
Disposal by Design

Susan B. Davidson
University of Pennsylvania
susan@cis.upenn.edu

Shay Gershtein
Tel Aviv University

shayg1@mail.tau.ac.il

Tova Milo
Tel Aviv University

milo@cs.tau.ac.il

Slava Novgorodov
eBay Research

snovgorodov@ebay.com

Abstract

The flood of data that has enabled breakthroughs in medicine, commerce, transportation, science and
society also threatens to overwhelm our storage capacities and our privacy. Due to the volume of data
and growth of regulations governing its maintenance and use, it is essential to develop automatic disposal
techniques to manage this flood. We present a vision for automating data disposal – disposal by design –
which takes into account processing constraints, regulatory constraints as well as storage constraints,
and give three concrete examples which address aspects of this vision. Two of the examples address
current needs in e-commerce, while the third suggests how to use machine learning to find summaries
of relational data. We then discuss the research challenges that remain to provide a holistic solution to
disposal by design.

1 Introduction

We are experiencing an amazing data-centered revolution in almost every aspect of our lives. Huge amounts of
data are being generated, collected, transformed, integrated and analyzed, leading to breakthroughs in medicine,
commerce, transportation, science and society. This data-centered revolution is fueled by the massive amount
of data that is constantly being generated, and at the same time is threatened by the very same information
flood. First, the size of our digital universe is growing exponentially, and it is estimated that, despite continuous
advances in storage technology, the demand for storage will outstrip storage production by an order of magnitude
by as early as 2025 [8]. If we do not learn how to effectively dispense with some of this data we will drown.
Second, uncontrolled data collection endangers security and privacy, as recognized, e.g., by the recent EU Data
Protection Regulation (GDPR) [1].

This problem has become even greater following the growth of COVID-19 data that has been collected
and distributed. Data disposal policies must be systematically developed and enforced to benefit and protect
organizations and individuals. Due to the volume of data involved and the growth of regulations/policies governing
its maintenance and use, it is essential to develop automatic data disposal techniques that take these policies into
account to control the information flood.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

10

A primary advantage of automating data disposal is the ability to focus resources on legitimate, valuable
information, thereby enabling the creation of new products and solutions. The potential for cost-savings associated
with reduced data volumes also provides an attractive solution to companies with tight budgets who cannot afford
to store and maintain unlimited data. Furthermore, effective enforcement of data retention, deletion and privacy
regulations allows legal and business requirements to be met.

However, it is obviously not enough to consider just policies when disposing of data: business processes must
also be guaranteed to have the data or information available at the level of detail that they need. This leads to
the use of ideas such as data sketching and summarization, if the data cannot be outright deleted. However, data
sketching and summarization techniques have only been developed for specific aspects of the problem, mostly
related to query answering over structured data [4, 6, 29, 2, 20]. We are still very far from a comprehensive
solution that covers the entire data analysis pipeline (e.g. data cleaning, integration, sharing, and analysis,
in addition to querying) and the breadth of data types (e.g. images and text, in addition to structured data).
Every single data disposal solution therefore has to address, almost from scratch, the same tough challenges.
Furthermore, these ad hoc solutions, even when successful, are application specific and rarely shareable.

Retaining the information hidden in the data while respecting storage, processing, and regulatory constraints
is a therefore a major challenge. The difficulty stems from the separate, detailed requirements that each of these
type of constraints entails. For instance, satisfaction of processing constraints is essentially an optimization
problem where one needs to determine what data may be discarded and which summary of it to retain, if needed,
so that data utilization is minimally harmed. In contrast, regulatory constraints tell us what information must be
deleted (or kept for a specific time period [28]), and the challenge is to identify and discard (or retain) all the
relevant data.

To pave the road for sustainable big data management, in this paper we set forth a research vision for
automating data disposal which takes into account processing constraints, regulatory constraints, as well as
storage constraints which we call disposal by design. To accomplish this vision, we must develop the formal
scientific foundations for massive-scale data disposal. This encompasses the development of a formal model that
captures all the diverse facets of data disposal: retention constraints, heterogeneous data, and data processing
pipelines. It means developing reasoning capabilities over the data processing pipelines to ensure that they
work over the retained, possibly summarized, data, and that this can be done in a dynamic manner as retention
constraints, data, and pipelines are added, deleted or modified. Such a principled approach is essential for
developing reusable solutions, and thereby sustaining the data-centered revolution that is transforming our lives.

