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Abstract

In an increasingly digital world, compliance with data regulations play an important role. More and
more individuals are rapidly getting concerned with the way their data is being stored and processed
by organizations. Therefore, it is crucial that data processing be subjected to regulatory obligations at
its core. Yet, achieving compliance with data regulations requires the entire data processing pipeline
to be revisited to embrace data policies as first-class citizens. In this paper, we present our work on
novel systems and methods for federated data processing, where the processing of geo-distributed data
is subjected to data transfer regulations. We showcase our work on compliant geo-distributed data
processing and present research challenges and opportunities for a federated data processing system to
make compliance truly its first-class citizens.

1 Introduction

Federated data processing has been a standard model for virtual integration of disparate data sources, where
each source upholds a certain amount of autonomy. While early federated technologies resulted from mergers,
acquisitions, and specialized corporate applications, recent demand for decentralized data storage and computation
in information marketplaces[32]) and for geo-distributed data analytics [33, 22, 14] has made federated data
services an indispensable component in the database market. Cloud providers such as AWS, Google, and Microsoft
have also adopted distributed query capabilities within their products to support federated data processing.
Running analytics in a federated environment mainly relies on distributed query processing frameworks,
such as those based on data integration systems (e.g., [25]) and/or multi-database systems (e.g.,[3, 31]). At
high-level, a distributed query processing framework provides a unified query interface to query distributed and
decentralized data. It transparently translates a user-specified query into a so-called query execution plan. To
do so, a query optimizer considers distributed execution strategies (involving distributing query operators like
join or aggregation across compute nodes), communication cost between compute nodes, and introduces a global
property that describes where, i.e., at which site, processing of each plan operator happens. For example, a
two-way join query over data sources in Asia, Europe, and North America may be executed by first joining data in
North America and Europe and then joining with the data in Asia. As one can notice, federated queries implicitly
ship data (i.e., intermediate query results) between compute sites. While several performance aspects, such as
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bandwidth, latency, communication cost, and compute capabilities have received great attention, the federate
nature of data processing has been recently challenged by data transfer regulations (or policies) that restrict the
movement of data across geographical (or institutional) borders or by any other rule of data protection that may
apply to the data being transferred between certain sites. European directives, for example, regulate transferring
only certain information fields (or combinations thereof), such as non-personal information or information not
relatable to a person. Likewise, regulations in Asia may also impose restrictions on data transfer. Non-compliance
to such regulatory obligations has attracted fines in the tune of billions of dollars[10]. It is, therefore, crucial to
consider compliance with respect to legal aspects when analyzing federated data.

Nevertheless, complying with regulations when transferring data is a big challenge today. One has to expand
the capabilities of modern federated data processing systems to aid data controllers (i.e., entities that determine
what data and how the data should be processed) and data processors (i.e., entities that provide data storage and
processing capabilities) in navigating compliance with data transfers. In particular, we need (a) a declarative
language for expressing data transfer rules, (b) to revisit query rewriting and optimization techniques to translate
user queries transparently into compliant query execution plans, and (c) to revisit query execution to support
decentralized data processing across heterogeneous compute nodes.

In this paper, we outline the main system challenges required for complying with data transfer obligations
in the context of federated data processing. We showcase our work on compliant data processing, which offers
limited capabilities in navigating compliance. We then discuss our current research endeavors that overcome
prior limitations and discuss open problems and research challenges.

2 Problem Scope & Challenges

We start by giving a birds-eye view of federated data processing systems (FDPS) and then outline aspects of
data regulations that affect the transfer of data between national (or institutional) borders. We then discuss the
challenges that we set out to address in order to expand the capabilities of FPDS to navigate compliance with data
transfers.

