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Letter from the Editor-in-Chief

Data is considered the most valuable asset but as its volume, complexity and implications continue to grow, the
tech industry must face an unprecedented range of challenges from data management to ethical obligations and
regulatory pressures.

This issue of the Data Engineering Bulletin, curated by Sebastian Schelter, endeavors to address some of these
challenges. For the first time, we focus on regulations shaping how data is being collected, managed, and used
in the tech industry. Several papers in this issue dive into questions originating from the “right-to-be-forgotten”
postulated by GDPR. A concomitant technical challenge is how to focus resources on legitimate and valuable data
to maximize the business impact. For example, Davidson et al.’s work on “Disposal by Design” used e-commerce
to highlight challenges and opportunities in the realm of data regulation. Applications such as e-commerce data
reduction, image archiving, and relational data sampling and aggregation open the door for further research in
this domain.

This issue also features an opinion piece by Ihab Ilyas and Felix Naumann, who looked into the critical
question of data and model observability. For years, data quality has been a key concern and a main priority for
the tech industry, but the problems have become more elusive as the industry relies more and more on machine
learning models. While the situation has given rise to a new tech segment pioneered by companies such as BigEye
and Monte Carlo Data, the solutions are still primitive. Ilyas and Naumann’s call for action opens a new chapter
of data quality and data cleaning that understands the entire data processing pipeline.

Haixun Wang
Instacart
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Letter from the Special Issue Editor

Software systems that store and process personal data have become ubiquitous over the last years and have
enabled numerous economic, technological and scientific advances. Unfortunately, the benefits of data-driven
analysis and decision making have also been accompanied by several negative developments. Examples include
the increased surveillance capabilities of the state [3] and private companies [4], negative impact on economic
inequality [2] and traumatic experiences for individuals [5]. As a reaction, many countries have started to regulate
data storage and processing to guarantee and protect the rights of individuals. The most comprehensive such
regulation is the General Data Protection Regulation (GDPR, https://gdpr.eu) issued by the European Union.

In this special issue on Directions Towards GDPR-Compliant Data Systems and Applications, we continue
the ongoing discussion in the data management community [1] on how to redesign data systems and applications
to be compliant with such regulation.
Data deletion as a first-class-citizen. The first three papers of this issue address an important question originating
from the “right-to-be-forgotten” postulated by GDPR: How can we design efficient data systems that support
the timely deletion of data as a first-class citizen? The first paper on Disposal by Design presents a vision for
automating data disposal which takes into account processing constraints, regulatory constraints as well as storage
constraints, and gives concrete examples from the e-commerce domain, including a suggestion of how to to
find summaries of relational data with machine learning. The second paper on Building Deletion-Compliant
Data Systems argues that the the requirement of timely deletion of user data is becoming central in modern data
management scenarios. The authors present a new framework for building deletion-compliant data systems
from a holistic perspective, analyse the requirements derived from the new policies, and propose changes in
the application and the system layer of data management systems. The third paper called Provenance-based
Model Maintenance: Implications for Privacy focuses on efficient data deletion in a machine learning context. In
particular, the authors focus on the extremely challenging problem to refresh existing models after the removal
of training samples, which is called “machine unlearning”. They argue that GDPR regulations imply that the
removed samples must be fully erased from the models so that they cannot be leaked to an adversary. The paper
reviews two provenance-based solutions and shows how they can guard against “model inversion attacks", which
reconstruct the removed training samples from the updated models after the unlearning process.
Efficient data processing under regulatory constraints. The subsequent two papers of this issue adress an
orthogonal systems-related question originating from GDPR: How can we design efficient data systems that
comply with data processing regulations? The fourth paper of this issue on Navigating Compliance with Data
Transfers in Federated Data Processing presents work on novel systems and methods for federated data processing,
where the processing of geo-distributed data is subjected to data transfer regulations. The authors showcase recent
work on compliant geo-distributed data processing and present research challenges and opportunities in making
federated data processing systems GDPR-compliant. The fifth paper called Towards Privacy by Design for Data
with STRM privacy discusses the practical challenges of engineering teams to balance privacy and innovation,
with respect to effort, data utility and computation costs. The authors argue that current approaches in scalable
data systems often treat privacy as an access problem, which is at odds with important legal and design principles.
Instead, the authors propose that engineering teams should shift their data privacy efforts to the point of data
collection, and discuss an architectural setup for privacy-compliant stream processing applications, which is in
production usage.

This work was supported by Ahold Delhaize. All content represents the opinion of the author(s), which is not necessarily
shared or endorsed by their respective employers and/or sponsors.
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Data Errors: Symptoms, Causes and Origins

Ihab F. Ilyas, Felix Naumann
University of Waterloo, University of Potsdam

1 Introduction: Data Errors and their Root Causes

With the recent move towards data-centric AI, data quality is now playing an even bigger role in producing sound
and reliable insights, predictions and analytics. While the data management community has been working on the
problem of data cleaning for decades, the problem remains very much present. Most efforts have focused on error
detection [13], attempting to leverage symptoms and the manifestations of these errors in data sets to locate and
possibly repair them. Indeed, the last few years witnessed significant advances in automating error detection and
repairing [20, 9, 15, 22] by probabilistically modelling dirty data sets, and reasoning about error detection and
repair as structured prediction problems [21, 8]. In this opinion piece, we present our views on how to further
advance the field of data cleaning, and go beyond treating the symptoms of the problem and understand what it
takes to treat the causes and the sources of these anomalies and errors.

Tracking errors to their sources is not a new quest of the research community [5, 24, 7]. So why are we
revisiting it now? The way current research currently reasons about the root causes of data errors is still, in our
opinion, limited. Tracking errors to sources has often been framed as “computational” provenance that represents
what was involved in computing a final data product and possibly how this product was computed. The main goal
of these provenance-based error tracking systems is projecting errors detected in downstream applications all the
way to upstream data sources, where they should be fixed [5]. While the principle is sound, multiple issues often
complicate this approach. First, as data processing pipelines become more complex, with cascades of complex
machine learning models, capturing this rich provenance information becomes harder, as most if not all of the
input is involved in producing the output. Recent progress, however, has been made in tracking responsibility of
training data, for example, in the predictions of complex models [18, 14, 10]. Second, even with advances in
modelling the responsibility of input sources in the observations in output analytics reports, fixing the sources
does not mean that errors have been fixed at their true “roots” – their point of creation; these raw data sources are
often the results of other processes not modelled at all in the computational data pipelines, such as grading tasks
of humans, sensor readings, and extraction scripts from logs and documents.

Hence, we argue that effective management of data errors and the next-generation data cleaning systems
require a more profound understanding of the root causes data errors. These systems should: (1) distinguish
between why errors occur and the processes that generated them in the first place, and how these errors manifest
themselves as bad data symptoms (e.g., violations of integrity constraints and appearing as outlying values), and
(2) explicitly model these data generation processes to allow for new process repair actions that go beyond fixing
raw data sources.

2 Reasoning about the How: The Symptoms of Errors

In its most general form, information quality is defined as “fitness for use” [23], i.e., its definition focuses on the
use case, the application, the context of the data at hand. Most, if not all, error detection methods make heavy
use of this context. They search for and focus on the symptoms of poor data quality and ask the question how a
particular data element is an error. We exemplify this insight with selected examples of traditional error detection
problems and their solutions.

Outliers Already by definition, outliers can be recognized only in the context of other data elements – only these
“inliers” make some other value an outlier. Typical outlier detection methods create a model to represent
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normal/typical values and mark as outliers all those values that do not fit the model [2]. Whether an outlier
is, in fact, an error is application-dependent and user-defined.

How is an outlier a data error? It is very different from all other data elements, suggesting it is not the
intended value for this data item.

Constraint violations Constraints, such as key-constraints, dependencies, or denial constraints can be used to
express the validity of a data instance. These rules are specified by experts or discovered with data profiling
methods [1]. Rarely do they refer to individual data elements; rather they forbid the existence of some
elements in the presence of others, such as a key-constraint denying any other record with the same key
value. Discovering and cleaning such violations is an active research area [12].

How does a data element violate a constraint? It exists in the presence of some other data element. While
this is not an error on its own, the collection of these values cannot be part of the intended correct data
instance.

Duplicates Within a dataset, duplicate records are multiple different representations of the same real-world
entity [16]. To clean a dataset, such erroneous duplicates must be detected and then merged or eliminated.
Identifying a duplicated record is, by definition, possible only by regarding other records, i.e., only in the
context of the entire relation. Typical approaches intelligently create duplicate candidate pairs and then
determine their similarity to decide whether they are indeed duplicates [17].

How is a duplicate an error? It represents the same real-world object as some other data element, with
possibly other types of errors causing a different representation.

Missing values Missing values are easy to detect when they appear as null values in databases or empty strings
in files. In more complex cases, “disguised missing values” can be recognized only by regarding their
context, which usually comprises the other values in the column [19]. The typical means to “clean” missing
values is to impute their value, again based on their context, usually the non-missing values in a column.

How is a missing value an error? It is explicitly represented to indicate an error. However, the difficulty in
the case of missing value relates to the interpretation of “null” as we don’t know the value, but we should as
opposed to schema issues, for example, a relational employees table with some employees who do not have
middle names.

Data cleaning, as a means to alleviate the symptoms of poor data quality, is an established and important
research and development field, relying heavily on the context of data and its use in applications. Next, we move
backwards along the data processing pipeline to explore not these symptoms, but their causes.

3 Reasoning about the Why: The Causes of Errors

It is time to ask (and answer) the why question! Existing work in the area of data quality, error detection and data
cleaning almost exclusively focuses on alleviating the symptoms, rather than removing the cause of the error.
None of the methods asks why a particular value is missing, why duplicates exist in the data, why violations
occur. Answers as to “why” include: faulty (human) data entry, such as missing entries, misplaced values,
typos, and vandalism; faulty reading from sensors; missed or not-propagated updates; faulty computations; and
misconfigured data pipelines.

While researchers and practitioners (and medical doctors) will acknowledge the truism that problems are
best addressed at their source rather than treating their symptoms, the research community has not adequately
addressed this opportunity possibly for several reasons:

5



• In some scenarios, once errors are detected, it is too late – fixing their cause is futile because the data was
intended for a one-time use.

• Often, the creation of data is out of the control of the data engineers or data consumers: the data stems
from an external source and the data creation can be influenced only through human intervention, such as
communicating with the data owners or creators.

• Modifying or improving the data creation process is difficult or impossible, for instance due to technical or
human limitations: sensors have an inherent error margin; humans are not infallible, etc.

• Data processing pipelines have become so complex, that treating the symptoms is the easier short-term
goal with quick rewards.

Knowledge of the cause of an error and not only its symptom can improve cleaning methods and can help
avoid such errors in the first place. To seize this opportunity, multiple challenges must be overcome:

• Modelling the processes and data generators (including humans) in the system, instead of modelling only
the data and errors.

• Detection of data errors without context and detection of erroneous data processes.

• Extending the notion of provenance to include (possibly faulty) processes, computation (internal prove-
nance), and data generation steps (external provenance). More on this in Section4.

• Designing of algorithms and systems to efficiently and effectively trace such extended provenance.

• Designing repair operations for such errors and processes, which need to reach beyond the mere deletion
or replacement of data instances that is the currently common approach.

These challenges can be summarized as creating a more holistic view of data creation and consumption than
is currently practiced. Especially the extended notion of provenance deserves a closer look in the next section.

4 True Data Provenance

Provenance is powerful tool for tracking data artifacts. In the context of this paper, one might think of it as
a way to identify the where of the data error’s story. Most practical and effective cleaning solutions follow a
clean-and-evaluate lifecycle [11], which leverages the computational provenance of data analytics to track data
errors to their sources, and attempts to provide explanations that lead to cleaning actions. This typical lifecycle is
depicted in Figure 1.

Provenance and lineage systems focus on describing how the analytical report views are computed from the
sources. For example, Scorpion [25], DBRx [5] and QFix [24] (and many other followup work) are solutions
that trace back the tuples that contributed to the problems in the target to explain and help fix these errors at data
sources. A recent survey summarizes the large body of work in debugging data-driven systems and explain what
users see downstream from processing raw data [7]. As these processing pipelines become more complex with
cascades of large machine learning models, tracing errors in final predictions back to their causes can be very
challenging. However, there is recent progress that can help us reason about observations in model predictions
and track them back to errors in training data [10].

The question becomes: is explaining errors in final analytics or predictions in terms of data sources enough?
What we refer to as “raw data sources” are often cut off the processes that generated these data, such as the human
grader that input that data, the extraction script that generated this data from a webpage, or a presentation of the
complex data pipeline that ran in a different software stack and generated this source data. From our discussions
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Figure 1: Clean-and-Evaluate Loop [11]

and involvement with large enterprises over the last decade, we argue that this decoupling is often due to two
main reasons:

• Difficulty of integrating data processes in provenance systems: Representing the process that generated
the data might require expressive (and hence complex) provenance systems. For example semiring-based
provenance systems have been extended to capture information about external inputs (e.g., user choices),
and to capture process executions [6]; and in the context of scientific workflows, the need for a control-flow
driven workflow provenance model in contrast to the traditional data-driven execution provenance paradigm
has been explored [4].

• Loss of provenance continuity across systems: We might be very careful in collecting and adequately
presenting provenance information in the data pipelines we control. However, as the final data product (e.g.,
predictions, views, aggregates, or transformed data sets) get pushed to the downstream tasks, they are often
treated as “source data” and downstream pipelines fail to consume the associated provenance information.

Understandably, these are hard problems to tackle and part of the challenge is not even technical and it involves
standardizing data provenance representation across business units and different software stacks. However, this
might suggest new research directions; for example, we might prefer developing simpler and less expressive
provenance models that target interoperability and ease of propagation over representation power of the underlying
computations. Another example is that propagating standard meta-data that ties data sources to central data
governance and catalogs can be part of the integrity constraints and sanity checks. We suggest also extending
meta-data representation of data sources to include repair actions that reference a controlled vocabulary or a
repairing ontology tapping into the large body of work in work flow and business processes management.

5 Conclusion

To conclude, we suggest opening a new chapter of data quality and data cleaning that understands the entire data
processing pipeline, in particular tracing it to the very beginning – the genesis of the raw data. We have pointed
out the challenges, with a focus on a new view of data provenance.

Having discussed the how (symptom), the why (cause), and the where (via provenance), other questions about
errors remain. We have only glossed over the question what is erroneous: an individual value, a row, a column, a
table, or a process? Our general discussion allows these questions for data model beyond the relational, including
tree or graph data, or even images, sound and video. When regarding data as it is created over time, we can ask
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when the data error was introduced, and use data versions to understand the nature of the error [3]. The final
question of who to blame, we leave to the management sciences.
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Abstract

The flood of data that has enabled breakthroughs in medicine, commerce, transportation, science and
society also threatens to overwhelm our storage capacities and our privacy. Due to the volume of data
and growth of regulations governing its maintenance and use, it is essential to develop automatic disposal
techniques to manage this flood. We present a vision for automating data disposal – disposal by design –
which takes into account processing constraints, regulatory constraints as well as storage constraints,
and give three concrete examples which address aspects of this vision. Two of the examples address
current needs in e-commerce, while the third suggests how to use machine learning to find summaries
of relational data. We then discuss the research challenges that remain to provide a holistic solution to
disposal by design.

1 Introduction

We are experiencing an amazing data-centered revolution in almost every aspect of our lives. Huge amounts of
data are being generated, collected, transformed, integrated and analyzed, leading to breakthroughs in medicine,
commerce, transportation, science and society. This data-centered revolution is fueled by the massive amount
of data that is constantly being generated, and at the same time is threatened by the very same information
flood. First, the size of our digital universe is growing exponentially, and it is estimated that, despite continuous
advances in storage technology, the demand for storage will outstrip storage production by an order of magnitude
by as early as 2025 [8]. If we do not learn how to effectively dispense with some of this data we will drown.
Second, uncontrolled data collection endangers security and privacy, as recognized, e.g., by the recent EU Data
Protection Regulation (GDPR) [1].

This problem has become even greater following the growth of COVID-19 data that has been collected
and distributed. Data disposal policies must be systematically developed and enforced to benefit and protect
organizations and individuals. Due to the volume of data involved and the growth of regulations/policies governing
its maintenance and use, it is essential to develop automatic data disposal techniques that take these policies into
account to control the information flood.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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A primary advantage of automating data disposal is the ability to focus resources on legitimate, valuable
information, thereby enabling the creation of new products and solutions. The potential for cost-savings associated
with reduced data volumes also provides an attractive solution to companies with tight budgets who cannot afford
to store and maintain unlimited data. Furthermore, effective enforcement of data retention, deletion and privacy
regulations allows legal and business requirements to be met.

However, it is obviously not enough to consider just policies when disposing of data: business processes must
also be guaranteed to have the data or information available at the level of detail that they need. This leads to
the use of ideas such as data sketching and summarization, if the data cannot be outright deleted. However, data
sketching and summarization techniques have only been developed for specific aspects of the problem, mostly
related to query answering over structured data [4, 6, 29, 2, 20]. We are still very far from a comprehensive
solution that covers the entire data analysis pipeline (e.g. data cleaning, integration, sharing, and analysis,
in addition to querying) and the breadth of data types (e.g. images and text, in addition to structured data).
Every single data disposal solution therefore has to address, almost from scratch, the same tough challenges.
Furthermore, these ad hoc solutions, even when successful, are application specific and rarely shareable.

Retaining the information hidden in the data while respecting storage, processing, and regulatory constraints
is a therefore a major challenge. The difficulty stems from the separate, detailed requirements that each of these
type of constraints entails. For instance, satisfaction of processing constraints is essentially an optimization
problem where one needs to determine what data may be discarded and which summary of it to retain, if needed,
so that data utilization is minimally harmed. In contrast, regulatory constraints tell us what information must be
deleted (or kept for a specific time period [28]), and the challenge is to identify and discard (or retain) all the
relevant data.

To pave the road for sustainable big data management, in this paper we set forth a research vision for
automating data disposal which takes into account processing constraints, regulatory constraints, as well as
storage constraints which we call disposal by design. To accomplish this vision, we must develop the formal
scientific foundations for massive-scale data disposal. This encompasses the development of a formal model that
captures all the diverse facets of data disposal: retention constraints, heterogeneous data, and data processing
pipelines. It means developing reasoning capabilities over the data processing pipelines to ensure that they
work over the retained, possibly summarized, data, and that this can be done in a dynamic manner as retention
constraints, data, and pipelines are added, deleted or modified. Such a principled approach is essential for
developing reusable solutions, and thereby sustaining the data-centered revolution that is transforming our lives.

We start in Section 2 by giving an architecture for our envisioned disposal by design (DbD) framework.
In Section 3 we give three concrete examples which address subproblems of this framework in the context of
e-commerce, image and relational data. We summarize some of the research challenges in Section 4, and conclude
in Section 5.

2 Vision

The architecture of our envisioned framework is shown in Figure 1. DbD takes as initial input a set of constraints,
C; a set of heterogeneous data sets D; and a set of data analysis pipelines, A. The constraints include data that
must be retained (e.g. photos that must appear on a product page due to licensing agreements, or bank records that
must be retained for five year), data that can or must be removed (e.g. due to GDPR regulations or bank records
that are older than five years), as well as overall space constraints. The data is heterogeneous, and includes tables,
images, text, etc. It is annotated with provenance, size and a notion of accuracy. The analysis pipelines could be
ML packages, code, queries, workflows, etc, and are annotated with accuracy constraints on their input data. Note
that the inputs to the analysis pipelines could be descriptive rather than prescriptive, i.e. there could be choices of
different data (of various quality) that could be used as an input.
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Figure 1: Architecture of DbD

The optimization goal used by DbD is some function of space and accuracy. One example of an optimization
goal is to meet some overall space constraint while trying to satisfy the accuracy constraints of the data analysis
pipelines. Another example is to guarantee that the accuracy constraints are satisfied and minimize the overall
space.