We start in Section 2 by giving an architecture for our envisioned disposal by design (DbD) framework.
In Section 3 we give three concrete examples which address subproblems of this framework in the context of
e-commerce, image and relational data. We summarize some of the research challenges in Section 4, and conclude
in Section 5.

2 Vision

The architecture of our envisioned framework is shown in Figure 1. DbD takes as initial input a set of constraints,
C; a set of heterogeneous data sets D; and a set of data analysis pipelines, A. The constraints include data that
must be retained (e.g. photos that must appear on a product page due to licensing agreements, or bank records that
must be retained for five year), data that can or must be removed (e.g. due to GDPR regulations or bank records
that are older than five years), as well as overall space constraints. The data is heterogeneous, and includes tables,
images, text, etc. It is annotated with provenance, size and a notion of accuracy. The analysis pipelines could be
ML packages, code, queries, workflows, etc, and are annotated with accuracy constraints on their input data. Note
that the inputs to the analysis pipelines could be descriptive rather than prescriptive, i.e. there could be choices of
different data (of various quality) that could be used as an input.

11

C
Retention
Constraints

D
Data

A
Data Analysis

Pipelines
(ML, code, queries)

+ space + accuracy
+ provenance

+ accuracy constraints
+ importance
+ explanations

DbD

Predict à Lossless à Lossy
Analyses Disposal Disposal

P
Data Disposal Plan

P(D, A, C) = (D’, A’)

D’ = (D− D)) U summaries
+ provenance

∀ 𝐴! ∈ A. A"’(D’) ≈ A" D
+ explanations

(DC, DD, DA)

Figure 1: Architecture of DbD

The optimization goal used by DbD is some function of space and accuracy. One example of an optimization
goal is to meet some overall space constraint while trying to satisfy the accuracy constraints of the data analysis
pipelines. Another example is to guarantee that the accuracy constraints are satisfied and minimize the overall
space.

In meeting the optimization goal within DbD, several strategies could be considered: First, attempting to
predict future analyses and data usage to avoid disposing of data that might be needed in the future (see, e.g.
[23, 12, 13]). Second, discarding any unnecessary redundant data that is not needed for any potential analysis
pipelines or required by retention constraints. Similarly, unnecessary analysis pipelines that are not required
by retention constraints and have not been used for a sufficiently long time could be discarded. We call this a
“lossless” disposal since it disposes of data/analyses that are not needed. Third, making harder decisions about
how to decrease the quality of potentially necessary data while still ensuring that the accuracy constraints on data
analysis pipelines are met. We call this a “lossy" disposal since it degrades the quality of data and analyses.

The output of DbD is a data disposal plan, which includes a modified set of data sets, D’, in which some
data have been removed (∆) and possibly replaced by less accurate (but smaller) summaries, and a modified set
of analysis pipelines, A’, in which some may have been removed, modified (e.g. to work over lower accuracy
data), or added (e.g. in anticipation of future analysis needs). The output must guarantee that 1) the retention
constraints C are met, and 2) the accuracy of the files of the data set is sufficient to meet the accuracy constraints
on the data analysis pipelines. The output should also able to provide explanations, e.g. for how summaries
were obtained and how they meet the accuracy requirements of relevant data analysis pipelines. Since retention
constraints, data sets, and data analysis pipelines may be changed, added or removed over time, DbD must
adaptively recompute over these changes (indicated by the loop back).

12

3 Examples of Specialized Instances

We mentioned in the introduction that there has been a lot of work on specific aspects of data disposal. In this
section, we highlight two examples from e-commerce that deal with identifying a (bounded size) subset of items
of highest utility, out of a large set of items: the first considers a catalog of items for sale [16] and the second deals
with image data [9]. In these two cases, the focus is on (a non-traditional form of) data and the workloads are very
simple (essentially, select queries). They also highlight how the inputs to DbD can be efficiently computed rather
than by relying on humans. Interestingly, the setting in these two works is such that the non-selected items/images
are not necessarily disposed off but may rather be stored, e.g., in a secondary storage. Nevertheless the algorithms
are oblivious to whether or not a copy of the non-selected items is retained somewhere, and can be employed in
both scenarios.

