
Towards Privacy by Design for Data with STRM privacy

Bart van Deenen
strmprivacy.io

Pim Nauts
strmprivacy.io

Robin Trietsch
strmprivacy.io

Bart Voorn
strmprivacy.io &

University of Amsterdam

Abstract

Both societal and regulatory pressure (GDPR) increasingly challenge organizations and engineering
teams to balance privacy and innovation. Striking this balance can be costly in terms of effort, data utility
and computation costs. Moreover, current approaches in scalable data systems often treat privacy as
an access problem, which is at odds with important legal and design principles. A plethora of privacy
preserving- and enhancing- technologies are available, yet their adoption in production data systems still
faces challenges. In particular, their focus is often on narrow use cases such as external data sharing, on
mostly existing data sets, rendering them unusable in real-time data architectures. In this paper we argue
engineering teams should “shift left“ with their data privacy efforts, to the point of data collection. We
show how privacy challenges in production architectures can be addressed without compromising speed,
data quality or privacy. We provide a detailed yet practical explanation of an architectural set-up that
allows users to launch privacy streams in seconds.

1 Introduction

If the industrial revolution ran on fossil fuel, modern-day organizations run on data. From governments to
hospitals, manufacturing to digital marketplaces: data systems are everywhere and have quickly become a
core asset and capability to deploy for any modern organization in order to innovate. With“data“ driving both
considerable value creation and grounded concern about the impact to private individuals, legislators developed
and implemented new regulations like the General Data Protection Regulation (GDPR) [26] in the European
Union to foster innovation without foregoing individual rights to privacy [7] .

But even in data-native organizations, precisely this “balancing” of privacy and data driven innovation is not
an easy task for data engineers, privacy officers and data governance experts alike. While the first foundational
work on Privacy by Design from Ann Cavoukian dates back to the 90s [9], building modern, scalable data
systems around privacy principles is still a nascent field due to a lack of (technical) standards and a prolonging
gap between the policy perspective and operational reality of data systems [1]. This gap leads to a very real
“Cost of Privacy“ to organizations beyond just legal costs [5]. Structuring privacy operations in organizations,
at scale, requires time and effort. Increased coordination across departments, unclarity around requirements,
longer development cycles, additional staffing for e.g. RTBF requests [16] and “privacy paralysis“1 all mean
organizations incur additional- and opportunity costs. For example, a structured approach to privacy is often
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1the observation that taking a next step with application development is delayed or even refrained from due to privacy concerns
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lacking, and the GDPR requirements around data collection and user opt-ins lead to reverse-engineering the legal
ground and related purpose for collecting and processing data, with engineering teams often pulled into lengthy
legal discussions on purpose. Moreover, requirements like strong anonymization pose a practical challenge to
data utility and -usability for (data) engineering teams.

Despite this apparent Cost of Privacy, available solutions are still limited. We see the gap between the policy
perspective and real-world systems is most apparent in the way privacy is embedded in many data architectures.
Often, privacy is treated as an access problem on data that is already collected, stored and used2, not as a first
principle of systems design (often without traceability to the collection ground and collection purpose). While this
is convenient as it requires limited re-architecting of existing systems, we believe this is an "early efficiency win
[that causes] late stage headaches" [5]. Moreover, it is at odds with (if not in violation of) legislative directions.
This often leads to (i) organizations accepting an increased risk profile or (ii) refraining from engaging in new use
cases (and so innovation) altogether. All in, the current approach to dealing with privacy often poses another real
cost and risk to organizations, both financial and in reputation.

1.1 Privacy Enhancing Technologies

One of the domains where these challenges are being (partly) addressed, is in Privacy Enhancing or Privacy
Preserving Technologies (PET’s) [21]. PET’s allow data practitioners to transform sensitive data into usable input
for consumption or support detecting sensitive data [5], limiting risk of unsolicited data consumption. Yet, they
have important shortcomings in the practical sense: they often center around external data sharing as the dominant
use case, are computationally heavy, best suited to aggregate data operations only and/or rely on "complete" data
sets. This makes them better suited to use cases where data is already collected and stored. Hence, PET’s provide
a solution for a limited set of use cases and can still lead to non-compliance with privacy regulations if data was
not properly collected or bounded to data purpose [5].

