
In-Database Decision Support: Opportunities and Challenges

Azza Abouzied,⋆ Peter J. Haas,⋄ and Alexandra Meliou ⋄

⋆ New York University (NYU) Abu Dhabi, United Arab Emirates
⋄ University of Massachusetts Amherst, USA

Abstract

Decision makers in a broad range of domains, such as finance, transportation, manufacturing, and
healthcare, often need to derive optimal decisions given a set of constraints and objectives. Traditional
solutions to such constrained optimization problems are typically application-specific, complex, and do
not generalize. Further, the usual workflow requires slow, cumbersome, and error-prone data movement
between a database and predictive-modeling and optimization packages. All of these problems are
exacerbated by the unprecedented size of modern data-intensive optimization problems. The emerging
research area of in-database prescriptive analytics aims to provide seamless domain-independent, declar-
ative, and scalable approaches powered by the system where the data typically resides: the database.
Integrating optimization with database technology opens up prescriptive analytics to a much broader
community, amplifying its benefits. In the context of our prior and ongoing work in this area, we discuss
some strategies for addressing key challenges related to usability, scalability, data uncertainty, dynamic
environments with changing data and models, and the need to support decision-making agents. We
indicate how deep integration between the DBMS, predictive models, and optimization software creates
opportunities for rich prescriptive-query functionality with good scalability and performance.

1 Introduction

Prescriptive analytics [15, 19], and constrained optimization in particular, is central to decision making over
a broad range of domains, including finance, transportation, manufacturing, and healthcare. In these settings,
decision makers frequently face constrained optimization problems: they need to derive optimal decisions given a
complex set of interacting constraints and objectives. Constraints arise from competition between activities for
scarce resources such as time, budget, workers, trucks, tools, etc., and objective functions formalize organizational
goals such as minimizing costs or delays, maximizing revenue, or minimizing disease mortality.

Optimization models rely on predictive analytics—using historical data to predict future trends as well as the
future effects of current actions—in order to assess which actions will yield the best results. Predictive models can
take the form of complex mechanistic simulation models that incorporate deep domain knowledge or data-driven
models such as classical regression models or time series models or, more recently, machine learning models.
Moreover, descriptive analytics—analyzing historical data to discover patterns and relationships—also plays
a key role by informing the process of building optimization models so that they capture the most important
relationships. Despite the fundamental interplay between descriptive, predictive, and prescriptive analytics, the
latter has received much less attention from the database community.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

102

Modeling and solving optimization problems has typically relied on application-specific solutions. Such
solutions are often complex and do not generalize; a decision maker seeking to apply optimization techniques in
a new application setting must either develop a new custom model from scratch, or must learn the intricacies
of generic optimization software, which can be daunting for those with domain, but not optimization, expertise.
Moreover, the usual workflow requires that data be extracted from a database and then reformatted and fed into a
separate optimization package, after which the output must be reformatted and inserted back into the database;
this process is slow, cumbersome, and error-prone. These challenges are further exacerbated by the unprecedented
size of modern data-intensive optimization problems.

In-database prescriptive analytics is an emerging research area that aims to provide domain-independent,
declarative, and scalable approaches, supported and powered by the system where the data relevant to these
problems typically resides: the database. This makes modeling less ad-hoc, and the overall optimization process,
from data preparation through solution and exploration of results, becomes much more efficient. Desirable data
management functionality, such as efficient retrieval, consistency, persistence, fault tolerance, access control, and
data-integration capability, become an integral part of the system “for free”. Interest in native DB support for
prescriptive analytics has therefore started to grow [13]. One line of research is exemplified by the SolveDB and
SolveDB+ systems [24, 25]. These systems provide semi-declarative languages for specifying a broad range of
optimization problems, allow easy sharing of optimization models across sub-problems of an overall predictive-
analytics problem, and facilitate plugging in of various prediction models and optimization-problem solvers.

ID stock type price · · · gain
1 AAPL Tech 150 · · · ?
2 MSFT Tech 272 · · · ?
3 TSLA Tech 758 · · · ?
4 AMZN Tech 2400 · · · ?
5 INTC Tech 42 · · · ?
6 GOOG Tech 2280 · · · ?
7 ADBE Tech 415 · · · ?
8 FB Tech 194 · · · ?

Figure 1: Stock_Investments table.

We have found, however, that existing solvers are often unable
to deal gracefully, if at all, with very large amounts of data, with
uncertainty in the data, with dynamic environments where the data or
models are constantly changing, or with problems that involve find-
ing optimal policies for automated decision-making agents. Thus,
the naive use of black-box solvers is often not viable for modern
large-scale optimization problems in complex environments. Our
initial work aims to support the evaluation of an important class of
constrained optimization problems—integer linear programs (ILP)—
within a database [6, 7]. We have built a prototype system, Package-
Builder, to specify and evaluate ILPs as “package queries”. As a
simple example, each row of a database table might represent a food item, with attributes describing purchase price
and nutritional content. A “package query” would return a “package” of rows (i.e., set of food items) having the
minimum possible cost while satisfying constraints on minimum required nutritional content. More specifically,
each food item i can appear xi times in the package, where each “decision variable” xi is a nonnegative integer,
hence the “I” in ILP. Both the package cost, which is to be minimized, and the total amount of a nutrient such as
vitamin D, which is constrained to lie above a threshold, are linear functions of the xi decision variables, hence
the “L” in ILP. Our emphasis has been on developing fully declarative SQL extensions to specify package queries
over both deterministic and uncertain data, and to “open up” black box solvers in order to develop novel scalable
approximate optimization algorithms for massive, possibly uncertain data in dynamic environments. Our work is
complementary to that in [24, 25], in that our techniques can potentially be incorporated into a system such as
SolveDB+.

The challenges that we consider are concretely illustrated by the following example.

Example 1 (Investment portfolio): A broker wants to construct an investment portfolio for one of her clients.
The client has a budget of $50K and a planning horizon of six months. The available data comprises a table where
each row corresponds to a stock. The attributes for a stock include its current purchase price per share, as well
as other features such as industry sector, financial rating of the company, recent volatility, and so on; see Figure 1.