2.1 A Brief Recall on Federated Data Processing

An FDPS consists of three major components as illustrated in

Figure 1: a data interface, a query optimizer, and a query pro- Query Results
cessor. The data interface provides end-users (e.g., data analysts j ‘
or data administrators) the ability to query and process data that [ T J
is stored across distributed data stores in a unified manner. The

data interface upon receiving a user query (e.g., SQL) parses and \

translates it into a framework-specific internal structure (e.g., a [ Query Optimizer ]

logical query plan). The query optimizer then rewrites the log- ]

ical query plan into a query execution plan (QEP). It extends a i Query Processor

single-site data processing across distributed compute notes. To Yoo 4 Ly

do so, it considers communication costs between compute nodes ‘ [ prfc”gs"im | = Je—{ e, |
and introduces a global property that describes where, i.e., at e S —
which site processing of each plan operator happens. The query G P :
processor then “orchestrates” the actual execution of the query, ‘ ‘ - '
which results in the transfer of (intermediate) query data between Figure 1: Federated Data Processing
compute nodes. In geo-distributed environments, compute nodes

are located across national (or institutional) borders. In this context, the transfer of data between sites may result
in non-compliance to data transfer regulations.
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2.2 Primer on Data Transfer Regulations

Data regulations, such as EU’s General Data Protection Regulation (GDPR) [1] or California Consumer Privacy
Act (CCPA) [2] significantly affect how data is stored, processed, and transfer. In this section, we aim to
understand regulations from the perspective of data transfers. To achieve that, we analyze GDPR articles that
regulate the transfer of data across national borders'.

GDPR articles 44-50 explicitly deal with the transfer of data across national borders. Among these, we
identified two articles and one recital wherein the legal requirements for transferring data fundamentally affect
FDPS components.

Article 45: Transfers on the basis of an adequacy decision. The article dictates that transfer of data may take
place without any specific authorization, e.g., when there is adequate data protection at the site where data is
being transferred or when data is not subjected to regulations (i.e., when the data does not follow the definition of
personal data as in Article 4(1)).

Article 46: Transfers subject to appropriate safeguards. This article prescribes that (in the absence of
applicability of Article 45) data transfer can take place under “appropriate safeguards”. Based on the European
Data Protection Board (EDPB) recommendations that supplement transfer tools, pseudonymisation of data (as
defined under Article 4(5)) is considered as an effective supplementary method.

Recital 108: Transfers under measures that compensate lack of data protection. Data after adequate
anonymization (i.e., when resulting data does not fall under Article 4(1) and as described in Recital 26) does not
fall under the ambit of GDPR and therefore can be transferred.

Discussion. Based on the above regulations, we observe that depending on the data and to where that data is
being transferred, we can classify data transfer regulations into:

* No restrictions on transfer. Some data maybe allowed to be transferred unconditionally, and some to only
certain locations.

* Conditional restrictions on transfer. For some data, only derived information (such as aggregates) or only
after anonymization, can be transferred to (certain) locations.

* Complete ban on transfer. Some data, no matter whatsoever, must not be transferred outside.

2.3 Compliance by Design: Research Challenges

Our overreaching goal is to develop methods and systems that aid data controllers (entities that control what data
and how the data should be processed) and data processors (entities that processes data on behalf of a controller)
by providing appropriate safeguards within FDPS such that transfer—as a result of federated data processing—of
data across borders complies to regulatory obligations described above.

Declarative Data Transfer Rules. The first and foremost challenge to achieve compliance by design is to have
declarative languages for specifying data transfer regulations. Doing so is not trivial as regulations affect data
differently depending on its type, it’s processing, and the location where it is processed (or transferred). For
example, regulations may apply to an entire dataset, parts of it, or even information derived from it. Furthermore,
datasets are heterogeneous in their data models (e.g., graphs, relational, and textual). Therefore, devising a
declarative language where one can specify data constraints in an easy and effective manner is far from being
simple.

