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Abstract

Most modern data systems have been designed with two goals in mind — fast ingestion and low-latency
query processing. The first goal has led to the development of a plethora of write-optimized data stores
that employ the out-of-place paradigm. Due to their write-optimized design, out-of-place data systems
perform deletes logically via invalidation, and retain the invalid data for arbitrarily long. However, due
to the recent enactment of new data privacy regulations, the requirement of timely deletion of user data
has become central. The right to be forgotten (in EU’s GDPR), right to delete (in California’s CCPA and
CPRA), or deletion right (in Virginia’s VCDPA) mandates that service providers persistently delete a
user’s data within a pre-set time duration. Logical deletion in out-of-place data systems, however, does
not offer guarantees for timely and persistent deletion, and attempting to enforce it using existing tools
leads to poor performance and increased operational costs.

In this paper, we present a new framework for building deletion-compliant data systems from a
holistic perspective. We analyze the new regulations and the requirements derived from the new policies,
and we propose changes in the application and the system layer of data management. We outline the new
types of deletion requests that need to be supported, the query language modifications needed to be able
to request for timely persistent data deletion, and the system-level changes needed to realize timely and
persistent deletes. The proposed framework for deletion compliance lays the groundwork for a new class
of data systems that can offer system-level guarantees for user data privacy. We present recent results
spanning all layers of the framework: the requirements and the application layer target any database
system, while the system layer discussion is geared towards out-of-place systems. Finally, we conclude
with a discussion on next steps and open challenges on building deletion-compliant data systems.

1 Introduction

Data-intensive social and commercial applications and new advancements in domains like Internet-of-things, edge
computing, 5G communications, and autonomous vehicles, generate a vast amount of personal data processed by
several data companies [26, 40]. The increasing demand for efficient collection, storage, and processing of user
data over the past two decades, has driven the development of data systems that can sustain high ingestion rates
without compromising the ability to access and analyze the data quickly.
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Out-of-Place Systems. The need for optimizing data ingestion while maintaining efficient data access has led to
the prominence of the out-of-place paradigm, which fulfills these goals by minimizing the interference between
reads and writes. Today, several commercial relational and array-based data stores [13, 34, 39, 46, 50, 53, 59, 71,
85] and NoSQL data stores [10, 12, 11, 32, 38, 42, 48, 79] have adopted the out-of-place paradigm.

Relational and Array-based Systems. Relational systems that buffer updates before applying them lazily on
the base data, essentially, follow the out-of-place paradigm. The columnar and array data stores implemented by
Vertica [59, 85], SciDB [68, 86], and TileDB [67, 88] use an in-memory storage component that stores incoming
inserts, updates, and deletes out of place, and applies the changes lazily on the disk-resident data. Similarly, the
state-of-the-art column-store system MonetDB [50] uses an in-memory positional index for incoming data [46],
and SAP HANA uses a delta store per table to facilitate fast ingestion without affecting its read-optimized
data layout [39]. Finally, several research-prototype systems use a separate delta store on faster storage (e.g.,
SSDs/NVM) to offer efficient access to incoming data [13, 14, 34, 53, 71].

NoSQL Systems. More than relational systems, production-grade NoSQL key-value stores predominantly
employ the out-of-place paradigm, frequently based on the log-structured merge (LSM) paradigm. An LSM-tree
is a heavily write-optimized out-of-place data structure that maintains several on-disk components, which can be
viewed as several out-of-place delta stores [66, 31, 49, 62, 73, 92]. Key-value stores such as RocksDB [36, 38] and
LevelDB [43] at Facebook, BigTable [24] at Google, X-Engine [48, 91] at Alibaba, Voldemort [61] at LinkedIn,
DynamoDB [32] at Amazon, Cassandra [12], HBase [11], and Accumulo [10] at Apache, and bLSM [79] and
cLSM [42] at Yahoo are based on the log-structured merge (LSM) paradigm. Other out-of-place architectures
employed by NoSQL systems are B*-tree, B¢-tree, and fractal tree-based storage engines with buffering support,
such as COLA [16], TokuDB [58], and BertFS [17, 51].

Cloud-based Systems. Cloud-based systems naturally employ the out-of-place paradigm as they rely on

the immutability of cloud storage. Hence, systems like Amazon Redshift [8, 44], Cloud Data Platform [28] at
Snowflake, and Delta Lake [29, 30] at Databricks employ variations of the out-of-place paradigm in the interest
of performance. Deletes and updates are initially performed logically and are gradually propagated to persistent
media through periodic merging with base data.
Deletes in Out-of-Place Systems. A key property of out-of-place systems is that they treat deletes (and updates)
similarly to inserts, i.e., instead of deleting (updating) entries in-place, they insert a new version of the entry to be
deleted that logically invalidates the target entries. These special entries that are responsible for logical deletes
are termed delete markers [59] or tombstones [36, 76].