The third example that we present in this section illustrates some work in progress which focuses on (more
traditional) relational data and (more complex) aggregate queries, and suggests a less traditional approach to
summarization using deep learning.

3.1 E-Commerce Catalog Reduction

Many e-commerce platforms, such as eBay, serve as an intermediary between companies and consumers, receiving
a commission per purchase. To increase sales, these platforms tend to offer as many items as possible. However,
in many situations a reduced subset of the items should be offered for sale, e.g., when opening an express
delivery branch, starting operations in a new region, or disposing of redundant items to improve data quality and
decrease maintenance costs. In all these cases, it is imperative to select a reduced inventory that maximally covers
consumer needs. In this problem (which we formalized in [16]), given a large set of items (D), a bound on the
number of items that can be retained (C), and consumer preferences in terms of items popularity and suitability
as alternatives (A), the goal is to select a reduced inventory that maximizes the likelihood of a purchase (that is
formalized exactly based on A).

A naïve, yet popular, solution is to focus on the top-selling items. This however ignores the hidden relations
between items and, in particular, the tendency of shoppers to buy, in the absence of an item they are looking for,
a satisfying alternative. Instead, this problem can be modeled via a dedicated weighted directed graph, where
the nodes are the items, their weights are the item’s popularity (which is calculated based on provenance, i.e.
the navigation patterns in the e-commerce platform website), and the weighted edges model to what extent an
item may serve as a substitute for another (this can also be derived using provenance, via a statistical analysis of
consumer data and purchase records that are available to all e-commerce platforms.). One can prove that this
problem is NP-hard. Moreover, since in practical settings the overall number of items and the bound on the
reduced item set are very large - in the order of magnitude of millions - a highly scalable algorithm is needed.

To solve this problem, we provide in [16] a highly parallelizable and scalable algorithm, that leverages our
graph-based formulation of the problem, along with optimal approximation guarantees. Moreover, we have
developed an end-to-end solution that fits the real-world e-commerce application and provide an extensive set of
experiments demonstrating the efficiency and effectiveness of our solution.

Importantly, the model we defined for this problem is abstract and can be used to capture different use-cases
outside of e-commerce settings. Each such application, however, requires a different method to derive the input.
Specifically, one needs to assign a relative importance score to each item in the inventory, and to quantify the
extent to which an item can serve as an alternative for another item.

3.2 Archiving Images in E-commerce

We now discuss an example of automating image selection that we are developing in collaboration with eBay,
which is being tested for use in their product catalogs [9].

13

eBay has a huge archive of images of products some of which are used for display throughout a hierarchy of
landing pages of product categories. For each page, there is a pre-defined subset of images that are relevant for
the product category, out of which a small set are displayed. Each image may be relevant for a large number of
different pages, and its value may differ between pages. Some of the images are required to appear on certain
pages due to legal contracts (a retention constraint). Finally, the landing pages themselves may vary in importance,
reflecting the relative popularity of product categories. To speed up the page display, it is desirable to maintain a
smaller size image repository (which may be viewed as a bounded-size, fast-access cash), much smaller than the
size of the full archive. The optimization problem is to find a “good" set of images that can fit in the bounded-size
repository (cache) and meet the content and policy requirements of each of the landing pages.

In this application, C are simple constraints which state that some set of images must appear on landing pages
due to legal contracts, as well as the size of the cache. D is the set of all photos in the archive; size and provenance
are metadata associated with each photo. A represents the set of landing pages, each of which has a title (e.g.,
“Nike red shirts”, “Samsung smartphones” or “shoes”). A landing page can be thought of as a simple query which
identifies the set of all photos in the archive that could be used on the page.