"We note that compliance to GDPR aspects, such as collecting, securing, storing, deleting are beyond the scope of our current focus
(see discussion in Section 5).
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Data Transfer Once a user specifies the data policies on her data, she then needs
Rules Data Interface effective and efficient ways to process federated queries in a man-

| ner that the processing is compliant. Achieving so is challenging

-

[ ey ;ewiz'gzngﬁéag;{i;izaﬁon as we need to extend query rewriting and optimization capabili-

Compliant[QEP ties. A query optimizer should be able to transparently translate

; ; logical query plans into compliant query execution plans by “in-

[ lDece"tra"zed Qluery Execunonl ] jecting” operations that transform data such that the transformed
R o P data prescribes to regulations affecting its transfer.

nnnnnnnnnnnnnnnnnnn Decentralized Query Execution Lastly, we also need to revisit
query processors than can execute a compliant query plan across
distributed (potentially heterogeneous) compute nodes. In contrast
to current approaches that employ a mediator-based execution, we
need meta-execution engines, which can delegate query execution to disparate compute nodes and de-centrally
execute the query, without involving itself in the query execution. Achieving so is crucial to make sure that
data processing happens on the locations prescribed by the query optimizer, irrespective of the location of the
processor.

Figure 2: Compliant FDP

3 Compliance-aware Query Rewriting and Optimization

We start by giving the overall idea of our approach for achieving compliant data processing. We then discuss our
research on supporting compliance assuming relational workloads before outlining open problems and current
research directions going beyond the relational world.

3.1 Overall Idea

A crucial aspect in adhering to data transfer regulations is to transform the data in a way that renders it suitable to
be transferred across borders. From the perspective of a FDPS, transforming (intermediate) data before shipping
it to another compute location can be considered as performing additional masking operations on the data. To
illustrate this, consider a two-way join query that access data stored across Europe, North America, and Asia.
Figure 3 (left) illustrates a logical query plan for this query where orange boxes denote cross-border operations
(e.g., join operators) that require inputs from two or more sources and blue circles denote other query operators
(e.g., map, filter, or aggregate). On the right, we illustrate a corresponding execution plan, where the optimizer
decides at which site the processing of each plan operator should happen (e.g., both cross-border operators
must be performed in North America). The optimizer also rewrites the query by reordering the query operators
(e.g., selection pushdowns) and by “injecting” data masking operators (shown by red boxes) as a means to provide
appropriate safeguards for cross-border data transfers. In this example, both cross-border operations happen in
North America, and data from EU and Asia is transformed by a masking operator before being shipped to North
America.

3.2 Navigating Compliance in the Relational Paradigm

In our current approach, we confine to processing of data that is stored in geo-distributed SQL databases and
propose query rewriting and optimization techniques that preserve the query semantics. In more detail, we focus
on data transfer rules that can be adhered to by data masking via relational operations (e.g., project, aggregate,
or filter) such that the resulting compliant QEP retains the query semantics, i.e., the output of the query should
be the same as if there were no data transfer constraints. For instance, a projection operator can mask certain
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Figure 3: Illustration of Query Rewriting and Optimization: (left) Logical query specified by user and (right)
execution plan derived by the query optimizer after injecting masking operators.

columns by projecting them out before the (intermediate data) is transferred to another location, and when the
masked columns are not required by the query later.

Let us illustrate this approach by expanding upon the previous example. Consider the following schema for
the Customer, Orders, and Supplier tables along with data transfer rules that apply to data at each location.

Customer (custkey, name, acctbal, mktseg, region) Customer data can be transferred outside only af-
ter suppressing account balance information

Orders (custkey, ordkey, totprice) Only aggregated Orders data can be transferred to
Asia and an order’s price cannot be transferred to
Europe
Supply (ordkey, quantity, extprice) Only aggregated Supply data for orders’ quantity
and extended price from Asia can be transferred
to North America.
Furthermore, consider a query (¢, Result
SELECT C.name, SUM(0.totprice), SUM(S.quantity) f
FROM Customer AS C, Orders AS 0, Supply AS S 1 Na
WHERE C.custkey=0.custkey AND 0.ordkey=S.ordkey Pty
GROUP BY C.name X SHIP
e NA | A—NA
The query plan on the right shows a compliant QEP as derived by SHIP O TI'(o,sum(q))
our query optimizer (discussed below). Here the SHIP operator I e “ é
describes the point where intermediate results are communicated = A
between two sites and I" denotes the aggregation operator. Anno- C .

tations corresponding to each operator describe where processing

of the plan operator should happen. Observe, that executing such a plan will not violate any of the above rules: it
performs both join operations in North America, masking data via the projection operator I1. ,, suppresses the
account balance information of Customers (before the data is shipped from Europe to North America) and via the
aggregation operator I'(0, sum(q) ) suppresses the orders’ quantity (prior to shipping data from Asia to North
America), as desired by the rules.