Logical data deletion is a quintessential out-of-place operation, but it does not guarantee purging of the data
under deletion within a definite timeframe. Rather, the data is marked as invalid; essentially, not accessible to
external users. In practice, logically deleted entries are kept for arbitrarily long in the system, since the time to
definitively delete the data (termed persistent deletion) depends on the state of the system, and not on when the
user request expects the data to be deleted [76]. In fact, most out-of-place data stores are built with the underlying
assumption of perpetual data retention in order to gain more insights from the user and organizational data [90],
hence timely persistent deletion has not been part of their design goals. In addition to deletes, logical updates in
out-of-place systems are applied lazily too, however, the implications of out-of-place deletes are critical in terms
of the privacy regulations, and thus, are our focus.

1.1 Problem: The Privacy Concern

Cost of Logical Deletes. Logical deletes and updates in out-of-place systems boost ingestion performance,
however, they come at a significant cost. In fact, when tasked with deleting user data persistently in a timely
manner, out-of-place systems suffer both in terms of (a) data privacy protection and (b) the overall system
performance. Such systems are designed to retain the logically invalidated data indefinitely, and the time required
for persistent removal of the physical data entries depends on (i) the data layout, (ii) the data re-organization
policy (e.g., node splitting/merging in B-trees, compaction in LSM-trees, consolidation in TileDB), (iii) the
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Figure 1: The four layers of deletion-compliant data systems.

design of the storage engine (such as the fanout of a tree and the size of a database), and (iv) the composition
and distribution of the workload — factors that are beyond the control of the application and system developers
or administrators. Thus, most out-of-place systems are unable to provide any latency guarantees for persistent
deletion of user data [76].

The Legal Frontier. In recent years, a number of government-driven efforts across the globe unfolded, aiming to
protect the privacy of user data and give back to the users the control of their personal data. On the legal side,
regulations such as the EU’s GDPR [26], California’s CCPA [3] and CPRA [6], and Virginia’s VCDPA [7] have
been introduced, which mandate that data companies ensure privacy through deletion [83, 84]. GDPR’s right to
be forgotten, CCPA and CPRA’s right to delete, and the deletion right in VCDPA particularly focus on persistent
deletion of user data on-demand and in a timely manner [9, 35, 41, 52, 75, 83, 24, 89].

The Technological Roadblock. Treating deletes as first-class citizens is new for the data systems community,
and it would require a significant amount of work to transform classical systems to be efficient deletion-wise.
Even today, it continues to be a critical technological challenge for the biggest of data companies using state-of-
the-art storage engines to demonstrate compliance with the deletion regulations and to efficiently delete user data
on-demand [81, 29, 84]. To translate this into numbers, between January 2020 and January 2022, the penalties
under GDPR paid by data companies amounted to more than $1B, which includes large contributions from
companies such as Amazon ($877M), WhatsApp ($255M), Google Ireland ($102M), and Facebook ($68M),
H&M ($41M), British Airways ($26M), and Marriot ($23M) [64, 70, 87]. Thus, to demonstrate compliance,
many companies end up performing expensive database-wide consolidations periodically (e.g., every few weeks),
to ensure timely persistent deletion of user data [76, 77]. Such operations are remarkably expensive in terms of
time and money, cause undesirable latency spikes, and hence, should be avoided.

1.2 Deletion-Compliant Data Systems

In this paper, we present our vision and first results on designing data systems that ensure data privacy through
timely and persistent deletion of user data. Existing efforts that attempt to delete user/application data on-demand
suffer in terms of performance as the underlying data layout and data management mechanisms are ill-suited for
the purpose. We identify the missing links, in terms of technological tools, both at the application level and the
system level, and we propose a hierarchical framework that enables our vision of privacy through deletion in
out-of-place data systems (Figure 1).
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Roadmap. The privacy through deletion framework is a roadmap toward building deletion-compliant data
systems. We begin by outlining the challenges associated with each layer of our vision, i.e., in the context of
(1) translating the legal mandates to user requirements, (ii) expressing the user requirements through a declarative
API, and (iii) realizing the application-level requirements at the system level. Next, we identify and categorize
the different classes of user requests for deletes in light of the legal regulations. Based on this, we present the
challenges associated with transforming the classes of deletion requests into application-level specifications, and
we propose an SQL extension as an example that can be extended to other query languages to support deletion
of user data periodically and on-demand. Further, we outline the design and tools necessary at the system level
to support the application-level requirements. Finally, we conclude with a discussion on how the proposed
framework drives us toward building deletion-compliant data systems, and what further research challenges
remain open to fully realize this vision.