Importantly, information associated with D and A can be automatically obtained. For each landing page, the
relevance (accuracy) of an image for the page can be computed based both on the quality of the image (we are
currently using an internal eBay ML model [10]) and the relevance score of the product represented in the image
(which can be calculated using the product title and search engine retrieval score). The relative importance of a
landing page can be calculated based on the landing page popularity, i.e. the number of visits in the last 90 days,
normalized by sum of all visits to all pages.

An important property in evaluating the quality (goodness) of a solution is the diversity of the set of photos
displayed on each page. Therefore, the quality of a solution for this application is not only assessed by the
relevance of each individual image to its assigned landing pages, but also using more collective assessments on the
subset of images, ensuring that each subset covers the spectrum of products and product aspects relevant for the
page. To this end, we use a notion of similarity between photos, which can be calculated using cosine similarity
between image embeddings. The score of a solution for each landing page is then not only computed based on
the relevance scores of the selected subset, but is also based on the similarity of the most similar selected photo
to each non-selected photo. This ensures that the selected subset is representative of the entire set of relevant
photos, which naturally maximizes diversity and minimizes redundancies. The objective function then becomes
the weighted sum of the scores for each landing page, where the weights are the relative importances of the pages
as discussed above.

It can be shown that a solution to this problem cannot be approximated beyond a (1 − 1/e) factor, unless
P = NP , via a straightforward reduction from the Maximum Coverage problem. We nevertheless give in [9] an
efficient algorithm with a tight worst-case approximation guarantee, based on the fact that the objective function
can be proven to be nonnegative, monotone and submodular, and using an extension of the standard iterative
greedy algorithm given in [33].

We have evaluated our image archival solution within eBay on several product categories (separately, as
each category is assigned different analysts and has its own space constraint). Initial reports indicate that our
solution significantly reduces manual work; the business analysts reported performing only a small number of
modifications to the suggested solution, taking much less time than creating the solution from scratch.

3.3 Sampling and Aggregating Relational Data

In the first two examples, the core of the solution is based a formal definition of a problem with an algorithmic
solution. However, another increasingly common approach to solving problems is based on machine learning.
We therefore give a simple example using relational data and aggregate queries, and show how to “learn" the
best subset of data/metadata to store. Note that this is very much work in progress, based on recent work in
[24, 25, 26].

14

q ~ Q

Data

Neural Network

Size
Constraints

Output:
{k, counts}

take uniform sample of size k
+
compute the counts

Error:

||true ans. - approx. ans.||

Reduce data
based on the output

Figure 2: Architecture for learning the best subset of data/metadata to store

Given a set of relational data and input queries, the goal of our problem is to learn a subset of the data/metadata
to store that takes significantly less space, such that it is still possible to compute, based on the retained information,
approximate answers to an expected workload of queries with reasonable approximation errors.

In terms of the form of the retained data, we use a common approach: the retained information is a combination
of (1) a uniform sample of the original data and (2) aggregates (i.e., results or partial results of aggregate selection
queries) computed over the complete original data. There are several recent works proposing methods for deriving
the best approximate answer to a query, given a sample and the aggregates (e.g., [24, 26, 27, 22]). Our focus,
however, is on deciding, given an upper bound on the total space used by the retained data, how much of it should
be used for each type of data (i.e., the sample or the aggregates), and which aggregates should be stored. Note
that we do not need to decide which subset of the data should be stored in the sample, as it is a random uniform
sample and the only relevant parameter is therefore its size.

To this end, we build a model for deriving a distribution Q on the expected queries by leveraging query
workload information. This is achieved by a GAN-based solution [7], where you train a generator to produce
artificial queries and a discriminator to distinguish between these queries and queries taken from a real-world
query workload. The final distribution learned by the generator is Q.