The “?” symbols indicate that the attribute gain, which represents the gain from selling a given stock six months
from now, is uncertain. The broker has available a computer model that uses the stocks’ characteristics, along

103

with other market data, to predict the joint probability distribution of stock prices six months from now. The
broker wants to select a package of tuples, i.e., a portfolio of stocks, that will maximize the client’s expected
profit in six months, subject to the constraints that (1) the total purchase price of the portfolio does not exceed
$50K, and (2) the probability of losing $1000 or more at the end of six months is at most 5%.

As stock prices change, new stocks are added, and prediction models get updated, the optimal portfolio
package may also change. Further, as the broker discusses options with her client, they may wish to explore slight
variations, e.g., what if she slightly increases or decreases her budget? what if she increases or decreases the risk
tolerance on her investment? or, what if she wishes to eliminate or include a specific set of stocks in her portfolio?

This example highlights several challenges.

Query specification. In our example, while the current price of a stock may be known (deterministic), its
future price is a random variable whose value can only be described via a probability distribution. The
future value of a portfolio package is therefore also uncertain. Even in the deterministic case, standard
SQL is incapable of expressing package constraints [6, 7]. In the stochastic setting, statistical concepts
such as expected values, probabilistic constraints, and risk measures such as “conditional value at risk”
(CVaR) compound the specification challenge. How does one model the uncertainty of stock prices and
specify probabilistic constraints (such as bounding the risk of loss) or reason about stochastic objectives and
variables? Especially challenging is the problem of specifying data uncertainty: probability distributions
over uncertain data values take on many different forms, including discrete, continuous, and mixed
distributions. Moreover, closed-form descriptions of probability distributions are not always available, e.g.,
for financial models of complex instruments such as “exotic” stock options.

Scalable processing. Because the number of decision variables in a package query equals the number of
rows in a database table, which can run to the millions, the resulting ILP is often much too large for an
off-the-shelf solver to handle, even in a deterministic setting. With uncertain data, Monte Carlo methods
must often be used to create an approximating ILP whose size is larger than the ILP for the deterministic
case by orders of magnitude, exacerbating the problem. Indeed, a variant of the above example allows
stocks to be held for varying amounts of time before sale, so that each distinct stock may be represented
by multiple rows in the table corresponding to different potential sell dates; this can inflate the size of the
optimization problem by more orders of magnitude.

Dynamic environments. Changes to the underlying data may be frequent, incurring expensive recomputa-
tions of the query result to keep it up-to-date. Similarly, reevaluating the packages from scratch, even for
small variations of the parameters, to explore different scenarios and options, can make a what-if analysis
prohibitively time-consuming.

Policy-making As we move from one-off decisions to automated decision making by agents in time-
changing and dynamic environments, the goal of prescriptive analytics shifts to construction of robust
policies that inform decisions based on (partial) observations of the current world and predictions of the
future world. Consider an auto-trader that makes daily decisions about stocks to buy or sell in order
to optimize for long-term gain. The auto-trader employs an optimal policy learned from stock-price
time-series predictions. As decision-making becomes increasingly autonomous, with sequential decisions
in dynamic and uncertain environments, predictive and prescriptive analytics become tightly enmeshed,
with reinforcement learning methods coming into play and requiring better data management support for
the massive simulated or real data sets used to constantly train predictive models, learn optimal policies
and model possible outcomes.

In the following sections, we consider the various challenges mentioned above for in-database specification
and solution of package queries. The discussion focuses on our prior and ongoing results as well as indicating
directions for future work.

104

2 Query Specification

To allow declarative specification of package queries in a DBMS-friendly manner, a natural approach is to
extend the SQL language to support such queries. We first introduce PAQL, our SQL extension for declarative
specification of deterministic package queries, and then discuss further extensions to handle data uncertainty,
leading to the SPAQL language extension.

2.1 Package Query Language (PaQL)

The PAQL language extension allows users to declaratively express combinatorial optimization problems with
linear objectives and constraints natively within a relational database.

Example 2 (Meal Plan): A dietitian needs to design a meal plan for a patient. She wants three distinct gluten-
free meals, between 2K and 2.5K calories in total, and with a low total intake of saturated fats. Each row in
the relational table Recipes describes a distinct meal, giving the total number of calories and total amount of
saturated fats and gluten, along with other nutritional information.

Package queries extend traditional database queries by allowing users to not only express standard selection
constraints (e.g., each meal must be gluten-free), but also higher-order package-level constraints (e.g., all meal
plans must have between 2,000 and 2,500 calories in total) and objectives (e.g., minimize the meal plan’s total
saturated fat). The Package Query Language (PAQL) extends SQL to allow for their declarative expression. The
Meal Plan query in Example 2 can be expressed in PAQL as follows:

SELECT PACKAGE(∗)
FROM Recipes REPEAT 0 /* each meal can appear at most once in a package */
WHERE gluten = 0

SUCH THAT
COUNT(∗) = 3 AND

SUM(kcal) BETWEEN 2.0 AND 2.5

MINIMIZE SUM(sat_fat)

The PackageBuilder system transforms a PAQL specification into an ILP and uses an off-the-shelf ILP solver
to compute the desired package. When, as is typical, the number of database rows is large, direct solution by
the solver is infeasible because of the large size of the ILP. We have developed an iterative approximate solution
algorithm called SKETCHREFINE [7] (discussed in Section 3) to handle large numbers of rows while providing
approximation guarantees.

