters (through a user-
friendly visual interface) based on the physical operators that she intend to view in these plans. In this case, the
corresponding parameters are set to “true" (e.g., SET enable_mergejoin = true) in the query request. MOCHA
supports two modes for generating alternative plans, namely, single mode and multiple mode. In the former mode,
MOCHA sends a query request to PostgreSQL in which the unselected parameters are set to “false” to generate
an AQP containing the operators corresponding to the selected parameters that are relevant to the processing
of the query. In the latter mode, every selected parameter is either set to “true” or “false” to create all possible
combinations of these parameters. MOCHA iterates through these combinations and sends corresponding query
requests to PostgreSQL. It only maintains all distinct plans retrieved from these requests. To facilitate learning, it
provides a learner-friendly GUI to detect and visualize various structural and cost differences between a selected
AQP and the QEP.

MOCHA also generates a natural language-based explanation that goes beyond the conventional least-cost-
based explanation to connect established knowledge related to usage scenarios of different physical operators
that a learner has learnt from textbooks with the operators in a QEP. The current version manually extracts usage
scenarios of different physical operators from the relevant literature. This is feasible since there is a small number
of physical operators in PostgreSQL. Then a set of documents containing these usage scenarios is indexed using
an inverted index where each document is associated with a single physical operator. For a given QEP, it identifies
relevant operators and retrieves associated predicates and join conditions, if any. The text explanation is then
generated for an operator by utilizing a rule-based template, the inverted index to retrieve corresponding usage
scenario, and database statistics information (e.g., selectivity). The generated explanation is visually displayed on
the visual interface of MOCHA. For example, an explanation could be “the QEP uses index scan on the lineitem
table as it is faster due to the high selectivity of the predicate (i.e., l_orderkey = orders.o_orderkey)”.

In the future, we intend to generalize MOCHA to accommodate major RDBMS, support visualization of the
impact of join ordering, and automate the manual extraction of usage information of various physical operators
in these RDBMS. More importantly, we wish to deploy MOCHA in our learning environment and investigate its
impact on students taking the database systems course.

4.3 Usage and Impact of NEURON

NEURON and LANTERN are currently deployed in database systems courses in NTU and Xidian University. We
now briefly describe our initial efforts to measure NEURON’s impact on the learning of QEP. To this end, we
introduced it to students taking the undergraduate database systems course (CZ4031) in NTU in the August
semester of 2021. 166 students were enrolled in this course. These students are pursuing a variety of degrees
such as computer science, computer engineering, data science and analytics, and business and computing. In
particular, the topic of query processing and optimization was covered in 4 weeks (September-October) over eight
1-hour lectures. On October 28th, the students took a test on the topic of query processing and optimization. The
following message was sent to the students on 14th October, 2021: “If you wish to understand query execution
plans (QEP) generated by PostgreSQL for different SQL queries, you may use the software called NEURON
at https: //neuron. scse. ntu. edu. sqg/. NEURON translates the QEP of a query to natural language
description.” We did not nudge students any further on using NEURON or give them any hints on whether
questions related to natural language descriptions of query plans will appear in the test. Hence, students were not
aware of any assessment-related rewards if they used the tool. The goal here is to observe whether learners will
use it without any nudging or grades-related rewards and whether they will benefit from it.

We observe the usage of NEURON from 14th October to 2nd December by analyzing the log file. Note that
12th November was the last date of the course culminating with the submission of a course project. Since a
user needs to access NEURON by logging using an email address, we were able to match majority of the email
addresses that accessed it with those registered for the course. There were 69 distinct learners (41.5%) using
NEURON during this period. Figure 4(b) reports the number of queries posed by learners over time. In total, 888
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valid SQL queries (484 distinct queries) were executed on NEURON. The distribution of the number of queries
versus the number of distinct learners who posed that number of queries is shown in Figure 5. Observe that more
than 85% of them posed more than one query and the maximum number of queries posed by a single user is
93! Prior to October 28th (test date), the number of distinct users is 48 and the number of queries posed is 409
(211 distinct queries). Hence, the usage of NEURON continued even after the test as learners may be using it
to understand QEPs for their project work. Some students used it even after the official end date of the course
probably demonstrating intrinsic motivation to explore QEPSs.

To investigate whether NEURON may benefit learners to understand QEP, we use the test as a proxy. In the
test, a question was specifically set to this end. The students were asked to explain in natural language the visual
format of a QEP (in PostgreSQL) for an SQL query on IMDb database involving two joins, scans, and sort
operations. The question carried 10 marks. Observe that it matches very closely to NEURON’s goal. This enables
us to evaluate more accurately possible impact of NEURON on the test performance.

In order to avoid any bias, a teaching assistant (TA) who is not involved with NEURON graded the answers to
this question. The TA was given the solution and was allowed to set the marking scheme for the question. The
number of students who took the test is 162. The average score of students who used (resp. not used) NEURON
prior to test is 8.43 (resp. 7.07). The maximum, minimum, and median scores of these two groups are (10, 6.5, 8)
and (10, 0, 7.5), respectively. Among the non-NEURON users, the percentage of students with scores lower than
the minimum score in the NEURON user group (i.e., 6.5) is 21.31%. Furthermore, the percentage of NEURON
users (resp. non-NEURON users) with scores higher than the average score of 8 is 47.5% (resp. 35.25%). Some
of the common errors made by students are (a) not describing in natural language; (b) incorrect sequence of
steps; (c) not including filter conditions in the scan operations; and (d) unclear specifications of operators and
intermediate results. Observe that these errors could have been mitigated with the usage of NEURON.

In summary, while we cannot infer causal link from the initial results, it is possible NEURON may improve
learning of query execution strategies. We are still in the early stages of understanding the impact of this tool on
learning. We intend to use NEURON and LANTERN in future semesters to gather sufficient longitudinal data for a
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more detailed investigation of technology-enabled learning and their impact on data-driven education.

5 Conclusions

Impact of digital technologies on learning has consistently shown positive benefits when they are aligned. With
the advent of data science and lifelong learning, there has been growing interest in the database course from
adult learners with diverse background. This necessitates us to revisit the traditional way we teach this course by
supplementing it with technological support to improve learning. This paper contributes a vision of technology-
enabled learning of the topic of relational query processing in a database systems course. Specifically, our vision
attempts to carve out a substantially new research topic that is at the intersection of learning sciences and data
management to improve learning of relational query processing. To the best of our knowledge, this vision has not
been systematically investigated before, prior to our recent publications.

Measures of success. Successful realisation of this vision will improve learning and understanding of the complex
topic of relational query processing. But several non-trivial and novel research challenges as articulated in the
paper need to be overcome to realize it. Adoption of the potential solutions by real-world learners as a supplement
to traditional modes of learning will be another measure of success.

Wider applicability. We focused on the topic of relational query processing since it is one of the most challenging
topic in a database systems course. Nevertheless, it is easy to see that our vision of technology-enabled learning
can be extended to other topics such as enabling technologies to facilitate learning of SQL queries.
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