Policy Expression Language. One of the challenges in automatically translating user-specified queries into
compliant QEPs is to first integrate rules into the query optimization framework. For this, we have developed a
policy expression language that provides a simple and intuitive (SQL-like) syntax to specify which and where
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data are allowed to be transferred. We basically define two kinds of policy expressions: basic and aggregate
expressions. A basic expression is of the form of a Select-Project query that can specify restrictions pertaining to
certain tables, rows, and/or columns. An aggregate expression is of the form of a Select-Project-GroupBy query
and further allows specifying restrictions pertaining to the transfer of aggregated information.

Basic Expressions. Basic expressions allow specifying shipping of certain rows and columns of a table to another
location and have the following syntax:

ship attribute list from table to location list where condition list

This expression specifies cells, i.e., rows and columns, of a table to be transferred without affecting the query
semantics.? The specified cells from the table in the from clause (i) belong to both columns in the ship clause
and tuples that satisfy the predicates in the where clause, and (ii) can be transferred to locations in the to clause.
Intuitively, if a subquery accesses only the specified cells, then its output can be transferred to locations specified
in the expression. Consider the data transfer rule from the above example, which does not allow for shipping the
account balance information of customers outside Europe. Suppose the rule also allowed for shipping customer’s
mktsegment and region information to North America for commercial customers. We can use the following two
policy expressions:

ship custkey,name from Customer C to Asia, North America
ship mktseg, region from Customer C to North America where mktseg=‘commercial’

Aggregate Expressions. For certain data, transfer rules only allow shipping of aggregated information. For these
cases, we have aggregate expressions that allow us to specify aggregations over columns. The syntax of an
aggregate expression is given as:

ship attribute list as aggregates aggregate types from table to location list

where condition list group by attribute list

In the above syntax, the list of attributes in the ship clause specifies cells of columns that should be aggregated

before being transferred to locations in the location list. The as aggregate clause specifies aggregation functions
that should be used to aggregate specified cells. As before, the specified cells must belong to columns in the
attribute list for the tuples that satisfy the predicate in its where clause. Lastly, the group by clause specifies
lists of grouping attributes for which the specified cells can be grouped by zero, one, or more attributes from
its attribute list. Consider again the Customer data from the above example and assume that account balance
information can be transferred only after aggregating. A possible expression is:

ship acctbal as aggregates sum, avg from Customer C to * group by mktseg, region

The above expression specifies how values of the acctbal column of the Customer table can be transferred
outside. In particular, it specifies that (i) acctbal should be aggregated via the functions SUM or AVG and
(ii) the cells of the acctbal column can be grouped by mktsegment and/or by nationkey. For example, out-
put of the queries Gom(acetbat) (C) and regionGavg(acetbat) (C) can be transferred to all locations, whereas of
Goum(acetbal) (Tname=‘abe’ (C')) and Igeerpar (C') cannot be transferred at all.

Compliance-based Optimizer. Now, in the query optimization phase, our optimizer aims to determine if a
query is legal (i.e., its execution does not lead to violating data transfer rules) and to automatically generate an
optimal compliant plan. We follow a two-phase optimization process that comprises plan annotation and site
selection. The plan annotator receives a logical plan as input and outputs an annotated QEP. An annotated QEP
is an optimized logical plan in which each plan operator is annotated with a set of compliant sites (i.e., sites
where the execution of the operator will not violate any dataflow constraint). The site selector then uses dynamic
programming to find the optimal placement of query plan operators taking data shipping cost into account.