2.2 sPaQL
In preliminary work [8, 9], we have started to extend PackageBuilder to handle uncertain data. Dealing with
uncertainty is crucial, because uncertain data is pervasive. For example, data values might represent outputs
of predictive stochastic models as in the stock examples, or might derive from noisy processes such as sensor
readings, privacy shielding, data integration, or extraction of structured data from text, images, or video [28].
Thus, decisions must often be made in the face of uncertainty, i.e., the decision maker must solve a stochastic
optimization problem. As a first step, we have extended PAQL to allow specification of stochastic package queries
(SPQs); the extended language is called SPAQL. For example, the portfolio-selection problem of Example 1 can
be expressed in SPAQL as follows:

SELECT PACKAGE(∗) AS Portfolio
FROM Stock_Investments
WHERE type = ′Tech′

105

1

02

2 1

G1 G2

G3

G4

2

G1 G2

G3

G4

1

0
G1 G2

G3

G4

2 1

G1 G2

G3

G4

(b) Initial query using
representative tuples

(c) Initial package (e) Skipping G2 (g) Refinement
query for group G4

(h) Final approximate
package

REFINEPARTITION SKETCH

(d) Refinement
query for group G1

(f) Refinement
query for group G3

(a) Original tuples

Multiplicity of representative
tuples in the initial package

Representative and original tuples selected during previous steps, shown by
hatching lines, are aggregated and used to modify later refinement queries

Figure 2: An illustration of the SKETCHREFINE algorithm. The original tuples (a) are partitioned into four groups
and a representative is constructed for each group (b). The initial sketch package (c) contains only representative
tuples, with possible repetitions up the size of each group. The refine query for group G1 (d) involves the original
tuples from G1 and the aggregated solutions to all other groups (G2, G3, and G4). Group G2 can be skipped (e)
because no representatives could be picked from it. Any solution to previously refined groups are used while
refining the solution for the remaining groups (f and g). The final approximate package (h) contains only original
tuples. (Figure taken from [7].)

SUCH THAT
SUM(price) ≤ 50,000 AND
SUM(gain) ≥ −1000 WITH PROBABILITY ≥ 0.95

MAXIMIZE EXPECTED SUM(gain)

A SPAQL query such as the one above specifies a stochastic ILP (SILP) whose solution is the desired package.
Expected-value constraints such as EXPECTED SUM(attr) ≥ x are also allowed.

3 Scalable Query Evaluation

In this section, we provide an overview of scalable evaluation methods for package queries (PQs). Scalability
challenges arise in the presence of large datasets and are further exacerbated by the use of Monte Carlo methods
for solving stochastic package queries (SPQs); the latter methods require generation of multiple “scenarios”. We
discuss the SKETCHREFINE algorithm for addressing the first challenge in the context of deterministic PQs and
then discuss an algorithm called SUMMARYSEARCH for scalability with respect to scenarios. We then outline the
challenges of bringing these two research threads together to evaluate SPQs over large sets of uncertain data.

3.1 Scaling Deterministic Package Queries with SketchRefine

The PackageBuilder system transforms a PAQL specification into an ILP and uses an off-the-shelf ILP solver to
compute the desired package. When, as is typical, the number of database rows is large, direct solution by the
solver is infeasible because of the large size of the ILP. In prior work, we developed an iterative approximate
solution algorithm called SKETCHREFINE [7] to handle large numbers of rows while providing approximation
guarantees. Briefly, the algorithm first partitions the rows into groups, where the rows in each group have similar
attribute values, and then computes a representative for each group. A small ILP using only the representatives
can be then easily solved—the “sketch”. The sketch is then iteratively “refined” by carefully replacing each
representative using the rows that it represents. The process maintains feasibility of the current solution until the
final package is obtained. Limiting the size of each group to be a small number of τ tuples ensures that each
refine phase can be executed efficiently and allows for approximation guarantees. Figure 2 illustrates the three
key operations of SKETCHREFINE: partition, sketch and refine.

106

Scenario 1
ID · · · gain
1 · · · 20
2 · · · 3
3 · · · -30
4 · · · 10
5 · · · 200
6 · · · -10
7 · · · 30
8 · · · 20

Scenario 2
ID · · · gain
1 · · · 10
2 · · · 6
3 · · · -5
4 · · · 4
5 · · · 120
6 · · · -20
7 · · · 15
8 · · · 16

Scenario 3
ID · · · gain
1 · · · -2
2 · · · 8
3 · · · -25
4 · · · 36
5 · · · 70
6 · · · 15
7 · · · 20
8 · · · 7

Summary
ID · · · gain
1 · · · -2
2 · · · 3
3 · · · -30
4 · · · 4
5 · · · 70
6 · · · -20
7 · · · 15
8 · · · 7

Figure 3: Three example scenarios and a summary for the Stock_Investments table.

3.2 Scaling Stochastic Package Queries with Respect to Scenarios

Evaluating SPQs is very challenging, due to the sheer size of the optimization problems: First, as with deter-
ministic PQs, there is a decision variable for every row of a (potentially very large) table. Second, the presence
of uncertainty typically requires multiple versions of the table, called scenarios, that represent Monte Carlo
realizations of the uncertain data values. Often, a large number of scenarios is required for accuracy, inflating the
problem size by orders of magnitude.

Exact evaluation: One approach tackles the scalability challenge of stochastic problems by eliminating
uncertainty. E.g., it is indeed possible to translate a stochastic package query into an integer program when (i) the
expected value of each attribute in an expectation objective is known and (ii) each attribute in a probabilistic
constraint has a Gaussian distribution with known mean and variance. It is possible to derive precise rules that
enable this translation. Consider, for example, an expectation objective on attribute Aj , i.e., the goal is to minimize
the expected value of the sum of Aj over all tuples in the package. The objective function to be minimized takes the
form E (

∑
iAij · xi). Because of the linearity of expectation, E (

∑
iAij · xi) =

∑
i E (Aij) ·xi =

∑
i ti.µAj ·xi,

where ti.µAj is the expected value of Aj for tuple ti. Therefore, we can simply replace the expectation objective
with a linear deterministic objective. Similarly, linear Gaussian probabilistic constraints can be transformed into
deterministic quadratic constraints; we require, however, that the resulting constraints be convex.