In meeting the optimization goal within DbD, several strategies could be considered: First, attempting to
predict future analyses and data usage to avoid disposing of data that might be needed in the future (see, e.g.
[23, 12, 13]). Second, discarding any unnecessary redundant data that is not needed for any potential analysis
pipelines or required by retention constraints. Similarly, unnecessary analysis pipelines that are not required
by retention constraints and have not been used for a sufficiently long time could be discarded. We call this a
“lossless” disposal since it disposes of data/analyses that are not needed. Third, making harder decisions about
how to decrease the quality of potentially necessary data while still ensuring that the accuracy constraints on data
analysis pipelines are met. We call this a “lossy" disposal since it degrades the quality of data and analyses.

The output of DbD is a data disposal plan, which includes a modified set of data sets, D’, in which some
data have been removed (∆) and possibly replaced by less accurate (but smaller) summaries, and a modified set
of analysis pipelines, A’, in which some may have been removed, modified (e.g. to work over lower accuracy
data), or added (e.g. in anticipation of future analysis needs). The output must guarantee that 1) the retention
constraints C are met, and 2) the accuracy of the files of the data set is sufficient to meet the accuracy constraints
on the data analysis pipelines. The output should also able to provide explanations, e.g. for how summaries
were obtained and how they meet the accuracy requirements of relevant data analysis pipelines. Since retention
constraints, data sets, and data analysis pipelines may be changed, added or removed over time, DbD must
adaptively recompute over these changes (indicated by the loop back).
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3 Examples of Specialized Instances

We mentioned in the introduction that there has been a lot of work on specific aspects of data disposal. In this
section, we highlight two examples from e-commerce that deal with identifying a (bounded size) subset of items
of highest utility, out of a large set of items: the first considers a catalog of items for sale [16] and the second deals
with image data [9]. In these two cases, the focus is on (a non-traditional form of) data and the workloads are very
simple (essentially, select queries). They also highlight how the inputs to DbD can be efficiently computed rather
than by relying on humans. Interestingly, the setting in these two works is such that the non-selected items/images
are not necessarily disposed off but may rather be stored, e.g., in a secondary storage. Nevertheless the algorithms
are oblivious to whether or not a copy of the non-selected items is retained somewhere, and can be employed in
both scenarios.

The third example that we present in this section illustrates some work in progress which focuses on (more
traditional) relational data and (more complex) aggregate queries, and suggests a less traditional approach to
summarization using deep learning.

3.1 E-Commerce Catalog Reduction

Many e-commerce platforms, such as eBay, serve as an intermediary between companies and consumers, receiving
a commission per purchase. To increase sales, these platforms tend to offer as many items as possible. However,
in many situations a reduced subset of the items should be offered for sale, e.g., when opening an express
delivery branch, starting operations in a new region, or disposing of redundant items to improve data quality and
decrease maintenance costs. In all these cases, it is imperative to select a reduced inventory that maximally covers
consumer needs. In this problem (which we formalized in [16]), given a large set of items (D), a bound on the
number of items that can be retained (C), and consumer preferences in terms of items popularity and suitability
as alternatives (A), the goal is to select a reduced inventory that maximizes the likelihood of a purchase (that is
formalized exactly based on A).

A naïve, yet popular, solution is to focus on the top-selling items. This however ignores the hidden relations
between items and, in particular, the tendency of shoppers to buy, in the absence of an item they are looking for,
a satisfying alternative. Instead, this problem can be modeled via a dedicated weighted directed graph, where
the nodes are the items, their weights are the item’s popularity (which is calculated based on provenance, i.e.
the navigation patterns in the e-commerce platform website), and the weighted edges model to what extent an
item may serve as a substitute for another (this can also be derived using provenance, via a statistical analysis of
consumer data and purchase records that are available to all e-commerce platforms.). One can prove that this
problem is NP-hard. Moreover, since in practical settings the overall number of items and the bound on the
reduced item set are very large - in the order of magnitude of millions - a highly scalable algorithm is needed.

To solve this problem, we provide in [16] a highly parallelizable and scalable algorithm, that leverages our
graph-based formulation of the problem, along with optimal approximation guarantees. Moreover, we have
developed an end-to-end solution that fits the real-world e-commerce application and provide an extensive set of
experiments demonstrating the efficiency and effectiveness of our solution.

Importantly, the model we defined for this problem is abstract and can be used to capture different use-cases
outside of e-commerce settings. Each such application, however, requires a different method to derive the input.
Specifically, one needs to assign a relative importance score to each item in the inventory, and to quantify the
extent to which an item can serve as an alternative for another item.

3.2 Archiving Images in E-commerce

We now discuss an example of automating image selection that we are developing in collaboration with eBay,
which is being tested for use in their product catalogs [9].
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eBay has a huge archive of images of products some of which are used for display throughout a hierarchy of
landing pages of product categories. For each page, there is a pre-defined subset of images that are relevant for
the product category, out of which a small set are displayed. Each image may be relevant for a large number of
different pages, and its value may differ between pages. Some of the images are required to appear on certain
pages due to legal contracts (a retention constraint). Finally, the landing pages themselves may vary in importance,
reflecting the relative popularity of product categories. To speed up the page display, it is desirable to maintain a
smaller size image repository (which may be viewed as a bounded-size, fast-access cash), much smaller than the
size of the full archive. The optimization problem is to find a “good" set of images that can fit in the bounded-size
repository (cache) and meet the content and policy requirements of each of the landing pages.

In this application, C are simple constraints which state that some set of images must appear on landing pages
due to legal contracts, as well as the size of the cache. D is the set of all photos in the archive; size and provenance
are metadata associated with each photo. A represents the set of landing pages, each of which has a title (e.g.,
“Nike red shirts”, “Samsung smartphones” or “shoes”). A landing page can be thought of as a simple query which
identifies the set of all photos in the archive that could be used on the page.

Importantly, information associated with D and A can be automatically obtained. For each landing page, the
relevance (accuracy) of an image for the page can be computed based both on the quality of the image (we are
currently using an internal eBay ML model [10]) and the relevance score of the product represented in the image
(which can be calculated using the product title and search engine retrieval score). The relative importance of a
landing page can be calculated based on the landing page popularity, i.e. the number of visits in the last 90 days,
normalized by sum of all visits to all pages.

An important property in evaluating the quality (goodness) of a solution is the diversity of the set of photos
displayed on each page. Therefore, the quality of a solution for this application is not only assessed by the
relevance of each individual image to its assigned landing pages, but also using more collective assessments on the
subset of images, ensuring that each subset covers the spectrum of products and product aspects relevant for the
page. To this end, we use a notion of similarity between photos, which can be calculated using cosine similarity
between image embeddings. The score of a solution for each landing page is then not only computed based on
the relevance scores of the selected subset, but is also based on the similarity of the most similar selected photo
to each non-selected photo. This ensures that the selected subset is representative of the entire set of relevant
photos, which naturally maximizes diversity and minimizes redundancies. The objective function then becomes
the weighted sum of the scores for each landing page, where the weights are the relative importances of the pages
as discussed above.

It can be shown that a solution to this problem cannot be approximated beyond a (1 − 1/e) factor, unless
P = NP , via a straightforward reduction from the Maximum Coverage problem. We nevertheless give in [9] an
efficient algorithm with a tight worst-case approximation guarantee, based on the fact that the objective function
can be proven to be nonnegative, monotone and submodular, and using an extension of the standard iterative
greedy algorithm given in [33].

We have evaluated our image archival solution within eBay on several product categories (separately, as
each category is assigned different analysts and has its own space constraint). Initial reports indicate that our
solution significantly reduces manual work; the business analysts reported performing only a small number of
modifications to the suggested solution, taking much less time than creating the solution from scratch.

3.3 Sampling and Aggregating Relational Data

In the first two examples, the core of the solution is based a formal definition of a problem with an algorithmic
solution. However, another increasingly common approach to solving problems is based on machine learning.
We therefore give a simple example using relational data and aggregate queries, and show how to “learn" the
best subset of data/metadata to store. Note that this is very much work in progress, based on recent work in
[24, 25, 26].
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Figure 2: Architecture for learning the best subset of data/metadata to store

Given a set of relational data and input queries, the goal of our problem is to learn a subset of the data/metadata
to store that takes significantly less space, such that it is still possible to compute, based on the retained information,
approximate answers to an expected workload of queries with reasonable approximation errors.

In terms of the form of the retained data, we use a common approach: the retained information is a combination
of (1) a uniform sample of the original data and (2) aggregates (i.e., results or partial results of aggregate selection
queries) computed over the complete original data. There are several recent works proposing methods for deriving
the best approximate answer to a query, given a sample and the aggregates (e.g., [24, 26, 27, 22]). Our focus,
however, is on deciding, given an upper bound on the total space used by the retained data, how much of it should
be used for each type of data (i.e., the sample or the aggregates), and which aggregates should be stored. Note
that we do not need to decide which subset of the data should be stored in the sample, as it is a random uniform
sample and the only relevant parameter is therefore its size.

To this end, we build a model for deriving a distribution Q on the expected queries by leveraging query
workload information. This is achieved by a GAN-based solution [7], where you train a generator to produce
artificial queries and a discriminator to distinguish between these queries and queries taken from a real-world
query workload. The final distribution learned by the generator is Q.

We propose the following architecture, depicted in Figure 2, that is based on a deep learning approach: a
learning model (neural network) receives as input the data, the space constraint (both are given in the initial
setting), and a subset of sample queries generated over Q (these three components of the input to the network
correspond to the three blue boxes in the figure). Given this input, the network then produces the size of the
uniform sample, and the specific aggregates one should store (the box in the figure marked with the “Output”
label). Given any such produced solution, the specified aggregates and a uniform sample of the specified size are
aggregated, and their utility is evaluated by the resulting approximation errors on a large sample of queries (also
sampled from Q). Note that the methods for computing the approximate answer uses only the reduced data. The
model learns over time to minimize these errors, as marked by the back-arrow pointing from the “Error” box to
the network. We note that the format of the output of the network (i.e. a sample along with a set of aggregates)
is the same as the format of the input in the recent work of [26] for deriving approximate query answers over
incomplete databases, and we also use the same evaluation methods for assessing the overall accuracy of the
approximate answers (the query answers derived from the partial data) as used in their empirical analysis.
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4 Research Challenges

While the examples in the previous section address specific aspects of disposal by design, we are still far from
providing a holistic solution. In particular, the examples do not capture the complexity of workloads, variety
of data, and dynamic aspects of a full solution. Thus in more complex settings, a solution would need to be
redesigned from scratch. Therefore we argue that to solve the problem in a principled way, two scientific
challenges must be addresses: designing a unified model, and dynamic incremental computation. We discuss
each of these below, along with the enabling technologies that may be helpful.

4.1 A Unified Model

In order to develop a comprehensive solution to data disposal rather than a series of one-off solutions, we need a
unified formal model for all types of data disposal. A prime motivation for using a unified model is that it will
allow us to consider data sharing and replication between applications, as well as to re-use solutions between
applications. As illustrated in Section 2, central to the model are notions of data coverage and quality, data usage
and workload, storage and regulatory constraints, and evolution (of data, analysis pipelines and retention policies)
over time.

Furthermore, we believe that the framework should be declarative. To understand the benefit of a declarative
framework, consider the origins of modern relational database management systems [5]. A relational database
is essentially a First-Order Logic machine which manages data. More precisely, a non-specialist can specify
some needs declaratively, in first-order logic terms. The system then compiles such a “logical query" into an
“algebraic query plan" that is optimized and evaluated. Relational systems thus perform automatic reasoning to
handle queries and views, e.g., to rewrite queries into equivalent ones for optimization. Reasoning is also present
in many other aspects of relational DBs, e.g., dependencies (logical formulas over the data that the system should
enforce) and triggers (i.e. active rules). In relational systems, such reasoning is in some sense “hard-wired". For
instance, several algebraic query plans may be possible for a given logical query. The system is in charge of
verifying that the plans considered are indeed equivalent to the original query. To do that, the system assumes
some laws governing the interaction of operations and implements an algorithm (some reasoning) to check that
these laws are not violated. The laws are decided in advance and the reasoning is encoded in algorithms whose
correctness has been proven in advance (e.g., the commutativity of joins).

Similarly, we want an intelligent interface between the data and its disposal process. For data disposal,
logic is needed to reason about how data relates to analysis tasks, to describe data disposal and retention
constraints and preferences/criteria (the equivalent to the “hard-wired" logic of relational systems) and to model
analysis workloads and properties of data summaries. The laws governing data coverage and quality, data
usage and workload, storage and regulation constraints, and evolution (of data and retention policies) over time
must therefore be “first-class citizens” of the model rather than inflexible, preconceived laws (see, e.g., [30]).
Furthermore, the reasoning behind data disposal must be able to take into account the specific context and
application domain.

Two key enabling technologies may be helpful in developing this unifying model: data provenance, and
sketching and summarization.

Data Provenance Provenance traces the source of information and the computational process it undergoes, and
is critical for understanding data usage, for explaining query results and for assessing their validity [3, 17]. In our
setting, provenance must further capture what data has been omitted and what kind of summary was retained for it.
Such meta-data will allow for effective computation over the retained information and for explanation/justification
of the obtained results. It will also allow the system to keep a record of the processing activities, as required by
regulations such as GDPR [1].
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Attaching provenance to individual data items is typically straightforward; what is more complex and needs to
be studied is what provenance should be used to annotate summarized or omitted data. The difficulty stems from
the fact that common provenance models often apply only to a fairly restricted set of declarative data manipulation
operators (e.g. SQL) whereas data summarization/deletion strategies are typically given as general programs,
possibly empowered by machine learning (ML) tools [29, 20], for which provenance is not yet well defined. A
second, related, difficulty is to propagate such meta-data through the analysis process, which may be complex.
Finally, an additional challenge is that the size of provenance may be very large [14, 1], and so effective disposal
must be recursively applied to this meta-data as well.

Sketching and Summarization Much of the data that we keep around is redundant and can be discarded with
no harm. Common examples are old document drafts and ancient emails dealing with non important issues. But
in general, whether or not data should be kept, and at what level of granularity, depends on the expected analysis
workload. (as well as the regulatory constraints). For a simple example, the analysis could compare multiple
versions of the same document, in which case discarding old (legitimate) versions of documents without retaining
some record of the changes between documents is harmful. A key challenge thus is to dynamically determine
which data should/may be discarded and, if allowed, what summary should be kept for the deleted items, so that
data utilization is minimally harmed.

Traditional techniques for data summarization, sketching and statistical/approximate query processing are
mostly concerned with specific query operations and provide accuracy guarantees w.r.t query answers. But
modern data analysis pipelines are far more complex, consisting of multiple analysis steps, including data
integration, cleaning, restructuring, visualization, and machine learning (ML) [18]. Naturally, it would be
desirable to build on existing technology when possible. For instance, in stream data processing, incoming data
is summarized on the fly using powerful sketching techniques, then discarded all together [6]. Other, more
comprehensive, summarization methods analyze the full dataset with techniques ranging from dimensionality
reduction to compression-based data reduction methods and algorithms for clustering, data deduplication,
redundancy elimination, and implementation of network (graph) summarization concepts [29, 21]. Each of these
approaches, however, has been designed for a specific task and no single technique is guaranteed to always achieve
superior results - performance depends on the type of data and its intended usage. A difficulty in assembling them
together is that the summarization policies are often hard-coded and, consequently, are inflexible and difficult
to combine and optimize. This is why it is important to have a declarative framework that captures the inputs
described in Figure 1: retention constraints, data and accuracy metrics, and data analysis pipelines along with
accuracy constraints governing the choice of resulting summary properties. This would serve as input for an
engine that derives disposal policies that adhere to the needs (if possible), execute them, and efficiently run data
analysis tasks over the retained information. Some early encouraging results on the use of declarative specification
for data disposal have been presented in [31] in the context of OLAP queries over relational data. The challenge
is to adapt these ideas to the execution pipelines of the modern world of big-data.

4.2 Computation and Optimization

A declarative specification describes what the requirements are in a disposal policy and what a query result should
look like, but not how to efficiently derive or enforce the policy and evaluate data analysis pipelines over the
retained information. Thus, we must support the framework by algorithms for policy derivation and enforcement
and for query evaluation, and use optimization techniques to guarantee good performance. Furthermore, these
techniques must take into account the feedback loop shown in Figure 1, suggesting the use of incremental
methods (not illustrated in the examples of the previous section). Several enabling technologies are relevant here:
preemptive computation, approximate query processing, incremental computation, incremental view maintenance,
and machine learning.
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Preemptive computation. Computing a comprehensive summary for deleted data may be a time consuming
task especially when executed over large databases [29]. This may be problematic if postponed to the last minute
when the storage overflows and data must be deleted. To overcome this, one must design methods for anticipating
and preempting some of the summaries offline, e.g. in the form of a partial summary. The preempted computation
could then be used for constructing a complete summary when data must be discarded. Similarly, to speed up the
enforcement of privacy regulations such as GDPR, preemptive duplicate detection and object resolution may be
used to identify replicated data that is relevant to entities that are required to be “forgotten".

Approximate query processing. The ability to provide approximate answers to queries, at a fraction of the
cost of executing the query in the traditional way, has made approximate query processing extremely popular in
big data applications. Sampling is a common tool in such systems. In query-time sampling, the query is evaluated
over samples taken from the database at run time. Employing such techniques in our context requires extending
the sampling mechanisms to sample also from the data summaries (which provide an aggregated description of
the missing data elements) and, correspondingly, incorporating such samples in query evaluation. To achieve
a sharper reduction on response time, some approximate query processing algorithms draw samples from the
data in a pre-processing step, then use them to process incoming queries. An intriguing question is whether such
precomputed samples can themselves serve as data summaries in our context, thereby allowing to discard some
(or all) of the remaining items.

Incremental computation. Incremental computation is present in all dimensions of data reduction. As new
data comes in and new disposal policies are employed, the retained information must be incrementally maintained.
This includes incremental cleaning and integration of the new incoming data into the partial, retained information.
It also includes maintenance of data summaries as new data arrives and other gets deleted. Updates should also
be propagated to the provenance information used to explain the origin of the different query answers. Promising
approaches to this problem include incremental view maintenance techniques [19], possibly combined with
incremental machine learning [34, 35], as explained below.

Incremental view maintenance The retained information may be abstractly regarded as a view over the full
(missing) data. Query evaluation over views has been extensively studied in the literature. Techniques for
rewriting queries to be answered, as accurately as possible, using the views alone, are relevant to our context
where queries may be evaluated only using the retained data [11]. Incremental view maintenance has also been
extensively studied in the literature [19] and the results are relevant here; the relationship to incremental machine
learning will also need to be investigated [35, 34]. A challenge particular to our setting, however, is that not
only that the data is updated (as more data is accumulated) but also the view definition itself (what data is
retained/summarized and how) may change as a result of the accumulated knowledge and/or changes in the
workload and regulation.