1.2 Towards Privacy by Design for data

To bridge the gap from the realities of privacy professionals and data (system) engineers to available technologies,
we propose an architecture to encode privacy in data that helps to structure privacy efforts, and a system to
implement this at lower real-world costs. Both the architecture and system come from a set of clear principles,
derived from legal and privacy by design requirements:

1.2.1 Requirements

• Explicit contracting - define both data shape (the schema) and privacy implications as metadata (including
key legislative concepts such as collection ground) in data contracts that describe each datapoint.

• Enforce transformation - define inside the contracts, set per-field privacy transformations, such as de-
identification or anonymization, for sensitive (PII3) data fields, so that data collection and processing are
tightly coupled.

• Shift left - Enforce these data contracts at ingestion, so data is (i) always bound to purpose and (ii) welded
to the original collection ground.

• Retain utility - transform data in such a way that the trade-off between privacy and utility is limited or even
removed.

2e.g. the way many modern data warehouses deal with privacy is through role-based access
3Personally Identifiable Information, such as a name or email
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• Dedicated distribution - provide a dedicated interface for every specific collection ground through
privacy streams, so that applications and/or downstream users are guaranteed to only receive (i) necessary
and (ii) properly transformed data.

• Interoperable - the system should naturally complement existing architectures and accommodate easy
integration and deployment (aligned with industry standards).

• Cheap and Fast - extend interoperability by aiming to add minimal additional latency to existing systems
and limit computational cost of operations.

In effect, a solution should allow data teams to build with confidence, cut costly coordination time, and enable
them to quickly deploy a contemporary (streaming) data infrastructure with a focus on high quality data at low
effort at lower legal and reputation risks.

2 Limiting the Cost of Privacy: privacy, utility and design challenges

In this section we identify the challenges that surround building scalable data systems from privacy forward, and
the design principles that should shape them. We will approach these as drafting the list of requirements for
building these Privacy by Design data systems.

2.1 Privacy challenges

2.1.1 Key requirements from GDPR

While often viewed as a complex legislation, the core of what GDPR seeks to achieve is straight forward:
protection of individuals’ private data. A few key concepts set the boundaries for responsible (and lawful) data
behavior, such as accountability (you are accountable for the data you control), and data subject rights (what an
individual can require from a controller). We will use these as a treasure map in hunting for requirements.

Data minimization and consent Of key interest to our challenge are the governing principles on how to
collect and use data: data minimization and consent obligations. Simply put, they state one should not collect
more data than necessary for a purpose, and can only collect data under either explicit consent for that purpose or
a justified cause4, like legitimate interest or contract fulfillment (e.g. an e-commerce marketplace simply needs
your home address to deliver your order).

In practice, these legal grounds are oftentimes liberally interpreted. Historical data – i.e. data that has been
collected in the past and stored in e.g. a data warehouse – is often persisted without storing the purpose under
which it was acquired. This is clearly problematic in the privacy sense: it is (nearly) impossible to determine the
purpose of a data point after the data collection took place.

It becomes even more interesting once we acknowledge the dynamic nature of consent. For example, how
do we handle changing preferences of end-users, and how is consent linked to data over time? By collecting
purpose up-front, and ensuring that this purpose stays with the data, two problems are handled instantly: purpose
limitation and consent [24]. This yields the first challenge we should take into account:

Req. 1: We should encode how a data point was obtained and for what purpose

Purpose limitation As data in practice is often collected once and then up- and recycled often, there is
another key principle to take into account: purpose limitation. In the official text, GDPR article 5 section 1(b)
[26], we see the following:

4Consent, purpose and legal ground are used interchangeably
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Personal data shall be collected for specified, explicit and legitimate purposes and not further
processed in a manner that is incompatible with those purposes; further processing for archiving
purposes in the public interest, scientific or historical research purposes or statistical purposes shall,
in accordance with Article 89(1), not be considered to be incompatible with the initial purposes
(‘purpose limitation’).