2For exposition, we restrict to expressions over a single table. This is not a limitation: one can specify a policy expression over more
than one base table. In this case, the condition list in the where clause of the expression must contain the join predicate.
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More specifically, we adapt the Volcano optimizer genera- 7
tor [12] to generate the plan annotator. Our adaptations allow
us to produce an annotated plan by enumerating the plan space
by applying algebraic equivalence rules in a top-down fashion
and filter compliant ones by applying our annotation rules in a
bottom-up fashion. To do so, we treat geo-locations associated
with base tables as “interesting properties”” and propagate these
properties bottom-up via annotation rules. Our annotation rules
are based on the structure of the subplans and make use of a
lightweight mechanism to evaluate data transfer rules. Our policy
evaluator allows for easy integration of policy expressions into
the annotation process. In particular, during plan enumeration, it
determines to which cross-borders sites the output of operators
can be shipped. The figure on the right illustrates the annotation
process for our running example. Here the plan with the dotted lines shows the initial logical plan. The plan with
thick solid lines shows the annotated plan which the annotator outputs. The letters in the square boxes denote
sites to which the output of an operator can be shipped to and letters below each operator denote sites where each
plan operator can be executed. For example, the project operator (node 3) must be executed in Europe but its
output (node 4) can be shipped to North America and Europe. It is easy to see that the plan with thick solid lines
translates to the compliant plan shown above. For a more detailed description of our optimizer, we refer readers
to [6], which also gives a more formal treatment and proof of correctness.

3.3 Compliance Beyond the Relational Paradigm

Data masking via relational operations and our above query rewriting and optimization techniques have inherent
limitations. They limit the whole gamut of compliant QEPs. As conditional restrictions on data transfers (as
discussed in Section 2.2) may allow transferring of pseudonymized and/or anonymized data, it is important to
expand the scope of masking functions to beyond relational operations.

Advanced Masking Functions. Based on European Commission’s Opinions on Anonymization Techniques [21],
we consider the following masking operations in addition?.

Masking function  Description

Suppression Similar to Projecting out, replaces a value with a generic value (e.g., ‘xxx’)
Pseudonymisation Replaces one value with another, s.t., new value has no logical relationship to the original
(e.g., ‘abc’ to 'xyz’)

Blurring Alters a value by partial suppression (e.g., ‘abc’ — aXX’)

Generalization Generalizes a value using a predefined domain hierarchy (e.g., 23> — ‘20-25’)
Shuffling Replaces existing values with values from the same column

Noise Addition Alter accuracy of (numeric) attributes

Interleaving masking operators with query operators. A direct consequence of masking via non-relational
operations is that: (1) it may no longer be possible to preserve query semantics. To illustrate this, consider that
when transferring employee records, the age attribute is generalized by a function f that translates numeric
attributes to certain range intervals (e.g., f(23) = 20 — 25). Such a masking may change the data type (e.g., int

3We note that this is not an exhaustive list of masking functions that we plan to support
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to int4range) leading to change in query semantics. As another example, now consider that the age attribute
is masked via suppression. In this case too, the resulting records will contain fewer attributes than that desired by
the query. (2) Naive interleaving may affect robustness of the data masking. For example, consider a masking
function f that blurs zipcode (e.g., f(12345) = 123xx). In this case a filter predicate p on zipcode (e.g., p =
zipcode=12345) evaluated before masking may lead to possible singling out of an individual records. To this end,
our current work explores the following research questions.

Q1 How to interpose masking functions with query operators such that the resulting data is still anonymized?
For example, for scalar and univariate masking functions (e.g., blurring), we can substitute filter predicate
by an UDF filter where the UDF is the masking function (e.g., we can rewrite p as zipcode=f(12345).

Q2 How to minimize information loss by “injecting” the right masking functions? For example, by exploiting
the fact that noise addition preserves aggregates (such as SUM() and AVG()), we can use masking via noise
addition for aggregate queries instead of masking by blurring.

General Purpose Dataflow Programs. Many data analytics tasks are expressed as directed (a)cyclic graphs
(DAG) composed of second order functions (e.g., map). To this end, we are investigating how advanced masking
function can be composed with dataflow operators. For this, we plan to leverage our prior work on dataflow
optimizations [13] and investigate effective and efficient ways to support (iterative) DAG programs.