Learning In our context, ML techniques are not only part of the analysis pipeline but may be employed to
learn data access and usage patterns and, correspondingly, to derive effective retention policies complying with
a given set of regulations. Deep learning has been used for various tasks in databases, including automatically
identifying the “interesting" parts of data [12, 32] and designing effective indexing structures, and we suggest
earlier in Section 3.3 how it could be used for summarization in the context of relational data. An added challenge
in our context is that the retention policies and summaries may need to be dynamically adapted as more data
comes in (or is disposed of) and the data analysis workloads change.
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5 Conclusions

In this paper, we highlight the importance of developing a holistic solution to managing the flood of data that is
enabling amazing breakthroughs in medicine, commerce, transportation, science and society while simultaneously
threatening to outstrip storage production and endanger our privacy. We present a vision for managing this flood,
called disposal by design, which takes into account the data, regulatory constraints, as well as the (potentially
complex) data analysis pipelines that operate over the data and creates a data disposal plan in which data may
have been removed and replaced by summaries, and analysis pipelines may have been modified to work over the
modified data. At the core of this vision is a unified declarative model of data, constraints and processes, supported
by algorithmic/learning techniques that develop the data disposal plan. We stress the importance of enabling
technologies such as data provenance, sketching and summarization, preemptive computation, approximate query
processing, incremental computation, incremental view maintenance, and machine learning. We believe that such
a principled approach is essential for developing solutions that can be reused across applications, replacing ad
hoc solutions that must be developed from scratch, and thereby sustaining the data-centered revolution that is
transforming our lives.
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Abstract

Most modern data systems have been designed with two goals in mind – fast ingestion and low-latency
query processing. The first goal has led to the development of a plethora of write-optimized data stores
that employ the out-of-place paradigm. Due to their write-optimized design, out-of-place data systems
perform deletes logically via invalidation, and retain the invalid data for arbitrarily long. However, due
to the recent enactment of new data privacy regulations, the requirement of timely deletion of user data
has become central. The right to be forgotten (in EU’s GDPR), right to delete (in California’s CCPA and
CPRA), or deletion right (in Virginia’s VCDPA) mandates that service providers persistently delete a
user’s data within a pre-set time duration. Logical deletion in out-of-place data systems, however, does
not offer guarantees for timely and persistent deletion, and attempting to enforce it using existing tools
leads to poor performance and increased operational costs.

In this paper, we present a new framework for building deletion-compliant data systems from a
holistic perspective. We analyze the new regulations and the requirements derived from the new policies,
and we propose changes in the application and the system layer of data management. We outline the new
types of deletion requests that need to be supported, the query language modifications needed to be able
to request for timely persistent data deletion, and the system-level changes needed to realize timely and
persistent deletes. The proposed framework for deletion compliance lays the groundwork for a new class
of data systems that can offer system-level guarantees for user data privacy. We present recent results
spanning all layers of the framework: the requirements and the application layer target any database
system, while the system layer discussion is geared towards out-of-place systems. Finally, we conclude
with a discussion on next steps and open challenges on building deletion-compliant data systems.

1 Introduction

Data-intensive social and commercial applications and new advancements in domains like Internet-of-things, edge
computing, 5G communications, and autonomous vehicles, generate a vast amount of personal data processed by
several data companies [26, 40]. The increasing demand for efficient collection, storage, and processing of user
data over the past two decades, has driven the development of data systems that can sustain high ingestion rates
without compromising the ability to access and analyze the data quickly.
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Out-of-Place Systems. The need for optimizing data ingestion while maintaining efficient data access has led to
the prominence of the out-of-place paradigm, which fulfills these goals by minimizing the interference between
reads and writes. Today, several commercial relational and array-based data stores [13, 34, 39, 46, 50, 53, 59, 71,
85] and NoSQL data stores [10, 12, 11, 32, 38, 42, 48, 79] have adopted the out-of-place paradigm.

Relational and Array-based Systems. Relational systems that buffer updates before applying them lazily on
the base data, essentially, follow the out-of-place paradigm. The columnar and array data stores implemented by
Vertica [59, 85], SciDB [68, 86], and TileDB [67, 88] use an in-memory storage component that stores incoming
inserts, updates, and deletes out of place, and applies the changes lazily on the disk-resident data. Similarly, the
state-of-the-art column-store system MonetDB [50] uses an in-memory positional index for incoming data [46],
and SAP HANA uses a delta store per table to facilitate fast ingestion without affecting its read-optimized
data layout [39]. Finally, several research-prototype systems use a separate delta store on faster storage (e.g.,
SSDs/NVM) to offer efficient access to incoming data [13, 14, 34, 53, 71].

NoSQL Systems. More than relational systems, production-grade NoSQL key-value stores predominantly
employ the out-of-place paradigm, frequently based on the log-structured merge (LSM) paradigm. An LSM-tree
is a heavily write-optimized out-of-place data structure that maintains several on-disk components, which can be
viewed as several out-of-place delta stores [66, 31, 49, 62, 73, 92]. Key-value stores such as RocksDB [36, 38] and
LevelDB [43] at Facebook, BigTable [24] at Google, X-Engine [48, 91] at Alibaba, Voldemort [61] at LinkedIn,
DynamoDB [32] at Amazon, Cassandra [12], HBase [11], and Accumulo [10] at Apache, and bLSM [79] and
cLSM [42] at Yahoo are based on the log-structured merge (LSM) paradigm. Other out-of-place architectures
employed by NoSQL systems are B+-tree, Bε-tree, and fractal tree-based storage engines with buffering support,
such as COLA [16], TokuDB [58], and BertFS [17, 51].

Cloud-based Systems. Cloud-based systems naturally employ the out-of-place paradigm as they rely on
the immutability of cloud storage. Hence, systems like Amazon Redshift [8, 44], Cloud Data Platform [28] at
Snowflake, and Delta Lake [29, 30] at Databricks employ variations of the out-of-place paradigm in the interest
of performance. Deletes and updates are initially performed logically and are gradually propagated to persistent
media through periodic merging with base data.
Deletes in Out-of-Place Systems. A key property of out-of-place systems is that they treat deletes (and updates)
similarly to inserts, i.e., instead of deleting (updating) entries in-place, they insert a new version of the entry to be
deleted that logically invalidates the target entries. These special entries that are responsible for logical deletes
are termed delete markers [59] or tombstones [36, 76].

Logical data deletion is a quintessential out-of-place operation, but it does not guarantee purging of the data
under deletion within a definite timeframe. Rather, the data is marked as invalid; essentially, not accessible to
external users. In practice, logically deleted entries are kept for arbitrarily long in the system, since the time to
definitively delete the data (termed persistent deletion) depends on the state of the system, and not on when the
user request expects the data to be deleted [76]. In fact, most out-of-place data stores are built with the underlying
assumption of perpetual data retention in order to gain more insights from the user and organizational data [90],
hence timely persistent deletion has not been part of their design goals. In addition to deletes, logical updates in
out-of-place systems are applied lazily too, however, the implications of out-of-place deletes are critical in terms
of the privacy regulations, and thus, are our focus.

1.1 Problem: The Privacy Concern

Cost of Logical Deletes. Logical deletes and updates in out-of-place systems boost ingestion performance,
however, they come at a significant cost. In fact, when tasked with deleting user data persistently in a timely
manner, out-of-place systems suffer both in terms of (a) data privacy protection and (b) the overall system
performance. Such systems are designed to retain the logically invalidated data indefinitely, and the time required
for persistent removal of the physical data entries depends on (i) the data layout, (ii) the data re-organization
policy (e.g., node splitting/merging in B-trees, compaction in LSM-trees, consolidation in TileDB), (iii) the
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CREATE	TABLE	R	(column1	type1,
				column2	type2,	...)	
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On-demand deletion CREATE	TABLE	T	(column1	type1,
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WITH	DPT	FIXED	{d1	180,	d2	365};
	
DELETE	FROM	T	
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								WITH	DPT	d1;
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Figure 1: The four layers of deletion-compliant data systems.

design of the storage engine (such as the fanout of a tree and the size of a database), and (iv) the composition
and distribution of the workload – factors that are beyond the control of the application and system developers
or administrators. Thus, most out-of-place systems are unable to provide any latency guarantees for persistent
deletion of user data [76].
The Legal Frontier. In recent years, a number of government-driven efforts across the globe unfolded, aiming to
protect the privacy of user data and give back to the users the control of their personal data. On the legal side,
regulations such as the EU’s GDPR [26], California’s CCPA [3] and CPRA [6], and Virginia’s VCDPA [7] have
been introduced, which mandate that data companies ensure privacy through deletion [83, 84]. GDPR’s right to
be forgotten, CCPA and CPRA’s right to delete, and the deletion right in VCDPA particularly focus on persistent
deletion of user data on-demand and in a timely manner [9, 35, 41, 52, 75, 83, 24, 89].
The Technological Roadblock. Treating deletes as first-class citizens is new for the data systems community,
and it would require a significant amount of work to transform classical systems to be efficient deletion-wise.
Even today, it continues to be a critical technological challenge for the biggest of data companies using state-of-
the-art storage engines to demonstrate compliance with the deletion regulations and to efficiently delete user data
on-demand [81, 29, 84]. To translate this into numbers, between January 2020 and January 2022, the penalties
under GDPR paid by data companies amounted to more than $1B, which includes large contributions from
companies such as Amazon ($877M), WhatsApp ($255M), Google Ireland ($102M), and Facebook ($68M),
H&M ($41M), British Airways ($26M), and Marriot ($23M) [64, 70, 87]. Thus, to demonstrate compliance,
many companies end up performing expensive database-wide consolidations periodically (e.g., every few weeks),
to ensure timely persistent deletion of user data [76, 77]. Such operations are remarkably expensive in terms of
time and money, cause undesirable latency spikes, and hence, should be avoided.

1.2 Deletion-Compliant Data Systems

In this paper, we present our vision and first results on designing data systems that ensure data privacy through
timely and persistent deletion of user data. Existing efforts that attempt to delete user/application data on-demand
suffer in terms of performance as the underlying data layout and data management mechanisms are ill-suited for
the purpose. We identify the missing links, in terms of technological tools, both at the application level and the
system level, and we propose a hierarchical framework that enables our vision of privacy through deletion in
out-of-place data systems (Figure 1).
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Roadmap. The privacy through deletion framework is a roadmap toward building deletion-compliant data
systems. We begin by outlining the challenges associated with each layer of our vision, i.e., in the context of
(i) translating the legal mandates to user requirements, (ii) expressing the user requirements through a declarative
API, and (iii) realizing the application-level requirements at the system level. Next, we identify and categorize
the different classes of user requests for deletes in light of the legal regulations. Based on this, we present the
challenges associated with transforming the classes of deletion requests into application-level specifications, and
we propose an SQL extension as an example that can be extended to other query languages to support deletion
of user data periodically and on-demand. Further, we outline the design and tools necessary at the system level
to support the application-level requirements. Finally, we conclude with a discussion on how the proposed
framework drives us toward building deletion-compliant data systems, and what further research challenges
remain open to fully realize this vision.

2 From Regulation to Practice

The legal landscape for data privacy has changed drastically over the past few years, and governments across
countries, as well as across different states in the US, have enforced acts and regulations to control the consumption
of user data by service providers and give back to the users the control of their personal data. Translating the
new regulations to new user-data privacy-compliant system behavior still faces significant challenges. In this
section, we present in more detail the requirements from the regulation point of view, and we showcase through
three realistic scenarios the limitations of the state-of-the-art data systems when tasked to implement these
requirements.

2.1 Regulations on Timely Data Deletion

While the new regulations propose an array of new requirements, we particularly focus on the legal policies
concerning data retention and data deletion, with the objective of ensuring privacy through deletion.
Right to be Forgotten, EU GDPR. The General Data Protection Regulation (GDPR) has revolutionized the
data privacy and security landscape across the European Union countries [26]. One of the fundamental changes
introduced through the GDPR (over the older Data Protection Act (DPA) that it replaced), is the right to be
forgotten, which empowers the users with the right to request a service provider to delete all their personal data
persistently from its domain. Such deletion requests may be presented either up-front or on-demand. The service
provider must comply with those requests, unless it has compelling reasons for acting otherwise (Art. 17(3)).
Right to Delete, CCPA, CPRA. The California Customer Protection Act (CCPA), which will eventually be
replaced by the California Privacy Rights Act (CPRA) in 2023, allows the users/consumers in California to
request from service providers to permanently delete all data personal to the user [3, 6]. Under CCPA and CPRA,
the service providers must acknowledge such a user request within 10 days, and respond to the request within 45
business days [19]. Persistent deletion must be performed by removing the target data across all domains, barring
archive and backup systems, along with data anonymization as required.
Right to Delete, VCDPA. Similarly to CCPA, the Virginia Consumer Data Protection Act (VCDPA) empowers
users in Virginia to exercise their right to delete their personal data from a provider’s domain [7]. VCDPA requires
the service providers to serve a delete-request from a user within 45 business days [19].
Right to be Forgotten, UK GDPR, DPA. The UK GDPR, along with the Data Protection Act (DPA) 2018
provides the country’s citizens with similar rights about personal data deletion as the EU GDPR. The users are
allowed to express their deletion preference verbally or in writing, to which the service providers must respond
within 30 days [1, 4].
Other Efforts. Among other countries, Argentina [23, 69], Singapore [25], India [55], Canada [5], and South
Korea [18] have some implementation of the right to deletion as a part of their respective privacy protection acts.
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2.2 Limitations of the State of the Art

In light of the deletion regulations, we now present three real-life scenarios to highlight why state-of-the-art data
systems are ill-equipped to support deletes efficiently without hurting performance. We do so by identifying the
missing links in different hierarchical levels of the proposed privacy-through-deletion framework. Below, we
illustrate (i) that the users are unable to express their preferences about deleting their personal data, (ii) why it is
difficult for application developers to support the deletion requests from the users, and (iii) why it is difficult to
realize persistent deletes in a timely manner in live production servers.

Scenario 1: Alice is a user of a smart-home ecosystem, HomeComp, which provides real-time services includ-
ing video surveillance, remote temperature, and illumination control. Alice enjoys the services of HomeComp,
but concerned about her personal data privacy, she wants HomeComp to permanently delete all her data older
than 30 days on a rolling basis.
The problem? Like most service providers, HomeComp’s data model is built around the assumption of perpetual
data retention; deletion of user data needs a human-in-the-loop that performs the necessary actions. Thus,
HomeComp does not allow its user to request for rolling timestamp-based data deletion.

Scenario 2: StreamEra is a company that provides real-time insights for data streams, and allows its users to
request on-demand deletion of their personal data, as it is bound by the right to be forgotten. StreamEra uses an
SQL-based wrapper on top of its storage layer.
The problem? While StreamEra wants to serve its users by ensuring timely persistent deletion of their personal
data, SQL does not provide support for such an operation. Instead, the backend engineers implement the
user-requested deletion functionality at the application level in an ad-hoc manner as it is not native to SQL.

Scenario 3: A cloud-based online data analysis company ClouData, stores user data using immutable files
within its HTAP data store. ClouData is bound by the right to be forgotten, and thus, has to delete all user data
that are older than D days.
The problem? As the data organization on disk is not based on the ingestion timestamp and aims to accelerate
read queries, it uses the most frequently queried attribute to partition. Hence, the objects qualifying for a
timestamp-based deletion may be dispersed within the data store. As in-place deletion is not supported due to
immutability, state-of-the-art data stores periodically consolidate the entire data set to delete all invalid entries.
Ensuring privacy via this approach is costly in terms of disk writes and overall accesses, and causes latency spikes
leading to performance unpredictability.
Other Challenges of Logical Deletes. In addition to not complying with regulatory requirements, logical deletes
may cause more hurdles. Specifically, by retaining invalidated data (that should not be used anymore), a data
company:

1. Wastes storage space and energy on data that cannot exploit in any way. Further, data maintenance results
in additional write amplification that wears off the underlying storage devices [15].

2. Risks that a security leak will reveal user data that users expect to be deleted [64].

3. Hurts read performance, as its data management layer uses metadata and indexes for all data regardless of
whether they are invalidated [76].
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3 Privacy Through Timely Deletion

We now outline our vision toward developing deletion-aware data systems, which by design, are capable of
deleting user data persistently, and in an efficient and timely manner. Toward this, we introduce a new set of
application level and system level tools that capture, transform, and realize the user-requirements for deletes.

Figure 1 shows our four-layered approach. The first step is the policy layer, implemented by the governments,
that enact specific clauses to protect data privacy through deletion. The second layer is the requirements layer
that translates the regulations into application requirements. Next, we have the application layer that proposes
the necessary changes in query languages to allow applications to easily express their constraints. Finally, the
system layer implements efficient means for data deletion and demonstrates regulation compliance.

3.1 Requirements Layer
Challenge. This layer analyzes the regulations from the policy layer and categorizes the various requests the user
should be able to make on the application layer. The impact of the newly enacted policies is on various aspects
including accountability (audit), security (protect data access), and right of access (efficient accessing) [81, 84].
In this work, we focus on storage limitation (“data should not be stored beyond its purpose”), the right to be
forgotten (“find and delete groups of data”) [81], and how to transform them into concrete requirements.
Types of Deletion Requests. We codify the two types of data deletion requests as requirements for (a) retention-
driven rolling deletion and (b) on-demand deletion both with a timely constraint [76], as illustrated in the second
part of Figure 1.
Retention-driven deletes. In cases that the purpose of storing the data has expired, a rolling deletion should take
place, which will ensure that the underlying data management solutions persistently delete this data, based on a
pre-set retention duration. This duration can be governed by legislation, the specific application, or even user
preference, hence it has to be tunable. To abide by the policies, the data management layer has to permanently
delete expired items within a specific timeframe, provided by the service-level agreement (SLA) between the user
and the service providers.
Deletion on-demand. The regulations for deletes also allow users to submit on-demand deletion requests for any
personal data, upon which the service provider has to delete user data persistently. On-demand deletion requests
can be submitted through an API provided by the service provider, and upon submission, all data for a user are
purged persistently within a threshold period. This threshold for persistent deletion is also set by the provider
following the regulations and is agreed upon in the form of an SLA-clause.

3.2 Application Layer
Challenge. With the deletion-related regulations translated to deletion requirements, the next step is to transform
them into a format that is interpretable by the application layer. The interface of data stores is typically declarative
query languages (e.g., SQL, GraphQL, DMX, LINQ, and N1QL) that support expressing complex queries as
well as inserting new data, updates, and deletes. The missing link here is that state-of-the-art query languages
do not have support for data deletion based on retention and does not have a way to express the timely deletion
requirements.
Extending SQL. Hence, to implement the deletion requirements, we propose an extension to SQL [74] that
includes support for timely deletion both in the data definition (DDL) and the data manipulation (DML) parts of
the language, as summarized in the third part of Figure 1. The objective of the SQL extension is three-fold.

1. To support retention-driven deletion, we augment both the CREATE TABLE and INSERT INTO state-
ments so that a relational table can be associated with a number of options for specific time-to-live (TTL).
Every data object is bound to a specific TTL according to the application SLA or to user preference.
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2. To ensure timely persistence of on-demand deletion requests, we augment the CREATE TABLE and
DELETE FROM statements to allow a relational table to support a predetermined set of timely deletion
guarantees, and each deletion to select the level of service to which it adheres.

3. Finally, we extend the CREATE TABLE, INSERT INTO and DELETE FROM statements to support
arbitrary delete thresholds for retention duration and deletion persistence.

Enabling retention-driven deletes. To support retention-driven deletes, we extend CREATE TABLE to allow an
application developer to specify several levels of retention duration as a table property.

CREATE TABLE R (column1 type1, column2 type2, ...)
WITH RET_DUR FIXED (t1 <ret1>, t2 <ret2>, ...);

The above CREATE TABLE statement creates a table R that supports retention-based deletes with specific
retention duration of ret1, ret2, etc, which are mapped to symbolic representations t1, t2, etc. In general,
the WITH RET_DUR clause is an optional clause when creating a new table, and will be necessary only for
tables that need to support deletes with predefined retention duration values. In such cases, each INSERT
statement can use (up to) one of the predefined retention duration values, say t1 to classify the specific object as
one to be deleted after ret1 time. For example, a table that is configured to support retention duration of 30
days and 60 days (CREATE TABLE R (...) WITH RET_DUR FIXED (t1 ’30 days’, t2 ’60
days’);), can only receive inserts with retention duration t1 or t2. An ingestion without a retention period
explicitly mentioned, is kept perpetually following the logic of a classical insert. The syntax of an insert, now, has
the optional WITH RET_DUR clause as follows.