Monte Carlo evaluation: The foregoing method has the great benefit of being exact, but has limited applica-
bility and may fail even on small problems (few rows) because of the complexity of the quadratic constraints.
In preliminary work, we have developed a more general strategy based on Monte Carlo (MC) sampling. The
idea is to approximate the SILP with a deterministic ILP. Specifically, we replace the expectation objective
with an empirical average over a set of randomly generated scenarios, and similarly replace a probabilistic
constraint—e.g., that an inequality be satisfied with 90% probability—with a requirement that, e.g., the inequality
hold for 90% of the scenarios. This approach forgoes exact optimality in order to (1) allow arbitrary distributions
for random variables appearing in probabilistic constraints, (2) avoid the convexity requirements on probabilistic
constraints mentioned previously, (3) allow correlation between tuples, and (4) obtain less complex (i.e., not
quadratic) constraints. The only requirement is the ability to sample values from each random variable. To this
end, we can store uncertain data in a probabilistic database [28], specifically a “Monte Carlo database system”
such as MCDB or SimSQL [4, 10, 16, 17, 23], which offer support for arbitrarily complex random distributions of
the kind needed to support optimization problems such as portfolio selection. Roughly speaking, the uncertainty
of a given data item is specified via a user-defined value generation (VG) function which, when invoked, generates
a sample realization of the data-item value from its underlying probability distribution. VG functions can generate
values for multiple data items simultaneously, thereby allowing complex statistical correlations between data
items. By evaluating every VG function in a table, we get a sample realization of the table, which we call a
scenario. (Scenarios are also called “possible worlds” in the literature on probabilistic databases.) Figure 3 shows

107

three possible scenarios (the leftmost three tables) for the table in Figure 1. After computing an optimal package,
its true feasibility and objective value for the original SILP can be determined to high accuracy using a very large
number of “validation” scenarios; this calculation is much faster than solving the approximate ILP optimization
problem.

The deterministic ILP obtained as described above is called a stochastic average approximation (SAA) and
approximates the SILP. Often, many scenarios are required to obtain a sufficiently accurate approximation. Indeed,
if too few scenarios are used, then the solution to the SAA will be infeasible for the true SILP, but will have an
objective value that is better than the true one, so that we think that we are doing better than we actually are; this
phenomenon is known as the “optimizer’s curse” [27]. The size of the SAA is proportional to the number of
database rows times the number of scenarios, which makes direct use of an off-the-shelf solver infeasible.

Scaling the number of scenarios: To address this scalability problem, we developed an algorithm called
SUMMARYSEARCH [9] that can drastically reduce the number of scenarios required. SUMMARYSEARCH replaces
the large set of scenarios used to form the SAA by a very small synopsis of the scenario set, called a summary,
which results in a reduced ILP, called a conservative summary approximation (CSA), that is much smaller than
the SAA. A summary is carefully crafted to be “conservative” in that the constraints in the CSA are harder to
satisfy than the constraints in the SAA, thereby pushing the solver to find truly feasible solutions. In our portfolio
example, a summary of a set of three scenarios can be obtained by taking the row-wise minimum of the gains as
shown in Figure 3; if the gain of a package with respect to the summary exceeds −$1000, then clearly the gain
of 100% of the original three scenarios exceeds −$1000. By taking the row-wise minimum over more or fewer
random scenarios, the summary can be made more or less conservative.

Because the ILP for the CSA is much smaller than that for the SAA, it can be solved much faster. Moreover,
the resulting solution is much more likely to be truly feasible (as verified using a large set of validation scenarios),
so that the required number of optimization/validation iterations is typically reduced. Of course, if a summary
is overly conservative, the resulting solution will be feasible, but highly suboptimal. Therefore, during each opti-
mization phase, SUMMARYSEARCH implements a sophisticated search procedure aimed at finding a “minimally”
conservative summary; this search requires solution of a sequence of reduced ILPs, but each can be solved quickly.
In experiments reported in [9], SUMMARYSEARCH was able to answer SPQs faster by orders of magnitude than
the prior approach of sequentially adding more and more scenarios to an SAA until either the solution package
is truly feasible (as measured by the validation set) or the solver chokes; indeed, SUMMARYSEARCH was able
to compute good, truly feasible solutions in many cases where the prior approach would fail.

3.3 Fully Scaling Stochastic Package Queries

The SUMMARYSEARCH algorithm addresses the scalability issue with respect to the number of scenarios, but
does not address scalability with respect to the number of database rows. For interactive decision making in
dynamic, uncertain environments involving large amounts of data, both issues must be addressed simultaneously.
In current work, we are extending our SPQ evaluation algorithms to handle large numbers of database rows. A
promising direction is to use a sketch-and-refine approach as an “outer loop” to generate a sequence of SILP
problems with a small number of rows which are solved using techniques that are scalable in the number of
scenarios. To further improve speed and efficiency, a potentially powerful approach opens the lid on the ILP
solver to try and exploit the characteristics specific to ILPs in the package-query setting.

Adapting and improving SketchRefine: As with SKETCHREFINE for deterministic data, we create the sketch
by replacing the rows with a small set of representatives and then subsequently refine it. A key question is how to
define the partitions and compute the representatives. In the deterministic setting, the distance between rows,
which can be viewed as points in a multidimensional space S of attribute values, is relatively straightforward
to define. In the stochastic setting, each row represents a multidimensional probability distribution over S.
This raises the question of how to appropriately define distances between the stochastic rows. There are many
distance metrics for probability distributions, and for any metric there is an trade-off between space requirements,

108

accuracy, and computational cost when estimating the metric from scenarios. Possible approaches include
estimating a metric using raw samples, histograms, quantiles, or kernel-density methods [26]. It is also desirable
to parallelize the partitioning operation, which cannot be easily done in the prior clustering-based approach
used in SKETCHREFINE; we are therefore currently investigating alternative divide-and-conquer approaches. In
addition, it is often the case that multiple data items use the same choice of VG function, perhaps with slightly
varying parameterizations, to generate samples when creating a scenario; this information can potentially be
exploited to develop effective partitioning schemes. Once a partition is determined, a (stochastic) representative
can potentially be computed in a number of different ways, varying in accuracy and computational effort.