4 Decentralized Query Execution

We now turn our attention to the execution of compliant QEPs. We first discuss why current FDPS fall short of
executing compliant QEPs. We then present key challenges we need to tackle before presenting our approach.

State-of-the-art & Limitations. State-of-the-art FDPS (such
as Presto [25]) mostly follow a mediator-based approach [16].
Although, such an approach (as illustrated by the figure on the (leslEtmeEeee Sl gl ’
right) is useful for performing data analytics across heterogeneous
compute nodes, it does not lend itself to executing compliant

QEPs. This is because cross-database operations (i.e., operators — —
e : : Compute Compute Compute

requiring inputs f'rorn mgltlple Qatabases) are performed by tbe Notte

mediator’s execution engine. This leads to the added complexity

in ensuring compliance (due to the centralized processing by the Figure 4: Centralized FDP

mediator) to data transfers during query execution. To see this,

recall the example of Section 3.2, and consider that now Orders data from North America can be transferred
to Asia but nothing can move out from Asia. Under these constraints, a possible compliant plan is to first ship
the data (after masking via projection operator as before) from Europe to North America, perform the first
cross-database operation (R = C' x O) in Europe, and the second cross-database operation (R x S) in Asia.
Current FDPS cannot execute such multi-site queries. Another limitation arises when metadata (or statistics)
cannot be freely shared across sites, which leads to bad QEPs.

Challenges. In contrast to mediator-based approaches, we need a fully-decentralized approach (i.e., without
any central entity in the execution pipeline) to execute queries over geo-distributed compute nodes. This, however,
poses several challenges:
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1. System Interoperability: A key aspect in achieving a fully-decentralized query execution is the ability to
communicate (intermediate) data between underlying data processing systems. A key challenge, therefore,
is to make systems interoperable without affecting their autonomy, even without them noticing.

2. Fast Data Transfer: As a consequence of lack of systems’ interoperability, moving data among different
data processing systems incur a high cost (e.g., we might need to export data from one DBMS and import
that data in another DBMS). The challenge resides in enabling “native” data transfers (e.g., reading a
relation from a DBMS directly from its binary store) without affecting the autonomy of the underlying
processing systems.

3. Incompatible Data Formats: Different systems work on different internal data formats, which adds additional
complexity and non-trivial cost of storing and converting data from one format to another during data
transfers. The main question to answer is: does an intermediate data representation exists that can speed up
the conversion from any source data format to any target data format?

4. Query Optimization: Last but not the least, optimizing queries without having a “centralized” access to
data systems makes query optimization across geo-distributed data processing systems non-trivial. For
example, data processing systems have their own cost models, which impedes in determining global cost of
executing queries.

Our Approach. We have developed a meta-execution engine,

which enables executing federated queries in a decentralized fash- ' .

ion. Figure 5 illustrates our overall approach. In contrast to ‘ (Meta) Execution Engine }
a mediator-based approach, we follow what we refer to as a Tiermediate Query lan Representaton (QR)
delegator-based approach. The Meta-execution engine, delegates [ Node ) om Node | iow [ Node J
the entire query execution to underlying data processing systems. Execiiton Exectiton Execlion
This avoids a need to have any central entity in the execution e e o

pipeline, and data transfer only happens among compute nodes

Compute

following annotations as prescribed by the compliance-aware
query optimizer.
In more detail, the meta execution engine first globally op-

Node

Data transfer
only between compute nodes

timizes a query (with limited available metadata) and translates
the plan into an intermediate representation (IQR). The IQR is
agnostic to underlying data processing platforms and encapsu-
lates query semantics comprising local subplans (i.e., processing that should be limited to certain locations)
and inter-operator (cross-database) communication endpoints as well as mechanics of data movement between
different systems. The node executors are local meta execution engines that are responsible for (a) translating
and optimizing a local-subplan into platform specific query plan (e.g., to a Spark program), (b) communicating
the IQR to other (relevant) node executors, and (c) facilitating the data movement between systems either by
leveraging underlying system’s capabilities (see below) or by creating suitable data “pipes”. It is important to note
that the node executors themselves do not execute any part of the query but only delegate execution to underlying
systems.