INSERT INTO R (val1, val2, ...) WITH RET_DUR t<i>;

Support for arbitrary retention duration. To support arbitrary retention duration, we further add the ARBITRARY
keyword to both the CREATE TABLE and INSERT statements. The support for arbitrary retention duration is
necessary particularly for systems in a distributed setting that replicate data across physical data stores in different
geolocations, each bound by different regulatory requirements. The full syntax of the proposed SQL extension
for retention-based deletion is below.

CREATE TABLE R (column1 type1, column2 type2, ...)
WITH RET_DUR {ARBITRARY | FIXED (t1 <ret1>, t2 <ret2>, ...)};

INSERT INTO R (val1, val2, ...) WITH RET_DUR { <t> | t<i> } ;

Note that having a pre-defined set of retention duration values provides more information to the system compared
to allowing arbitrary duration. As a result, it allows the system to better prepare to offer efficient retention-driven
deletes. Conversely, we expect that data stores that aim to support arbitrary retention duration will face increased
system-level challenges.
Enabling timely on-demand deletion. We further propose to augment SQL to express timely on-demand deletion.
To do so, we introduce the concept of delete persistence threshold (DPT) [76], which denotes the maximum delay
between a logical delete and its persistence. Every relational table can be associated with several such thresholds
that are defined from the legal constraints or based on user preference. Similarly to retention-driven deletes, we
also extend SQL to support arbitrary DPTs when the DPTs are not specified a priori. Below, we outline the
modifications to the DDL and DML parts of SQL to support on-demand timely deletion requests.

CREATE TABLE S (column1 type1, column2 type2, ...)
WITH DPT {ARBITRARY | FIXED (d1 <dpt1>, d2 <dpt2>, ...)};

DELETE FROM S WHERE (...) WITH DPT { <d> | d<i> };
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Table S can support several DPTs (e.g., dpt1, dpt2) as long as the DPTs are pre-determined. Applications can
trigger on-demand deletion with any such DPT through the DELETE command. Similarly to retention-driven
deletes, timely persistent deletion of data on-demand is easier to handle from a storage engine if the DPTs
supported are known a priori during the table creation.
Putting everything together. With the proposed SQL extensions, a relational table can now support multiple
(pre-defined or arbitrary) thresholds for both retention-based and on-demand deletes, with the following CREATE
TABLE statement.

CREATE TABLE T (column1 type1, column2 type2, ...)
WITH RET_DUR {ARBITRARY | FIXED (t1 <ret1>, t2 <ret2>, ...)};
WITH DPT {ARBITRARY | FIXED (d1 <dpt1>, d2 <dpt2>, ...)};

Note that typically retention-based deletes come from the application requirements, and on-demand deletion
requests are issued by the user. However, in both cases, the deletes have to happen timely as per the regulatory
requirements. The proposed changes in SQL are not enough to guarantee that the system will deliver on the need
for timely and persistent data deletion. Rather, they create the interface for data systems so that need for timely
deletion. Rather, they create the interface for data systems so that the users and applications can express the
deletion requests which is enforced by the regulations. The data deletion per se is realized at the system level, and
we will next discuss advances and challenges on that front.

3.3 System Layer

With the requirement analysis and the declarative interface in place, the users and the applications can express
all the mandated deletion requests and the underlying system is now tasked with implementing them. Before
discussing the challenges of implementing timely retention-based and on-demand deletes, we discuss the
taxonomy of system-level deletes the application layer may initiate. In other words, we want to understand what
delete patterns may be generated at the system layer.

3.3.1 Taxonomy of Deletes at the System Layer

The behavior of a low-level delete operation depends on (i) the logical organization and physical layout of the
data, and (ii) the attribute based on which the deletion requests are issued. To better understand this delete design
space, we classify different delete operations across two dimensions: (a) deletes on primary vs. secondary
attributes, and (b) deletes based on a single value of the delete attribute, termed point deletes, vs. deletes on a
range of the delete attribute, termed range deletes [76]. Table 1 summarizes the state of the art in out-of-place
systems for different delete operations, their performance impact, and their at-large implications.

Delete Workloads Primary Deletes Secondary Deletes
Point Range Point Range

State-of-the-art insert point tombstones insert range tombstones not supported full-tree compactionimplementation (logical) (logical)

Point query search for key; stop search for key; compare fetched key N/A N/A
path if a tombstone is found with the histogram (discard if invalidated)

Range query merge qualifying sorted runs; merge qualifying sorted runs; N/A N/A
path discard on the fly if TS exist check each value against histogram

Implications

unbounded persistence latency unbounded persistence latency huge latency spikes
high space amplification high space amplification N/A high write amplification
high write amplification high write amplification superfluous reads from disk

severely affects read performance

Table 1: Implications of logical deletes on performance in state-of-the-art out-of-place data stores.
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Primary Deletes. In out-of-place systems, data is ultimately organized based on a so-called sort key (for example,
the key of the key-value pairs in an LSM-tree). The sort key often is the primary key of the database, hence, a
majority of delete operations can be expressed as deletes based on the sort key, or primary deletes. Note that
even deletes on other attributes may be preferable to be converted to primary deletes if there is a secondary index.
Both point and range primary deletes use the notion of a delete marker or a tombstone that is inserted in the
data collection (on the deleted sort key) and invalidates prior version of the key(s), and they are very common in
real workloads [22]. Primary deletes can be triggered either by user activity (i.e., on-demand) or by automated
processes (e.g., data migration).
Implications and Challenges. When an out-of-place system has files that contain tombstones, then both point
and range query paths are affected. Specifically, since the system accesses files with decreasing age (i.e., the most
recent ones first) when looking for a key (point query), it will also be looking for tombstones. If a tombstone is
found, the search will terminate because all other (older) instances of that key are invalid. In the presence of range
deletes, the implementation is more complex as it is hard to use per-file range delete tombstones [63]. Instead, a
database-wide histogram of deleted ranges is maintained and every query compares against this histogram before
proceeding [76]. When considering range queries, all the sorted files have to be merged and the deleted entries
are discarded on the fly by comparing against the visited point and range tombstones [21].

The implications of primary deletes are multi-fold. First, while out-of-place systems support deletes, any
deletion is logical, and there is no a priori bound on the delete persistence latency. Second, by maintaining
both the tombstones and the invalid entries for arbitrarily long time, the systems pay in terms of increased space
amplification. Thirdly, by reorganizing data including invalid entries and tombstones, we further pay in terms of
increased write amplification. Note that space and write amplification [15, 36] are two fundamental sources of
cost when deploying data system. Finally, while range tombstones are used to offer the range delete functionality,
they are rather cumbersome and impact the read performance severely [21, 63].
Secondary Deletes. In some other cases, we may need to organize data based on a sort key, but we have a
majority of deletes on a different attribute. Note that if we have individual deletes on a different attribute, the
most prudent approach is to guarantee that we have a secondary index and transform a secondary delete in one (or
more) primary point delete, hence in Table 1, we see the lack of support for point secondary deletes. However, in
some cases, we may have long range deletes on a secondary attribute. For example, when working on a window
of the most recent data we can repetitively delete data based on a timestamp. A similar case is the retention-based
deletes introduced earlier.
Implications and Challenges. Secondary range deletes are not native in out-of-place systems, since the underlying
data is organized based on the sort key. While converting them to a collection of point primary deletes might
work in several cases, it will overload the system with tombstones. Instead, several systems opt to perform a
full-database merging and re-writing periodically to fulfill any secondary range deletion constraints they might
have to follow. This approach leads to significant write amplification, superfluous data accesses, and a large
penalty in terms of latency spikes on the workload during this merging.
From Delete Requirements to Delete Types. The delete taxonomy at the system level helps us map the delete
requirements to low-level data operations. A retention-driven deletion is typically modeled as a secondary range
delete, and if the delete range has few objects (i.e., low selectivity), it can be implemented as a collection of
primary point deletes. On the other hand, on-demand deletion is typically implemented as a primary point or
range delete and there are several performance challenges to be addressed.

3.3.2 Realizing Timely Deletes

Timely data deletion while respecting the retention SLAs without hurting the system performance is a key
challenge. The efficiency of deletion depends on the schema and the physical data layout, the data re-organization
strategy, the workload, and the design of the storage engine. The right-most part of Figure 1 outlines the
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    for ( int i = 0; i < level_count; ++i ) {
        d[i] = x * pow ( T, i );
        if ( i > 0 )
            d[i] += d[i-1];
    }
}

*

FADE: enforcing a finite bound for delete persistence latency
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tombstones

TTL-expired tombstones

logically deleted entries 

Figure 2: FADE persists tombstones within DPT, thus, improving overall performance.

design changes needed and the input parameters used to co-optimize the performance of a storage engine while
ensuring timely delete persistence. We now discuss how both classes of deletes can be realized efficiently through
modifications in the design of out-of-place storage engines, focusing on LSM-bases storage engines.
Realizing Primary Deletes. An LSM-based storage engine implements a primary delete by inserting a tombstone
on the desired key (or key-range) with a DPT associated. The application-provided DPT is an indicator for
how long a logical delete may live before its persistence, that is, before purging any invalidated versions of the
key(s) under deletion. The tombstone representation is augmented with additional metadata, e.g., an extra byte to
account for 128 possible different DPTs in the same table. During its natural course of data re-organization the
storage engine checks for any data blocks (i.e., pages, files, or sorted runs) with an expired TTL and consolidates
them to ensure timely persistence. This data consolidation in LSM-based data stores is called compaction [72, 77]
and is the process of selecting some components of the database (files, sorted runs) to merge and discard invalid
entries. At any point of time an LSM-based system has several files that may be compacted (it can be in the order
of several thousands) so the decision which files to compact is a crucial decision. In general, the decision is based
on read query metrics, however, in Lethe [76] we propose a new approach that prioritizes compactions of files
depending on the age of the tombstones they contain. Specifically, we assign different TTLs based on the level of
the underlying LSM-tree and when there is a tombstone with an expired TTL we select the file that contains it for
compaction, as shown in Figure 2. A key decision is how to ensure that the multi-step merging of tombstones will
always respect the application-defined DPT. This is ensured by assigning a different TTL to each tombstone after
every compaction in a way that the sum of all its TTL amounts to the desired DPT.
Realizing Secondary Deletes. As we discussed above, several instances of secondary deletes can be realized
as a collection of primary point deletes. However, when we are frequently tasked to deleted a range of values
based on a secondary attribute, we can achieve something significantly better. In particular, a new weaved data
layout between the original sort key and the (secondary) delete key can offer much more efficient and timely
secondary range deletion while maintaining competitive read performance. The key idea is to create a nested data
organization that alternates between organizing data based on the sort key (to facilitate good search performance)
and based on the delete key (to allow for consecutive chunks of data to be deleted at a time).

This approach is implemented in the KiWi data layout [76] as shown in Figure 3. The core idea is that while
the major components of the database (files) are organized based on the sort key, every file is composed of delete
tiles that are internally organized based on the delete key, partitioning the data accordingly. Lastly, each data page
is again organized on the search key to facilitate efficient in-memory search. The benefit for this weaved data
layout is that in the case of secondary range deletes, we can discard entire groups of pages at a time, signaling the
file system to reclaim this page instantly, essentially converting the secondary delete to a page reclamation action
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Figure 3: KiWi stores data in an interweaved fashion on the sort and delete key to facilitate efficient secondary
range deletes while offering competitive read performance.
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Figure 4: Lethe ensures timely persistence of logically invalidated data within LSM-based out-of-place data
systems for both primary and secondary classes of deletes.

that has very low latency compared to a full database reorganization. In the worst case, we will have to in-place
edit a few pages at the edge of the range, which is a tunable parameter that controls the maximum secondary
deletion persistence latency as a tradeoff vs. read performance.
Evaluation. The approaches presented above for timely deletion were implemented as part of the LSM-based
system Lethe [76], and achieved efficient timely deletion respecting predetermined guarantees. The left hand-side
of Figure 4 shows the CDF of the tombstone age while varying the desired DPT to 16%, 25%, and 50% of
the duration of the experiment. The colored areas correspond to the number of cumulative tombstones for the
corresponding age on the x-axis, while the horizontal dotted-line is the desired DPT. We observe that Lethe was
able to always deliver the requested DPT. The gray area corresponds to the age of tombstones of the state of the
art, where no DPT is imposed and deletes are not persisted timely. Notably, we also measured that enforcing the
desired DPT shows benefits in terms of access time because the amount of invalid data was reduced. Similarly,
we saw benefits in space amplification, and only marginal cost increase in amortized write amplification.

The right hand-side of Figure 4 shows the fraction of fully dropped pages during a range delete as we vary
the size of the delete tiles. We observe that the fraction of pages fully dropped increases with the delete tile size,
allowing for efficient reclamation of the invalid data. Conversely, the read queries become more expensive as we
allow for more page drops, so the ideal delete tile size should be tuned based on the workload.
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Deletes in a Complex Data Model. The previous discussion focuses on handling deletes in a per-instance
manner without considering multiple copies of the data in a more complex setting. Cohn-Gordon et al. [27]
proposed the deletion framework DELF that ensures reliable data deletion from an online social network (OSN).
DELF enables detection of inconsistent data deletion in OSNs and also facilitates data recovery in cases where
user data was incorrectly deleted. Minaei et al. [65] proposed a framework for persistently deleting all instances
of user data in presence of observers, thereby, ensuring privacy through timely content concealment and removal.

4 Challenges and Opportunities
In Section 3, we outlined the steps taken to realize the four-layered vision of delete-compliant data systems
presented in Figure 1, however, there are still open questions and challenges for such systems which pose
opportunities for further innovative systems research.
Device-level Deletion. Data management solutions rely on storage devices and treat them as black boxes.
However, deleting data persistently at the device level and from data archives is an open technological challenge.
Current endeavors in this direction are mainly focused on encryption-based solutions [54, 57, 60]. Nevertheless,
retention-based deletes entail persistent deletion of a “quantum” of data (e.g., the data ingested in a day) posing
the following challenges for encryption-based solutions. First, it is hard to determine the encryption granularity
while minimizing the encrypt/decrypt overhead. Second, with several data streams for different users/applications
(and thus, bound by different SLAs), it is hard to manage the encryption keys efficiently and in a scalable
manner. Third, efficient and scalable deletion from archives and backup stores on-demand is hard to be supported
by encryption-based deletion as the encrypt/decrypt cost and the fine encryption granularity adds prohibitive
overheads. Finally, from a legislation point-of-view it is not yet clear whether encrypting and discarding the key
is an accepted form of deletion.

When considering a system-level deletion similar approach to the one presented in Section 3.3 storage
devices are essentially one more level of managing data at the physical layer and similar approaches have to be
implemented in the file system or the file and data systems have to be developed in tandem.
Cloud-Level Deletion. Further, operating on the cloud, data systems use virtualized devices and object storage
which is even more abstract hiding the details of how the low-level device and page management is taking place.
Offering guarantees for timely data deletion in virtualized storage will require a similar multi-layered approach
where the file system and the device firmware will expose knobs to allow the application on top to request specific
page reclamation properties.
Deletion in Distributed/Federated Computing Environment. With more and more data stores being trans-
formed to cloud-based stores, user data may be collected, processed, and stored across multiple domains, spread
across different geographic locations [75]. With different geographic locations being bound by different privacy
regulations, we need to design solutions to ensure consistency for persistent deletion of user data. Our intuition
is that existing solutions for data stream-tainting [37], cross-domain data tracing [33, 47], and related data
provenance solutions [20, 45] can be useful to address this problem.
Compliance Demonstration. Last but certainly not least, data systems have to be able to prove compliance
when audited. The natural way to do so now is via log auditing, however, a more light-weight algorithmic way for
providing this will benefit both systems and users. Inspecting logs and the underlying data is a time-consuming
process and the long-term goal of the community should be to design system-level tools that can verifiably
prove compliance with the privacy regulations. One interesting development in this direction is the evolution of
security-driven operating systems, such as seL4 [56, 80]. Another approach that can be taken is to show that the
codebase of a data system has the necessary code-paths for timely deletion via static and dynamic analysis. An
open challenge is to develop static and dynamic analysis tools that can prove that a system deletes data respecting
the timely deletion requirements set.
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5 Conclusion
In this paper, we highlight that the recently enacted regulations mandate new data deletion requirements, requiring
a new breed of data systems to support them. We show that existing state-of-the-art out-of-place systems are
ill-equipped for this task, and we present a four-layered approach towards building the necessary infrastructure.
We present recent work on that front, and we conclude by discussing several open research challenges.
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Abstract

With the increasing need for Machine-learning-as-a-service (MaaS) online systems, effectively maintaining
and reusing machine learning models in light of changes to the underlying data has become a big concern.
In particular, it is extremely challenging to refresh existing models after the removal of training samples,
which is called “machine unlearning”. Addressing this challenge not only requires an efficient solution,
but must comply with emerging privacy issues, e.g. GDPR, which implies that the removed samples must
be fully erased from the models so that they cannot be leaked to an adversary. We review two provenance-
based solutions, PrIU and DeltaGrad, and show how they can guard against “model inversion attacks",
which reconstruct the removed training samples from the updated models after the unlearning process.
Since PrIU and DeltaGrad support a limited class of models, we envision a system that can unlearn
general models in an efficient and secure manner and outline possible technical challenges for building
this system.

1 Introduction

The problem of incrementally updating model parameters after the deletion of a small set of training samples
has attracted increasing attention in machine learning over the past few years. It arises in applications such as
refreshing model parameters after sensitive training samples are removed (the GDPR issue [1]), reducing bias in
statistics [2], and quantifying uncertainty [3].

It is also used for quantifying the importance of a training sample using measures such as the Data Shapley
value [4]. A key step in evaluating this type of measure is to remove a subset of training samples and calculate
the updated ML model parameters. The most straightforward way to do this is to reconstruct the ML model
from scratch after the samples have been deleted. However, recalculating from scratch is prohibitively expensive,
especially when the training data is frequently updated, and so the question is whether the model can be updated
in real time.

From the perspective of a database researcher, this problem seems very similar to the well-studied problem
of materialized view maintenance [5, 6] (see Figure ??). In materialized view maintenance, we have input
relations over which a view is constructed using relational algebra operators (left side of the figure). In machine
learning (right side of the figure), the analogy to input relations is the training data, and the operations forming
the “view" (the model) is the learning algorithm. The question is whether techniques that have been developed
for materialized view maintenance can be used for what we will call model-maintenance.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: Parallels between materialized view maintenance and model maintenance

One very effective technique for materialized view maintenance is based on provenance, in particular the
provenance semiring framework [7]. In this setting, by tracing the use of input tuples for each tuple in the view
using provenance polynomials, the deletion of an input tuple can be propagated to a view tuple by seeing how and
if it is used in the view tuple’s provenance polynomial.

Of course, a machine learning algorithm is much more complicated than a relational algebra expression.
However, recent work has extended the provenance semiring framework to linear algebra operations [8], opening
the door to using provenance to reason over ML algorithms based on those operations, such as linear regression
and logistic regression in which non-linear operations are linearized using piecewise linear interpolation [9]. In
this paper, we show how provenance can be used for incrementally updating machine learning models for linear
or logistic regression in our PrIU system [9]. In particular we show how provenance information carried by the
linear operations can be cached during the model training process and then reused for speeding up the model
maintenance. For more complex models which use non-linear operations, provenance is not yet defined. However,
building on the ideas used in PrIU of caching essential intermediate results, we therefore show how caching can
be used to incrementally update more complex models (such as neural networks) in our DeltaGrad system [10].