This is directly at odds with the common practice of hoarding data into a warehouse. If the purpose of data
collection is not clear, the legal ground cannot be determined and consent cannot legally be obtained [24]. While
the legalese and exact wording of what purposes can be considered legal is far outside of the scope of many data
engineering professionals, this is a clear area of interest for designing systems around privacy: data usage without
determining if it is legal to use for a certain purpose is already violating this very principle. In practice we see this
judgement is often made by a data consumer team without (sufficient) knowledge of Personal Data regulations.
This paves the way to our second requirement:

Req. 2: Data consumers should only receive data they are entitled to, given the consent of the data-owner,
for the specific purpose of the data consumer 5

So e.g. while a data-team building a recommender system has a vested interest in knowing what a user does,
they do not need to know who the user is - and so could do with any random value representing the user as long
as its consistent over time for that specific person or user account (provide consent or legal ground is present!).

2.1.2 Privacy by Design, the principles

Our next source of system requirements are the original Privacy by Design principles laid out by Ann Cavoukian
in her capacity as the Information and Privacy Commissioner of Ontario [9].

The first principles6 revolve around timing - when privacy comes into play in both designing systems and the
flow of data. Clearly, it is only private by design if "characterized by proactive rather than reactive measures,
[anticipating and preventing] privacy invasive events before they happen". Moreover, the "maximum degree
of privacy" is in warranting the protection of personal data in "any given" data system (aligning with our first
requirement: encode privacy into data). This suggests a profound shift of the point at which privacy becomes part
of the data flow:

Req. 3: Privacy should be embedded right where data is collected.

More recent views on best practices like Bhajaria’s (2022) [5] also suggest that both classifying and tagging
data before it hits data pipelines (i.e. at ingest) mitigates privacy risks more optimally.

2.2 Data utility

2.2.1 Bringing structure to data improves data quality

Even before privacy comes into play, many data practitioners will recognize the challenge of data quality in
and of itself. In organizations with lots of operational legacy systems (which does not imply they are "old"!),
it is common to see the creative re-use of fields/columns in a data set. Dealing with confusing field names,
undocumented changes in lineage and empty fields are common practice in the real world [4]. Moreover, data
consumers generally have no direct control on what is accepted as valid data, and will often have to resort to
heuristics to determine what to do with a certain data field.

5processor in GDPR parlance
61. Proactive not Reactive; Preventative not Remedial, 2. Privacy as the Default Setting, 3. Privacy Embedded into Design
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Think of this as data debt or negative interest building inside data flows. Adding and enforcing more structure
in data will improve data utility over the long run considerably as it addresses this kind of real-world challenges
(see for an overview of data quality frameworks [10]. In any case, we should strive to:

Req. 4: Make structure explicit and retain as much of the data quality and utility as privacy permits.

2.2.2 The opportunity of privacy transformations for data utility

One of the key challenges of applying privacy regulations and principles to data systems lies in the (supposed)
limitations they impose on data utility. Any personal data collected and used is subject to the GDPR provisions,
limiting collection ground and purpose - e.g. you cannot simply use an acquired e-mail for marketing purposes,
as used to be common practice. This creates another practical cost, as different data types need to be shielded
from general use inside systems.

There are however circumstances under which collected data may be used for different purposes than originally
requested: in anonymized form, with “data rendered anonymous in such a way that the data subject is not or
no longer identifiable.” (Recital 26 of [26]). When done properly, and this is an extremely high standard many
organizations fail to achieve (Article 29 Working party, in [14]), this even places personal data outside of GDPR,
hence allowing to retain utility. This is especially attractive for pattern-driven tasks such as aggregated analytics
and applied machine learning that do not rely on identification of the data subject persé.