2 From Regulation to Practice

The legal landscape for data privacy has changed drastically over the past few years, and governments across
countries, as well as across different states in the US, have enforced acts and regulations to control the consumption
of user data by service providers and give back to the users the control of their personal data. Translating the
new regulations to new user-data privacy-compliant system behavior still faces significant challenges. In this
section, we present in more detail the requirements from the regulation point of view, and we showcase through
three realistic scenarios the limitations of the state-of-the-art data systems when tasked to implement these
requirements.

2.1 Regulations on Timely Data Deletion

While the new regulations propose an array of new requirements, we particularly focus on the legal policies
concerning data retention and data deletion, with the objective of ensuring privacy through deletion.

Right to be Forgotten, EU GDPR. The General Data Protection Regulation (GDPR) has revolutionized the
data privacy and security landscape across the European Union countries [26]. One of the fundamental changes
introduced through the GDPR (over the older Data Protection Act (DPA) that it replaced), is the right to be
forgotten, which empowers the users with the right to request a service provider to delete all their personal data
persistently from its domain. Such deletion requests may be presented either up-front or on-demand. The service
provider must comply with those requests, unless it has compelling reasons for acting otherwise (Art. 17(3)).
Right to Delete, CCPA, CPRA. The California Customer Protection Act (CCPA), which will eventually be
replaced by the California Privacy Rights Act (CPRA) in 2023, allows the users/consumers in California to
request from service providers to permanently delete all data personal to the user [3, 6]. Under CCPA and CPRA,
the service providers must acknowledge such a user request within 10 days, and respond to the request within 45
business days [19]. Persistent deletion must be performed by removing the target data across all domains, barring
archive and backup systems, along with data anonymization as required.

Right to Delete, VCDPA. Similarly to CCPA, the Virginia Consumer Data Protection Act (VCDPA) empowers
users in Virginia to exercise their right to delete their personal data from a provider’s domain [7]. VCDPA requires
the service providers to serve a delete-request from a user within 45 business days [19].

Right to be Forgotten, UK GDPR, DPA. The UK GDPR, along with the Data Protection Act (DPA) 2018
provides the country’s citizens with similar rights about personal data deletion as the EU GDPR. The users are
allowed to express their deletion preference verbally or in writing, to which the service providers must respond
within 30 days [1, 4].

Other Efforts. Among other countries, Argentina [23, 69], Singapore [25], India [55], Canada [5], and South
Korea [18] have some implementation of the right to deletion as a part of their respective privacy protection acts.
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2.2 Limitations of the State of the Art

In light of the deletion regulations, we now present three real-life scenarios to highlight why state-of-the-art data
systems are ill-equipped to support deletes efficiently without hurting performance. We do so by identifying the
missing links in different hierarchical levels of the proposed privacy-through-deletion framework. Below, we
illustrate (i) that the users are unable to express their preferences about deleting their personal data, (ii) why it is
difficult for application developers to support the deletion requests from the users, and (iii) why it is difficult to
realize persistent deletes in a timely manner in live production servers.

Scenario I: Alice is a user of a smart-home ecosystem, HomeComp, which provides real-time services includ-
ing video surveillance, remote temperature, and illumination control. Alice enjoys the services of HomeComp,
but concerned about her personal data privacy, she wants HomeComp to permanently delete all her data older
than 30 days on a rolling basis.

The problem? Like most service providers, HomeComp’s data model is built around the assumption of perpetual
data retention; deletion of user data needs a human-in-the-loop that performs the necessary actions. Thus,
HomeComp does not allow its user to request for rolling timestamp-based data deletion.

Scenario 2: StreamEra is a company that provides real-time insights for data streams, and allows its users to
request on-demand deletion of their personal data, as it is bound by the right to be forgotten. StreamEra uses an
SQL-based wrapper on top of its storage layer.

The problem? While StreamEra wants to serve its users by ensuring timely persistent deletion of their personal
data, SQL does not provide support for such an operation. Instead, the backend engineers implement the
user-requested deletion functionality at the application level in an ad-hoc manner as it is not native to SQL.