We then explore the connection of our provenance-based technique to other machine unlearning techniques
(e.g., [11]). A major concern in machine unlearning is that the unlearned model may suffer from model inversion
attacks [12], in which the adversary is able to restore the deleted data items (a.k.a private data) from the resulting
model either using just the model (a black box attack) or using auxiliary information such as the model type,
model parameters, or even the remaining training samples (a white box attack). In contrast to other machine
unlearning techniques, we show that a benefit of our provenance-based technique is that it can avoid such attacks
with low overhead and without loss of prediction performance.

The remainder of this paper is organized as follows: In Section 2 we give background information on
provenance semirings and deletion propagation. In Section 3 we discuss how to extend these ideas to incremental
model maintenance for linear and logistic regression models in our system PrIU, and for more complex models in
our system DeltaGrad. We then discuss the problem of model inversion attacks in Section 4, and show how our
framework can be used to guard against them.
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A D
a1 d1 pr ⊕ qr.

Figure 2: Provenance propagation

2 Background

We start by describing the provenance semiring framework in relational databases, and how provenance can be
used to incrementally update views. We then discuss how the framework has been extended to include linear
algebra operations

Provenance Semirings. In the provenance semiring framework [7], input data to a query is annotated with
provenance tokens which are propagated through the algebraic operators performed on the data, e.g. select,
project, join, union, and more recently aggregation [13]. As the provenance annotations propagate, they are
combined using two abstract operations. The provenance operation ⊗ signifies joint use of data. For example,
when tuple t1, respectively t2, are annotated with provenance p, respectively q, then the tuple obtained by joining
t1 and t2 is annotated with provenance p ⊗ q. The other provenance operation, ⊕, signifies alternative use of
data. For example, when tuple t1, respectively t2, are annotated with provenance p, respectively q, such that t1
and t2 project to the same tuple t, then the resulting tuple t is annotated with provenance p⊕ q. In addition, an
abstract "zero-polynomial" 0prov is used to annotate absent tuples and an abstract "unit-polynomial" 1prov is
used to annotate "neutral" data whose provenance is ignored (it’s of no interest in a specific analysis). If P is the
mathematical space of provenance annotations, standard equivalences of positive relational algebra imply that
(P,⊕,⊗, 0prov, 1prov) is a commutative semiring [7]. It follows that the expressions obtained as provenance is
propagated through a query can be put in standard polynomial form, where the indeterminates (the variables)
are provenance tokens that annotate the tuples in the data given as input to the query. Therefore, in the semiring
framework provenance is captured by provenance polynomials.

Example 1: As an example, suppose we have two tables, R and S, whose tuples are annotated with provenance
tokens p, q, and r, as shown in Figure 2. In the same figure we show the provenance polynomials in indeterminates
p, q, r that are produced by provenance propagation in the outputs of queriesR ./B S, ΠA,CR, and ΠA,D(R×S).
As is customary in algebra, we omit the multiplication-like symbol ⊗ when we write polynomials in commutative
indeterminates.

Deletion Propagation. One of the benefits of the semiring framework is that deletions of tuples in the input
tuples propagate straightforwardly to deletions (or modifications of provenance) of output tuples by partially
evaluating provenance polynomials using familiar algebraic rules.

When an input tuple is deleted, the effect on the output can be efficiently calculated by setting its token
to 0prov in the output’s provenance polynomials, signifying absence. For example, if the first tuple in R, (a1,
b1, c1) with provenance token p, were deleted, then the provenance of the (only) tuple in R ./B S would
become 0prov ⊗ r = 0prov, indicating that it no longer appears – intuitively, both tuples are needed for that
tuple to be present. On the other hand, the tuple in ΠA,CR would still appear but with a different provenance
0prov ⊕ q = q – intuitively, at least one of p and q is needed for the result to be present. Similarly, deleting the
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first tuple in R will still leave the tuple (a1,d1) in the output of ΠA,D(R× S), but its provenance would become
(0prov ⊗ r)⊕ (q ⊗ r) = 0prov ⊕ (q ⊗ r) = qr.

Extension to Linear Algebra Operations Recently, the semiring framework has been extended to include
basic linear algebra operations: matrix addition and multiplication [8]. In this extension, the provenance
polynomials play the role of abstract scalars and an abstract version of multiplication with scalars plays the role
of annotating matrices (in particular, vectors) with provenance. Matrices form a non-commutative, many-sorted
ring. The structure obtained by combining the ring of matrices with multiplication by scalars from the semiring
of provenance polynomials is a semialgebra [8]. This framework is flexible enough that for input matrices we can
annotate both rows (samples) and columns (features) with arbitrary provenance tokens.

As an example, suppose that p,q,r,s are provenance tokens that annotate four different samples in a training
dataset. We denote the multiplication with scalars (i.e., the annotation with provenance polynomias) by the
abstract operation ∗. Using the work in [8], our methods will show that vectors of interest (such as the vector of
model parameters) can be expressed with provenance annotated expressions such as:

w = (p2q ∗ u) + (qr4 ∗ v) + (ps ∗ z) (1)

Here, u,v,z are numerical vectors signifying contributions to the answer w and they are annotated with the
provenance polynomials p2q, qr4, ps.

Now suppose the sample (input row) annotated with r is deleted while those annotated p,q,and s are retained
but we decide not to track them anymore. As we did in the paragraph on deletion propagation, we can express the
updated value of w under this deletion by setting r to 0prov which signifies absence, and p,q,s to 1prov, which
signifies “neutral” presence in Equation (1). Again, the resulting expressions can be simplified using familiar
algebraic manipulations. As expected, 0prov ⊗ r4 = 0prov as well as 0prov ∗ v = 0 (the all-zero vector). Moreover,
1prov ⊗ 1prov = 1prov and 1prov ∗ z = z. It follows that under this deletion w = u + z.

3 Overview of PrIU and DeltaGrad

We start with preliminaries on Stochastic Gradient Descent (SGD) before showing the explicit use of provenance
in PrIU and the implicit use of provenance in DeltaGrad for incrementally updating machine learning models in
DeltaGrad.

3.1 Preliminaries on SGD
By assuming that SGD is used for model training, PrIU and DeltaGrad can incrementally update the “gradients”
at each SGD step. Suppose the training dataset is Dtrain = {(xi, yi)}ni=1 and model parameter is w, at the step t of
SGD w is computed by evaluating the gradients on a randomly sampled mini-batch of the training dataset, i.e.:

wt+1 = wt − ηt · Grad(wt; Bt), (2)

where Grad(wt; Bt) represents the gradient evaluated on a mini-batch Bt.
Suppose a subset of training samples, R, is removed from the training dataset. Then to compute the updated

model parameter, Equation (2) is modified as:

wU
t+1 = wU

t − ηt · Grad(wt; Bt −R) (3)

where wU represents the updated model parameter and Bt −R represents the remaining samples in Bt after the
removal of R.
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Note that both Grad(wt; Bt) in Equation (2) and Grad(wt; Bt −R) in Equation (3) can be regarded as the
integration of two components: the model parameter wt (or wU

t ) and the data part (the sample (xi, yi)). For
example, for linear regression models, the loss function F (wt; (xi, yi)) using L2 regularization is

F (wt, (xi, yi)) = (yi − x>i w)2 +
λ

2
‖wt‖2,

Using this, Grad(wt; Bt) and Grad(wt; Bt −R) can be rewritten as:

Grad(wt; Bt) = (λI +
2

|Bt|
∑

i∈Bt

xix>i )wt −
2

|Bt|
∑

i∈Bt

xiyi, (4)

Grad(wt; Bt −R) = (λI +
2

|Bt −R|
∑

i∈Bt−R
xix>i )wU

t −
2

|Bt −R|
∑

i∈Bt−R
xiyi (5)

The data part in Grad(wt; Bt) (Equation (4)) consists of two terms:

D1(Bt) =
∑

i∈Bt

xix>i , D2(Bt) =
∑

i∈Bt

xiyi.

Similarly, the data part in Grad(wt; Bt −R) (Equation (5) can be expressed as:

D1(Bt −R) =
∑

i∈Bt−R
xix>i , D2(Bt −R) =

∑
i∈Bt−R

xiyi.

3.2 PrIU

As described above, by decomposing the gradient formulas Grad(wt; Bt) or Grad(wt; Bt −R) into a data part
and a model parameter part, we can capture the provenance of the data part to track how the changes of the data
part lead to the updates of the model parameters at each SGD iteration.

Specifically, for the above example, suppose each training sample (xi, yi) is given a unique provenance token,
pi. Then we can generate the following provenance-aware formula for D1(Bt) and D2(Bt):

Prov(D1(Bt)) =
∑

i∈Bt

p2i ∗ xix>i , Prov(D2(Bt)) =
∑

i∈Bt

p2i ∗ xiyi

To obtain the values of D1(Bt −R) and D2(Bt −R), we can set the provenance token pi to 0prov for each
i ∈ R to zero out the removed training samples, and set the other provenance tokens to 1prov, i.e.:

D1(Bt −R) =
∑

i∈Bt−R
xix>i = [

∑
i∈Bt−R

p2i ∗ xix>i ]pi=1prov + [
∑

i∈Bt
⋂

R
p2i ∗ xix>i ]pi=0prov

D2(Bt −R) =
∑

i∈Bt−R
xiyi = [

∑
i∈Bt−R

p2i ∗ xiyi]pi=1prov + [
∑

i∈Bt
⋂

R
p2i ∗ xiyi]pi=0prov

This can be implemented by reusing the cached terms, D1(Bt) and D2(Bt) and subtracting the terms
corresponding to the removed samples in R, i.e.:

D1(Bt −R) =
∑

i∈Bt−R
xix>i = D1(Bt)−

∑
i∈Bt

⋂
R

xix>i

D2(Bt −R) =
∑

i∈Bt−R
xiyi = D2(Bt)−

∑
i∈Bt

⋂
R

xiyi

This is considerably more efficient than recomputing D1(Bt −R) and D2(Bt −R) from scratch if the size of
R is much smaller than the total number of training samples.
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So far, we have discussed how to efficiently update Grad(wt; Bt) to Grad(wt; Bt −R) after the removal of
a training sample set for SGD formulas where the data part and the model parameters are linearly combined.
However, in general cases the data part and the model parameters in Grad(wt; Bt) can be integrated in an arbitrary
way, making it difficult to use provenance. For example, for logistic regression with L2 regularization the loss
function, F (·), and Grad(wt; Bt), can be instantiated as:

F (wt, (xi, yi)) = ln(1 + exp{−yiw>t xi}) +
λ

2
‖wt‖2 (6)

Grad(wt; Bt) = λwt −
1

|Bt|
∑

i∈Bt

yixi(1−
1

1 + exp{−yiw>t xi}
) (7)

in which the model parameter wt and the data part are combined with non-linear operations (i.e., exp and division).
To be able to use provenance for rapid updates, we therefore linearize the non-linear operations in Equation (7)
using piecewise linear interpolation, which leads to the following “Linearized Grad(wt; Bt)”:

Linearized Grad(wt; Bt) = λwt −
1

|Bt|
(
∑

i∈Bt

ai,txix>i wt +
∑

i∈Bt

bi,tyixi) (8)

in which the two coefficients, ai,t and bi,t, are generated after piece-wise linear interpolation is applied. As a
consequence, Equation (8) shares a similar form with Equation (4), hence data provenance can also be used in
Equation (8) for incrementally updating logistic regression models. Note that due to the linearization operations,
the incrementally updated model parameters may not be the same as the ones retrained from scratch. However,
we can prove that the difference between the two model parameters (quantified by L2 norm) is very small (see
detailed analysis in [9]).

3.3 DeltaGrad

General machine learning models such as neural networks can be arbitrarily complex, making it challenging
to separate the data part from the model parameters in the gradient expression. Therefore, instead of explicitly
employing data provenance as in PrIU we proposed a second method, DeltaGrad, which updates model parameters
by implicitly leveraging data provenance.

We start by rewriting the SGD update rule in Equation (3) as follows:

wU
t+1 = wU

t − ηt · Grad(wU
t ; Bt −R) = wU

t − ηt · [Grad(wU
t ; Bt)− Grad(wU

t ;R)] (9)

In this update rule, after the removal of R instead of directly evaluating the gradient on the remaining
samples in Bt, i.e., Bt −R, we subtract the gradient on the removed samples (i.e., Bt

⋂
R) from the gradient

on the full mini-batch (i.e., the term Grad(wU
t ; Bt)). It is worth noting that Grad(wU

t ; Bt) has the same form
as Grad(wt; Bt) in Equation (2) except for the differences on the dependent model parameters (i.e. wt and
wU
t resp.). We therefore cache the term, Grad(wt; Bt) during the model training phase, i.e. the evaluation of

Equation (2), so that it can be reused for accelerating the evaluation of Grad(wU
t ; Bt).

Specifically, we estimate Grad(wU
t ; Bt) by estimating the difference between Grad(wt; Bt) and Grad(wU

t ; Bt),
which can be computed using the Cauchy mean value theorem:

Grad(wU
t ; Bt)− Grad(wt; Bt) = H([wt,wU

t ]; Bt)
(
wU

t − wt

)
where H([wt,wU

t ]; Bt) represents the Hessian matrix integrated between wt and wU
t given a mini-batch Bt.

Since the explicit evaluation of the Hessian matrix is extremely time-consuming, we adapt the L-BFGS algorithm
[14] to approximately evaluate the Hessian-vector product H([wt,wU

t ]; Bt)
(
wU
t − wt

)
. In this modified version

of the L-BFGS algorithm, the input consists of the vector (wU
t − wt), the history model parameters, w and wU

42



from previous SGD iterations, as well as the corresponding gradients (i.e., Grad(wt; Bt) and Grad(wU
t ; Bt))

from those iterations. As a result, Grad(wU
t ; Bt) is approximately evaluated with the following formula:

Grad(wU
t ; Bt) ≈ Grad(wt; Bt) + gL-BFGS(wU

t − wt, {(wU
tr ,wtr ,Grad(wU

tr ; Btr ),Grad(wtr ; Btr ))}mr=1) (10)

in which gL-BFGS(·) denotes the L-BFGS algorithm and the history model parameters, wtr , and the corresponding
gradients, Grad(wtr ; Btr), are regarded as the “implicit” provenance.

Note that the computation of Grad(wU
t ; Bt) can lead to approximation errors. Therefore, in order to guarantee

that the updated model parameters calculated by this approximate gradient are not far away from the expected
ones, we compute Grad(wU

t ; Bt) from scratch in the first few SGD iterations and periodically compute it from
scratch afterwards. It can be shown that the updated model parameters calculated in this way are very close to the
ones retrained from scratch [10].

4 Security concern: Model inversion attacks

In the previous section, we showed how provenance can be used both explicitly (in the case of linear and
logistic regression) and implicitly (in the case of more complex models such as neural networks) to incrementally
update machine learning models. Going beyond incremental updates, we now discuss how a provenance-based
framework can be used to defend against an emerging security concern: model inversion attacks.

4.1 Preliminaries

The recently established General Data Protection Regulation (GDPR) guidelines [1] state that users have the
right to have private data items removed from the entities storing those items. However, this is not as simple as
just deleting the data items: If they have been used as training data in state-of-the-art machine learning systems,
the effect of these data items must also be “erased" from the models that these systems have learned and rely
on. Otherwise, the systems may be subject to model inversion attacks, a type of attack in which the adversary is
able to restore the private data items from the machine learning models without accessing the data items [12].
Therefore, the ultimate goal of unlearning a machine learning model is to give an updated model in which the
private data items have been “forgotten”, i.e. the model behaves as if the private data items never appeared in
the training set thus safeguarding against model inversion attacks. Therefore, in addition to efficiency (i.e. the
time to update the model) and performance guarantees (i.e. the predictive power of the updated model), an ideal
unlearning algorithm should guard against model inversion attacks.

It is worth noting that, depending on the adversary’s knowledge, the vulnerability of the model can vary.
Generally speaking, there are two model inversion attack settings: black-box and white-box [12]. In the black-box
setting, the adversary can only use the model output to launch the attack, whereas in the white-box setting the
adversary can also use auxiliary information such as the model type, model parameters, or even the remaining
training samples (in the extreme case). It is therefore much more challenging to defend against white-box attacks
than black-box attacks.

4.2 Vulnerability of current machine unlearning methods

Current machine unlearning methods fall into one of several different categories: 1) Retraining-based methods;
2) Methods based on differential privacy; and 3) One-step update methods. We give an overview of each, and
then compare them as well as our provenance-based approach with respect to efficiency (i.e. the time to update
the model), performance (i.e. the predictive power of the updated model), and their ability to guard against
model-inversion attacks. A summary of this comparison can be found in Table 2.

43



Retraining-based methods One straightforward machine unlearning strategy is to retrain the models from
scratch, which can fully erase the removed training samples from the models and maintain the model prediction
performance. However, this is very inefficient when frequent unlearning requests occur. To mitigate this, [11]
proposes to shard the training set into smaller partitions, construct one local model for each partition and only
retrain the local model if a deletion request hits the corresponding partition. Note that this method is not efficient
if training samples from each partition are removed simultaneously, leading to the reconstruction of all the models.

Differential privacy-based methods. These methods, [15, 16], build on the classical notion of differential
privacy [17]. The goal is to update the model in a single step, and then add some carefully designed random
noise to the incrementally updated model so that it is indistinguishable from the one retrained from scratch, to
which the same level of random noise has been added. In particular, [15] leverages the following Newton update
mechanism for updating linear models (e.g., linear regression models and logistic regression models):

wU
∗ = w∗ + H−1(w∗;Dremaining) · Grad(w∗;R), (11)

in which H−1(w∗;Dremaining) represents the inversed Hessian matrix (i.e. the second order gradient) on the
remaining training set, Dremaining. Then wU

∗ is perturbed with some randomly drawn noise vector b to hide the
gradient information of the removed training samples. Despite the efficiency and perfect privacy guarantees of
this type of solution, they suffer from the fact that the added noise may hurt the model prediction performance
[18, 19].

One-step update methods. The second type of method incrementally updates the model in one-step but does
not introduce extra noise [20, 18]). Specifically, these solutions can be represented by the following abstract
formula:

wU
∗ = w∗ +G(R,Dremaining) (12)

in which G is a function taking the removed training set R and the remaining training set Dremaining as arguments.
For example, Equation (12) could be the one-step Newton update (Equation (11)) in which the function G could
be expressed as:

G(R,Dremaining) = H−1(w∗;Dremaining) · Grad(w∗;R)

As observed in [21], the product between the inverse of the Hessian matrix, H−1(w∗;Dremaining), and
the vector ∇F (w∗, R) in the above formula can be effectively evaluated using conjugate gradients [22] or
the stochastic estimation method of [23]. To further speed up the above computations, by leveraging the
fact that R is far smaller than Dremaining, H−1(w∗;Dremaining) could be regarded as the low-rank updates on
H−1(w∗;Dremaining + R), which is the inverse of the Hessian matrix on the full training set and thus can be
cached beforehand. According to [18], such low-rank updates could be effectively computed by employing the
Sherman-Morrison-Woodbury formula [24]. Note that the models incrementally updated in this manner are also
very close to the retrained ones [21].

Despite the efficiency and predictive performance, this type of method suffers from model inversion attacks.
In what follows, we describe at least two scenarios in which in which model inversion attacks can occur.