In our current prototype [5], we support such decentralized query execution over multiple RDBMSes
(including PostgreSql, MariaDB, MySQL, Hive, and DB2). To do so, the local node executors leverage the
SQL/MED standard to communicate intermediate query data between systems. More specifically, while translating
into a local DBMS specific program, the node executor first registers external tables (i.e., tables corresponding to
the output of remote subplans) as local tables. This enables achieving a completely decentralized query execution.

Figure 5: Decentralized FDP
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Current Research Directions. We are currently investigating how to process data using geo-distributed
heterogeneous compute platforms. For example, how can we execute a multi-site query using a PostgreSql
database at one site and a Spark Cluster at another site? This is crucial to support compliance for non-relational
workloads. To this end, our work includes expanding capabilities of cross-platform data processing systems (such
as Apache Wayang [3]) to support geo-distributed compute sites. We are also investigating suitable common data
formats such as Parquet, Protocol Buffers, or Avro, which makes inter-system data transfers efficient.

5 Related Work

We now relate the ideas presented in this paper to prior work on compliance and federated data processing.
Compliance. With growing concerns over data privacy and enforcement of regulations, several works have
looked into various legal contexts within with data processing systems must be designed. With respect to GDPR
compliance, most works have focused on data subjects’ rights as a large proportion of GDPR governs data storage.
In this regard, [20] analyzed various aspects of GDPR including deletion, indexing, monitoring and logging, and
access control, and how they impact database systems. [11, 29] studied the performance of GDPR compliant
systems. Their work mainly considers rights of data subjects (e.g., customers) and provide a benchmark to evaluate
data processing aspects including metadata indexing, deletion, access control, and encryption. [19, 18] proposed
an architectural vision for a database that natively supports auditing, deletion, and user consent management.
[28] and [27] examine how GDPR affects the design and operation of modern computing systems. [24] and
[34] studied supporting restrictions based on “purpose”-based access control. [26] presents an analysis on the
impact of GDPR on storage systems. [15] presents a vision for Software-Defined Data Protection, for which
they propose leveraging recent advances in Software-Defined Storage (e.g., FPGA-based key-value stores) to
achieve compliance at the storage level. In the context of dataflow processing, [30] investigated supporting of
data subject’s privacy request (for access, deletion, and objection) by adopting causal snapshot consistency. [4]
focuses on auditing GDPR compliance based on logs. All the above work can be seen as complementary to
our work. While the aforementioned works focus more on data subject’s rights, we focus more on the actual
processing of the data wherein we consider regulations pertaining to the movement of data. Perhaps, closest to
our work on compliance-aware query optimization is that of [23] and [9, 8]. While these works only focus on the
operator placement problem based on privacy or user-specified constraints, we additionally consider rewriting
queries by extending and interleaving query operators with data masking functions.

Federated Data Processing. Our work is also related to earlier works on multi-database query processing [17]
and more recent work on cross-platform systems [3] and polystores [7]. It differs from the former in that we
focus on heterogeneous compute infrastructures and from the latter in that we target geo-distributed environments
and a facilitate a decentralized query execution.

6 Conclusion

Growing concerns on data privacy and usage preclude data transfers across national (or organizational) borders.
It is therefore crucial that data processing in federated environments be compliant with data transfer regulations.
In this paper, we have analyzed data transfer regulations from the perspective of GDPR and discussed key
research challenges for including compliance aspects in federated data processing. We presented our approach
for compliant geo-distributed data processing that focuses on relational workloads. We also discussed how query
rewriting and optimization techniques must be extended to support data masking and outlined open problems
and research directions to support workloads beyond relational workloads. We have advocated the need for
decentrally executing queries and presented challenges and research directions to support data analytics over
geo-distributed and heterogeneous compute infrastructures.
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