Scenario 3: A cloud-based online data analysis company ClouData, stores user data using immutable files
within its HTAP data store. ClouData is bound by the right to be forgotten, and thus, has to delete all user data
that are older than D days.

The problem? As the data organization on disk is not based on the ingestion timestamp and aims to accelerate
read queries, it uses the most frequently queried attribute to partition. Hence, the objects qualifying for a
timestamp-based deletion may be dispersed within the data store. As in-place deletion is not supported due to
immutability, state-of-the-art data stores periodically consolidate the entire data set to delete all invalid entries.
Ensuring privacy via this approach is costly in terms of disk writes and overall accesses, and causes latency spikes
leading to performance unpredictability.

Other Challenges of Logical Deletes. In addition to not complying with regulatory requirements, logical deletes
may cause more hurdles. Specifically, by retaining invalidated data (that should not be used anymore), a data
company:

1. Wastes storage space and energy on data that cannot exploit in any way. Further, data maintenance results
in additional write amplification that wears off the underlying storage devices [15].

2. Risks that a security leak will reveal user data that users expect to be deleted [64].

3. Hurts read performance, as its data management layer uses metadata and indexes for all data regardless of
whether they are invalidated [76].
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3 Privacy Through Timely Deletion

We now outline our vision toward developing deletion-aware data systems, which by design, are capable of
deleting user data persistently, and in an efficient and timely manner. Toward this, we introduce a new set of
application level and system level tools that capture, transform, and realize the user-requirements for deletes.

Figure 1 shows our four-layered approach. The first step is the policy layer, implemented by the governments,
that enact specific clauses to protect data privacy through deletion. The second layer is the requirements layer
that translates the regulations into application requirements. Next, we have the application layer that proposes
the necessary changes in query languages to allow applications to easily express their constraints. Finally, the
system layer implements efficient means for data deletion and demonstrates regulation compliance.

3.1 Requirements Layer

Challenge. This layer analyzes the regulations from the policy layer and categorizes the various requests the user
should be able to make on the application layer. The impact of the newly enacted policies is on various aspects
including accountability (audit), security (protect data access), and right of access (efficient accessing) [81, 84].
In this work, we focus on storage limitation (‘“data should not be stored beyond its purpose”), the right to be
forgotten (“find and delete groups of data”) [81], and how to transform them into concrete requirements.

Types of Deletion Requests. We codify the two types of data deletion requests as requirements for (a) retention-
driven rolling deletion and (b) on-demand deletion both with a timely constraint [76], as illustrated in the second
part of Figure 1.

Retention-driven deletes. In cases that the purpose of storing the data has expired, a rolling deletion should take
place, which will ensure that the underlying data management solutions persistently delete this data, based on a
pre-set retention duration. This duration can be governed by legislation, the specific application, or even user
preference, hence it has to be tunable. To abide by the policies, the data management layer has to permanently
delete expired items within a specific timeframe, provided by the service-level agreement (SLA) between the user
and the service providers.

Deletion on-demand. The regulations for deletes also allow users to submit on-demand deletion requests for any
personal data, upon which the service provider has to delete user data persistently. On-demand deletion requests
can be submitted through an API provided by the service provider, and upon submission, all data for a user are
purged persistently within a threshold period. This threshold for persistent deletion is also set by the provider
following the regulations and is agreed upon in the form of an SLA-clause.

3.2 Application Layer

Challenge. With the deletion-related regulations translated to deletion requirements, the next step is to transform
them into a format that is interpretable by the application layer. The interface of data stores is typically declarative
query languages (e.g., SQL, GraphQL, DMX, LINQ, and N1QL) that support expressing complex queries as
well as inserting new data, updates, and deletes. The missing link here is that state-of-the-art query languages
do not have support for data deletion based on retention and does not have a way to express the timely deletion
requirements.

Extending SQL. Hence, to implement the deletion requirements, we propose an extension to SQL [74] that
includes support for timely deletion both in the data definition (DDL) and the data manipulation (DML) parts of
the language, as summarized in the third part of Figure 1. The objective of the SQL extension is three-fold.

1. To support retention-driven deletion, we augment both the CREATE TABLE and INSERT INTO state-
ments so that a relational table can be associated with a number of options for specific time-to-live (TTL).
Every data object is bound to a specific TTL according to the application SLA or to user preference.
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2. To ensure timely persistence of on-demand deletion requests, we augment the CREATE TABLE and
DELETE FROM statements to allow a relational table to support a predetermined set of timely deletion
guarantees, and each deletion to select the level of service to which it adheres.