Scenario 1 Consider the following extreme scenario where everything about the model except for the removed
sample set R is revealed to the adversary, which includes the remaining training samples Dremaining, the original
model parameter, w∗ and the incrementally updated model parameter, wU

∗ ). However, in this case, the value
of G(R,Dremaining) could be obtained by calculating the difference between w∗ and wU

∗ , and thus R could be
reconstructed by solving the following optimization problem:

argminR′‖G(R′, Dremaining)−G(R,Dremaining)‖ = argminR′‖G(R′, Dremaining)− (wU
∗ − w∗)‖ (13)
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It is worth noting that this extreme scenario could indeed occur in practice. First of all, different versions
of models could be accessed by the adversary simultaneously. For example, machine learning models are
increasingly used inside DBMSs, e.g., learned indexes [25] and learning-based query optimizers [26]. The models
are typically constructed by taking the data in the DBMS as the training dataset. Due to updates on the underlying
data, the models could also be updated, thus leaving different copies of the model snapshots, which could be
logged inside the DBMS. Plus, due to the reproducibility requirements, the input training samples might also be
stored for later use, which thus might be accessed by the adversary.

Scenario 2 In what follows, let us consider a more practical scenario where the knowledge of the adversary is
limited. Specifically, we assume that only the updated model wU

∗ is revealed to the adversary, which is similar to
the standard assumption of the white-box attack. Then given wU

∗ , we assume that there is a strong white-box
model inversion attack tool that the adversary could employ to reconstruct the remaining training samples,
Dremaining [12]. Note that in this scenario, the original model parameter w∗ is not available to the adversary.
Therefore, it is not enough to directly employ Equation (4.2) for reconstructing the removed training sample set,
R. Instead, the adversary could jointly construct w∗ during the derivation of R by leveraging the dependence
of w∗ on R (recall that w∗ is trained on the full training set Dremaining + R). This could be formalized as the
following bi-level optimization problem:

R = argminR′‖G(R′, Dremaining)− (wU
∗ − w∗)‖,

where w∗ = min
w
{F (w;Dremaining) + F (w;R′)} (14)

which could be effectively solved by using the optimization method proposed in [27].

Provenance-based approach. In contrast, both of our methods, PrIU and DeltaGrad, can resist the above
scenarios. To see this, consider the following abstract formula representing how PrIU and DeltaGrad incrementally
update the model:

Grad(wU
t ;Dremaining) ≈ Prov(wU

t ;Dremaining +R)− Grad(wU
t ;R) (15)

in which,

Prov(wU
t ;Dremaining +R) ≈ Grad(wU

t ;Dremaining +R)

Assuming that the the provenance term Prov(wU
t ;Dremaining +R) and the removed training sample set R are

not accessible, then the adversary must solve the following formula to recover R:

Grad(wU
t ;Dremaining) ≈ Grad(wU

t ;Dremaining +R)− Grad(wU
t ;R) (16)

which, however, holds for an arbitrary set of samples R′ instead of simply holding for R. As a consequence, the
best that the adversary can do is to randomly guess what R is.

Table 2: Comparison of state-of-the-art machine unlearning methods

Privacy Prediction
performance

Efficiency

Retraining from scratch X X
Partition-based Retraining [11] X X
Differential-privacy-based methods X X
One-step-update methods X X
Provenance-based methods X X X

A summary of the comparison between current machine unlearning strategies can be found in Table 2. We
next show how our provenance-based method can be used to avoid model-inversion attacks while achieving high
prediction performance and efficiency.

45



4.3 Adding provenance support for secure machine unlearning

In future work, our goal is to develop a machine unlearning system that can achieve real-time and secure updates
on general machine learning models such that the updated models are almost identical to the retrained models,
thus not hurting the prediction power. The strategy to achieve this goal could vary depending on the threat
model. However, we expect that in the worst scenario mentioned in Section 4.2, adding provenance support to the
machine unlearning system is essential.

Specifically, we plan to generalize the idea of PrIU and DeltaGrad for general neural network models, such
that the footprint of the removed training samples is erased from the model parameters collected across all the
SGD iterations, and the updated model parameter at each SGD iteration is almost identical to the one for retraining
the model from scratch. Given this, despite the knowledge of the adversary about the model and the remaining
training samples, it would be almost impossible to reconstruct the removed training samples since the remaining
information on the updated training trajectory does not include the removed training samples. This can therefore
bring a better security guarantee than the One-step-update methods (as introduced in Section 4.2) in which the
function G still encodes information about the removed samples, leading to the leakage of those samples.

Figure 3 illustrates how the envisioned provenance-enabled model unlearning system would work. In this
figure there are two main components: the “Training loop component” and the “Updating loop component”. In
the “Training loop component” necessary provenance information is collected during the training process on the
neural network models, where SGD is assumed to be the default training method (similar to PrIU and DeltaGrad).
The dominant provenance information would be different versions of model snapshots (i.e., the model parameters
and the computed gradients) captured at each iteration. Such provenance information would then be stored in
secure storage, which would then be retrieved for incrementally computing the updated model in the “Updating
loop component” after sensitive training data is deleted. As analyzed in the previous subsection, this could fully
erase the footprint of the removed training samples from the model parameters at each SGD step, thus guarding
against the model inversion attacks.

Discussion Note that there are several existing solutions that also aim to delete the footprint of the removed
sensitive training samples from the entire training trajectory. For example, [28] proposes an efficient way to
incrementally update K-means models through caching and reusing the information of all the clusters at each
training iteration for model updates. Such cached cluster information could be therefore considered as provenance
information. However, to facilitate effective unlearning, some necessary modifications are applied to the K-means
models, which may degrade the model prediction performance.

Challenges and research opportunities Several challenges remain for developing a provenance-enabled
machine unlearning system for general neural network models. First of all, general neural network models are
non-convex, which is beyond the model classes that PrIU or DeltaGrad support. Therefore, we would envision that
a new provenance-based unlearning method is necessary to support incremental updates on general non-convex
neural network models. Inspired by PrIU and DeltaGrad, the models incrementally updated in this way could
be approximately close to the retrained models, but with rigorous theoretical guarantees on the smallness of the
approximation errors. One potential idea to design this new unlearning method is to relax the strong-convexity
assumption on the model class in DeltaGrad such that general non-convex models could be handled. The main
bottleneck is the strong dependency of DeltaGrad on the L-BFGS algorithm, in which the strongly convex
objective functions are essential. We notice that this assumption has been relaxed in many extended versions of
the L-BFGS algorithm (e.g., [29]), which could be potentially adapted for extending DeltaGrad.

In addition, due to the high complexity of state-of-the-art neural neural networks, the model snapshots at each
SGD iteration could be extremely large, incurring a prohibitively high overhead for the entire unlearning system.
For example, the ResNet18 network for vision tasks has around 11 million parameters [30] while the GPT-3
model [31] for natural language processing tasks has around 175 billion parameters. The problem would become
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Figure 3: Provenance-enabled model unlearning system

even worse if their parameters and gradients were required to be repetitively recorded in the provenance-enabled
model unlearning system. As a consequence, it is essential to build a version control system on large neural
network models such that the model snapshots could be effectively captured, stored and retrieved.

One expected characteristic of such a version control system is that the models from different versions (i.e.
from different SGD iterations) could be compressed to reduce the storage overhead. Ideally, the compression
should be lossless so that the variations between different versions can be captured without adding extra
approximation errors after those models are uncompressed during the model update phase. Otherwise, it could
potentially amplify the approximation errors brought by the unlearning algorithm itself, thus hurting the quality
of the unlearned models.

The version control problem for machine learning models has been recently studied in [32]. Specifically,
the difference between the models from different SGD iterations is calculated first, which can be represented
by a set of matrices. Then each element of each matrix, i.e., one float number, is approximately represented
with k-byte (k=16 or 8) integers through the quantization operations. This is then followed by compressing the
higher-order bits of the quantized representations across different versions of the models throughout the SGD
iterations, which can yield significant savings (see the experiments of [32]). However, since the quantization
operations can produce approximation errors, as discussed above, when this solution is applied to the machine
unlearning pipeline such errors may lead to significant deviations of the incrementally updated models from the
retrained ones.

Another requirement for the provenance-enabled model unlearning system, as shown in Figure 3, is that the
collected provenance information be cached in secure storage. Otherwise, the adversary could easily reconstruct
the removed training samples from the cached provenance of those samples by using the attack paradigm presented
in Section 4.2. Finally, it is worth noting that the chance of the the security threat mentioned in Section 4.2
actually occuring may be quite low in practice due to the limited knowledge of the adversary on the models. For
instance, in typical online systems, the deployed machine learning models are released as an open API 1 where
the adversary only has black-box access, meaning that only the model output given one input sample can be
obtained through the API. In this scenario, it might be inappropriate to use provenance-based unlearning methods
due to their relatively high overhead with respect to other unlearning methods. It would be interesting to explore
the applicability of existing unlearning methods under different threat assumptions and rank them based on their
risk of leaking the removed training samples.

1see e.g., Google prediction API: https://cloud.google.com/ai-platform/prediction/docs/reference/rest/v1/projects/predict
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5 Conclusions

In this paper, we reviewed our provenance-based techniques, PrIU and DeltaGrad, for incrementally updating
machine learning models and showed the connection to incrementally updating database views. We then studied
the privacy implications of machine unlearning techniques, and analyzed the capability of PrIU and DeltaGrad
as well as other state-of-the-art unlearning techniques on defending against the model inversion attack. Our
analysis reveals that provenance is essential for the unlearning process to guard against this type of attack without
hurting performance and the model prediction power. Based on this observation, we envision a provenance-based
unlearning system, which could effectively unlearn general machine learning models in a secure manner. We also
outlined critical technical challenges and potential solutions, paving the way towards building such systems.
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Abstract

In an increasingly digital world, compliance with data regulations play an important role. More and
more individuals are rapidly getting concerned with the way their data is being stored and processed
by organizations. Therefore, it is crucial that data processing be subjected to regulatory obligations at
its core. Yet, achieving compliance with data regulations requires the entire data processing pipeline
to be revisited to embrace data policies as first-class citizens. In this paper, we present our work on
novel systems and methods for federated data processing, where the processing of geo-distributed data
is subjected to data transfer regulations. We showcase our work on compliant geo-distributed data
processing and present research challenges and opportunities for a federated data processing system to
make compliance truly its first-class citizens.

1 Introduction

Federated data processing has been a standard model for virtual integration of disparate data sources, where
each source upholds a certain amount of autonomy. While early federated technologies resulted from mergers,
acquisitions, and specialized corporate applications, recent demand for decentralized data storage and computation
in information marketplaces[32]) and for geo-distributed data analytics [33, 22, 14] has made federated data
services an indispensable component in the database market. Cloud providers such as AWS, Google, and Microsoft
have also adopted distributed query capabilities within their products to support federated data processing.

Running analytics in a federated environment mainly relies on distributed query processing frameworks,
such as those based on data integration systems (e.g., [25]) and/or multi-database systems (e.g.,[3, 31]). At
high-level, a distributed query processing framework provides a unified query interface to query distributed and
decentralized data. It transparently translates a user-specified query into a so-called query execution plan. To
do so, a query optimizer considers distributed execution strategies (involving distributing query operators like
join or aggregation across compute nodes), communication cost between compute nodes, and introduces a global
property that describes where, i.e., at which site, processing of each plan operator happens. For example, a
two-way join query over data sources in Asia, Europe, and North America may be executed by first joining data in
North America and Europe and then joining with the data in Asia. As one can notice, federated queries implicitly
ship data (i.e., intermediate query results) between compute sites. While several performance aspects, such as
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bandwidth, latency, communication cost, and compute capabilities have received great attention, the federate
nature of data processing has been recently challenged by data transfer regulations (or policies) that restrict the
movement of data across geographical (or institutional) borders or by any other rule of data protection that may
apply to the data being transferred between certain sites. European directives, for example, regulate transferring
only certain information fields (or combinations thereof), such as non-personal information or information not
relatable to a person. Likewise, regulations in Asia may also impose restrictions on data transfer. Non-compliance
to such regulatory obligations has attracted fines in the tune of billions of dollars[10]. It is, therefore, crucial to
consider compliance with respect to legal aspects when analyzing federated data.

Nevertheless, complying with regulations when transferring data is a big challenge today. One has to expand
the capabilities of modern federated data processing systems to aid data controllers (i.e., entities that determine
what data and how the data should be processed) and data processors (i.e., entities that provide data storage and
processing capabilities) in navigating compliance with data transfers. In particular, we need (a) a declarative
language for expressing data transfer rules, (b) to revisit query rewriting and optimization techniques to translate
user queries transparently into compliant query execution plans, and (c) to revisit query execution to support
decentralized data processing across heterogeneous compute nodes.

In this paper, we outline the main system challenges required for complying with data transfer obligations
in the context of federated data processing. We showcase our work on compliant data processing, which offers
limited capabilities in navigating compliance. We then discuss our current research endeavors that overcome
prior limitations and discuss open problems and research challenges.

2 Problem Scope & Challenges

We start by giving a birds-eye view of federated data processing systems (FDPS) and then outline aspects of
data regulations that affect the transfer of data between national (or institutional) borders. We then discuss the
challenges that we set out to address in order to expand the capabilities of FPDS to navigate compliance with data
transfers.

2.1 A Brief Recall on Federated Data Processing

Data Interface

Query Optimizer

Data Store Data Store Data Store

Query 
Processor

Query 
Processor

Query 
Processor

Query Results

Query Processor

Location 1 Location 3Location 2

Figure 1: Federated Data Processing

An FDPS consists of three major components as illustrated in
Figure 1: a data interface, a query optimizer, and a query pro-
cessor. The data interface provides end-users (e.g., data analysts
or data administrators) the ability to query and process data that
is stored across distributed data stores in a unified manner. The
data interface upon receiving a user query (e.g., SQL) parses and
translates it into a framework-specific internal structure (e.g., a
logical query plan). The query optimizer then rewrites the log-
ical query plan into a query execution plan (QEP). It extends a
single-site data processing across distributed compute notes. To
do so, it considers communication costs between compute nodes
and introduces a global property that describes where, i.e., at
which site processing of each plan operator happens. The query
processor then “orchestrates” the actual execution of the query,
which results in the transfer of (intermediate) query data between
compute nodes. In geo-distributed environments, compute nodes
are located across national (or institutional) borders. In this context, the transfer of data between sites may result
in non-compliance to data transfer regulations.

51



2.2 Primer on Data Transfer Regulations

Data regulations, such as EU’s General Data Protection Regulation (GDPR) [1] or California Consumer Privacy
Act (CCPA) [2] significantly affect how data is stored, processed, and transfer. In this section, we aim to
understand regulations from the perspective of data transfers. To achieve that, we analyze GDPR articles that
regulate the transfer of data across national borders1.

GDPR articles 44–50 explicitly deal with the transfer of data across national borders. Among these, we
identified two articles and one recital wherein the legal requirements for transferring data fundamentally affect
FDPS components.
Article 45: Transfers on the basis of an adequacy decision. The article dictates that transfer of data may take
place without any specific authorization, e.g., when there is adequate data protection at the site where data is
being transferred or when data is not subjected to regulations (i.e., when the data does not follow the definition of
personal data as in Article 4(1)).
Article 46: Transfers subject to appropriate safeguards. This article prescribes that (in the absence of
applicability of Article 45) data transfer can take place under “appropriate safeguards”. Based on the European
Data Protection Board (EDPB) recommendations that supplement transfer tools, pseudonymisation of data (as
defined under Article 4(5)) is considered as an effective supplementary method.
Recital 108: Transfers under measures that compensate lack of data protection. Data after adequate
anonymization (i.e., when resulting data does not fall under Article 4(1) and as described in Recital 26) does not
fall under the ambit of GDPR and therefore can be transferred.

Discussion. Based on the above regulations, we observe that depending on the data and to where that data is
being transferred, we can classify data transfer regulations into:

• No restrictions on transfer. Some data maybe allowed to be transferred unconditionally, and some to only
certain locations.

• Conditional restrictions on transfer. For some data, only derived information (such as aggregates) or only
after anonymization, can be transferred to (certain) locations.

• Complete ban on transfer. Some data, no matter whatsoever, must not be transferred outside.

2.3 Compliance by Design: Research Challenges

Our overreaching goal is to develop methods and systems that aid data controllers (entities that control what data
and how the data should be processed) and data processors (entities that processes data on behalf of a controller)
by providing appropriate safeguards within FDPS such that transfer—as a result of federated data processing—of
data across borders complies to regulatory obligations described above.

Declarative Data Transfer Rules. The first and foremost challenge to achieve compliance by design is to have
declarative languages for specifying data transfer regulations. Doing so is not trivial as regulations affect data
differently depending on its type, it’s processing, and the location where it is processed (or transferred). For
example, regulations may apply to an entire dataset, parts of it, or even information derived from it. Furthermore,
datasets are heterogeneous in their data models (e.g., graphs, relational, and textual). Therefore, devising a
declarative language where one can specify data constraints in an easy and effective manner is far from being
simple.

1We note that compliance to GDPR aspects, such as collecting, securing, storing, deleting are beyond the scope of our current focus
(see discussion in Section 5).
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Compliance-aware Query Rewriting and Optimization
Once a user specifies the data policies on her data, she then needs
effective and efficient ways to process federated queries in a man-
ner that the processing is compliant. Achieving so is challenging
as we need to extend query rewriting and optimization capabili-
ties. A query optimizer should be able to transparently translate
logical query plans into compliant query execution plans by “in-
jecting” operations that transform data such that the transformed
data prescribes to regulations affecting its transfer.

Decentralized Query Execution Lastly, we also need to revisit
query processors than can execute a compliant query plan across
distributed (potentially heterogeneous) compute nodes. In contrast
to current approaches that employ a mediator-based execution, we

need meta-execution engines, which can delegate query execution to disparate compute nodes and de-centrally
execute the query, without involving itself in the query execution. Achieving so is crucial to make sure that
data processing happens on the locations prescribed by the query optimizer, irrespective of the location of the
processor.

3 Compliance-aware Query Rewriting and Optimization

We start by giving the overall idea of our approach for achieving compliant data processing. We then discuss our
research on supporting compliance assuming relational workloads before outlining open problems and current
research directions going beyond the relational world.

3.1 Overall Idea

A crucial aspect in adhering to data transfer regulations is to transform the data in a way that renders it suitable to
be transferred across borders. From the perspective of a FDPS, transforming (intermediate) data before shipping
it to another compute location can be considered as performing additional masking operations on the data. To
illustrate this, consider a two-way join query that access data stored across Europe, North America, and Asia.
Figure 3 (left) illustrates a logical query plan for this query where orange boxes denote cross-border operations
(e.g., join operators) that require inputs from two or more sources and blue circles denote other query operators
(e.g., map, filter, or aggregate). On the right, we illustrate a corresponding execution plan, where the optimizer
decides at which site the processing of each plan operator should happen (e.g., both cross-border operators
must be performed in North America). The optimizer also rewrites the query by reordering the query operators
(e.g., selection pushdowns) and by “injecting” data masking operators (shown by red boxes) as a means to provide
appropriate safeguards for cross-border data transfers. In this example, both cross-border operations happen in
North America, and data from EU and Asia is transformed by a masking operator before being shipped to North
America.

3.2 Navigating Compliance in the Relational Paradigm

In our current approach, we confine to processing of data that is stored in geo-distributed SQL databases and
propose query rewriting and optimization techniques that preserve the query semantics. In more detail, we focus
on data transfer rules that can be adhered to by data masking via relational operations (e.g., project, aggregate,
or filter) such that the resulting compliant QEP retains the query semantics, i.e., the output of the query should
be the same as if there were no data transfer constraints. For instance, a projection operator can mask certain
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Figure 3: Illustration of Query Rewriting and Optimization: (left) Logical query specified by user and (right)
execution plan derived by the query optimizer after injecting masking operators.

columns by projecting them out before the (intermediate data) is transferred to another location, and when the
masked columns are not required by the query later.