We propose the following architecture, depicted in Figure 2, that is based on a deep learning approach: a
learning model (neural network) receives as input the data, the space constraint (both are given in the initial
setting), and a subset of sample queries generated over Q (these three components of the input to the network
correspond to the three blue boxes in the figure). Given this input, the network then produces the size of the
uniform sample, and the specific aggregates one should store (the box in the figure marked with the “Output”
label). Given any such produced solution, the specified aggregates and a uniform sample of the specified size are
aggregated, and their utility is evaluated by the resulting approximation errors on a large sample of queries (also
sampled from Q). Note that the methods for computing the approximate answer uses only the reduced data. The
model learns over time to minimize these errors, as marked by the back-arrow pointing from the “Error” box to
the network. We note that the format of the output of the network (i.e. a sample along with a set of aggregates)
is the same as the format of the input in the recent work of [26] for deriving approximate query answers over
incomplete databases, and we also use the same evaluation methods for assessing the overall accuracy of the
approximate answers (the query answers derived from the partial data) as used in their empirical analysis.

15

4 Research Challenges

While the examples in the previous section address specific aspects of disposal by design, we are still far from
providing a holistic solution. In particular, the examples do not capture the complexity of workloads, variety
of data, and dynamic aspects of a full solution. Thus in more complex settings, a solution would need to be
redesigned from scratch. Therefore we argue that to solve the problem in a principled way, two scientific
challenges must be addresses: designing a unified model, and dynamic incremental computation. We discuss
each of these below, along with the enabling technologies that may be helpful.

4.1 A Unified Model

In order to develop a comprehensive solution to data disposal rather than a series of one-off solutions, we need a
unified formal model for all types of data disposal. A prime motivation for using a unified model is that it will
allow us to consider data sharing and replication between applications, as well as to re-use solutions between
applications. As illustrated in Section 2, central to the model are notions of data coverage and quality, data usage
and workload, storage and regulatory constraints, and evolution (of data, analysis pipelines and retention policies)
over time.

Furthermore, we believe that the framework should be declarative. To understand the benefit of a declarative
framework, consider the origins of modern relational database management systems [5]. A relational database
is essentially a First-Order Logic machine which manages data. More precisely, a non-specialist can specify
some needs declaratively, in first-order logic terms. The system then compiles such a “logical query" into an
“algebraic query plan" that is optimized and evaluated. Relational systems thus perform automatic reasoning to
handle queries and views, e.g., to rewrite queries into equivalent ones for optimization. Reasoning is also present
in many other aspects of relational DBs, e.g., dependencies (logical formulas over the data that the system should
enforce) and triggers (i.e. active rules). In relational systems, such reasoning is in some sense “hard-wired". For
instance, several algebraic query plans may be possible for a given logical query. The system is in charge of
verifying that the plans considered are indeed equivalent to the original query. To do that, the system assumes
some laws governing the interaction of operations and implements an algorithm (some reasoning) to check that
these laws are not violated. The laws are decided in advance and the reasoning is encoded in algorithms whose
correctness has been proven in advance (e.g., the commutativity of joins).

Similarly, we want an intelligent interface between the data and its disposal process. For data disposal,
logic is needed to reason about how data relates to analysis tasks, to describe data disposal and retention
constraints and preferences/criteria (the equivalent to the “hard-wired" logic of relational systems) and to model
analysis workloads and properties of data summaries. The laws governing data coverage and quality, data
usage and workload, storage and regulation constraints, and evolution (of data and retention policies) over time
must therefore be “first-class citizens” of the model rather than inflexible, preconceived laws (see, e.g., [30]).
Furthermore, the reasoning behind data disposal must be able to take into account the specific context and
application domain.

Two key enabling technologies may be helpful in developing this unifying model: data provenance, and
sketching and summarization.

Data Provenance Provenance traces the source of information and the computational process it undergoes, and
is critical for understanding data usage, for explaining query results and for assessing their validity [3, 17]. In our
setting, provenance must further capture what data has been omitted and what kind of summary was retained for it.
Such meta-data will allow for effective computation over the retained information and for explanation/justification
of the obtained results. It will also allow the system to keep a record of the processing activities, as required by
regulations such as GDPR [1].

16

Attaching provenance to individual data items is typically straightforward; what is more complex and needs to
be studied is what provenance should be used to annotate summarized or omitted data. The difficulty stems from
the fact that common provenance models often apply only to a fairly restricted set of declarative data manipulation
operators (e.g. SQL) whereas data summarization/deletion strategies are typically given as general programs,
possibly empowered by machine learning (ML) tools [29, 20], for which provenance is not yet well defined. A
second, related, difficulty is to propagate such meta-data through the analysis process, which may be complex.
Finally, an additional challenge is that the size of provenance may be very large [14, 1], and so effective disposal
must be recursively applied to this meta-data as well.