3. Finally, we extend the CREATE TABLE, INSERT INTO and DELETE FROM statements to support
arbitrary delete thresholds for retention duration and deletion persistence.

Enabling retention-driven deletes. To support retention-driven deletes, we extend CREATE TABLE to allow an
application developer to specify several levels of retention duration as a table property.

CREATE TABLE R (columnl typel, column2 type2, ...)
WITH RET_DUR FIXED (tl <retl>, t2 <ret2>, ...);

The above CREATE TABLE statement creates a table R that supports retention-based deletes with specific
retention duration of retl, ret2, etc, which are mapped to symbolic representations t1, t2, etc. In general,
the WITH RET_DUR clause is an optional clause when creating a new table, and will be necessary only for
tables that need to support deletes with predefined retention duration values. In such cases, each INSERT
statement can use (up to) one of the predefined retention duration values, say t1 to classify the specific object as
one to be deleted after ret1 time. For example, a table that is configured to support retention duration of 30
days and 60 days (CREATE TABLE R (...) WITH RET_DUR FIXED (tl '30 days’, t2 ’'60
days’) ;), can only receive inserts with retention duration t1 or t2. An ingestion without a retention period
explicitly mentioned, is kept perpetually following the logic of a classical insert. The syntax of an insert, now, has
the optional WITH RET_DUR clause as follows.

INSERT INTO R (vall, val2, ...) WITH RET_DUR t<i>;

Support for arbitrary retention duration. To support arbitrary retention duration, we further add the ARBITRARY
keyword to both the CREATE TABLE and INSERT statements. The support for arbitrary retention duration is
necessary particularly for systems in a distributed setting that replicate data across physical data stores in different
geolocations, each bound by different regulatory requirements. The full syntax of the proposed SQL extension
for retention-based deletion is below.

CREATE TABLE R (columnl typel, column2 type2, ...)
WITH RET_DUR {ARBITRARY | FIXED (tl <retl>, t2 <ret2>, ...)};
INSERT INTO R (vall, val2, ...) WITH RET_DUR { <t> | t<i> } ;

Note that having a pre-defined set of retention duration values provides more information to the system compared
to allowing arbitrary duration. As a result, it allows the system to better prepare to offer efficient retention-driven
deletes. Conversely, we expect that data stores that aim to support arbitrary retention duration will face increased
system-level challenges.

Enabling timely on-demand deletion. We further propose to augment SQL to express timely on-demand deletion.
To do so, we introduce the concept of delete persistence threshold (DPT) [76], which denotes the maximum delay
between a logical delete and its persistence. Every relational table can be associated with several such thresholds
that are defined from the legal constraints or based on user preference. Similarly to retention-driven deletes, we
also extend SQL to support arbitrary DPTs when the DPTs are not specified a priori. Below, we outline the
modifications to the DDL and DML parts of SQL to support on-demand timely deletion requests.

CREATE TABLE S (columnl typel, column2 type2, ...)
WITH DPT {ARBITRARY | FIXED (dl <dptl>, d2 <dpt2>, ...)};

DELETE FROM S WHERE (...) WITH DPT { <d> | d<i> };
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Table S can support several DPTs (e.g., dpt1, dpt2) as long as the DPTs are pre-determined. Applications can
trigger on-demand deletion with any such DPT through the DELETE command. Similarly to retention-driven
deletes, timely persistent deletion of data on-demand is easier to handle from a storage engine if the DPTs
supported are known a priori during the table creation.

Putting everything together. With the proposed SQL extensions, a relational table can now support multiple
(pre-defined or arbitrary) thresholds for both retention-based and on-demand deletes, with the following CREATE
TABLE statement.

CREATE TABLE T (columnl typel, column2 type2, ...)
WITH RET_DUR {ARBITRARY | FIXED (tl <retl>, t2 <ret2>, ...)};
WITH DPT {ARBITRARY | FIXED (dl <dptl>, d2 <dpt2>, ...)};

Note that typically retention-based deletes come from the application requirements, and on-demand deletion
requests are issued by the user. However, in both cases, the deletes have to happen timely as per the regulatory
requirements. The proposed changes in SQL are not enough to guarantee that the system will deliver on the need
for timely and persistent data deletion. Rather, they create the interface for data systems so that need for timely
deletion. Rather, they create the interface for data systems so that the users and applications can express the
deletion requests which is enforced by the regulations. The data deletion per se is realized at the system level, and
we will next discuss advances and challenges on that front.