Figure 4: Two plots visualizing the probability dis-
tributions of the total gains of two different pack-
ages. The blue curve denotes a package with a
higher expected sum, but in its lower 5% of cases,
the average loss is almost three times higher than
that of the red curve. VaR constraints alone do
not differentiate between the two plots, since the
right boundary of the lower 5% tail is the same in
both distributions. CVaR constraints allow users
to limit the expected loss in the tail of the distri-
bution, and avoid high-risk packages such as one
shown in blue.

For the inner loop, we are investigating improvements to
SUMMARYSEARCH by exploiting the tractability of CVaR
constraints. The probabilistic constraint on the gain in the
SPAQL query in Section 2.2 is called a chance constraint in
the stochastic-programming literature. In risk-management
terminology [20], the α = 0.95 Value at Risk (VaR) is $1000
in the worst case; that is, the probability of losing $1000 or
more is at most 1 − α = 5%. Although VaR is a widely
used risk measure, it has a number of deficiencies. Intuitively,
knowing that there is at most a 5% chance of losing $1000 or
more is not totally reassuring, since the actual loss in the bad
5%-probability scenario—i.e., the “worst 5% of cases”—is
not controlled at all. Risk analysts are increasingly prefer-
ring to supplement or replace the VaR measure of risk with
an alternative measure, called the Conditional Value-at-Risk
(CVaR)—also called Expected Shortfall—with confidence
α, defined as the expected loss given that the loss exceeds
the α-VaR. Unlike VaR, the CVaR measure has the desir-
able “subadditivity” property that bounds the total risk of a
set of gambles by the sum of the individual risks, thereby
encouraging risk reduction through diversification, unlike
VaR.

As indicated in our discussion of exact evaluation meth-
ods in Section 3.2, a constraint defined in terms of an expected
value can be converted to a simple linear constraint that is
relatively easy to handle. In a similar manner, a CVaR constraint, since it comprises an expectation, can also be
handled much more easily than a VaR constraint. Interestingly, it appears as if a problem with a VaR constraint
can be solved by rapidly solving a sequence of problems involving only CVaR constraints, avoiding the need to
search for appropriately conservative summaries.

Re-engineering the ILP solver: The ILP solver plays a key role in solving both deterministic and stochastic
package queries, so speeding up the solver module can significantly improve the performance of all methods
discussed so far. Moreover, in the setting of SKETCHREFINE, a solver that can scale to large numbers of
rows reduces the number of refinement steps required and improves accuracy. An important characteristic
of the ILP problems that arise in our setting is that the number of rows n is much larger than the number of
constraints m, since constraints are typically manually defined by the user whereas the number of rows equals
the table cardinality. This creates opportunities to replace a general-purpose ILP solver by a specially designed
paralellizable approximate ILP solver (A-ILP), which can speed up processing not only of SPQs, but also of
deterministic package queries and more general ILPs having a high n-to-m ratio. In preliminary work, we have
started to develop such an improved solver. The rough idea is to first relax the ILP to a linear program (LP) by

109

dropping the integrality constraints. The LP is then solved using a novel variant of the well known dual-simplex
algorithm [29] that exploits the n-to-m ratio in multiple ways for speed and efficiency. An O(m+ log n) “guided
lattice walk” is then used to obtain a reduced ILP with fewer variables that approximates the original ILP. The
reduced problem is then solved exactly by a standard ILP solver. Initial experiments on an 8-core machine show
that the A-ILP solver can have an accuracy comparable to the commercial Gurobi ILP solver while being twice as
fast; the relative speed-up is expected to become even more pronounced as the number of cores increases due to
the parallelizability of the novel dual-simplex algorithm. We also found that A-ILP scales well, approximately
solving an ILP with tens of millions of variables in 5–8 seconds. We intend to theoretically analyze the properties
of A-ILP and leverage it to enhance interactivity in PACKAGEBUILDER.

4 Dynamic Data and Models

Another key challenge for in-database optimization via package queries is that, even for small delta changes
in the underlying data or in the query parameters, the computationally intensive package query needs to be
re-executed from scratch. Yet, in most real-world applications, the overall form of the constrained optimization
problem remains roughly the same, while the data or the query parameters incrementally change often within
short time spans. The requirement to re-execute such queries from scratch makes maintaining results up-to-date
computationally tedious and exploratory analysis impractical. In this section, we sketch some ideas for performing
incremental maintenance of package results when the underlying data or query parameters change slightly in
order to support interactive exploration and analysis. We discuss deterministic data first, and then extend our
discussion to stochastic data.

4.1 Incremental PQ maintenance under data perturbations

Incremental package maintenance under data changes can be handled heuristically: Let P be the set of tuples
appearing in a package result, R the set of tuples that were deleted from the original database D, and A the set of
tuples that were added to D. A heuristic solution to the standing package query can be obtained by running it on
the dataset (P \R) ∪A. Assuming that the data change is small, this should be a small set of tuples, over which
one can solve the constrained optimization problem directly. This method can serve as a heuristic baseline; a
more principled approach rests on a modification of the SKETCHREFINE algorithm.

The SKETCHREFINE algorithm provides package solutions that are a (1 ± ϵ)-factor close to the optimal
solution. It achieves this tight approximation bound by ensuring that each partition or group has a maximum
diameter ω such that ω depends on ϵ and all tuples in the group are within a radius ω/2 of the group’s centroid or
its representative tuple. Given this theoretical guarantee of SKETCHREFINE’s behavior, we identify the irrelevant
tuples of an incremental update as inserted tuples (∆R) that can be placed into an existing group without violating
its diameter ω or size τ limits, or deleted tuples (∇R) that do not occur in the solution package.

A scalable incremental SKETCHREFINE variant can potentially employ an incremental tree index to maintain
tuple-group mappings and can easily split groups that exceed the diameter or size limits. In this way, recomputa-
tions are only triggered when an incremental update causes a tree restructuring. Moreover, since partitioning
and representative tuple construction is incrementally maintained, only parts of the SKETCHREFINE algorithm
need to be re-executed and not the entire algorithm for certain updates. For example, when a tuple appearing
in the solution package is deleted from the base relation, we only need to re-refine the group to which the tuple
previously belonged.