Sketching and Summarization Much of the data that we keep around is redundant and can be discarded with
no harm. Common examples are old document drafts and ancient emails dealing with non important issues. But
in general, whether or not data should be kept, and at what level of granularity, depends on the expected analysis
workload. (as well as the regulatory constraints). For a simple example, the analysis could compare multiple
versions of the same document, in which case discarding old (legitimate) versions of documents without retaining
some record of the changes between documents is harmful. A key challenge thus is to dynamically determine
which data should/may be discarded and, if allowed, what summary should be kept for the deleted items, so that
data utilization is minimally harmed.

Traditional techniques for data summarization, sketching and statistical/approximate query processing are
mostly concerned with specific query operations and provide accuracy guarantees w.r.t query answers. But
modern data analysis pipelines are far more complex, consisting of multiple analysis steps, including data
integration, cleaning, restructuring, visualization, and machine learning (ML) [18]. Naturally, it would be
desirable to build on existing technology when possible. For instance, in stream data processing, incoming data
is summarized on the fly using powerful sketching techniques, then discarded all together [6]. Other, more
comprehensive, summarization methods analyze the full dataset with techniques ranging from dimensionality
reduction to compression-based data reduction methods and algorithms for clustering, data deduplication,
redundancy elimination, and implementation of network (graph) summarization concepts [29, 21]. Each of these
approaches, however, has been designed for a specific task and no single technique is guaranteed to always achieve
superior results - performance depends on the type of data and its intended usage. A difficulty in assembling them
together is that the summarization policies are often hard-coded and, consequently, are inflexible and difficult
to combine and optimize. This is why it is important to have a declarative framework that captures the inputs
described in Figure 1: retention constraints, data and accuracy metrics, and data analysis pipelines along with
accuracy constraints governing the choice of resulting summary properties. This would serve as input for an
engine that derives disposal policies that adhere to the needs (if possible), execute them, and efficiently run data
analysis tasks over the retained information. Some early encouraging results on the use of declarative specification
for data disposal have been presented in [31] in the context of OLAP queries over relational data. The challenge
is to adapt these ideas to the execution pipelines of the modern world of big-data.

4.2 Computation and Optimization

A declarative specification describes what the requirements are in a disposal policy and what a query result should
look like, but not how to efficiently derive or enforce the policy and evaluate data analysis pipelines over the
retained information. Thus, we must support the framework by algorithms for policy derivation and enforcement
and for query evaluation, and use optimization techniques to guarantee good performance. Furthermore, these
techniques must take into account the feedback loop shown in Figure 1, suggesting the use of incremental
methods (not illustrated in the examples of the previous section). Several enabling technologies are relevant here:
preemptive computation, approximate query processing, incremental computation, incremental view maintenance,
and machine learning.

17

Preemptive computation. Computing a comprehensive summary for deleted data may be a time consuming
task especially when executed over large databases [29]. This may be problematic if postponed to the last minute
when the storage overflows and data must be deleted. To overcome this, one must design methods for anticipating
and preempting some of the summaries offline, e.g. in the form of a partial summary. The preempted computation
could then be used for constructing a complete summary when data must be discarded. Similarly, to speed up the
enforcement of privacy regulations such as GDPR, preemptive duplicate detection and object resolution may be
used to identify replicated data that is relevant to entities that are required to be “forgotten".

Approximate query processing. The ability to provide approximate answers to queries, at a fraction of the
cost of executing the query in the traditional way, has made approximate query processing extremely popular in
big data applications. Sampling is a common tool in such systems. In query-time sampling, the query is evaluated
over samples taken from the database at run time. Employing such techniques in our context requires extending
the sampling mechanisms to sample also from the data summaries (which provide an aggregated description of
the missing data elements) and, correspondingly, incorporating such samples in query evaluation. To achieve
a sharper reduction on response time, some approximate query processing algorithms draw samples from the
data in a pre-processing step, then use them to process incoming queries. An intriguing question is whether such
precomputed samples can themselves serve as data summaries in our context, thereby allowing to discard some
(or all) of the remaining items.