3.3 System Layer

With the requirement analysis and the declarative interface in place, the users and the applications can express
all the mandated deletion requests and the underlying system is now tasked with implementing them. Before
discussing the challenges of implementing timely retention-based and on-demand deletes, we discuss the
taxonomy of system-level deletes the application layer may initiate. In other words, we want to understand what
delete patterns may be generated at the system layer.

3.3.1 Taxonomy of Deletes at the System Layer

The behavior of a low-level delete operation depends on (i) the logical organization and physical layout of the
data, and (ii) the attribute based on which the deletion requests are issued. To better understand this delete design
space, we classify different delete operations across two dimensions: (a) deletes on primary vs. secondary
attributes, and (b) deletes based on a single value of the delete attribute, termed point deletes, vs. deletes on a
range of the delete attribute, termed range deletes [76]. Table 1 summarizes the state of the art in out-of-place
systems for different delete operations, their performance impact, and their at-large implications.

Delete Workloads ) Primary Deletes . Secondary Deletes
Point Range Point Range
State-of-the-art insert point tombstones insert range tombstones .
. . . . not supported full-tree compaction
implementation (logical) (logical)
Point query search for key; stop search for key; compare fetched key N/A N/A
path if a tombstone is found with the histogram (discard if invalidated)
Range query merge qualifying sorted runs; merge qualifying sorted runs; N/A N/A
path discard on the fly if TS exist check each value against histogram
unbounded persistence latency unbounded persistence latency huge latency spikes
Implications high space amplification high space amplification N/A high write amplification
P high write amplification high write amplification superfluous reads from disk
severely affects read performance

Table 1: Implications of logical deletes on performance in state-of-the-art out-of-place data stores.
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Primary Deletes. In out-of-place systems, data is ultimately organized based on a so-called sort key (for example,
the key of the key-value pairs in an LSM-tree). The sort key often is the primary key of the database, hence, a
majority of delete operations can be expressed as deletes based on the sort key, or primary deletes. Note that
even deletes on other attributes may be preferable to be converted to primary deletes if there is a secondary index.
Both point and range primary deletes use the notion of a delete marker or a tombstone that is inserted in the
data collection (on the deleted sort key) and invalidates prior version of the key(s), and they are very common in
real workloads [22]. Primary deletes can be triggered either by user activity (i.e., on-demand) or by automated
processes (e.g., data migration).

Implications and Challenges. When an out-of-place system has files that contain tombstones, then both point
and range query paths are affected. Specifically, since the system accesses files with decreasing age (i.e., the most
recent ones first) when looking for a key (point query), it will also be looking for tombstones. If a tombstone is
found, the search will terminate because all other (older) instances of that key are invalid. In the presence of range
deletes, the implementation is more complex as it is hard to use per-file range delete tombstones [63]. Instead, a
database-wide histogram of deleted ranges is maintained and every query compares against this histogram before
proceeding [76]. When considering range queries, all the sorted files have to be merged and the deleted entries
are discarded on the fly by comparing against the visited point and range tombstones [21].

The implications of primary deletes are multi-fold. First, while out-of-place systems support deletes, any
deletion is logical, and there is no a priori bound on the delete persistence latency. Second, by maintaining
both the tombstones and the invalid entries for arbitrarily long time, the systems pay in terms of increased space
amplification. Thirdly, by reorganizing data including invalid entries and tombstones, we further pay in terms of
increased write amplification. Note that space and write amplification [15, 36] are two fundamental sources of
cost when deploying data system. Finally, while range tombstones are used to offer the range delete functionality,
they are rather cumbersome and impact the read performance severely [21, 63].

Secondary Deletes. In some other cases, we may need to organize data based on a sort key, but we have a
majority of deletes on a different attribute. Note that if we have individual deletes on a different attribute, the
most prudent approach is to guarantee that we have a secondary index and transform a secondary delete in one (or
more) primary point delete, hence in Table 1, we see the lack of support for point secondary deletes. However, in
some cases, we may have long range deletes on a secondary attribute. For example, when working on a window
of the most recent data we can repetitively delete data based on a timestamp. A similar case is the retention-based
deletes introduced earlier.

Implications and Challenges. Secondary range deletes are not native in out-of-place systems, since the underlying
data is organized based on the sort key. While converting them to a collection of point primary deletes might
work in several cases, it will overload the system with tombstones. Instead, several systems opt to perform a
full-database merging and re-writing periodically to fulfill any secondary range deletion constraints they might
have to follow. This approach leads to significant write amplification, superfluous data accesses, and a large
penalty in terms of latency spikes on the workload during this merging.