Additionally, one can potentially exploit the fact that the A-ILP solver described in Section 3.3 hinges on the
dual-simplex algorithm. This algorithm is known to be amenable to incremental processing, and could potentially
be leveraged for incremental package updating.

110

4.2 Incremental PQ maintenance under query perturbations

A decision-maker may wish to quickly determine the effect of changing some query parameters on the overall
objective value. For example in the meal planning query (Example 2), ‘does relaxing the constraint on calories
lead to a lower-fat plan and to what degree’? Often, a rapid, initial estimate of the objective value and an
approximate, feasible, package solution is sufficient to help the decision-maker decide on whether they wish to
settle on the new query parameters, in which case, the new query can be fully and accurately evaluated.

We identify five practical mechanisms for interactive query refinements: (i) changing the threshold parameters
of base constraints to tighten or relax a query, (ii) tuple exclusions or tuple inclusions, (iii) changing the threshold
parameters of global constraints, (iv) converting base constraints to global ones and vice versa, and (v) in the
case of stochastic package queries changing the chance or CVaR parameters associated with a constraint. An
interesting research challenge is to develop one or more scalable evaluation techniques that provide an upper-
bound (lower-bound) estimate of the objective value for minimization (maximization) queries and an initial
feasible package interactively. Heuristic methods can avoid making expensive calls to the integrated ILP solver
and rely instead on efficient database top-k querying techniques. This is necessary to ensure sub-second response
times that are crucial for exploratory interactive query refinement such as when a user drags a slider to control the
threshold values of selection constraints: as they drag the slider, they would like to immediately understand the
impact of their refinement on the objective value and overall package solution.

We briefly describe a promising heuristic, TOPKSKETCH, that we hope to expand and analyze. TOPKSKETCH

computes and maintains an ordered list of tuples in each SKETCHREFINE partition: the ordering is determined by
both the objective function and the selection constraints of the package query. The ordered lists are similar to an
onion index [12]. On query refinement, we select the top-k tuples from each ordered list that satisfy the refined
selection constraints. Along with the original package, we pass these new tuples to the solver to recompute
a solution. This approach avoids the repeated refine operations (as a solution is built on actual tuples and not
representative tuples) and is equivalent in complexity to a single sketch operation. In preliminary experiments, we
found this approach to return results interactively (< 20 ms) for the refinements discussed above with near-optimal
objective values.

4.3 Incremental SPQ maintenance

Perturbations to data and queries occur in the stochastic setting as well. For example, in the portfolio problem, an
investor might originally only have considered NYSE stocks but may now also want to consider Nasdaq stocks.
Should she replace some NYSE stocks with Nasdaq stocks in her previously optimal portfolio? The degree of
risk than she might tolerate may change over time as her financial position or other factors change. Perhaps she
wants to understand the effect on the expected gain from her “optimal” portfolio if interests rates turned out to be
somewhat higher than the stock-prediction model originally assumed; is a modified portfolio needed?

The techniques discussed in Section 4.2, such as TOPKSKETCH, focus on incremental maintenance for
deterministic package queries under small perturbations such as tightening or loosening constraints and adding
or removing rows. Since these techniques essentially focus on updating the solution to an ILP, they are also
potentially applicable, perhaps with modifications, for updating the solution to the types of ILP used in the various
methods for SPQ evaluation. However, there are aspects of incremental maintenance that are unique to SPQs. In
particular, even if the query and the set of stochastic database rows (e.g., stocks) stays the same, a user might want
to experiment with the underlying probability distribution of the uncertain data values. In particular, a predictive
stochastic model used to generate scenarios often involves a vector θ of parameters that a user might want to
vary. For example, a predictive stock-price model might assume certain values for interest and unemployment
rates, and the user might want to see how the optimal portfolio changes when these parameters are varied. If
the parameters are not perturbed too much, are there good ways of leveraging prior optimization results?

Quick updates via stochastic search: When the parameter changes are relatively small, it may be advantageous

111

to update the current package using a stochastic search algorithm designed for noisy observations, such as adapted
versions of simulated annealing [1, 2] and genetic algorithms [30], or other algorithms such as stochastic ruler [3],
branch-and bound [21], and so on. The motivation is that such algorithms are designed to minimize the number
of scenarios needed and can search though nearby packages rapidly, with no calls to a solver, while also using
stochasticity to avoid getting trapped in a local optimum.

Fast sensitivity analysis: Another potentially effective enabler of interactivity is to compute gradient informa-
tion at the same time that we compute scenarios in order to allow a user to quickly evaluate the effect of small
changes in θ. Given a package P , a typical objective function has the form Hθ(P) =

∑
j∈P Eθ[g(Aj , θ)] for a

given random attribute A. For example, Aj might be the random gain for the jth stock, θ might be the interest
rate used in the predictive model, and g(x, θ) might be a function that computes the net present value (NPV) of
the gain. The subscript θ on the expectation operator E indicates that the the interest rate affects the predicted
NPV of the gain not only explicitly through the function g, but also implicitly by affecting the probability distri-
bution of the random variable Aj . For simplicity, suppose that the random variable Aj has a known probability
density function fθ. Under mild regularity conditions, it is known [14] that ∇θEθ[g(Aj , θ)] = Eθ[Yj], where
Yj = g′(Aj , θ) + g(Aj , θ)L

′(0), g′ = ∂g/∂θ, and L(h) = fθ+h(Aj)/fθ(Aj). The quantity L is a likelihood
ratio for Aj . We then find that ∇θHθ(P) =

∑
j∈P Eθ[Yj]. Thus when generating a scenario value of Aj , we can

simultaneously compute the quantity Yj . Averaging the Yj values over all of the scenarios in a large validation set
for each j ∈ P and then summing over j, we compute∇θHθ(P) (with negligible error) and we can then estimate
the change in the objective value under small perturbations of θ. That is, if θ′ is such a perturbation, then we
estimate the modified objective value as Hθ′(P) ≈ Hθ(P) +∇θHθ(P)(θ′ − θ). Importantly, it is shown in [14]
that the quantity L′(0) can be computed even when Xj is the output of a complex predictive simulation model so
that the density fθ does not have a known closed form. Moreover, the likelihood can often be computed with
little additional coding or computational effort. We postulate that this technique and related gradient-estimation
techniques (see, e.g., [22]) can be applied broadly to enable this interactive functionality, and can also be applied
to VaR and CVaR constraints in order to quickly assess the degree of constraint violation under small perturbations
of θ.