Along that axis is a much lighter interpretation of what it means to de-identify data: pseudonymization, “the
processing of personal data in such a way that the data can no longer be attributed to a specific data subject
without the use of additional information.“ (Recital 4(5) of [26]). Hence, by separating the necessary link
between a data point (such as a click event) and the data subject, GDPR allows data to be used with much more
degrees of freedom (even beyond the original purpose limitation!) [14]. In summary, applying lighter or heavier
de-identification methods helps to retain the data utility many believe is lost under GDPR.

Req. 5: Immediately transform data in such a way that the trade-off between privacy and utility is limited or
even removed

2.3 Technical design challenges

Building and maintaining scalable data systems requires deep knowledge of a wide set of technologies and
domains. On top of that, adding privacy does not simplify these already complex designs and systems. A great
example of the complexity GDPR brings to systems design is fulfilling Right To Be Forgotten (RTBF) requests:

Under RTBF, a data subject can request a data controller to deliver or remove their (personal) data. This has
the potential to be a daunting and expensive task, as legally obtained personal data can be everywhere in or even
outside an organization, from local copies to data shared externally with vendors. In order to completely fulfill an
RTBF request, one has to conduct either a full table scan on every day of data for each request in any location,
or build and update an index of the users present in every data file or storage, including derivatives of personal
data. Both are expensive operations, even when automated. We would have to repeat this at least every 30 days
(minus operation time), as that is the response window GDPR permits. RTBF is just one of many challenges (and
opportunities) GDPR imposes. Various challenges on Integration, Architecture, and Performance exist.
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2.3.1 Architecture

One of the first challenges to discuss is in the (dominant) architecture underlying many data systems: batch
processing, where (often millions) of rows of data are created and processed at set intervals.

But if data “exists“ already, we run into a clear challenge for adhering to the aforementioned principles or to
be able to shift [privacy] left to the point of data collection. The presence of personal data in raw form needs to be
prevented up-front. A sensible way to achieve this is by shifting data collection to an event-based approach. If we
capture and treat each datapoint individually, e.g. through following the exchanging API’s design, we can enrich
and add metadata at much higher resolution. A stream processing-based7 event gateway allows for coupling
specific metadata to each and every single data point (the event) and so allows to enforce “embedding“ privacy.

Although a good starting point for privacy by design systems, creating (and maintaining) an end-to-end
streaming architecture with data enrichment centered around strict requirements is technically challenging.
Technical difficulties and limited maturity to fully benefit from real-time architectures in data consumption has
caused many companies to avoid or even abandon them. Executing transformation on a data stream is technically
more demanding in both development and reliability as compared to batch processing, and standards (both
technical and implementation) are not as widespread. When applied to business challenges in the right way,
processing and enrichment of streaming data can create highly valuable real-time insights, for example into
customer behavior (see for an example [12] and the remainder of the Dec 2015 Bulletin) and real-time machine
learning use cases [27].

In order to conduct the type of transformations necessary for privacy processing, popular tools such as Apache
Kafka, Apache Calcit e(streaming SQL), Kafka Streams or Apache Flink can be leveraged. While powerful, in our
experience they are also characterized by a steep learning curve, and are non-trivial to bring into production (in
both platform maintenance and usage), especially at scale. Other popular components and solutions (self-hosted
or managed) generally provide the necessary strict event formats and support for stream processing, but are
agnostic to use cases or specific application domains and therefore require a lot of engineering on top of the bare
metal solutions. For instance, retaining data purpose like data subject consent is still left to the data consumers.

2.3.2 Integration

Another key challenge when building for privacy lies in the integration to existing data technology. Enterprises
and SMEs are often (deeply) invested in existing data architectures, and are likely unwilling or not capable of
switching technologies very easily. As mentioned, when designing for privacy, the goal is to prevent having to
deal with privacy after data collection, preferably agnostic to the configuration and architecture of existing data
systems [5] that handle data downstream.