From Delete Requirements to Delete Types. The delete taxonomy at the system level helps us map the delete
requirements to low-level data operations. A retention-driven deletion is typically modeled as a secondary range
delete, and if the delete range has few objects (i.e., low selectivity), it can be implemented as a collection of
primary point deletes. On the other hand, on-demand deletion is typically implemented as a primary point or
range delete and there are several performance challenges to be addressed.

3.3.2 Realizing Timely Deletes

Timely data deletion while respecting the retention SLAs without hurting the system performance is a key
challenge. The efficiency of deletion depends on the schema and the physical data layout, the data re-organization
strategy, the workload, and the design of the storage engine. The right-most part of Figure 1 outlines the
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Figure 2: FADE persists tombstones within DPT, thus, improving overall performance.

design changes needed and the input parameters used to co-optimize the performance of a storage engine while
ensuring timely delete persistence. We now discuss how both classes of deletes can be realized efficiently through
modifications in the design of out-of-place storage engines, focusing on LSM-bases storage engines.

Realizing Primary Deletes. An LSM-based storage engine implements a primary delete by inserting a tombstone
on the desired key (or key-range) with a DPT associated. The application-provided DPT is an indicator for
how long a logical delete may live before its persistence, that is, before purging any invalidated versions of the
key(s) under deletion. The tombstone representation is augmented with additional metadata, e.g., an extra byte to
account for 128 possible different DPTs in the same table. During its natural course of data re-organization the
storage engine checks for any data blocks (i.e., pages, files, or sorted runs) with an expired TTL and consolidates
them to ensure timely persistence. This data consolidation in LSM-based data stores is called compaction [72, T7]
and is the process of selecting some components of the database (files, sorted runs) to merge and discard invalid
entries. At any point of time an LSM-based system has several files that may be compacted (it can be in the order
of several thousands) so the decision which files to compact is a crucial decision. In general, the decision is based
on read query metrics, however, in Lethe [76] we propose a new approach that prioritizes compactions of files
depending on the age of the tombstones they contain. Specifically, we assign different TTLs based on the level of
the underlying LSM-tree and when there is a tombstone with an expired TTL we select the file that contains it for
compaction, as shown in Figure 2. A key decision is how to ensure that the multi-step merging of tombstones will
always respect the application-defined DPT. This is ensured by assigning a different TTL to each tombstone after
every compaction in a way that the sum of all its TTL amounts to the desired DPT.

Realizing Secondary Deletes. As we discussed above, several instances of secondary deletes can be realized
as a collection of primary point deletes. However, when we are frequently tasked to deleted a range of values
based on a secondary attribute, we can achieve something significantly better. In particular, a new weaved data
layout between the original sort key and the (secondary) delete key can offer much more efficient and timely
secondary range deletion while maintaining competitive read performance. The key idea is to create a nested data
organization that alternates between organizing data based on the sort key (to facilitate good search performance)
and based on the delete key (to allow for consecutive chunks of data to be deleted at a time).

This approach is implemented in the KiWi data layout [76] as shown in Figure 3. The core idea is that while
the major components of the database (files) are organized based on the sort key, every file is composed of delete
tiles that are internally organized based on the delete key, partitioning the data accordingly. Lastly, each data page
is again organized on the search key to facilitate efficient in-memory search. The benefit for this weaved data
layout is that in the case of secondary range deletes, we can discard entire groups of pages at a time, signaling the
file system to reclaim this page instantly, essentially converting the secondary delete to a page reclamation action
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Figure 4: Lethe ensures timely persistence of logically invalidated data within LSM-based out-of-place data
systems for both primary and secondary classes of deletes.

that has very low latency compared to a full database reorganization. In the worst case, we will have to in-place
edit a few pages at the edge of the range, which is a tunable parameter that controls the maximum secondary
deletion persistence latency as a tradeoff vs. read performance.

Evaluation. The approaches presented above for timely deletion were implemented as part of the LSM-based
system Lethe [76], and achieved efficient timely deletion respecting predetermined guarantees. The left hand-side
of Figure 4 shows the CDF of the tombstone age while varying the desired DPT to 16%, 25%, and 50% of
the duration of the experiment. The colored areas correspond to the number of cumulative tombstones for the
corresponding age on the x-axis, while the horizontal dotted-line is the desired DPT. We observe that Lethe was
able to always deliver the requested DPT. The gray area corresponds to the age of tombstones of the state of the
art, where no DPT is imposed and deletes are not persisted timely. Notably, we also measured that enforcing the
desired DPT shows benefits in terms of access time because the amount of invalid data was reduced. Similarly,
we saw benefits in space amplification, and only marginal cost increase in amortized write amplification.