Precomputation techniques: A standard way to facilitate interactivity in an analytics system is to perform
expensive computations offline, precomputing various quantities that can then be exploited to speed up real-time
interaction. For example, VG functions that are expensive to compute during scenario generation can be barriers
to interactive SPQ evaluation. One possibility for ameliorating this problem is to precompute approximations
to the underlying distribution sampled by the VG function—such as the histogram, quantile, or kernel-density
approximation methods mentioned in Section 3.3 in the context of partitioning for the purpose of sketching—and
then sample from the approximate distribution in real time. As before, there is an interesting trade-off between
accuracy, storage requirements, and real-time computation speed. Another potentially powerful application of
the precomputation principle is metamodeling. The idea is to evaluate a carefully chosen test set of SPQ queries
offline using various values of, e.g., chance-constraint parameters (thresholds and risk probabilities) as well as
parameters of the underlying predictive models, and build an approximate metamodel that maps these features to
the optimal value of the objective function. The user can then interactively change these parameters to explore
their effect on the objective function, e.g., to see how varying interest rates might affect the expected gain from an
optimal portfolio. Such a metamodel can be viewed as a “global” analogue to the “local” derivative estimation
idea discussed earlier. Traditional metamodeling methods for stochastic models include regression modeling and
Gaussian-process modeling [5]; more recently, neural network models have become increasingly popular [11, 18].
When modifying constraint values, the idea (as with sensitivity analysis) is to quickly estimate whether the
benefits of computing a modified package are worth the computational effort. If so, then the SPQ query can be
re-computed (possibly incrementally).

112

5 Policy Making

Agent

Environment

Predictive Model

Value function Policy function

Pl
an

ni
ng

approximates/learns

Reward
State

Reward
State

Action

Predictive
Analytics

Prescriptive
Analytics

Action
approximates/learns

Figure 5: The interplay between predictive
and prescriptive analytics in policy-making.

Autonomous decision-making agents tightly connect the frame-
works of prescriptive and predictive analytics, leading to further
research challenges. Such agents are often guided by a policy:
a function that examines the current state of its environment to
select an action that leads to the highest possible future rewards.
Figure 5 illustrates how reinforcement learning agents can operate
in real-world scenarios. Consider an auto-trader, which utilizes
a stock time-series predictive model to simulate the effects (re-
wards) of different purchase decisions. This allows for a planning
phase where the agent can experiment with different decisions to
approximate the value of being in different possible states and to
learn a policy that allows the agent to take an action that leads
to high-valued states. In this setup the predictive model is con-
stantly updated from observations of the real world and the agent
constantly updates its internal value and policy models to better
determine which stocks to buy or sell on a daily basis.

5.1 Scaling the Planning Phase

ID (i) stock day (d) E[price] price dist. E[gain] (g) gain dist.
1 AAPL 1 150 f1(1, ...) 8 g1(1, ...)
1 AAPL 2 158 f1(2, ...) 12 g1(2, ...)
1 AAPL 3 170 f1(3, ...) 10 g1(3, ...)
2 TSLA 1 758 f2(1, ...) -4 g2(1, ...)
2 TSLA 2 754 f2(2, ...) -10 g2(2, ...)
2 TSLA 3 744 f2(3, ...) -20 g2(3, ...)

· · ·

Figure 6: Predicted stock prices over a three-day horizon. VG functions
fi(d, ...), and gi(d, ...) describe the uncertainty of the price and of the gain
of a stock i on day d.

An auto-trader (the agent) has an as-
tronomical combination of decisions
to consider over the planning time
horizon. If the auto-trader hopes to
maximize profits over a three day
time horizon, it explores for each day
in that period the predicted price and
gain of a certain stock and how many
units it should buy or sell. This ex-
ploration allows the auto-trader to
construct a policy that maximizes ex-
pected profit given the current state
of stock prices today and expected daily gains. If the stock prediction model updates on a daily basis, planning
may need to occur in a relatively short time frame before the stock exchanges open for trading. For even more
aggressive hourly traders, planning may need to occur within minutes. State-of-the-art reinforcement learning
(RL) techniques such as Soft-Actor Critic (SAC) or Proximal Policy Optimization (PPO) and their variants are
computationally intensive involving many simulations to construct policies. This planning phase is a bottleneck
to enabling interactive policy making.

Reformulating Planning as a Stochastic Package Query: One approach is to replace RL methods, such as
SAC or PPO, with stochastic package query formulations. In the case of the auto-trader, the predictive model is
used to build a relation similar to the one in Figure 6.

The agent can construct a stochastic package query that decides how many stocks to buy or sell (short) given
constraints on the principal budget and subsequent estimated daily profits. The SPAQL query is similar to the one
introduced in Section 2.2 with a buy/sell decision variable associated with each stock for each day in the planning
time horizon and with the following additional constraints:

SUM(price× (day = 2)) ≤ 50,000− SUM(price× (day ≤ 1)) + SUM(gain× (day ≤ 1)) AND
SUM(price× (day = 3)) ≤ 50,000− SUM(price× (day ≤ 2)) + SUM(gain× (day ≤ 2))

113

This reformulation allows us to reuse many of the discussed techniques for scaling stochastic packages directly.

5.2 Tracking and Explaining Policy Changes

As the predictive model updates, so does the agent’s value and policy models and subsequently the actions taken
by the agent. In many situations, a human may wish to interrogate the autonomous agent to understand its reasons
for choosing a certain action, especially if the action differs from past actions taken in similar states. To enable
this form of why-so questioning, we need to build a provenance system that tracks and connects changes across
the predictive model and the agent’s value and policy models. The ability to answer simple why questions through
provenance will form the basic building blocks of interpretability and explainability in prescriptive analytical
frameworks.