To many engineers, even when leveraging cloud or OSS8 building blocks, designing a platform for data
processing from privacy forward is a daunting prospect, precisely because the aforementioned gap between the
legal and policy perspective persists. However, drawing upon our experience, it is possible to achieve Privacy by
Design and implement its principles by framing it as an augmentation instead of a replacement challenge . In fact,
many basic building blocks are provided by various technologies that have proven themselves over the past years
(e.g. like Apache Kafka and processing engines). We therefore argue that evaluating how to augment and evolve
an existing stack is likely a more effective strategy than re-architecting everything for privacy.

Moreover, an event-based approach provides the opportunity to simply aggregate and transform data to match
existing downstream (batch) processes at low cost, while retaining the metadata necessary for encoded privacy.
This limits scope of implementing such systems: it would simply precede existing processes instead of replacing
them and is valuable even when there’s no immediate need or value to obtain and consume data at (near) real-time
latency.

7Often referred to as streaming or real-time data
8Open Source Software
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2.3.3 Performance

The last key challenge to point out is in system performance. While end-to-end stream enrichment with meaningful
data can bring value and suits the privacy challenges well, these opportunities can be offset by decreased systems
performance (e.g. increases in system latencies can cause decreased conversion in online retail [2]. A lot of
the value of enrichment occurs if the result of the enrichment is available as soon as possible. Hence, latency is
critical to take into account when preventing raw form PII data at the moment of collection.

A major factor in the performance of such systems is how they respond to increased scale. Bottlenecks are
highlighted quickly when data processing systems are put under high load. All sorts of challenges should be
taken into account when designing for scalability of data processing systems: distribution of the data, average
size, different types of events, and many other factors. Orchestration platforms, such as Kubernetes, allow for
fine-tuning in order to deal with the requirements of scalability and flexibility.

Systems can scale in two ways: vertical (more resources) and horizontal (more instances). Designing systems
for horizontal scalability is more complex, as applications should be designed stateless and resilient to restarts,
but often cost effective as dynamically scaling instances keeps idle resources to a minimum. All these factors
(architectural, integration and performance challenges) add up to our final requirement:

Req. 6: Complement existing data systems, focus on scalability and aim to add as little latency and computa-
tional costs.

3 From Requirements to Solution: STRM Privacy

The aforementioned requirements are the boundaries for a Data System designed for Privacy. The core premise
of privacy regulations like GDPR is that every data item should have a legal ground to gather and process it.
The only way to guarantee proper processing of the data item is to tie the owner and permissions based on legal
grounds directly and irrevocably into the data item. Our solution adds a standard set of attributes to every data
item to achieve this.

Structure is imposed before any data is transferred through a data contract9 defining the data shape, the
privacy implications and the data validations. As can be seen in figure 1, a central Event Gateway receives data
from many different applications, where a data contract is enforced, and Personal Data Attributes are encrypted10.
Basic data validation is performed upon ingest, resulting in an encrypted data stream (where only the PII fields
in data items are encrypted). It should only be possible to decrypt these attributes provided the data collection
purpose and specific usage or consumption purpose match. By encrypting on ingest, and only putting encrypted
privacy safe data items in long-term storage, the long-term storage does not become data toxic waste.

While taking purpose into account, a decrypter step then creates derived privacy streams, including only
events with the required consent for that stream as decrypted. If a user did not provide consent for their data being
used for a specific purpose, the data does not end up as private data in these streams.

We apply encryption methods beyond just obfuscating underlying field values. Through key rotations on links
inside the data items, privacy transformations such as masking or anonymization can be performed in real-time.
Combined with the purpose and consent binding, we can split the incoming data and create purpose-driven data
interfaces that downstream applications or teams can consume without privacy concerns.