The right hand-side of Figure 4 shows the fraction of fully dropped pages during a range delete as we vary
the size of the delete tiles. We observe that the fraction of pages fully dropped increases with the delete tile size,
allowing for efficient reclamation of the invalid data. Conversely, the read queries become more expensive as we
allow for more page drops, so the ideal delete tile size should be tuned based on the workload.
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Deletes in a Complex Data Model. The previous discussion focuses on handling deletes in a per-instance
manner without considering multiple copies of the data in a more complex setting. Cohn-Gordon et al. [27]
proposed the deletion framework DELF that ensures reliable data deletion from an online social network (OSN).
DELF enables detection of inconsistent data deletion in OSNs and also facilitates data recovery in cases where
user data was incorrectly deleted. Minaei et al. [65] proposed a framework for persistently deleting all instances
of user data in presence of observers, thereby, ensuring privacy through timely content concealment and removal.

4 Challenges and Opportunities

In Section 3, we outlined the steps taken to realize the four-layered vision of delete-compliant data systems
presented in Figure 1, however, there are still open questions and challenges for such systems which pose
opportunities for further innovative systems research.

Device-level Deletion. Data management solutions rely on storage devices and treat them as black boxes.
However, deleting data persistently at the device level and from data archives is an open technological challenge.
Current endeavors in this direction are mainly focused on encryption-based solutions [54, 57, 60]. Nevertheless,
retention-based deletes entail persistent deletion of a “quantum” of data (e.g., the data ingested in a day) posing
the following challenges for encryption-based solutions. First, it is hard to determine the encryption granularity
while minimizing the encrypt/decrypt overhead. Second, with several data streams for different users/applications
(and thus, bound by different SLAs), it is hard to manage the encryption keys efficiently and in a scalable
manner. Third, efficient and scalable deletion from archives and backup stores on-demand is hard to be supported
by encryption-based deletion as the encrypt/decrypt cost and the fine encryption granularity adds prohibitive
overheads. Finally, from a legislation point-of-view it is not yet clear whether encrypting and discarding the key
is an accepted form of deletion.

When considering a system-level deletion similar approach to the one presented in Section 3.3 storage
devices are essentially one more level of managing data at the physical layer and similar approaches have to be
implemented in the file system or the file and data systems have to be developed in tandem.

Cloud-Level Deletion. Further, operating on the cloud, data systems use virtualized devices and object storage
which is even more abstract hiding the details of how the low-level device and page management is taking place.
Offering guarantees for timely data deletion in virtualized storage will require a similar multi-layered approach
where the file system and the device firmware will expose knobs to allow the application on top to request specific
page reclamation properties.

Deletion in Distributed/Federated Computing Environment. With more and more data stores being trans-
formed to cloud-based stores, user data may be collected, processed, and stored across multiple domains, spread
across different geographic locations [75]. With different geographic locations being bound by different privacy
regulations, we need to design solutions to ensure consistency for persistent deletion of user data. Our intuition
is that existing solutions for data stream-tainting [37], cross-domain data tracing [33, 47], and related data
provenance solutions [20, 45] can be useful to address this problem.

Compliance Demonstration. Last but certainly not least, data systems have to be able to prove compliance
when audited. The natural way to do so now is via log auditing, however, a more light-weight algorithmic way for
providing this will benefit both systems and users. Inspecting logs and the underlying data is a time-consuming
process and the long-term goal of the community should be to design system-level tools that can verifiably
prove compliance with the privacy regulations. One interesting development in this direction is the evolution of
security-driven operating systems, such as seL.4 [56, 80]. Another approach that can be taken is to show that the
codebase of a data system has the necessary code-paths for timely deletion via static and dynamic analysis. An
open challenge is to develop static and dynamic analysis tools that can prove that a system deletes data respecting
the timely deletion requirements set.
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5 Conclusion

In this paper, we highlight that the recently enacted regulations mandate new data deletion requirements, requiring
a new breed of data systems to support them. We show that existing state-of-the-art out-of-place systems are
ill-equipped for this task, and we present a four-layered approach towards building the necessary infrastructure.
We present recent work on that front, and we conclude by discussing several open research challenges.
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