
Letter from the Rising Star Award Winner

I am honored to receive the 2022 IEEE TCDE Early Career Award “for contributions to the design of query
processing engines for non-volatile memory and video database systems.” I am thankful to my nominator, letter
writers, and the award committee members, as well as my students, colleagues, collaborators, and sponsors who
have helped shape our research agenda. I want to use this opportunity to present an overview of our ongoing work
on video database systems and highlight the importance for our community to rethink video database systems.

There is a lot of excitement in industry and academia around building Data Lakes for Big Data. It is important
to note that video data will be a significant source of Big Data. For example, it would take a lifetime to watch
all the YouTube videos uploaded in a single hour. To extract insights hidden in these videos, it is essential to
automatically analyse them at scale. There are several real-world applications of video analytics ranging from
climate prediction to urban planning.

Video Database Systems 1.0 Database researchers have long recognized the potential of organizing and
querying video databases. QBIC from IBM Research and Chabot from Berkeley were pioneering projects in the
video database systems space in the 1990s. These systems were designed around the observation that traditional
database systems are tailored for alphanumeric, structured data. To address the limitations of traditional database
systems, these systems sought to transform each frame into a numeric feature representation, and then retrieve
frames similar to the queried frame based on the distance between the feature vectors. While this technique could
return images with similar color or texture, it could often return semantically irrelevant results (e.g., searching
for a bluish-white image of a beach might result in a bluish-white image of a living room). This is because the
computer vision techniques in the early 2000s could not robustly extract richer semantics from the image – like
the fact that the image is that of a beach and not just a generic bluish-white image.

What is New Now? This is no longer a problem, thanks to advances in computer vision over the last decade
with the availability of large labeled datasets like ImageNet that are used to train complex neural networks like
ResNet. This has led to a resurgence of interest in video database systems 2.0 at several institutions like Georgia
Tech, Google, Microsoft, MIT, Stanford, and Washington. Unlike video database systems 1.0, these systems
leverage deep learning models to extract richer semantics from each frame, ranging from the locations of different
objects inside an image to detecting emotions.

Challenges in Video Database Systems 2.0 However, there are several challenges that these systems must
tackle. These include (1) usability, (2) computational cost, (3) accuracy guarantees, and (4) type of queries. First,
it is still challenging for a domain expert to set up a query pipeline for video analytics as that requires low-level
imperative programming across multiple libraries and frameworks (e.g., OpenCV, PyTorch, Pandas, etc.). So, to
find red-colored SUVs in a collection of images, the user needs to write around a hundred lines of Python code
requiring expertise in computer vision and systems. Second, deep learning models are expensive to run. Naïvely
running a model on every video frame is cost-prohibitive at scale. For example, the estimated cost for processing
one month’s video from a camera using Google’s Cloud Vision API amounts to 225Kand350 K for the image
classification and the object localization tasks, respectively. The cost increases with the complexity of the vision
task.

Third, unlike traditional database systems, accuracy is neither guaranteed nor expected in video database
systems. This is because the model may return wrong inference results due to incorrect training data. Errors
accumulate in complex queries that rely on multiple deep learning models. Furthermore, users themselves may
require different accuracy targets. For example, an officer doing a license plate search requires higher accuracy
than an urban planner analyzing traffic flow patterns. Fourth, users are interested in issuing semantically richer
queries. Most work in our community has focused on only detecting “objects” of interest. However, users might
be interested in querying for “actions” of interest. It is not sufficient to look at each frame independently to
answer such action queries. For example, the model requires context across a sequence of frames to distinguish
between a left and a right turn of a car.

EVA Database System I will next discuss how we tackle some of these challenges in the EVA database system
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we are developing at Georgia Tech. EVA is an end-to-end database system tailored for videos [https://georgia-tech-
db.github.io/eva/index.html]. We are redesigning all the layers of the system, starting from the storage manager up
to the query optimizer. EVA supports a declarative SQL-like language with video-specific functionality to address
the usability challenge. This allows domain experts to easily issue video analytics queries without requiring
low-level imperative programming. Furthermore, they can reuse the query language across different applications.
The user only needs to write a short SQL query to find red-colored SUVs in a collection of images. To lower the
computational cost, EVA optimizes declarative queries using a Cascades-style optimizer. The optimizer is tailored
for user-defined functions that wrap around deep learning models. It automatically materializes and reuses the
results of expensive user-defined functions (i.e., models). EVA uses symbolic analysis of predicates to identify
opportunities for reusing results. Its optimizer uses a reuse-aware cost function to guide decisions like predicate
reordering and model selection.

Third, EVA leverages the flexibility in accuracy targets to reduce query processing time. In particular, it
selects the appropriate “physical” deep learning model for a given “logical” vision task (e.g., object detection) to
meet the accuracy requirement (e.g., YOLOv4 vs. Faster-RCNN). It processes different chunks of a given video
using different models in the ensemble to lower query processing time while meeting the accuracy requirement.
Lastly, EVA supports complex action-based queries. Action localization task requires a more expensive neural
network than object detection. So, the query optimizer trains a reinforcement learning agent to adaptively pick
video chunks that are then fed to the action classifier. This is an exciting combination of Data Management
for ML and ML for Data Management. The agent learns to tune three knobs: sampling rate, chunk length, and
resolution, for adaptively constructing the next video chunk.

In conclusion, I hope this letter got you interested in exploring the space of video database systems. Our
work, recognized by this award, is but one part of this tidal wave. It will take our entire community to unlock the
full potential of video database systems for practitioners. We can make a significant difference in several open
problems – data cleaning, multi-modal query processing, fairness, holistic query optimization, multi-tier storage
management, provenance, etc. I hope we will rise to the occasion and help develop the next generation of video
database systems.

Joy Arulraj
Georgia Tech, USA
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