Incremental computation. Incremental computation is present in all dimensions of data reduction. As new
data comes in and new disposal policies are employed, the retained information must be incrementally maintained.
This includes incremental cleaning and integration of the new incoming data into the partial, retained information.
It also includes maintenance of data summaries as new data arrives and other gets deleted. Updates should also
be propagated to the provenance information used to explain the origin of the different query answers. Promising
approaches to this problem include incremental view maintenance techniques [19], possibly combined with
incremental machine learning [34, 35], as explained below.

Incremental view maintenance The retained information may be abstractly regarded as a view over the full
(missing) data. Query evaluation over views has been extensively studied in the literature. Techniques for
rewriting queries to be answered, as accurately as possible, using the views alone, are relevant to our context
where queries may be evaluated only using the retained data [11]. Incremental view maintenance has also been
extensively studied in the literature [19] and the results are relevant here; the relationship to incremental machine
learning will also need to be investigated [35, 34]. A challenge particular to our setting, however, is that not
only that the data is updated (as more data is accumulated) but also the view definition itself (what data is
retained/summarized and how) may change as a result of the accumulated knowledge and/or changes in the
workload and regulation.

Learning In our context, ML techniques are not only part of the analysis pipeline but may be employed to
learn data access and usage patterns and, correspondingly, to derive effective retention policies complying with
a given set of regulations. Deep learning has been used for various tasks in databases, including automatically
identifying the “interesting" parts of data [12, 32] and designing effective indexing structures, and we suggest
earlier in Section 3.3 how it could be used for summarization in the context of relational data. An added challenge
in our context is that the retention policies and summaries may need to be dynamically adapted as more data
comes in (or is disposed of) and the data analysis workloads change.

18

5 Conclusions

In this paper, we highlight the importance of developing a holistic solution to managing the flood of data that is
enabling amazing breakthroughs in medicine, commerce, transportation, science and society while simultaneously
threatening to outstrip storage production and endanger our privacy. We present a vision for managing this flood,
called disposal by design, which takes into account the data, regulatory constraints, as well as the (potentially
complex) data analysis pipelines that operate over the data and creates a data disposal plan in which data may
have been removed and replaced by summaries, and analysis pipelines may have been modified to work over the
modified data. At the core of this vision is a unified declarative model of data, constraints and processes, supported
by algorithmic/learning techniques that develop the data disposal plan. We stress the importance of enabling
technologies such as data provenance, sketching and summarization, preemptive computation, approximate query
processing, incremental computation, incremental view maintenance, and machine learning. We believe that such
a principled approach is essential for developing solutions that can be reused across applications, replacing ad
hoc solutions that must be developed from scratch, and thereby sustaining the data-centered revolution that is
transforming our lives.

Acknowledgment This work has been partially funded by the Israel Science Foundation, BSF - the Binational
US-Israel Science foundation, Tel Aviv University Data Science center, and the Mortimer and Raymond Sackler
Institute of Advanced Studies

References
[1] E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and T. Milo. Approximated summarization of data provenance. In

Proc. of CIKM, pages 483–492, 2015.
[2] M. Besta and T. Hoefler. Survey and taxonomy of lossless graph compression and space-efficient graph representations.

CoRR, abs/1806.01799, 2018.
[3] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and where. Foundations and Trends in

Databases, 1(4):379–474, 2009.
[4] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No silver bullet. In Proc. of SIGMOD, 2017.
[5] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387, 1970.
[6] G. Cormode. Data sketching. Communications of the ACM, 60(9):48–55, 2017.
[7] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath. Generative

adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018.
[8] Dataage 2025 - the digitization of the world, seagate us. http://www.seagate.com/our-story/data-age-2025.
[9] Susan Davidson, Shay Gershtein, Tova Milo, Slava Novgorodov, and May Shoshan. PHOcus: Efficiently Archiving

Photos. https://slavanov.com/research/phocus-demo.pdf.
[10] Arnon Dagan, Ido Guy, and Slava Novgorodov. An image is worth a thousand terms? analysis of visual e-commerce

search. In SIGIR, 2021.
[11] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann, 2012.
[12] Ori Bar El, Tova Milo, and Amit Somech. Automatically generating data exploration sessions using deep reinforcement

learning. In Proc. of SIGMOD, pages 1527–1537, 2020.
[13] Ori Bar El, Tova Milo, and Amit Somech. Towards autonomous, hands-free data exploration. In 10th Conference

on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org, 2020.