Let us illustrate this approach by expanding upon the previous example. Consider the following schema for
the Customer, Orders, and Supplier tables along with data transfer rules that apply to data at each location.

Customer (custkey, name, acctbal, mktseg, region) Customer data can be transferred outside only af-
ter suppressing account balance information

Orders (custkey, ordkey, totprice) Only aggregated Orders data can be transferred to
Asia and an order’s price cannot be transferred to
Europe

Supply (ordkey, quantity, extprice) Only aggregated Supply data for orders’ quantity
and extended price from Asia can be transferred
to North America.

Result

Γ
NA

on
NA

SHIP
A→NA

Γ(o,sum(q))

S
A

on
NA

O
NA

SHIP
E→NA

Πc,n
E

C
E

Furthermore, consider a query Qex
SELECT C.name, SUM(O.totprice), SUM(S.quantity)
FROM Customer AS C, Orders AS O, Supply AS S
WHERE C.custkey=O.custkey AND O.ordkey=S.ordkey
GROUP BY C.name

The query plan on the right shows a compliant QEP as derived by
our query optimizer (discussed below). Here the SHIP operator
describes the point where intermediate results are communicated
between two sites and Γ denotes the aggregation operator. Anno-
tations corresponding to each operator describe where processing
of the plan operator should happen. Observe, that executing such a plan will not violate any of the above rules: it
performs both join operations in North America, masking data via the projection operator Πc,n suppresses the
account balance information of Customers (before the data is shipped from Europe to North America) and via the
aggregation operator Γ(o,sum(q)) suppresses the orders’ quantity (prior to shipping data from Asia to North
America), as desired by the rules.

Policy Expression Language. One of the challenges in automatically translating user-specified queries into
compliant QEPs is to first integrate rules into the query optimization framework. For this, we have developed a
policy expression language that provides a simple and intuitive (SQL-like) syntax to specify which and where
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data are allowed to be transferred. We basically define two kinds of policy expressions: basic and aggregate
expressions. A basic expression is of the form of a Select-Project query that can specify restrictions pertaining to
certain tables, rows, and/or columns. An aggregate expression is of the form of a Select-Project-GroupBy query
and further allows specifying restrictions pertaining to the transfer of aggregated information.
Basic Expressions. Basic expressions allow specifying shipping of certain rows and columns of a table to another
location and have the following syntax:
ship attribute list from table to location list where condition list

This expression specifies cells, i.e., rows and columns, of a table to be transferred without affecting the query
semantics.2 The specified cells from the table in the from clause (i) belong to both columns in the ship clause
and tuples that satisfy the predicates in the where clause, and (ii) can be transferred to locations in the to clause.
Intuitively, if a subquery accesses only the specified cells, then its output can be transferred to locations specified
in the expression. Consider the data transfer rule from the above example, which does not allow for shipping the
account balance information of customers outside Europe. Suppose the rule also allowed for shipping customer’s
mktsegment and region information to North America for commercial customers. We can use the following two
policy expressions:
ship custkey,name from Customer C to Asia, North America

ship mktseg, region from Customer C to North America where mktseg=‘commercial’

Aggregate Expressions. For certain data, transfer rules only allow shipping of aggregated information. For these
cases, we have aggregate expressions that allow us to specify aggregations over columns. The syntax of an
aggregate expression is given as:
ship attribute list as aggregates aggregate types from table to location list
where condition list group by attribute list

In the above syntax, the list of attributes in the ship clause specifies cells of columns that should be aggregated
before being transferred to locations in the location list. The as aggregate clause specifies aggregation functions
that should be used to aggregate specified cells. As before, the specified cells must belong to columns in the
attribute list for the tuples that satisfy the predicate in its where clause. Lastly, the group by clause specifies
lists of grouping attributes for which the specified cells can be grouped by zero, one, or more attributes from
its attribute list. Consider again the Customer data from the above example and assume that account balance
information can be transferred only after aggregating. A possible expression is:
ship acctbal as aggregates sum, avg from Customer C to * group by mktseg, region

The above expression specifies how values of the acctbal column of the Customer table can be transferred
outside. In particular, it specifies that (i) acctbal should be aggregated via the functions SUM or AVG and
(ii) the cells of the acctbal column can be grouped by mktsegment and/or by nationkey. For example, out-
put of the queries Gsum(acctbal)(C) and regionGavg(acctbal)(C) can be transferred to all locations, whereas of
Gsum(acctbal) (σname=‘abc′(C)) and Πacctbal(C) cannot be transferred at all.

Compliance-based Optimizer. Now, in the query optimization phase, our optimizer aims to determine if a
query is legal (i.e., its execution does not lead to violating data transfer rules) and to automatically generate an
optimal compliant plan. We follow a two-phase optimization process that comprises plan annotation and site
selection. The plan annotator receives a logical plan as input and outputs an annotated QEP. An annotated QEP
is an optimized logical plan in which each plan operator is annotated with a set of compliant sites (i.e., sites
where the execution of the operator will not violate any dataflow constraint). The site selector then uses dynamic
programming to find the optimal placement of query plan operators taking data shipping cost into account.

2For exposition, we restrict to expressions over a single table. This is not a limitation: one can specify a policy expression over more
than one base table. In this case, the condition list in the where clause of the expression must contain the join predicate.
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More specifically, we adapt the Volcano optimizer genera-
tor [12] to generate the plan annotator. Our adaptations allow
us to produce an annotated plan by enumerating the plan space
by applying algebraic equivalence rules in a top-down fashion
and filter compliant ones by applying our annotation rules in a
bottom-up fashion. To do so, we treat geo-locations associated
with base tables as “interesting properties” and propagate these
properties bottom-up via annotation rules. Our annotation rules
are based on the structure of the subplans and make use of a
lightweight mechanism to evaluate data transfer rules. Our policy
evaluator allows for easy integration of policy expressions into
the annotation process. In particular, during plan enumeration, it
determines to which cross-borders sites the output of operators
can be shipped. The figure on the right illustrates the annotation
process for our running example. Here the plan with the dotted lines shows the initial logical plan. The plan with
thick solid lines shows the annotated plan which the annotator outputs. The letters in the square boxes denote
sites to which the output of an operator can be shipped to and letters below each operator denote sites where each
plan operator can be executed. For example, the project operator (node 3) must be executed in Europe but its
output (node 4) can be shipped to North America and Europe. It is easy to see that the plan with thick solid lines
translates to the compliant plan shown above. For a more detailed description of our optimizer, we refer readers
to [6], which also gives a more formal treatment and proof of correctness.

3.3 Compliance Beyond the Relational Paradigm

Data masking via relational operations and our above query rewriting and optimization techniques have inherent
limitations. They limit the whole gamut of compliant QEPs. As conditional restrictions on data transfers (as
discussed in Section 2.2) may allow transferring of pseudonymized and/or anonymized data, it is important to
expand the scope of masking functions to beyond relational operations.

Advanced Masking Functions. Based on European Commission’s Opinions on Anonymization Techniques [21],
we consider the following masking operations in addition3.

Masking function Description

Suppression Similar to Projecting out, replaces a value with a generic value (e.g., ‘xxx’)
Pseudonymisation Replaces one value with another, s.t., new value has no logical relationship to the original

(e.g., ‘abc’ to ’xyz’)
Blurring Alters a value by partial suppression (e.g., ‘abc’→ ’aXX’)
Generalization Generalizes a value using a predefined domain hierarchy (e.g., ‘23’→ ‘20–25’)
Shuffling Replaces existing values with values from the same column
Noise Addition Alter accuracy of (numeric) attributes

Interleaving masking operators with query operators. A direct consequence of masking via non-relational
operations is that: (1) it may no longer be possible to preserve query semantics. To illustrate this, consider that
when transferring employee records, the age attribute is generalized by a function f that translates numeric
attributes to certain range intervals (e.g., f(23) = 20− 25). Such a masking may change the data type (e.g., int

3We note that this is not an exhaustive list of masking functions that we plan to support
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to int4range) leading to change in query semantics. As another example, now consider that the age attribute
is masked via suppression. In this case too, the resulting records will contain fewer attributes than that desired by
the query. (2) Naive interleaving may affect robustness of the data masking. For example, consider a masking
function f that blurs zipcode (e.g., f(12345) = 123xx). In this case a filter predicate p on zipcode (e.g., p ≡
zipcode=12345) evaluated before masking may lead to possible singling out of an individual records. To this end,
our current work explores the following research questions.

Q1 How to interpose masking functions with query operators such that the resulting data is still anonymized?
For example, for scalar and univariate masking functions (e.g., blurring), we can substitute filter predicate
by an UDF filter where the UDF is the masking function (e.g., we can rewrite p as zipcode=f(12345).

Q2 How to minimize information loss by “injecting” the right masking functions? For example, by exploiting
the fact that noise addition preserves aggregates (such as SUM() and AVG()), we can use masking via noise
addition for aggregate queries instead of masking by blurring.

General Purpose Dataflow Programs. Many data analytics tasks are expressed as directed (a)cyclic graphs
(DAG) composed of second order functions (e.g., map). To this end, we are investigating how advanced masking
function can be composed with dataflow operators. For this, we plan to leverage our prior work on dataflow
optimizations [13] and investigate effective and efficient ways to support (iterative) DAG programs.

4 Decentralized Query Execution

We now turn our attention to the execution of compliant QEPs. We first discuss why current FDPS fall short of
executing compliant QEPs. We then present key challenges we need to tackle before presenting our approach.

(Mediator-based) Execution Engine

Compute 
Node

Compute 
Node

Compute 
Node

Figure 4: Centralized FDP

State-of-the-art & Limitations. State-of-the-art FDPS (such
as Presto [25]) mostly follow a mediator-based approach [16].
Although, such an approach (as illustrated by the figure on the
right) is useful for performing data analytics across heterogeneous
compute nodes, it does not lend itself to executing compliant
QEPs. This is because cross-database operations (i.e., operators
requiring inputs from multiple databases) are performed by the
mediator’s execution engine. This leads to the added complexity
in ensuring compliance (due to the centralized processing by the
mediator) to data transfers during query execution. To see this,
recall the example of Section 3.2, and consider that now Orders data from North America can be transferred
to Asia but nothing can move out from Asia. Under these constraints, a possible compliant plan is to first ship
the data (after masking via projection operator as before) from Europe to North America, perform the first
cross-database operation (R ≡ C on O) in Europe, and the second cross-database operation (R on S) in Asia.
Current FDPS cannot execute such multi-site queries. Another limitation arises when metadata (or statistics)
cannot be freely shared across sites, which leads to bad QEPs.

Challenges. In contrast to mediator-based approaches, we need a fully-decentralized approach (i.e., without
any central entity in the execution pipeline) to execute queries over geo-distributed compute nodes. This, however,
poses several challenges:
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1. System Interoperability: A key aspect in achieving a fully-decentralized query execution is the ability to
communicate (intermediate) data between underlying data processing systems. A key challenge, therefore,
is to make systems interoperable without affecting their autonomy, even without them noticing.

2. Fast Data Transfer: As a consequence of lack of systems’ interoperability, moving data among different
data processing systems incur a high cost (e.g., we might need to export data from one DBMS and import
that data in another DBMS). The challenge resides in enabling “native” data transfers (e.g., reading a
relation from a DBMS directly from its binary store) without affecting the autonomy of the underlying
processing systems.

3. Incompatible Data Formats: Different systems work on different internal data formats, which adds additional
complexity and non-trivial cost of storing and converting data from one format to another during data
transfers. The main question to answer is: does an intermediate data representation exists that can speed up
the conversion from any source data format to any target data format?

4. Query Optimization: Last but not the least, optimizing queries without having a “centralized” access to
data systems makes query optimization across geo-distributed data processing systems non-trivial. For
example, data processing systems have their own cost models, which impedes in determining global cost of
executing queries.

(Meta) Execution Engine

Compute 
Node

Compute 
Node

Compute 
Node

Data transfer 
only between compute nodes

Node 
Executor

Node 
Executor

Node 
Executor

Intermediate Query Plan Representation (IQR)
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Plan

Local Query 
Plan

Local Query 
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Figure 5: Decentralized FDP

Our Approach. We have developed a meta-execution engine,
which enables executing federated queries in a decentralized fash-
ion. Figure 5 illustrates our overall approach. In contrast to
a mediator-based approach, we follow what we refer to as a
delegator-based approach. The Meta-execution engine, delegates
the entire query execution to underlying data processing systems.
This avoids a need to have any central entity in the execution
pipeline, and data transfer only happens among compute nodes
following annotations as prescribed by the compliance-aware
query optimizer.

In more detail, the meta execution engine first globally op-
timizes a query (with limited available metadata) and translates
the plan into an intermediate representation (IQR). The IQR is
agnostic to underlying data processing platforms and encapsu-
lates query semantics comprising local subplans (i.e., processing that should be limited to certain locations)
and inter-operator (cross-database) communication endpoints as well as mechanics of data movement between
different systems. The node executors are local meta execution engines that are responsible for (a) translating
and optimizing a local-subplan into platform specific query plan (e.g., to a Spark program), (b) communicating
the IQR to other (relevant) node executors, and (c) facilitating the data movement between systems either by
leveraging underlying system’s capabilities (see below) or by creating suitable data “pipes”. It is important to note
that the node executors themselves do not execute any part of the query but only delegate execution to underlying
systems.

In our current prototype [5], we support such decentralized query execution over multiple RDBMSes
(including PostgreSql, MariaDB, MySQL, Hive, and DB2). To do so, the local node executors leverage the
SQL/MED standard to communicate intermediate query data between systems. More specifically, while translating
into a local DBMS specific program, the node executor first registers external tables (i.e., tables corresponding to
the output of remote subplans) as local tables. This enables achieving a completely decentralized query execution.
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Current Research Directions. We are currently investigating how to process data using geo-distributed
heterogeneous compute platforms. For example, how can we execute a multi-site query using a PostgreSql
database at one site and a Spark Cluster at another site? This is crucial to support compliance for non-relational
workloads. To this end, our work includes expanding capabilities of cross-platform data processing systems (such
as Apache Wayang [3]) to support geo-distributed compute sites. We are also investigating suitable common data
formats such as Parquet, Protocol Buffers, or Avro, which makes inter-system data transfers efficient.

5 Related Work

We now relate the ideas presented in this paper to prior work on compliance and federated data processing.
Compliance. With growing concerns over data privacy and enforcement of regulations, several works have
looked into various legal contexts within with data processing systems must be designed. With respect to GDPR
compliance, most works have focused on data subjects’ rights as a large proportion of GDPR governs data storage.
In this regard, [20] analyzed various aspects of GDPR including deletion, indexing, monitoring and logging, and
access control, and how they impact database systems. [11, 29] studied the performance of GDPR compliant
systems. Their work mainly considers rights of data subjects (e.g., customers) and provide a benchmark to evaluate
data processing aspects including metadata indexing, deletion, access control, and encryption. [19, 18] proposed
an architectural vision for a database that natively supports auditing, deletion, and user consent management.
[28] and [27] examine how GDPR affects the design and operation of modern computing systems. [24] and
[34] studied supporting restrictions based on “purpose”-based access control. [26] presents an analysis on the
impact of GDPR on storage systems. [15] presents a vision for Software-Defined Data Protection, for which
they propose leveraging recent advances in Software-Defined Storage (e.g., FPGA-based key-value stores) to
achieve compliance at the storage level. In the context of dataflow processing, [30] investigated supporting of
data subject’s privacy request (for access, deletion, and objection) by adopting causal snapshot consistency. [4]
focuses on auditing GDPR compliance based on logs. All the above work can be seen as complementary to
our work. While the aforementioned works focus more on data subject’s rights, we focus more on the actual
processing of the data wherein we consider regulations pertaining to the movement of data. Perhaps, closest to
our work on compliance-aware query optimization is that of [23] and [9, 8]. While these works only focus on the
operator placement problem based on privacy or user-specified constraints, we additionally consider rewriting
queries by extending and interleaving query operators with data masking functions.
Federated Data Processing. Our work is also related to earlier works on multi-database query processing [17]
and more recent work on cross-platform systems [3] and polystores [7]. It differs from the former in that we
focus on heterogeneous compute infrastructures and from the latter in that we target geo-distributed environments
and a facilitate a decentralized query execution.

6 Conclusion

Growing concerns on data privacy and usage preclude data transfers across national (or organizational) borders.
It is therefore crucial that data processing in federated environments be compliant with data transfer regulations.
In this paper, we have analyzed data transfer regulations from the perspective of GDPR and discussed key
research challenges for including compliance aspects in federated data processing. We presented our approach
for compliant geo-distributed data processing that focuses on relational workloads. We also discussed how query
rewriting and optimization techniques must be extended to support data masking and outlined open problems
and research directions to support workloads beyond relational workloads. We have advocated the need for
decentrally executing queries and presented challenges and research directions to support data analytics over
geo-distributed and heterogeneous compute infrastructures.
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Abstract

Both societal and regulatory pressure (GDPR) increasingly challenge organizations and engineering
teams to balance privacy and innovation. Striking this balance can be costly in terms of effort, data utility
and computation costs. Moreover, current approaches in scalable data systems often treat privacy as
an access problem, which is at odds with important legal and design principles. A plethora of privacy
preserving- and enhancing- technologies are available, yet their adoption in production data systems still
faces challenges. In particular, their focus is often on narrow use cases such as external data sharing, on
mostly existing data sets, rendering them unusable in real-time data architectures. In this paper we argue
engineering teams should “shift left“ with their data privacy efforts, to the point of data collection. We
show how privacy challenges in production architectures can be addressed without compromising speed,
data quality or privacy. We provide a detailed yet practical explanation of an architectural set-up that
allows users to launch privacy streams in seconds.

1 Introduction

If the industrial revolution ran on fossil fuel, modern-day organizations run on data. From governments to
hospitals, manufacturing to digital marketplaces: data systems are everywhere and have quickly become a
core asset and capability to deploy for any modern organization in order to innovate. With“data“ driving both
considerable value creation and grounded concern about the impact to private individuals, legislators developed
and implemented new regulations like the General Data Protection Regulation (GDPR) [26] in the European
Union to foster innovation without foregoing individual rights to privacy [7] .

But even in data-native organizations, precisely this “balancing” of privacy and data driven innovation is not
an easy task for data engineers, privacy officers and data governance experts alike. While the first foundational
work on Privacy by Design from Ann Cavoukian dates back to the 90s [9], building modern, scalable data
systems around privacy principles is still a nascent field due to a lack of (technical) standards and a prolonging
gap between the policy perspective and operational reality of data systems [1]. This gap leads to a very real
“Cost of Privacy“ to organizations beyond just legal costs [5]. Structuring privacy operations in organizations,
at scale, requires time and effort. Increased coordination across departments, unclarity around requirements,
longer development cycles, additional staffing for e.g. RTBF requests [16] and “privacy paralysis“1 all mean
organizations incur additional- and opportunity costs. For example, a structured approach to privacy is often

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1the observation that taking a next step with application development is delayed or even refrained from due to privacy concerns
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lacking, and the GDPR requirements around data collection and user opt-ins lead to reverse-engineering the legal
ground and related purpose for collecting and processing data, with engineering teams often pulled into lengthy
legal discussions on purpose. Moreover, requirements like strong anonymization pose a practical challenge to
data utility and -usability for (data) engineering teams.