The encryption mechanism will assign the same encryption key to the same value of a specific data item field.
As the same value for a field in the data item yields the same cipher-text value, the integrity between events is
retained. With a time-based encryption key rotation (i.e. the privacy algorithm) we can consider the resulting
encrypted data stream to be not privacy sensitive anymore. Next to that, in case a data owner requests to be

9for more information on data contracts: https://docs.strmprivacy.io/docs/latest/concepts/schemas-and-
contracts/

10through a symmetric encryption algorithm, with a fixed initialization vector
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Figure 1: STRM Privacy High Level Architecture

forgotten, throwing away the encryption key destroys all personality dimensions inside the data, but helps to
retain the utility of the non-sensitive fields. This process is also known as crypto-shredding [11].

In sum, our architecture allows to encode privacy into a data point from the moment of collection onward,
enforcing that personal data is only available when the purpose allows it, while retaining important utility of the
data. Our documentation [25] provides a deep dive into all the various components that drive this architecture.

4 Related Work

At this point, we positioned the need and guiding principles for building real-world data systems from privacy
forward. We have described how the architecture of STRM Privacy follows these principles through an event-based
component, a privacy component, and a data quality component.

Evidently, specific technologies exist for the various components such an architecture requires. First, for
data processing in streaming fashion, there are various established technologies, such as Apache Kafka, Kafka
Streams, Apache Beam, and many other Open Source and commercial solutions (see e.g. [15] or [19]).

Secondly, we emphasize that specific solutions in the realm of Privacy Enhancing Technologies are on the
rise that warrant privacy through different approaches (see for an overview [21]). Their goal generally is to
destroy identification in data, while maintaining the same (statistical) characteristics to sufficiently represent
the original data to conduct operations (see for example earlier IEEE publications [17] or [28]). For example,
solutions include Synthetic Data Generation, obfuscating data on existing data sets, and data encryption at rest.
Some challenges remain, e.g. with obfuscation, one should ensure that the obfuscated data is not susceptible to
linkage attacks combining obfuscated data with other data to de-anonymize the data [20]. An important limitation
of these approaches is that they are currently not able to accommodate real-time transformations and embedding
in operational data systems [3], and often require existing data sets that might be collected in violation.

Finally, data quality is considered to be of pivotal importance for any downstream application [8],[6]. Hence,
both traditional ETL tooling and novel ML supported techniques (see for example [13]) enable both validating
and enriching data at ingest or even in transit. Metadata management is an important adjacent field, which could
further enrich data usability in data pipelines [22], although scalability of such systems is still challenging [23].
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5 Conclusion

In this paper we argued that building data systems for privacy in real-world production settings should be guided
by a core set of principles derived from legislative and Privacy by Design frameworks. This enables closing an
existing gap between the policy perspective of privacy and the operational reality of data systems.

Existing Privacy Enhancing Technologies focus mostly on heavy computational tasks, such as synthetics,
at the cost of latency and compute power. They are generally best suited to existing data sets, not in-flight data.
Critically, data teams should not treat privacy as an access problem and shift their data privacy efforts to the
point of data collection (i.e. "shift left") to better position for compliance. When employing data contracts to
encode privacy and tight coupling to privacy transformations, scalable data systems that retain performance and
data quality are achievable. They can be compatible with progressive data system philosophies (i.e. the Modern
Data Stack or Data Mesh [18]). In effect, this lowers the Cost of Privacy through better data usability, reduced
compliance risks and improved coordination between engineering teams and legal departments.

To the best of our knowledge, no other solution exists that focuses on encoding privacy inside data, combined
with proven technologies for streaming infrastructure to minimize impact in latency and performance to comple-
ment existing data systems. Apart from a better modus operandi for data systems in general, such systems can
drive valuable innovation like real-time machine learning while respecting end-user privacy (and thus privacy
regulations), and bring privacy by design for data to a much wider audience. We happily invite the community to
further extend the collective body of knowledge, by providing feedback or iterations to our work.
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