[14] B. Glavic and G. Alonso. Perm: Processing provenance and data on the same data model through query rewriting. In
Proc. of ICDE, pages 174–185, 2009.

[15] General Data Protection Regulation (GDPR). https://en.wikipedia.org/wiki/General_Data _Protection_Regulation.
[16] Shay Gershtein, Tova Milo, and Slava Novgorodov. Inventory reduction via maximal coverage in e-commerce. In

Proc. of EDBT, pages 522–533, 2020.

19

[17] T. J. Green and V. Tannen. The semiring framework for database provenance. In Proc. of PODS, pages 93–99, 2017.
[18] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and C. Shahabi. Big data

and its technical challenges. Communications of the ACM, 57(7):86–94, 2014.
[19] C. Koch, D. Lupei, and V. Tannen. Incremental view maintenance for collection programming. In Proc. of PODS,

pages 75–90, 2016.
[20] M. L. Kersten and L. Sidirourgos. A database system with amnesia. In Proc. of CIDR, 2017.
[21] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods and applications: A survey. ACM Comput.

Surv., 51(3):62:1–62:34, 2018.
[22] Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. Combining aggregation and sampling (nearly)

optimally for approximate query processing. In Proceedings of the 2021 International Conference on Management of
Data, pages 1129–1141, 2021.

[23] Tova Milo and Amit Somech. Automating exploratory data analysis via machine learning: An overview. In David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, pages 2617–2622. ACM, 2020.

[24] Laurel J. Orr, Samuel K. Ainsworth, Kevin G. Jamieson, Walter Cai, Magdalena Balazinska, and Dan Suciu. Mosaic:
A sample-based database system for open world query processing. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org,
2020.

[25] Laurel J. Orr, Magdalena Balazinska, and Dan Suciu. Entropydb: a probabilistic approach to approximate query
processing. VLDB J., 29(1):539–567, 2020.

[26] Laurel J. Orr, Magdalena Balazinska, and Dan Suciu. Sample debiasing in the themis open world database system.
In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors,
Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, pages 257–268. ACM, 2020.

[27] Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. Aqp++ connecting approximate query processing
with aggregate precomputation for interactive analytics. In Proceedings of the 2018 International Conference on
Management of Data, pages 1477–1492, 2018.

[28] Data retention. https://en.wikipedia.org/wiki/Data_retention.
[29] M. H. Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah, and S. U. Khan. Big data reduction methods: A

survey. Data Science and Engineering, 1(4):265–284, 2016.
[30] Subhadeep Sarkar, Jean-Pierre Banâtre, Louis Rilling, and Christine Morin. Towards enforcement of the EU GDPR:

enabling data erasure. In IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS, Canada, July 30 - August 3, 2018, pages
222–229. IEEE, 2018.

[31] J. Skyt, C. S. Jensen, and T. Bach Pedersen. Specification-based data reduction in dimensional data warehouses. Inf.
Syst., 33(1):36–63, 2008.

[32] Amit Somech, Tova Milo, and Chai Ozeri. Predicting "what is interesting" by mining interactive-data-analysis session
logs. In Proc. of EDBT, pages 456–467, 2019.

[33] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. Operations
Research Letters, 32(1):41–43, 2004.

[34] Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. Deltagrad: Rapid retraining of machine learning models. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 10355–10366. PMLR, 2020.

[35] Yinjun Wu, Val Tannen, and Susan B. Davidson. Priu: A provenance-based approach for incrementally updating
regression models. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and
Hung Q. Ngo, editors, Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 447–462. ACM, 2020.

20