6 Conclusions

Prescriptive analytics plays a key role in a broad variety of domains, but has received relatively little attention from
the database community. As optimization problems become increasingly data-intensive, database researchers are
poised to make key contributions to the creation of scalable, seamless, data-centric tools for supporting decision
making in complex, uncertain, dynamic environments. Our work on one useful class of optimization problems,
package queries, has demonstrated the challenges and opportunities arising from the deep integration of data
management, predictive analytics, and optimization software and algorithms. Many challenges remain, both in
exploring a broad class of optimization problems arising in applications, and in building systems that enable
improved, data-driven decision making.

Acknowledgments. This material is based upon work supported by the ASPIRE Award for Research Excellence
(AARE-2020) grant AARE20-307, the NYUAD Center for Interacting Urban Networks (CITIES), and funded by:
Tamkeen under the NYUAD Research Institute Award CG001, and the National Science Foundation under grants
IIS-1453543 and IIS-1943971. We thank Matteo Brucato, Riddho Haque, Anh Mai, and Nishant Yadav for their
many contributions to this work.

References

[1] T. M. Alkhamis and M. A. Ahmed. Simulation-based optimization using simulated annealing with confidence interval.
In Proc. Winter Simulation Conference, 2004.

[2] M. H. Alrefaei and S. Andradóttir. A simulated annealing algorithm with constant temperature for discrete stochastic
optimization. Management science, 45(5):748–764, 1999.

[3] M. H. Alrefaei and S. Andradóttir. Discrete stochastic optimization using variants of the stochastic ruler method.
Naval Research Logistics (NRL), 52(4):344–360, 2005.

[4] S. Arumugam, R. Jampani, L. Perez, F. Xu, C. Jermaine, and P. J. Haas. MCDB-R: Risk analysis in the database. In
VLDB, pages 782–793, 2010.

[5] R. R. Barton. Tutorial: Metamodeling for simulation. In Proc. Winter Simulation Conference (WSC), pages 1102–1116,
2020.

[6] M. Brucato, A. Abouzied, and A. Meliou. Package queries: efficient and scalable computation of high-order constraints.
VLDB J., 27(5):693–718, 2018.

[7] M. Brucato, J. F. Beltran, A. Abouzied, and A. Meliou. Scalable package queries in relational database systems.
PVLDB, 9(7):576–587, 2016.

[8] M. Brucato, M. Mannino, A. Abouzied, P. J. Haas, and A. Meliou. sPaQLTooLs: A stochastic package query interface
for scalable constrained optimization. Proc. VLDB Endow., 13(12):2881–2884, 2020.

114

[9] M. Brucato, N. Yadav, A. Abouzied, P. J. Haas, and A. Meliou. Stochastic package queries in probabilistic databases.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 269–283,
2020.

[10] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. M. Jermaine. Simulation of database-valued Markov
chains using SimSQL. In SIGMOD, pages 637–648, 2013.

[11] W. Cen and P. J. Haas. Enhanced simulation metamodeling via graph and generative neural networks. In 2022 Winter
Simulation Conference, to appear.

[12] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The onion technique: Indexing for linear
optimization queries. SIGMOD Rec., 29(2):391–402, May 2000.

[13] D. Frazzetto, T. Dyhre Nielsen, T. Pedersen, and L. Siksnys. Prescriptive analytics: a survey of emerging trends and
technologies. The VLDB Journal, May 2019. DOI: 10.1007/s00778-019-00539-y.

[14] P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. CACM, 33(10):75–84, 1990.

[15] P. J. Haas, P. P. Maglio, P. G. Selinger, and W. C. Tan. Data is dead... without what-if models. PVLDB, 4(12):1486–1489,
2011.

[16] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. The Monte Carlo Database System: Stochastic
analysis close to the data. ACM Trans. Database Syst., 36(3):18:1–18:41, 2011.

[17] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. MCDB: a Monte Carlo approach to managing
uncertain data. In SIGMOD, pages 687–700, 2008.

[18] H. Lam and H. Zhang. Neural predictive intervals for simulation metamodeling. In Proc. Winter Simulation Conference
(WSC), 2021.

[19] I. Lustig, B. Dietrich, C. Johnson, and C. Dziekan. The analytics journey. Analytics Magazine, November/December
2010.

[20] A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton
University Press, second edition, 2015.

[21] V. I. Norkin, G. C. Pflug, and A. Ruszczyński. A branch and bound method for stochastic global optimization.
Mathematical programming, 83(1):425–450, 1998.

[22] Y. Peng, M. C. Fu, J.-Q. Hu, and B. Heidergott. A new unbiased stochastic derivative estimator for discontinuous
sample performances with structural parameters. Operations Research, 66(2):487–499, 2018.

[23] L. L. Perez, S. Arumugam, and C. M. Jermaine. Evaluation of probabilistic threshold queries in MCDB. In SIGMOD,
pages 687–698, 2010.

[24] L. Siksnys and T. B. Pedersen. SolveDB: Integrating optimization problem solvers into SQL databases. In SSDBM,
pages 14:1–14:12, 2016.

[25] L. Siksnys, T. B. Pedersen, T. D. Nielsen, and D. Frazzetto. SolveDB+: Sql-based prescriptive analytics. In Proc.
EDBT, pages 133–144, 2021.

[26] B. W. Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

[27] J. E. Smith and R. L. Winkler. The optimizer’s curse: Skepticism and post-decision surprise in decision analysis.
Management Science, 52(3):311–322, 2006.

[28] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis Lectures on Data Management. Morgan
& Claypool, 2011.

[29] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer Nature, 2020.

[30] H. Xiao and L. H. Lee. Simulation optimization using genetic algorithms with optimal computing budget allocation.
Simulation, 90(10):1146–1157, 2014.

115