Despite this apparent Cost of Privacy, available solutions are still limited. We see the gap between the policy
perspective and real-world systems is most apparent in the way privacy is embedded in many data architectures.
Often, privacy is treated as an access problem on data that is already collected, stored and used2, not as a first
principle of systems design (often without traceability to the collection ground and collection purpose). While this
is convenient as it requires limited re-architecting of existing systems, we believe this is an "early efficiency win
[that causes] late stage headaches" [5]. Moreover, it is at odds with (if not in violation of) legislative directions.
This often leads to (i) organizations accepting an increased risk profile or (ii) refraining from engaging in new use
cases (and so innovation) altogether. All in, the current approach to dealing with privacy often poses another real
cost and risk to organizations, both financial and in reputation.

1.1 Privacy Enhancing Technologies

One of the domains where these challenges are being (partly) addressed, is in Privacy Enhancing or Privacy
Preserving Technologies (PET’s) [21]. PET’s allow data practitioners to transform sensitive data into usable input
for consumption or support detecting sensitive data [5], limiting risk of unsolicited data consumption. Yet, they
have important shortcomings in the practical sense: they often center around external data sharing as the dominant
use case, are computationally heavy, best suited to aggregate data operations only and/or rely on "complete" data
sets. This makes them better suited to use cases where data is already collected and stored. Hence, PET’s provide
a solution for a limited set of use cases and can still lead to non-compliance with privacy regulations if data was
not properly collected or bounded to data purpose [5].

1.2 Towards Privacy by Design for data

To bridge the gap from the realities of privacy professionals and data (system) engineers to available technologies,
we propose an architecture to encode privacy in data that helps to structure privacy efforts, and a system to
implement this at lower real-world costs. Both the architecture and system come from a set of clear principles,
derived from legal and privacy by design requirements:

1.2.1 Requirements

• Explicit contracting - define both data shape (the schema) and privacy implications as metadata (including
key legislative concepts such as collection ground) in data contracts that describe each datapoint.

• Enforce transformation - define inside the contracts, set per-field privacy transformations, such as de-
identification or anonymization, for sensitive (PII3) data fields, so that data collection and processing are
tightly coupled.

• Shift left - Enforce these data contracts at ingestion, so data is (i) always bound to purpose and (ii) welded
to the original collection ground.

• Retain utility - transform data in such a way that the trade-off between privacy and utility is limited or even
removed.

2e.g. the way many modern data warehouses deal with privacy is through role-based access
3Personally Identifiable Information, such as a name or email
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• Dedicated distribution - provide a dedicated interface for every specific collection ground through
privacy streams, so that applications and/or downstream users are guaranteed to only receive (i) necessary
and (ii) properly transformed data.

• Interoperable - the system should naturally complement existing architectures and accommodate easy
integration and deployment (aligned with industry standards).

• Cheap and Fast - extend interoperability by aiming to add minimal additional latency to existing systems
and limit computational cost of operations.

In effect, a solution should allow data teams to build with confidence, cut costly coordination time, and enable
them to quickly deploy a contemporary (streaming) data infrastructure with a focus on high quality data at low
effort at lower legal and reputation risks.

2 Limiting the Cost of Privacy: privacy, utility and design challenges

In this section we identify the challenges that surround building scalable data systems from privacy forward, and
the design principles that should shape them. We will approach these as drafting the list of requirements for
building these Privacy by Design data systems.

2.1 Privacy challenges

2.1.1 Key requirements from GDPR

While often viewed as a complex legislation, the core of what GDPR seeks to achieve is straight forward:
protection of individuals’ private data. A few key concepts set the boundaries for responsible (and lawful) data
behavior, such as accountability (you are accountable for the data you control), and data subject rights (what an
individual can require from a controller). We will use these as a treasure map in hunting for requirements.

Data minimization and consent Of key interest to our challenge are the governing principles on how to
collect and use data: data minimization and consent obligations. Simply put, they state one should not collect
more data than necessary for a purpose, and can only collect data under either explicit consent for that purpose or
a justified cause4, like legitimate interest or contract fulfillment (e.g. an e-commerce marketplace simply needs
your home address to deliver your order).

In practice, these legal grounds are oftentimes liberally interpreted. Historical data – i.e. data that has been
collected in the past and stored in e.g. a data warehouse – is often persisted without storing the purpose under
which it was acquired. This is clearly problematic in the privacy sense: it is (nearly) impossible to determine the
purpose of a data point after the data collection took place.

It becomes even more interesting once we acknowledge the dynamic nature of consent. For example, how
do we handle changing preferences of end-users, and how is consent linked to data over time? By collecting
purpose up-front, and ensuring that this purpose stays with the data, two problems are handled instantly: purpose
limitation and consent [24]. This yields the first challenge we should take into account:

Req. 1: We should encode how a data point was obtained and for what purpose

Purpose limitation As data in practice is often collected once and then up- and recycled often, there is
another key principle to take into account: purpose limitation. In the official text, GDPR article 5 section 1(b)
[26], we see the following:

4Consent, purpose and legal ground are used interchangeably
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Personal data shall be collected for specified, explicit and legitimate purposes and not further
processed in a manner that is incompatible with those purposes; further processing for archiving
purposes in the public interest, scientific or historical research purposes or statistical purposes shall,
in accordance with Article 89(1), not be considered to be incompatible with the initial purposes
(‘purpose limitation’).

This is directly at odds with the common practice of hoarding data into a warehouse. If the purpose of data
collection is not clear, the legal ground cannot be determined and consent cannot legally be obtained [24]. While
the legalese and exact wording of what purposes can be considered legal is far outside of the scope of many data
engineering professionals, this is a clear area of interest for designing systems around privacy: data usage without
determining if it is legal to use for a certain purpose is already violating this very principle. In practice we see this
judgement is often made by a data consumer team without (sufficient) knowledge of Personal Data regulations.
This paves the way to our second requirement:

Req. 2: Data consumers should only receive data they are entitled to, given the consent of the data-owner,
for the specific purpose of the data consumer 5

So e.g. while a data-team building a recommender system has a vested interest in knowing what a user does,
they do not need to know who the user is - and so could do with any random value representing the user as long
as its consistent over time for that specific person or user account (provide consent or legal ground is present!).

2.1.2 Privacy by Design, the principles

Our next source of system requirements are the original Privacy by Design principles laid out by Ann Cavoukian
in her capacity as the Information and Privacy Commissioner of Ontario [9].

The first principles6 revolve around timing - when privacy comes into play in both designing systems and the
flow of data. Clearly, it is only private by design if "characterized by proactive rather than reactive measures,
[anticipating and preventing] privacy invasive events before they happen". Moreover, the "maximum degree
of privacy" is in warranting the protection of personal data in "any given" data system (aligning with our first
requirement: encode privacy into data). This suggests a profound shift of the point at which privacy becomes part
of the data flow:

Req. 3: Privacy should be embedded right where data is collected.

More recent views on best practices like Bhajaria’s (2022) [5] also suggest that both classifying and tagging
data before it hits data pipelines (i.e. at ingest) mitigates privacy risks more optimally.

2.2 Data utility

2.2.1 Bringing structure to data improves data quality

Even before privacy comes into play, many data practitioners will recognize the challenge of data quality in
and of itself. In organizations with lots of operational legacy systems (which does not imply they are "old"!),
it is common to see the creative re-use of fields/columns in a data set. Dealing with confusing field names,
undocumented changes in lineage and empty fields are common practice in the real world [4]. Moreover, data
consumers generally have no direct control on what is accepted as valid data, and will often have to resort to
heuristics to determine what to do with a certain data field.

5processor in GDPR parlance
61. Proactive not Reactive; Preventative not Remedial, 2. Privacy as the Default Setting, 3. Privacy Embedded into Design
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Think of this as data debt or negative interest building inside data flows. Adding and enforcing more structure
in data will improve data utility over the long run considerably as it addresses this kind of real-world challenges
(see for an overview of data quality frameworks [10]. In any case, we should strive to:

Req. 4: Make structure explicit and retain as much of the data quality and utility as privacy permits.

2.2.2 The opportunity of privacy transformations for data utility

One of the key challenges of applying privacy regulations and principles to data systems lies in the (supposed)
limitations they impose on data utility. Any personal data collected and used is subject to the GDPR provisions,
limiting collection ground and purpose - e.g. you cannot simply use an acquired e-mail for marketing purposes,
as used to be common practice. This creates another practical cost, as different data types need to be shielded
from general use inside systems.

There are however circumstances under which collected data may be used for different purposes than originally
requested: in anonymized form, with “data rendered anonymous in such a way that the data subject is not or
no longer identifiable.” (Recital 26 of [26]). When done properly, and this is an extremely high standard many
organizations fail to achieve (Article 29 Working party, in [14]), this even places personal data outside of GDPR,
hence allowing to retain utility. This is especially attractive for pattern-driven tasks such as aggregated analytics
and applied machine learning that do not rely on identification of the data subject persé.

Along that axis is a much lighter interpretation of what it means to de-identify data: pseudonymization, “the
processing of personal data in such a way that the data can no longer be attributed to a specific data subject
without the use of additional information.“ (Recital 4(5) of [26]). Hence, by separating the necessary link
between a data point (such as a click event) and the data subject, GDPR allows data to be used with much more
degrees of freedom (even beyond the original purpose limitation!) [14]. In summary, applying lighter or heavier
de-identification methods helps to retain the data utility many believe is lost under GDPR.

Req. 5: Immediately transform data in such a way that the trade-off between privacy and utility is limited or
even removed

2.3 Technical design challenges

Building and maintaining scalable data systems requires deep knowledge of a wide set of technologies and
domains. On top of that, adding privacy does not simplify these already complex designs and systems. A great
example of the complexity GDPR brings to systems design is fulfilling Right To Be Forgotten (RTBF) requests:

Under RTBF, a data subject can request a data controller to deliver or remove their (personal) data. This has
the potential to be a daunting and expensive task, as legally obtained personal data can be everywhere in or even
outside an organization, from local copies to data shared externally with vendors. In order to completely fulfill an
RTBF request, one has to conduct either a full table scan on every day of data for each request in any location,
or build and update an index of the users present in every data file or storage, including derivatives of personal
data. Both are expensive operations, even when automated. We would have to repeat this at least every 30 days
(minus operation time), as that is the response window GDPR permits. RTBF is just one of many challenges (and
opportunities) GDPR imposes. Various challenges on Integration, Architecture, and Performance exist.
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2.3.1 Architecture

One of the first challenges to discuss is in the (dominant) architecture underlying many data systems: batch
processing, where (often millions) of rows of data are created and processed at set intervals.

But if data “exists“ already, we run into a clear challenge for adhering to the aforementioned principles or to
be able to shift [privacy] left to the point of data collection. The presence of personal data in raw form needs to be
prevented up-front. A sensible way to achieve this is by shifting data collection to an event-based approach. If we
capture and treat each datapoint individually, e.g. through following the exchanging API’s design, we can enrich
and add metadata at much higher resolution. A stream processing-based7 event gateway allows for coupling
specific metadata to each and every single data point (the event) and so allows to enforce “embedding“ privacy.

Although a good starting point for privacy by design systems, creating (and maintaining) an end-to-end
streaming architecture with data enrichment centered around strict requirements is technically challenging.
Technical difficulties and limited maturity to fully benefit from real-time architectures in data consumption has
caused many companies to avoid or even abandon them. Executing transformation on a data stream is technically
more demanding in both development and reliability as compared to batch processing, and standards (both
technical and implementation) are not as widespread. When applied to business challenges in the right way,
processing and enrichment of streaming data can create highly valuable real-time insights, for example into
customer behavior (see for an example [12] and the remainder of the Dec 2015 Bulletin) and real-time machine
learning use cases [27].

In order to conduct the type of transformations necessary for privacy processing, popular tools such as Apache
Kafka, Apache Calcit e(streaming SQL), Kafka Streams or Apache Flink can be leveraged. While powerful, in our
experience they are also characterized by a steep learning curve, and are non-trivial to bring into production (in
both platform maintenance and usage), especially at scale. Other popular components and solutions (self-hosted
or managed) generally provide the necessary strict event formats and support for stream processing, but are
agnostic to use cases or specific application domains and therefore require a lot of engineering on top of the bare
metal solutions. For instance, retaining data purpose like data subject consent is still left to the data consumers.

2.3.2 Integration

Another key challenge when building for privacy lies in the integration to existing data technology. Enterprises
and SMEs are often (deeply) invested in existing data architectures, and are likely unwilling or not capable of
switching technologies very easily. As mentioned, when designing for privacy, the goal is to prevent having to
deal with privacy after data collection, preferably agnostic to the configuration and architecture of existing data
systems [5] that handle data downstream.

To many engineers, even when leveraging cloud or OSS8 building blocks, designing a platform for data
processing from privacy forward is a daunting prospect, precisely because the aforementioned gap between the
legal and policy perspective persists. However, drawing upon our experience, it is possible to achieve Privacy by
Design and implement its principles by framing it as an augmentation instead of a replacement challenge . In fact,
many basic building blocks are provided by various technologies that have proven themselves over the past years
(e.g. like Apache Kafka and processing engines). We therefore argue that evaluating how to augment and evolve
an existing stack is likely a more effective strategy than re-architecting everything for privacy.

Moreover, an event-based approach provides the opportunity to simply aggregate and transform data to match
existing downstream (batch) processes at low cost, while retaining the metadata necessary for encoded privacy.
This limits scope of implementing such systems: it would simply precede existing processes instead of replacing
them and is valuable even when there’s no immediate need or value to obtain and consume data at (near) real-time
latency.

7Often referred to as streaming or real-time data
8Open Source Software
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2.3.3 Performance

The last key challenge to point out is in system performance. While end-to-end stream enrichment with meaningful
data can bring value and suits the privacy challenges well, these opportunities can be offset by decreased systems
performance (e.g. increases in system latencies can cause decreased conversion in online retail [2]. A lot of
the value of enrichment occurs if the result of the enrichment is available as soon as possible. Hence, latency is
critical to take into account when preventing raw form PII data at the moment of collection.

A major factor in the performance of such systems is how they respond to increased scale. Bottlenecks are
highlighted quickly when data processing systems are put under high load. All sorts of challenges should be
taken into account when designing for scalability of data processing systems: distribution of the data, average
size, different types of events, and many other factors. Orchestration platforms, such as Kubernetes, allow for
fine-tuning in order to deal with the requirements of scalability and flexibility.

Systems can scale in two ways: vertical (more resources) and horizontal (more instances). Designing systems
for horizontal scalability is more complex, as applications should be designed stateless and resilient to restarts,
but often cost effective as dynamically scaling instances keeps idle resources to a minimum. All these factors
(architectural, integration and performance challenges) add up to our final requirement:

Req. 6: Complement existing data systems, focus on scalability and aim to add as little latency and computa-
tional costs.

3 From Requirements to Solution: STRM Privacy

The aforementioned requirements are the boundaries for a Data System designed for Privacy. The core premise
of privacy regulations like GDPR is that every data item should have a legal ground to gather and process it.
The only way to guarantee proper processing of the data item is to tie the owner and permissions based on legal
grounds directly and irrevocably into the data item. Our solution adds a standard set of attributes to every data
item to achieve this.

Structure is imposed before any data is transferred through a data contract9 defining the data shape, the
privacy implications and the data validations. As can be seen in figure 1, a central Event Gateway receives data
from many different applications, where a data contract is enforced, and Personal Data Attributes are encrypted10.
Basic data validation is performed upon ingest, resulting in an encrypted data stream (where only the PII fields
in data items are encrypted). It should only be possible to decrypt these attributes provided the data collection
purpose and specific usage or consumption purpose match. By encrypting on ingest, and only putting encrypted
privacy safe data items in long-term storage, the long-term storage does not become data toxic waste.

While taking purpose into account, a decrypter step then creates derived privacy streams, including only
events with the required consent for that stream as decrypted. If a user did not provide consent for their data being
used for a specific purpose, the data does not end up as private data in these streams.

We apply encryption methods beyond just obfuscating underlying field values. Through key rotations on links
inside the data items, privacy transformations such as masking or anonymization can be performed in real-time.
Combined with the purpose and consent binding, we can split the incoming data and create purpose-driven data
interfaces that downstream applications or teams can consume without privacy concerns.

The encryption mechanism will assign the same encryption key to the same value of a specific data item field.
As the same value for a field in the data item yields the same cipher-text value, the integrity between events is
retained. With a time-based encryption key rotation (i.e. the privacy algorithm) we can consider the resulting
encrypted data stream to be not privacy sensitive anymore. Next to that, in case a data owner requests to be

9for more information on data contracts: https://docs.strmprivacy.io/docs/latest/concepts/schemas-and-
contracts/

10through a symmetric encryption algorithm, with a fixed initialization vector
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Figure 1: STRM Privacy High Level Architecture

forgotten, throwing away the encryption key destroys all personality dimensions inside the data, but helps to
retain the utility of the non-sensitive fields. This process is also known as crypto-shredding [11].

In sum, our architecture allows to encode privacy into a data point from the moment of collection onward,
enforcing that personal data is only available when the purpose allows it, while retaining important utility of the
data. Our documentation [25] provides a deep dive into all the various components that drive this architecture.

4 Related Work

At this point, we positioned the need and guiding principles for building real-world data systems from privacy
forward. We have described how the architecture of STRM Privacy follows these principles through an event-based
component, a privacy component, and a data quality component.

Evidently, specific technologies exist for the various components such an architecture requires. First, for
data processing in streaming fashion, there are various established technologies, such as Apache Kafka, Kafka
Streams, Apache Beam, and many other Open Source and commercial solutions (see e.g. [15] or [19]).

Secondly, we emphasize that specific solutions in the realm of Privacy Enhancing Technologies are on the
rise that warrant privacy through different approaches (see for an overview [21]). Their goal generally is to
destroy identification in data, while maintaining the same (statistical) characteristics to sufficiently represent
the original data to conduct operations (see for example earlier IEEE publications [17] or [28]). For example,
solutions include Synthetic Data Generation, obfuscating data on existing data sets, and data encryption at rest.
Some challenges remain, e.g. with obfuscation, one should ensure that the obfuscated data is not susceptible to
linkage attacks combining obfuscated data with other data to de-anonymize the data [20]. An important limitation
of these approaches is that they are currently not able to accommodate real-time transformations and embedding
in operational data systems [3], and often require existing data sets that might be collected in violation.

Finally, data quality is considered to be of pivotal importance for any downstream application [8],[6]. Hence,
both traditional ETL tooling and novel ML supported techniques (see for example [13]) enable both validating
and enriching data at ingest or even in transit. Metadata management is an important adjacent field, which could
further enrich data usability in data pipelines [22], although scalability of such systems is still challenging [23].
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5 Conclusion

In this paper we argued that building data systems for privacy in real-world production settings should be guided
by a core set of principles derived from legislative and Privacy by Design frameworks. This enables closing an
existing gap between the policy perspective of privacy and the operational reality of data systems.

Existing Privacy Enhancing Technologies focus mostly on heavy computational tasks, such as synthetics,
at the cost of latency and compute power. They are generally best suited to existing data sets, not in-flight data.
Critically, data teams should not treat privacy as an access problem and shift their data privacy efforts to the
point of data collection (i.e. "shift left") to better position for compliance. When employing data contracts to
encode privacy and tight coupling to privacy transformations, scalable data systems that retain performance and
data quality are achievable. They can be compatible with progressive data system philosophies (i.e. the Modern
Data Stack or Data Mesh [18]). In effect, this lowers the Cost of Privacy through better data usability, reduced
compliance risks and improved coordination between engineering teams and legal departments.

To the best of our knowledge, no other solution exists that focuses on encoding privacy inside data, combined
with proven technologies for streaming infrastructure to minimize impact in latency and performance to comple-
ment existing data systems. Apart from a better modus operandi for data systems in general, such systems can
drive valuable innovation like real-time machine learning while respecting end-user privacy (and thus privacy
regulations), and bring privacy by design for data to a much wider audience. We happily invite the community to
further extend the collective body of knowledge, by providing feedback or iterations to our work.
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